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1 Introduction

Less-than-truckload trucking represents a portion of the motor carrier industry in which the
shipments to be sent on trucks do not completely fill a 45,000 1b. volume tractor-trailer [4].
Typically, the freight in each shipment weighs under 10,000 lbs., with a large majority falling
under 1000 lbs. Since each shipment does not fill a truck, significant savings can be achieved
by consolidating shipments into loads at regional terminals and transporting these loads
from terminal to terminal. The goal of the strategic load planning problem is to determine
how to route the flow of consolidated loads from origin terminals to destination terminals
cost effectively and allowing for certain service standards. The actual gathering of these
shipments at the origin terminal and the distribution of them from the destination terminal
is handled in a separate problem commonly referred to as the pick-up and delivery problem.
This overall method of distribution requires a network of terminals, the design of which is
closely related to many classic network design problems. We have built a software system
which, when given the appropriate data concerning a company’s needs and past routing
decisions, will build a network to solve the strategic load planning problem. The empirical
results, based on real data from trucking companies, indicates that our system does a very
credible job of building an efficient network.

In section two of this paper, we define our formulation of the strategic load planning
problem. A mathematical model is provided for clarity, but is not essential to the meth-
ods discussed in the rest of the paper. In section three, we discuss the implemented solution
strategy, including both a network—building procedure and a final-stage improvement heuris-
tic. Section four provides results obtained from data provided by real trucking companies.
Finally, in section five we draw some conclusions and briefly examine some possibilities for
future work.



2 Problem Formulation

2.1 Simplifying Assumptions

In order to model the strategic load planning problem, certain simplifying assumptions are
made. First, we assume that all freight moves via trucks. No airplanes, boats or trains are
available to ship the loads. We also assume that the trailers are homogeneous. That is, we
have one type of trailer with one fixed capacity. We assume an unlimited supply of trailers
are available for transporting the loads, and they are all owned by the company. In order
to facilitate higher—level decisions beyond the scope of this particular problem, we allow the
number of trailers used to ship loads to be fractional. We do not consider driver feasibility
when creating the load plan. For example, direct service may be provided between two
terminals whose distance far exceeds the number of miles one driver could traverse nonstop.
Additionally, we assume that a driver will be available at any terminal to take a load wherever
the load plan dictates.

2.2 Problem Description

The strategic load planning problem, or SLP, is based on data obtained from an analysis of a
company’s past and projected freight distribution needs. This analysis yields a set of loads,
referred to as commodities, each with an origin and destination terminal and a quantity.
These commodities are aggregated, meaning that a given origin/destination pair uniquely
identifies a commodity. A commodity with zero freight simply indicates that no freight
is shipped from that commodity’s origin to its destination. Thus, commodities represent
the expected shipment needs of the company. If the origin to destination path for a given
commodity contains intermediate terminals, then the commmodity’s freight is said to be
“handled” at these terminals. Each terminal has a capacity in terms of the quantity of
freight handled per day, as well as a handling cost per unit of freight and a handling time.

The arcs of the overall network are defined by the set of potential direct services between
terminals. A potential direct service is an ordered pair of terminals and refers to the pos-
sibility of routing freight from one terminal to another with no intermediate stops at other
terminals. Each direct service has a unit cost per amount of freight routed along the arc
and a minimum frequency requirement. If freight is routed along a direct service, then the
minimum frequency refers to the minimum number of trailers that the company must send
along that arc throughout a day. If no freight is routed along the direct service, then the
minimum frequency restriction does not apply. Finally, the company may also set certain
service standards for each origin/destination pair. These standards refer to the maximum
time permitted to transport a commodity from its origin to its destination. These restrictions
limit the lengths of the routes.

The solution to the strategic load planning problem must provide two key pieces of
information. First, it must reveal the status of each potential direct service. This indicates
that either freight is routed along a given direct service (status in) or it is not (status out).



Second, a load plan providing the path for each commodity from its origin to its destination
is required. This load plan must be tree-based so that given any commodity at a current
terminal location and its known destination terminal, the next terminal on the commodity’s
path is uniquely defined. The set of terminals, along with the status in directs, define the
solution network. Other restrictions on the solution include that there be enough trailers
traveling along each status in direct service to carry the amount of freight being sent along
that arc, as well as to meet the minimum frequency requirement. A terminal may not exceed
its handling capacity for freight and must have zero net change in trailers, which may require
the movement of empty trailers. The path for each commodity may not exceed the service
standard. Finally, the goal is to minimize the sum of the cost of sending trailers along direct
services and the cost of handling freight at the terminals.

2.3 Mathematical Model

The SLP can be formulated as a mixed integer programming problem in the following man-
ner. The set of terminals for the strategic load planning problem is denoted by 7'. For each ¢
in T'; we have a handling cost, HC}, and a handling time, HT;. Also for each terminal, there
is a capacity on the number of trailers of freight that it can handle each day, C AP;. The set
of commodities to be shipped is denoted by C' and has elements kd where k is the origination
terminal and d is its destination terminal (recall, commodities are unique origin/destination
pairs). Within T, we also define the set DEST to be the set of destination terminals for
the set of commodities C'. The parameter Qx4 is the number of trailers, possibly fractional,
needed to ship commodity kd. The amount of time advertised to ship commodity kd from its
origin terminal to its destination terminal is the service standard, STy4. The set of potential
direct services is denoted by DIRS. For each ¢j in DIRS, TC;; is the cost of sending one
trailer from terminal ¢ to terminal j with transit time T7;;. The final parameter, M F;;,
refers to the minimum number of trailers that must be sent along arc 75 throughout a day,
if freight is allowed to move along 7.

The nodes in the network are enumerated by ikd, with i« € T and kd € C'. The nodes
created at each of the terminals for each commodity are connected by the decision variable
fijra Tepresenting the assignment of ij € DIRS to the freight path for kd € C. The variable
fijra is 1if direct ¢7 is used to ship commodity £ to its destination terminal d. These variables
define the freight path for each commodity. The decision variable n;jq is 1 if the next transfer
at ¢ is j for a commodity whose final destination is d. These variables determine a load plan
that depends only on the destination terminal for a commodity. The variable v;; is the
number of trailers sent on direct 5. The strategic load planning problem is stated as:



Minimize Y TCyvij+ Y. > HC;Qafijra

ijeDIRS kdeC,k,d#j ijeDIRS
subject to
-1 ifi=d

Z fijka — Z f'ide{ o 1€T, kdeC (1)
ijcpirs  jicDIRS 0 ifi#k.d

Z (Qka Z fitka) < CAP, teT (2)
kdeC,k,d#t iteDIRS

Z (TT;]' + HTJ)f”kd < STyqg+ HTy kd e C (3)
ijeDIRS
fijka < nija ij € DIRS, kd € C (4)

Y nya<l1 de€ DEST, teT,t ~d (5)
tjeDIRS
Ndjd = 0 d e DEST, dj € DIRS (6)
> Quafijra < vij ij € DIRS (7)
kdeC

Z Vit — Z Vi = 0 teT (8)
ite DIRS tic DIRS
Nijd, fz'jkd € {0, 1} tj € DIRS,kd € C (10)

The objective is to minimize total cost. The costs incurred are the transit costs per trailer
on each direct service provided, in addition to the cost of handling freight at each of the
intermediate handling terminals on a commodity’s freight path. The first set of constraints
are the flow conservation constraints for each ¢kd in the network with the exception that
a demand of 1 be met at node dkd for all kd € C'. The second set of constraints are the
terminal capacity constraints. The constraints specify that each terminal handle no more
than its capacity. The third set is the service standard constraints which insure that the
handling time and transit time for a commodity’s freight path to its destination terminal is
no more than the advertised time for arrival at the destination. The fourth set of constraints
link the freight path variables to the load path variables so that if the next destination from
¢ is not j for a commodity destined for d, then f;zq is forced to be zero.

Constraints (5) and (6) insure that our load plan is tree-based and rooted in the destina-
tion terminals. Constraint set (5) allows no more than one next transfer from any terminal
t for a specific destination d. The next set eliminates any next transfers from a commodity’s
destination terminal. Constraints (7)-(9) are related to the trailers. Constraint set (7) is the
set of trailer capacity constraints which ensure that commodities shipped on a trailer do not
exceed trailer capacity. The next set ensures that trailers balance at each terminal, and (9)
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specifies that the number of trailers shipping commodities on a direct service is at least the
minimum frequency. Finally, the number of trailers is at least zero, and the freight path and
load plan decision variables are binary.

Clearly, the mathematical formulation of the problem can become very large. The number
of integer variables alone is on the order of | DIRS| x |C|. Since both the number of directs
and the number of commodities are bounded by the square of the number of terminals, the
number of integer variables is on the order of |T'|*. Given the size and difficulty of the integer
programming formulation for any realistic data set, it is reasonable to use an approximate
solution method, as is done in this paper.

3 Solution Strategy

Our solution strategy can be divided into three major phases. The first phase involves
pruning the overall network of possible direct services. Our goal in this phase is to eliminate
the more unlikely direct services while also maintaining feasibility. The second stage is an
iterative network building phase. We use a modified version of Balakrishnan, Magnanti, and
Wong’s [2] dual-ascent procedure for uncapacitated network design to build the network
at each iteration. Also, at each iteration we modify the network cost vectors in order to
heuristically encourage solutions that adhere more closely to the requirements of the strategic
load planning problem. In the last stage of the algorithm, we apply an add/drop procedure
to the final solution from the iterative phase. The add/drop procedure systematically adds
and drops direct services in order to find local improvements in the solution.

3.1 Pruning Techniques

To understand the necessity of pruning the overall network, consider an instance with 50
terminals, a complete, directed graph such that each arc is a potential direct service, and
the requirement that some quantity of freight travel between every pair of terminals. A
complete graph, in this case, implies a network with 2,450 arcs. The number of commodities
is the same. Thus, the number of network flow variables is well over 6 million. Other than
eliminating the commodities with zero freight, we can not reduce the number of commodities.
We can, however, eliminate arcs as a means of reducing the problem size. To ensure the
feasibility of the problem, we require the existence of a known feasible solution which we call
the historical load plan, or HLP. The HLP is a complete load plan, supplied as part of the
original data, and represents a solution previously used by the company. By not eliminating
any arcs belonging to the HLP, the known solution remains feasible, and thus, a valid upper
bound on the optimal solution.

By pruning arcs which we determine are unlikely to be in the optimal load plan, we can
reduce the problem size significantly. Two factors which we consider in pruning the arcs are
the type of terminals at an arc’s endpoints and the amount of freight that would be sent
along that arc if all commodities were sent along direct services from their origins to their



destinations. A terminal’s type is either an end-of-line (EOL) or a breakbulk. An end—of-
line terminal is one which is not permitted to handle any freight. That is, freight may either
originate or terminate at the terminal, but it may not be an intermediate terminal on a
commodity’s path. A breakbulk terminal is permitted to handle intermediate transfers of
freight. Freight originating and terminating at a terminal is not considered to be handled.
Given this knowledge about the terminals, we know exactly how much freight would ever
travel on an arc from one EOL to another — only the commodity corresponding to that direct
service. If this commodity’s quantity is less than the low freight parameter and the arc is not
in the HLP, the arc is eliminated from the network. In general, as the low freight parameter
increases, so does the number of arcs that are pruned.

Given additional data, further reductions are possible. If a company can provide an
historical load summary relating how many loaded trailers are used over a certain time
frame, this information can be used to prune less frequently used direct services. The real
world data is based on the use of pups, which translate into half of a trailer, and vans, which
translate into one trailer. If the number of trailers previously sent along an arc is less than
the predefined parameter and is not in the HLP, then the arc is pruned. Also in this pruning
technique, as this parameter indicating the minimum tractors permitted increases, in general
the number of pruned arcs increases. While there does exist the risk that optimal solutions
are eliminated by removing arcs using these two pruning techniques, we rely on the small
likelihood of such a case so long as the values of these parameters are relatively small.

3.2 The Uncapacitated Network Design Problem

The UND and related UND problems

An uncapacitated network design (UND) problem consists of a set of nodes, a set of
uncapacitated arcs, and a required flow of one unit that must be routed between specified
pairs of nodes. Each arc has a fixed cost for using the arc and a per unit cost for the
amount of flow along the arc. The optimization problem is to select the subset of arcs
along which to route the required flow that minimizes the total cost. While this is an N'P—
hard problem, there exists several approximate solution procedures which have succeeded
in finding good solutions for large scale problems of this type. A survey of network design
problems and solution methods can be found in a paper written by Balakrishnan, Magnanti,
and Mirchandani[1].

The general case of the UND problem which we will consider has directed arcs ij in the
set of arcs A and is defined over the set of nodes V. There is a set of commodities K which
define the sets of pairs which must have a flow from the origin to the destination of any given
commodity k (denoted O(k) and D(k), respectively). Unit costs are commodity dependent;
thus, ci-“j is the per unit cost of routing commodity k£ along arc 5. Fixed costs, however, are
incurred if any commodity is routed along an arc. Thus, F;; denotes the fixed cost of using
the arc ¢j for any commodity. Given these cost parameters, only two types of variables are
needed. The first variable is the flow variable a:fj, which is a variable indicating the fraction
of commodity k& € K which is routed along arc ij € A. The second variable is the binary



variable y;; indicating if the arc ij € A is used (y;; = 1), or not (y;; = 0). Thus, the primal
UND problem (P) can be written as follows:

Minimize Y > cfak + > Fijy

ijEAKEK ijeA

subject to
Zx_i_zxi.:{ o keKieV
i J = J 0 ifi+# O(k),D(k)
xf <y ijeAkeK
x>0 ij€EAkeK
Yij € {Oal} 2'7 €A

Note that in this formulation the flow variables z7; are permitted to be free variables even
though they will always take on binary values (i. e. either none of a commodity or all of a
commodity is routed along an arc). This is due to the unit demand assumed in the network
flow constraints.

Given a strategic load planning problem, we can define a related UND problem by ig-
noring the capacity restrictions, service requirements, and empty trailer balancing and by
approximating the minimum frequency restrictions with the fixed cost parameter of the UND
model. More specifically, the related UND model is constructed from an SLP problem con-
taining the following data. First, the amount of freight associated with a commodity £ € K
is represented by frt(k). Similarly, for each arc 75 in the SLP network, transit cost on the
arc is defined to be transcost(ij), and the minimum frequency on the arc is defined to be
minfreq(ij). For each terminal ¢ in the set of terminals, handcost(7) is the handling cost at
terminal 4.

In order to build the related UND problem, the set of nodes V must be built from the
set of terminals. Let each EOL terminal j be represented by a single node j in the set V,
and let every breakbulk terminal ¢ be split into two nodes, i; and i3 in V. The set of arcs (or
direct services) from the SLP problem can all be translated into the UND model by forcing
any arc that ended at a breakbulk terminal ¢ in the SLP model to end at the corresponding
node %; in the UND model. Similarly, any arc that originated at a breakbulk terminal 7 in
the SLP model, must originate at the corresponding node 5 in the UND model. In addition
to these arcs, there must be a single arc from ¢; to ¢; for all breakbulk terminals ¢ which
were split into two nodes. These additional arcs are referred to as the split breakbulk arcs,
and they represent the actual handling at a terminal of any commodity routed along that
arc.

Since our UND model requires a unit demand for each commodity, we must transform the
commodity—dependent demands of the SLP problem to unit demands by scaling the costs
for each commodity, as is done in Balakrishnan, Magnanti, and Wong[2] for their instances
taken from the less—than—truckload, or LTL, industry. In other words, the value of cfj for
commodity k£ € K and for any arc ¢j € A which is not a split breakbulk arc is defined to
be transcost(ij) * frt(k). (Note that every arc ij € A which is not a split breakbulk arc

corresponds to a unique arc in the SLP model. It is the transit cost of this original arc that
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transcost(ij) refers to.) The value of ¢} ; for commodity k € K and the split breakbulk arc
i112 obtained from terminal ¢ is assigned the value of handcost(i) * frt(k). Finally, the fixed
cost Fj; of an arc ij € A which is not a split breakbulk arc is min freq(ij) * transcost(ij).
For the split breakbulk arcs, F;; = 0. Thus, we now have a related UND problem which we

can solve heuristically using a known method.
A dual-ascent procedure for the UND

The method we use to solve the UND is essentially the dual-ascent procedure described
in Balakrishnan, Magnanti and Wong [2]. This approach begins by first relaxing the binary
constraints on the y variables in the primal UND problem (P). Then the dual is formed using
the dual variables v¥ for the flow conservation constraints and the dual variables wfj for the
second set of constraints (known as the forcing constraints). Thus, the dual UND problem
(D) can be written as follows:

Maximize Z ’U%( k)

keK
subject to

v;?—vf—wfjgcfj e A ke K

> wi < Fy ijeEAkeK

keK

wf; >0 ijeEAkEK

Notice that when w is fixed, the remaining problem is the dual of a shortest paths
problem. As a result, the solution vf is the shortest path from O(k) to i given that the
cost on the arcs is the value of cf’j + wfj The dual-ascent algorithm takes advantage of this
observation by initially fixing w = 0 (which is always feasible) and then finding the best
values for v using a shortest paths algorithm. From this point, the values of w are iteratively
increased with the v values being updated accordingly, until the objective of the dual can no
longer be increased by simply increasing a component of w. This process in Balakrishnan,
Magnanti, and Wong|[2] is referred to as the unrestricted labeling method.

Within the labeling algorithm, we found that it is possible to eliminate several variables
and thus improve efficiency. All of the variable eliminations are based on the differences be-
tween EOL and breakbulk terminals. Since an EOL terminal can never be an intermediate
stop on a commodity’s path, certain arcs do not make sense given a particular commodity.
For example, if a commodity’s origin and destination terminals are both breakbulks, then
that commodity can never be routed along an arc that has an EOL terminal as one of its
endpoints. Similarly, for a commodity with both EOL origin and destination terminals, no
EOL terminal other than the commodity’s origin or destination may appear in that com-
modities path. Thus, variables wfj where the arc 75 and the commodity k are incompatible
may be eliminated. Also, variables v¥ such that 7 is a terminal that can never appear on
commodity k’s path may also be eliminated. These observations were made in the paper
by Balakrishnan, Magnanti, and Wong [2]|, but the implementation details were left to the
programmer. These variable eliminations are done in our code, as well.

Once the labeling algorithm is completed, the information from the last iterate is used



to construct a primal UND solution. This method, though, does not necessarily yield a
tree-based UND solution. To acquire a tree-based solution, we build a graph including only
the arcs in the newly constructed primal solution. We then assign costs to the arcs based on
their original commodity—independent transit costs and the handling cost at terminals for
the split breakbulk arcs. A subgraph is then built for each terminal that is a destination for
some commodity. This subgraph contains only the relevant arcs for the given destination.
The direction of each of these arcs is reversed and the single—source shortest paths problem
is solved with the destination as the source. This destination-rooted tree then provides the
paths from every other node to the destination, given the arcs’ original directions. This
guarantees that the solution will be tree-based. We can then compute the corresponding
primal UND objective value for the tree—based solution. To complete the load plan which
must have a next transfer for every location/destination pair, we simply fill in unassigned
pairs with the value from the historical load plan. Finally, we perform the arc—exclusion
test from Balakrishnan, Magnanti, and Wong[2] which is based on the difference between
the objective values of the best known primal and dual UND solutions. If any arcs are ex-
cluded, then we repeat the algorithm using the smaller network. The dual-ascent procedure
terminates when no more arcs can be excluded using the arc-exclusion test.

., Execute unrestricted
labeling routine

}
Construct primal
solution

!

Construct tree—based
primal solution

!

Apply arc—exclusion test

!

Any

additional arcs
excluded?

yes

no

Figure 1: Flowchart for the dual-ascent procedure



3.3 Calculating the Objective

The UND solution provides a starting point upon which to improve. To evaluate the solution
in terms of the SLP rather than the UND, we need to calculate the appropriate objective
value. The SLP objective function is the sum of the transit cost of the vehicles used to
ship the freight and the handling costs at each intermediate terminal through which the
freight is routed. Given a load plan, determining the route taken by each commodity from
its origin to its destination is straightforward. Thus, the handling costs are computed for
each commodity by a direct examination of the intermediate handling terminals along this
route.

Calculating the transit costs incurred shipping each commodity, however, cannot be
determined so readily from the load plan. The load plan determines how much freight
must be sent from one terminal to any other terminal, but it does not specify how to satisfy
minimum frequency or flow conservation of trailers. Fortunately, given the load plan variables
ngjq for all ¢j € DIRS, d € DEST, our mathematical model decomposes into the following
minimum cost network flow problem that deals with the minimum frequency and trailer
balancing concerns in conjunction with satisfying freight distribution:

Minimize Z TC,'j’Uij

ij€DIRS
subject to
Yo vg— D vy=0 teT
ite DIRS ticDIRS
vij > max (MFynijq, Y Qrafijka) 1j € DIRS, d € DEST

kdeC

This minimum cost network flow problem specifies that each arc has a flow of trailers,
represented by the v;; variables, that is at least enough to transport the freight assigned
to the direct and enough to satisfy minimum frequency if the direct is status in. This
problem is solved using the CPLEX 5.0 callable library routine CPXhybnetopt !. From this
optimization, we have the transit cost of the vehicles used to ship the freight which completes
the calculation of the SLP objective function.

3.4 SLP Heuristics

In order to improve the level to which the UND approximates the SLP problem, we iteratively
modify the cost vectors of the UND problem. The tree-based solutions constructed within
the dual ascent algorithm are thus more likely to be good, feasible solutions to the SLP
problem.

!CPLEX is a trademark of CPLEX Optimization, Inc.
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In the historical solution for our primary data set each commodity with the exception
of one is handled at no more than two terminals. Even though this is not a feasibility
constraint for the SLP, this is an important requirement for most companies. In practice,
handling a commodity at more than two handling points makes it difficult to meet service
requirements under real-world conditions, even though the results from the mathematical
model may appear to reduce costs by handling the commodities at several handling points.
We implement an SLP heuristic that multiplies by a positive constant greater than one the
per unit cost of every split breakbulk arc for a commodity that is handled more than two
times. Recall from section 3.2 that split breakbulk arcs represent the actual handling cost
at a terminal of any commodity routed along that arc. By not increasing the cost on every
arc of a commodity and only increasing the cost on the split breakbulk arc, the algorithm is
less likely to include as many of the more expensive split breakbulk arcs in its next solution.

For the SLP to be feasible, the path for each commodity may not exceed the service
standards. Service is violated if the transit time for a commodity’s path is greater than the
commodity’s service time plus a service tolerance parameter. The service tolerance is set to
60 minutes in our model. If service for a commodity is violated, the cost of every arc for a
commodity is multiplied by 2. The cost on every arc is increased for this commodity so that
the algorithm is more likely to choose a path with fewer arcs and not just an alternate path
using as many arcs as before.

The minimum frequency requirement must also be met in order for the SLP to be feasible.
The minimum frequency is the minimum number of trailers that must travel from the origin
to the destination of a direct that is status in. Each time we compute the objective, we
force the minimum frequency requirements to be satisfied. In our heuristics, if the number
of loaded trailers on a direct is at least minimum frequency, the fixed cost for that direct
is set to zero. Allowing the arcs that meet minimum frequency to be less expensive to use
helps the UND better approximate the SLP.

The last requirement for the SLP to be feasible is that each terminal must not exceed its
capacity. For our purposes, this is the least important feasibility requirement. If a terminal
is over its capacity, the cost of every commodity for that terminal is multiplied by 2. Since
the cost for the terminal that exceeds its capacity is increased for every commodity, fewer
commodities are likely to be routed through this terminal, and thus the terminal is more
likely to meet its capacity requirements.

An iterative loop is implemented to search for a ”better” solution. We define a ”better”
solution by testing certain factors. We are most concerned with reducing the number of
commodities that are handled at more than two intermediate breakbulks. We update our
best solution to be the current solution if the total number of commodities over-handled
in the current solution is less than the least amount of total commodities handled so far.
Alternately, if handling is the same and there are less service violations than the HLP and a
better objective value the best solution is reported. And finally, if the handling is the same
and the service violations are less than the least service violations so far, or if the service is
the same, but a better objective value is obtained, than the best solution can be updated.
Since we are continuously multiplying the arc costs in the UND problem, causing them to
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increase, there is a danger that these costs will attain values that are computationally too
large. Therefore, we calculate the maximum number of iterations based on the maximum
value any arc may be multiplied by during a single iteration. If the same solution is generated
in successive iterations or the iteration limit is reached, the loop stops, and the best current
solution is reported.

3.5 Add/Drop Heuristic

After finding solutions to the strategic load planning problem, we apply a simple add/drop
heuristic to these solutions in an attempt to improve their overall quality. Our heuristic
uses the original SLP commodity-independent cost structure for all of the arcs. We begin
by considering only the arcs belonging to the inputted load plan. Given this subset of arcs,
we can contruct a tree-based load plan as is done in the dual-ascent procedure. Using
this load-plan, our heuristic examines each origin/destination pair as a potential add or
drop candidate. If the direct corresponding to a pair is in the network and the freight
shipped along it is less than the minimum frequency, then we consider it a drop candidate.
On the other hand, if the direct corresponding to a pair is not in the network and the
commodity associated with the origin/destination pair is handled more than twice or has at
least minimum frequency amount of freight, then we consider it an add candidiate. Fixing a
load plan after an arc has been added or dropped simply requires building a new tree—based
solution based on the new subset of arcs. If the adding or dropping of the arc improves
the solution, then the change is kept, otherwise the change is reversed back. An improved
solution is one in which either

e the new objective value is lower than the best objective value found so far and neither
handling or service violations are worse than those in the original tree-based solution,
or

e the new objective value is qualitatively the same as the best objective value found
so far and at least one of handling and service errors has improved and neither has
worsened.

This process is repeated until an iteration without improvement is found.

4 Results

We performed our computational runs on a Sun Ultra 1 Model 140 with 192 megabytes of
memory running Solaris 2.6. The overall structure of our algorithm is outlined in Figure 2.
In order to fine—tune our algorithm to adapt to different data sets, we introduce parameters
whose values we can vary prior to the start of any search for a feasible solution to the
strategic load planning problem. Modifying these parameters is another way to make our
mathematical model adhere to real-world considerations.
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Initial UND-based

. Prune y ~{_iteration limit .
SLP Solution reached? SLP Solution
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Add/Drop
Convert SLP to UND Procedure
Dual Ascent Add/Drop

SLP Solution

Convert UND to SLP

Compute objective

SLP Heuristics

yes Any service\_ no
or handling
violations?

Figure 2: Flowchart for the complete algorithm

There are two parameters which influence the number of arcs which are pruned in the
network. The low freight parameter refers to the pruning of EOL to EOL arcs. Since
this procedure only considers removing a subset of arcs, varying the value of the parameter
consequently has a limited effect. The pruning parameter used with the historical load sum-
mary,on the other hand, can potentially affect the entire list of arcs. Clearly, this technique
is only relevant in instances where a load summary is provided.

Our original data assumes a fixed minimal number of hours for handling at any terminal.
This throughput time at each terminal assumes that there is one main time each day (around
midnight) when the majority of the freight to be transferred arrives and is handled in one
very busy time window. Chances are high that a greater than two transfer freight path would
fall outside this window for at least one of the transfer points. Thus, we use a parameter to
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artificially inflate handling time and promote more directs and fewer handling points in the
network.

Our original data also assumes 28,403 1bs/van and 14,202 lbs/pup when computing the
number of trailer-volumes of freight for each commodity. The actual trailer capacities are
closer to 35,000 1bs/van and 20,000 1bs/pup. If we increase the amount of freight that can
be loaded onto each tractor, then we effectively increase handling costs relative to transit
costs since handling costs are a function of the amount of freight, but transit costs are a
function of the number of trailers used. A parameter is used to adjust the freight density of
each type of trailer.

4.1 SEFL Data Set

Our primary data for this research comes from Southeastern Freight Lines (SEFL) head-
quartered in Lexington, SC. Four types of data were provided to us by SEFL. The first is
terminal data, which includes the code for each terminal, the handling cost, the handling
time, and the capacity. The capacity data, in this case, is less of a restriction and more of
a suggestion as to how much freight is acceptable to transfer through each location. The
SEFL network made available to us contains 48 terminals. The second set of data contains
information about the possible direct services in the network. The data includes the origin
terminal, the destination terminal, the cost per trailer, the transit time, and the minimum
frequency for each direct. The third set of data describes the freight. We are given the origin
terminal, destination terminal, trailer volumes per day, and the service standard advertised
for each commodity. The trailer volumes per day is given as the number of trailers, possibly
fractional, that the freight will fill. All freight is assumed to originate at 9:00 p.m. and is
due by 8:00 a.m., local time. Therefore, the service times vary in small amounts depending
on changes in time zones and in large amounts depending on the type of service (one, two, or
three day service). The fourth and final type of data provided is an historical load summary
which relates the number of times an arc is used by loaded trailers over a three month period.
As is previously mentioned, this permits the use of an intelligent pruning technique.

In addition to this data, which defines the SLP problem, SEFL supplied an historical load
plan, or HLP, representing what they considered to be a good solution in their network. The
HLP is used inside our algorithm to maintain feasibility and is used outside the algorithm as
a means of evaluating the quality of our solutions. In order to have a basis for comparison
between the historical load plan and the various tests which we performed, we select one
set of parameters corresponding to our original data set which we use to evaluate all of
the solutions. The parameters correspond to (1) not changing the freight density (Frt. D.
= 1.0); and (2) not increasing the handling time at a terminal beyond its initial setting
(Handtime=0). In this framework, the HLP has no service violations, a very small number
of handling violations (defined as a commodity being handled more than two times), and a
small number of capacity violations. Actual values are not given here due to confidentiality
constraints. All of the results are reported relative to these actual values, regardless of the
individual test parameters.
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4.1.1 SLP Heuristics

In general, all of the SLP heuristics worked as anticipated, but with varying degrees of
success. The cost modifications implemented to improve the number of commodities meeting
the service standard worked most efficiently. It worked well alone, as well as in conjunction
with the other heuristics. As for the heuristic to handle commodities which were routed
through more than two intermediate terminals, we found that this heuristic worked better
when combined with the service heuristic. In other words, if only the handling heuristic
is called at each iteration, we found that the number of commodities which were over—
handled improved; but, if both the handling and the service heuristics were called at each
iteration, the handling improved even faster (and with no negative consequences for the
service heuristic). Therefore, we applied both heuristics at each iteration throughout our
testing process.

In all of the preliminary testing, we discovered that the heuristic to reduce the number of
capacity violations at terminals succeeded in reducing the capacity violations, but at great
cost in terms of the objective function. Recall that this heuristic increases the cost of using
a terminal that is over its capacity for every commodity, with no regard to the degree to
which the constraint is violated. Rather than modifying the heuristic, we chose to simply
disregard capacity violations in our model. This decision is based on two major factors.
First, and most importantly, SEFL expressed some interest in a non—capacitated SLP model
which could be used to better understand capacity needs at terminal locations. Additionally,
the nature of the capacity data that was supplied reflects more of a soft constraint, than a
strict requirement. Without more specific information, it should really be thought of as a
guideline. Since we found that solutions obtained without considering capacity violations
tended to have a comparable number of capacity violations to the HLP, we believe it likely
that our solutions are within an acceptable range. Since comparison of solutions in terms
of capacity violations is not essential to SEFL and difficult within the constraints of our
data set, numerical results for capacity violations are not given. The only form of capacity
restriction which we leave in the model is the definition of an EOL terminal. Thus, each
terminal either has no capacity for handling freight (an EOL), or it has unlimited capacity
(a breakbulk).

4.1.2 Parameter Variations

Three basic settings were modified to obtain our final results. The first setting concerns
the number of arcs not in the HLP that are pruned. The EOL to EOL pruning parameter
remained fixed at a reasonable value throughout all of the computation. The frequency
parameter pertaining to the historical load summary, though, was used to prune varying
proportions of those arcs not yet pruned and not in the HLP. As for the freight density
parameter, we tested the values 1.0 (corresponding to no change in the original data), 1.1
and 1.2 which yield valid interpretations of trailer capacity. The third setting refers to the
handling time at terminals. By adding a positive value to the through time at all terminals,
we reduce the likelihood both of over—handling of freight and of service violations in the real
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Parameter Settings UND-based Results
Case Prune | Frt.D. | Handtime | Handling | Service | Objective | Time (s)
SEFL.1 0.76 1.0 0 2.00 0 -0.006 355.34
SEFL.2 0.76 1.0 60 2.00 0 -0.001 370.95
SEFL.3 0.76 1.0 120 2.00 0 0.008 404.70
SEFL.4 0.76 11 0 1.00 0 -0.009 363.66
SEFL.5 0.76 1.1 60 1.00 0 -0.001 376.42
SEFL.6 0.76 1.1 120 1.00 0 0.010 412.75
SEFL.7 0.76 1.2 0 1.00 0 -0.013 466.33
SEFL.8 0.76 1.2 60 1.00 0 -0.007 356.60
SEFL.9 0.76 1.2 120 1.00 0 0.005 542.97
SEFL.10 | 0.90 | 1.0 0 1.00 0 20.008 | 244.92
SEFL.11 | 090 | 1.0 60 2.00 0 0010 | 236.02
SEFL.12 | 0.90 | 1.0 120 2.00 0 0010 | 26255
SEFL.13 | 091 | 1.1 0 2.00 0 0.008 | 250.98
SEFL.14 | 091 | 1.1 60 2.00 0 -0.007 | 260.64
SEFL.15 | 091 | 1.1 120 2.00 0 0.008 | 260.43
SEFL.16 | 0.91 | 1.2 0 0.00 0 -0.016 | 270.97
SEFL.17 | 091 | 1.2 60 0.00 0 0.011 | 268.42
SEFL.18 | 091 | 1.2 120 0.00 0 0.014 | 310.08
SEFL.19 | 0.93 1.0 0 2.00 0 -0.015 246.86
SEFL.20 | 0.93 1.0 60 2.00 0 -0.016 254.35
SEFL.21 | 0.93 1.0 120 2.00 0 -0.014 244.35
SEFL.22 | 0.93 1.1 0 5.00 0 -0.015 247.11
SEFL.23 | 0.93 1.1 60 2.00 0 -0.014 258.48
SEFL.24 | 0.93 11 120 2.00 0 -0.014 262.17
SEFL.25 | 0.93 1.2 0 3.00 0 -0.015 232.65
SEFL.26 | 0.93 1.2 60 2.00 0 -0.014 261.02
SEFL.27 | 0.93 1.2 120 2.00 0 -0.015 268.29

Table 1: This table reports results with varying settings for the prune, freight density and
extra handling time parameters.

world. In our testing we set the extra handling time to 0, 60, or 120 minutes.

4.1.3 Numerical Results

In the following tables, the results are reported in relative terms, so as to not reveal confi-
dential information about the SEFL network. The value in the “Prune” column refers to the
proportion of arcs not in the HLP that are pruned. Thus, a 1.0 prune value indicates that
only the arcs of the HLP were used to obtain the UND-based solution. The column marked
“Frt. D.” refers to the freight density setting and the column marked Handtime refers to
the extra handling time added to all terminals. Handling errors are reported as the number
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Parameter Settings UND-based Results
Case Prune | Frt.D. | Handtime | Handling | Service | Objective | Time (s)
SEFL.28 | 0.96 1.0 0 2.00 0 -0.014 225.92
SEFL.29 | 0.96 1.0 60 2.00 0 -0.016 234.23
SEFL.30 | 0.96 1.0 120 2.00 0 -0.014 239.75
SEFL.31 | 0.96 11 0 5.00 0 -0.013 209.55
SEFL.32 | 0.96 1.1 60 2.00 0 -0.014 236.31
SEFL.33 | 0.96 1.1 120 2.00 0 -0.014 243.78
SEFL.34 | 0.96 1.2 0 0.00 0 -0.012 215.10
SEFL.35 | 0.96 1.2 60 3.00 0 -0.017 238.46
SEFL.36 | 0.96 1.2 120 2.00 0 -0.012 266.39
SEFL.37 | 0.99 | 1.0 0 1.00 0 0017 | 19213
SEFL.38 | 099 | 1.0 60 2.00 0 0.018 | 185.95
SEFL.39 | 099 | 1.0 120 1.00 0 .0.018 | 179.15
SEFL.40 | 0.99 | 1.1 0 2.00 0 0.015 | 196.14
SEFL.41 | 0.99 | 1.1 60 2.00 0 -0.017 | 190.68
SEFL.42 | 0.99 | 1.1 120 2.00 0 0.017 | 286.39
SEFL.43 | 0.99 | 1.2 0 5.00 0 0017 | 194.70
SEFL.44 | 0.99 | 1.2 60 3.00 0 0019 | 190.12
SEFLA5 | 099 | 1.2 120 2.00 0 0017 | 220.99
SEFL.46 | 1.00 1.0 0 6.00 0 -0.018 178.25
SEFL.47 | 1.00 1.0 60 5.00 0 -0.018 189.99
SEFL.48 | 1.00 1.0 120 4.00 0 -0.017 170.07
SEFL.49 | 1.00 1.1 0 4.00 + -0.018 150.81
SEFL.50 | 1.00 1.1 60 4.00 0 -0.019 191.81
SEFL.51 | 1.00 11 120 3.00 0 -0.017 230.11
SEFL.52 | 1.00 1.2 0 1.00 0 -0.020 181.97
SEFL.53 | 1.00 1.2 60 1.00 0 -0.021 192.57
SEFL.54 | 1.00 1.2 120 1.00 0 -0.017 251.99

Table 2: This table reports results with varying settings for the prune, freight density and
extra handling time parameters.

of violations in the new solution minus the number of violations in the HLP divided by the
number of violations in the HLP. Since the HLP contains zero service violations, a plus sign
is used to indicate a positive number of violations and a zero is used to indicate no violations.
The objective value refers to the new solution’s obective value minus the HLP’s objective
value divided by the HLP objective value. Thus, a negative value in the column for handling
errors or for objective values indicates an improvement over the HLP.

In addition to the above tests, we performed one additional series of runs involving a new
data file for the terminal information. Rather than assume that all of the terminals have
the same handling time, we were given data on the actual handling time for each terminal.
We modified this data by forcing the through times to have a certain minimum value. This
resulted in a set of terminals with greater through times which were more reflective of real
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Parameter Settings UND-based Results
Sedfile | Prune Frt.D. Hand. Errors | Serv. Errors | Objective | Time (s)
SEFL.55 | 0.93 1.0 -1.00 0 -0.014 262.52
SEFL.56 | 0.93 1.1 -1.00 0 -0.014 278.78
SEFL.57 | 0.93 1.2 -1.00 0 -0.012 268.01
SEFL.58 | 0.96 1.0 1.00 0 -0.015 226.20
SEFL.59 | 0.96 1.1 1.00 0 -0.015 228.28
SEFL.60 | 0.96 1.2 1.00 0 -0.010 281.33
SEFL.61 | 1.00 1.0 5.00 0 -0.016 170.32
SEFL.62 | 1.00 1.1 2.00 0 -0.016 201.90
SEFL.63 | 1.00 1.2 0.00 0 -0.016 238.55

Table 3: This table reports results obtained using a new terminal data file.

world conditions. With this new file, we ran tests similar to those in Tables 1 and 2, but
without adding any extra handling time at the terminals. These solutions generally had
fewer handling violations than their counterparts and can be found in Table 3.

Clearly the UND-based algorithm, prior to performing the add/drop heuristic, is capable
of finding good solutions in our model. In every instance, the objective value is lower than
the original HLP objective value. In fact, a 1% decrease (i. e. -0.01) in objective value
can save the company several thousands of dollars a day. As for the feasibility issues, the
service requirements are, for the most part, easily met. Considering that the initial number
of handling violations is marginal, the number of handling violations in the solutions stays
well within reason, and is even improved upon in certain instances. Some of the best results
were obtained using the new file on terminal handling times. This seems to indicate that the
better the data reflects the real problem, the better the overall performance of the UND—
based algorithm. Pruning also has a large influence on the solution quality. Leaving only
“good” arcs in the network for the UND not only decreases solution time, but also increases
the improvement in solution quality. We suspect that the better the pruning technique, the
better the resulting solution will be.

Finally, we applied the add/drop procedure to all of our UND-based solutions, as well
as to the HLP. The results can be seen in Tables 4-6. All of these solutions are clearly
superior to the original HLP, though, unfortunately, the add/drop on the HLP yields the
overall best solution. It is not clear why this is the case. The results do indicate that the
UND-based algorithm, in combination with the add/drop heuristic or standing alone, does
do a credible job of building a strategic load plan. It is possible that there is something
inherently better about SEFL’s HLP that our model simply does not capture. This is
difficult to evaluate, though. [Real world evaluation here?] It is also possible that our
simplistic add/drop heuristic actually lessens the quality of our solutions by increasing the
likelihood of service violations, given that we do not take into consideration any buffers
on handling time at the terminals in the add/drop heuristic. In other words, though we
maintain the same number of service violations while performing the add drop, the way in
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UND-based SLP solution

Add/Drop SLP solution

Case | Handling | Service | Objective | Time (s) | Handling | Service | Objective | Time (s)

HLP - - - - -1.00 0 -0.054 780.63
SEFL.1 2.00 0 -0.006 355.34 -1.00 0 -0.027 483.13
SEFL.2 2.00 0 -0.001 370.95 -1.00 0 -0.029 505.29
SEFL.3 2.00 0 0.008 404.70 -1.00 0 -0.039 748.34
SEFL.4 1.00 0 -0.009 363.66 -1.00 0 -0.019 343.24
SEFL.5 1.00 0 -0.001 376.42 -1.00 0 -0.029 502.62
SEFL.6 1.00 0 0.010 412.75 -1.00 0 -0.037 733.84
SEFL.7 1.00 0 -0.013 466.33 -1.00 0 -0.020 327.37
SEFL.8 1.00 0 -0.007 356.60 -1.00 0 -0.028 497.71
SEFL.9 1.00 0 0.005 542.97 -1.00 0 -0.037 636.01
SEFL.10 | 1.00 0 20.008 | 244.92 | -1.00 0 20.020 | 33855
SEFL.11 | 2.0 0 0.010 | 236.02 | -1.00 0 0.034 | 360.63
SEFL.12 |  2.00 0 .0.010 | 26255 -1.00 0 0.040 | 402.06
SEFL.13 | 2.00 0 -0.008 | 25098 | -1.00 0 -0.027 | 335.80
SEFL.14 |  2.00 0 -0.007 | 260.64 | -1.00 0 -0.033 | 362.50
SEFL.15 | 2.00 0 -0.008 | 269.43 | -1.00 0 -0.038 | 527.28
SEFL.16 |  0.00 0 0.016 | 27097 | -1.00 0 -0.033 | 320.52
SEFL.17 | 0.00 0 .0.011 | 26842 | -1.00 0 -0.034 | 400.37
SEFL.18 |  0.00 0 0.014 | 31008 | -1.00 0 -0.041 | 856.02
SEFL.19 2.00 0 -0.015 246.86 -1.00 0 -0.030 303.18
SEFL.20 2.00 0 -0.016 254.35 -1.00 0 -0.034 448.24
SEFL.21 2.00 0 -0.014 244.35 -1.00 0 -0.040 524.33
SEFL.22 5.00 0 -0.015 247.11 -1.00 0 -0.029 313.55
SEFL.23 2.00 0 -0.014 258.48 -1.00 0 -0.033 432.47
SEFL.24 2.00 0 -0.014 262.17 -1.00 0 -0.039 517.95
SEFL.25 3.00 0 -0.015 232.65 -1.00 0 -0.029 308.27
SEFL.26 2.00 0 -0.014 261.02 -1.00 0 -0.033 429.30
SEFL.27 2.00 0 -0.015 268.29 -1.00 0 -0.039 506.21

Table 4: Compares the UND-based solution to the solution obtained after performing the
add/drop heuristic.

which we calculate a service violation is always using the original terminal data with the
minimal, fixed through times. As discussed previously, it is not clear that this is the best
way in which to model the SLP problem. Since it is, however, the setting in which we were
given the HLP, it is the one to which we adhere. Also note that the entire algorithm is easily

completed in under 20 minutes from start to finish.
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UND-based SLP solution Add/Drop SLP solution

Case | Handling | Service | Objective | Time (s) | Handling | Service | Objective | Time (s)

HLP - - - - -1.00 0 -0.054 780.63
SEFL.28 2.00 0 -0.014 225.92 -1.00 0 -0.031 318.00
SEFL.29 2.00 0 -0.016 234.23 -1.00 0 -0.034 333.80
SEFL.30 2.00 0 -0.014 239.75 -1.00 0 -0.038 496.61
SEFL.31 5.00 0 -0.013 209.55 -1.00 0 -0.028 322.79
SEFL.32 2.00 0 -0.014 236.31 -1.00 0 -0.032 322.67
SEFL.33 2.00 0 -0.014 243.78 -1.00 0 -0.037 483.41
SEFL.34 0.00 0 -0.012 215.10 -1.00 0 -0.027 331.57
SEFL.35 3.00 0 -0.017 238.46 -1.00 0 -0.033 439.50
SEFL.36 2.00 0 -0.012 266.39 -1.00 0 -0.037 492.88
SEFL.37 1.00 0 -0.017 192.13 -1.00 0 -0.032 301.50
SEFL.38 2.00 0 -0.018 185.95 -1.00 0 -0.036 311.93
SEFL.39 1.00 0 -0.018 179.15 -1.00 0 -0.038 376.25
SEFL.40 2.00 0 -0.015 196.14 -1.00 0 -0.029 287.14
SEFL.41 2.00 0 -0.017 190.68 -1.00 0 -0.033 306.35
SEFL.42 2.00 0 -0.017 286.39 -1.00 0 -0.037 480.32
SEFL.43 5.00 0 -0.017 194.70 -1.00 0 -0.029 290.54
SEFL.44 3.00 0 -0.019 190.12 -1.00 0 -0.035 422.16
SEFL.45 2.00 0 -0.017 220.99 -1.00 0 -0.037 484.26
SEFL.46 6.00 0 -0.018 178.25 -1.00 0 -0.018 295.55
SEFL.47 5.00 0 -0.018 189.99 -1.00 0 -0.026 328.02
SEFL.48 4.00 0 -0.017 170.07 -1.00 0 -0.028 383.45
SEFL.49 4.00 + -0.018 150.81 -1.00 + -0.022 294.49
SEFL.50 4.00 0 -0.019 191.81 -1.00 0 -0.025 331.74
SEFL.51 3.00 0 -0.017 230.11 -1.00 0 -0.030 344.90
SEFL.52 1.00 0 -0.020 181.97 -1.00 0 -0.022 279.94
SEFL.53 1.00 0 -0.021 192.57 -1.00 0 -0.027 326.44
SEFL.54 1.00 0 -0.017 251.99 -1.00 0 -0.034 453.39

Table 5: Compares the UND-based solution to the solution obtained after performing the
add/drop heuristic.

4.2 Averitt Data set

Since the code was initially tailored to the SEFL data set, we obtained a second set of data to
test the effectiveness of our algorithm. This data comes from the an alternate carrier called
Averitt. The network they provided contains 78 terminals, rather than 48. Essentially they
made available to us the same type of data as did SEFL. The one exception is the lack of
an historical load summary. Though very useful as a pruning tool, this data is not essential
to our method. Averitt also supplied an historical load plan, which we will continue to
refer to as the HLP. In this case, the HLP contained several handling and service violations.
Solutions are evaluated relative to the HLP solution, as in the SEFL section. Since the
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UND-based SLP solution Add/Drop SLP solution

Case | Handling | Service | Objective | Time (s) | Handling | Service | Objective | Time (s)

HLP - - - - -1.00 0 -0.054 780.63
SEFL.55 -1.00 0 -0.014 262.52 -1.00 0 -0.044 427.77
SEFL.56 -1.00 0 -0.014 278.78 -1.00 0 -0.044 563.49
SEFL.57 -1.00 0 -0.012 268.01 -1.00 0 -0.044 546.68
SEFL.58 1.00 0 -0.015 226.20 -1.00 0 -0.039 538.33
SEFL.59 1.00 0 -0.015 228.28 -1.00 0 -0.038 489.90
SEFL.60 1.00 0 -0.010 281.33 -1.00 0 -0.038 505.36
SEFL.61 5.00 0 -0.016 170.32 -1.00 0 -0.026 387.80
SEFL.62 2.00 0 -0.016 201.90 -1.00 0 -0.031 353.20
SEFL.63 0.00 0 -0.016 238.55 -1.00 0 -0.035 505.01

Table 6: Compares the UND-based solution to the solution obtained after performing the
add/drop heuristic.

number of service violations in the HLP for the Averitt data set is nonzero, the relative
calculation of service errors is done in the same manner as the handling errors. For the same
reasons as previously discussed, we continue to disregard possible capacity violations in the
model.

Since the Averitt data does not include a load summary, the pruning techniques available
to us are more limited. The technique in which low freight EOL to EOL arcs not in the
HLP are eliminated is now the only flexible pruning method we have. In the first set of
tests performed in Table 7, this low freight parameter is set to a reasonably low value. In
the second set of tests, the low freight parameter is increased so that all EOL to EOL arcs
not in the HLP are eliminated. Finally, in the third set of runs all arcs not in the HLP are
pruned. The different settings for freight density and extra handling time remain the same.

Table 7 displays the results obtained by running the UND-based algorithm on the Averitt
data set. The larger network resulted in a considerable increase in time. Creating a strategic
load plan is not a task that is likely to be performed frequently. Thus, the increase in time is
not unreasonable, especially since the solutions obtained are, overall, much better than the
HLP solution. It is particularly interesting to note that the solutions obtained using only
the HLP arcs in the network have the greatest improvement in objective function value, and
the worst performance in terms of handling and service violations. We infer that if a better
pruning technique were available to us — one in which we could prune approximately 90% of
the arcs not in the HLP — we could obtain even better solutions than those in Table 7. As
the results stand, the solutions are quite good. In this problem instance, a decrease in the
objective of 1% also translates into a couple of thousands of dollars a day.

Due to the increased time involved in solving problems in this data set, we chose to only
run the add/drop portion of our algorithm on three UND-based solutions and the HLP. As
can be seen in Table 8, two out of three of our solutions are clearly superior to the HLP
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Parameter Settings UND-based Results
Case | Prune | Frt.D. | Handling | Hand. Errors | Serv. Errors | Objective | Time (s)
AVE.1 0.58 1.0 0 -1.00 -0.23 -0.093 4678.31
AVE.2 0.58 1.0 60 -1.00 -0.23 -0.067 4248.93
AVE.3 0.58 1.0 120 -1.00 -0.15 -0.001 4471.12
AVEA4 0.59 11 0 -1.00 -0.19 -0.085 5221.64
AVE.5 0.59 11 60 -1.00 -0.27 -0.060 4967.60
AVE.6 0.59 11 120 -1.00 -0.10 -0.006 4584.90
AVE.7 0.61 1.2 0 -1.00 -0.27 -0.088 4718.58
AVE.8 0.61 1.2 60 -1.00 -0.19 -0.070 5013.90
AVE.9 0.61 1.2 120 -0.73 -0.10 -0.009 4662.14
AVE.10 | 0.72 1.0 0 -1.00 -0.23 -0.093 3631.35
AVE.11 | 0.72 1.0 60 -1.00 -0.23 -0.067 3290.05
AVE.12 | 0.72 1.0 120 -1.00 -0.15 -0.001 3458.89
AVE.13 | 0.72 1.1 0 -1.00 -0.19 -0.085 4113.02
AVE.14 | 0.72 11 60 -1.00 -0.27 -0.060 3920.00
AVE.15 | 0.72 1.1 120 -1.00 -0.10 -0.006 3583.44
AVE.16 | 0.72 1.2 0 -1.00 -0.27 -0.088 3786.37
AVE.17 | 0.72 1.2 60 -1.00 -0.19 -0.070 4020.06
AVE.18 | 0.72 1.2 120 -0.73 -0.10 -0.009 3737.60
AVE.19 | 1.00 1.0 0 1.64 0.17 -0.142 747.09
AVE.20 | 1.00 1.0 60 1.64 0.19 -0.134 1034.41
AVE.21 | 1.00 1.0 120 1.64 0.19 -0.127 1001.86
AVE.22 | 1.00 1.1 0 1.55 0.17 -0.141 760.95
AVE.23 | 1.00 11 60 1.55 0.19 -0.134 1059.33
AVE.24 | 1.00 11 120 1.55 0.19 -0.127 1012.96
AVE.25 | 1.00 1.2 0 1.36 0.17 -0.139 778.31
AVE.26 | 1.00 1.2 60 1.36 0.19 -0.131 1072.61
AVE.27 | 1.00 1.2 120 1.36 0.21 -0.125 1033.71
Table 7: UND-based results for the Averitt data set.
UND-based SLP solution Add/Drop SLP solution
Case | Handling | Service | Objective | Time (s) | Handling | Service | Objective | Time (s)
HLP - - - - 0.18 0.08 -0.084 11680.50
AVE7 | -1.00 | -027 | -0.088 | 471858 | -1.00 | -0.31 | -0.146 | 7916.99
AVE.14 -1.00 -0.27 -0.060 3920.00 -1.00 -0.35 -0.147 8827.30
AVE.22 1.55 0.17 -0.141 760.95 1.55 0.17 -0.142 7909.60

Table 8: Add/drop results for the Averitt data set.

and the add/drop on the HLP. Though it may look odd, it is quite true that the number of
handling and service errors increased in the solution to the add/drop on the HLP. This is
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due to the fact that our add/drop heuristic is based on finding shortest paths in terms of
cost, not time. So, the very first step of the add/drop heuristic is to find a solution using the
shortest paths in terms of cost along only the arcs of the inputted SLP solution. Generally
this solution is quite similar to the inputted load plan, though it is not always as close as
we would desire. Our add/drop heuristic can not consider both cost and time tradeoffs as
well as the UND-based algorithm; and in this case, the handling and service errors increased
because of this. It is interesting to note, as well, that the time it takes to run our complete
algorithm is comparable to the time it takes to run just the add/drop on the HLP. Thus, in
approximately the same amount of time, our method found a better solution.

4.3 Daiichi Data set

Our final set of data was provided by Daiichi. This network containing 92 terminals is
the largest of our three data sets. Due to its size, computation on this data set had to be
performed on a larger machine. All of the computation on the Daiichi data set was performed
on a Sun MicroSystems i86pc with 1024 megabytes of memory.

Parameter Settings Results

Case Prune | Frt.D. | Handtime | Handling | Service | Objective | Time (s)
DAIICHI.1 1.00 1.0 0 -0.87 0.10 -0.180 3554.78
DATICHI.2 1.00 1.0 60 -0.88 0.10 -0.169 3520.67
DATICHI.3 1.00 1.0 120 -0.88 0.10 -0.161 3477.18
DATICHI.4 1.00 1.1 0 -0.89 0.10 -0.180 3621.57
DATICHI.5 1.00 1.1 60 -0.90 0.10 -0.166 3577.00
DATICHI.6 1.00 1.1 120 -0.90 0.10 -0.157 3530.64
DATICHI.7 1.00 1.2 0 -0.91 0.09 -0.179 3708.29
DATICHI.8 1.00 1.2 60 -0.92 0.10 -0.166 3650.26
DATICHI.9 1.00 1.2 120 -0.92 0.10 -0.156 3599.61
DAIICHL10 | 0.02 | 1.2 0 20.99 | -0.74 | 0580 | 26891.51
DAIICHL11 | 0.02 | 1.2 60 100 | 074 | 0665 | 2633459
DAIICHL12 | 0.02 | 1.2 120 100 | -0.76 | 0.759 | 25780.46

Table 9: UND-based results for the Daiichi data set.

As in the Averitt case, the Daiichi data did not include an historical load summary.
The HLP for the Daiichi data contains many more handling and service violations than the
previous HLP solutions, leaving more room for improvement. In this case we either prune
all of the arcs not in the HLP, or all of the EOL to EOL arcs not in the HLP. The significant
difference in the number of arcs in the network is apparent from Table 9. Using our low
freight pruning technique to its full potential, still only eliminates 2% of the prunable arcs.
Fewer tests were done in conjunction with the EOL pruning technique since the considerable
number of arcs prevented finding good overall solutions. The results from the Daiichi data
clearly indicate the importance of an intelligent pruning technique. While the solutions
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obtained by considering only the HLP arcs are certainly superior to the HLP solution, it is
likely that a better pruning technique based on more data from the company would provide
even better quality solutions.

UND-based SLP solution Add/Drop SLP solution
Case Handling | Service | Objective | Time (s) | Handling | Service | Objective | Time (s)
HLP - - - - -0.99 -0.04 -0.288 31647.09
DATICHI.7 -0.91 0.09 -0.179 3708.29 -0.99 -0.05 -0.281 36504.32
DATICHI.8 -0.92 0.10 -0.166 3650.26 -0.99 -0.05 -0.281 37357.59
DATICHI.9 -0.92 0.10 -0.156 3599.61 -0.99 -0.05 -0.283 37089.78

Table 10: Add/drop results for the Daiichi data set.

Table 10 indicates the comparable solution quality of the add/drop solutions for both
UND-based solutions and the HLP. Unfortunately, though, the add/drop heuristic on a
network of this size takes 8 to 10 hours. Since, the UND-based algorithm only requires ap-
proximately one hour to return an improved solution, it is likely that this method, combined
with an intelligent pruning technique, is a better alternative for a company whose network
is as large as this one.

5 Conclusions and Future Work

Our complete algorithm, consisting of a modified uncapacitated network design method and
an add/drop procedure, found good solutions to the strategic load planning problem for
the data sets tested. These solutions were found in a reasonable amount of time and were
qualitatively on par with the historical load plans implemented by the carriers. The UND-
based portion of the algorithm consistently improved upon the initial solution given, as did
the add/drop procedure. Surprisingly, however, when the add/drop procedure is applied
to the historical load plans from the carriers SEFL and Daiichi, the solutions generated are
better than the solutions generated from add /drop when applied to the UND-based solutions.
This result holds regardless of whether or not the UND-based solutions inputted into the
add/drop procedure were better than the corresponding historical load plans. We do not
believe that this result reflects negatively on our algorithm, but that it strongly confirms the
quality of time-tested solutions used by the carriers.

In terms of future work, we believe that better pruning techniques would improve the
efficacy and applicability of our algorithm. Currently, we rely on historical data provided
by the carriers for our most effective pruning heuristic. However, we would like to able to
ascertain which directs are reasonable or unreasonable based upon real-world considerations
that apply generally to all carriers.

The terminal capacities were ignored in our algorithm because the company from which
our primary data came was interested in deciding whether or not to add to an existing
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terminal or build a new one. Ignoring terminal capacities becomes a problem if we are
approached by a carrier for whom this is a hard constraint. We believe that the current but
unused capacity heuristic can be improved by basing our cost multiplier on the degree of
capacity violation as opposed to using a constant multiplier.

Lastly, we did not fully address the issue of actively improving minimum frequency.
Currently, if the total trailer-loads of freight plus the number of empty trailers on a direct
meets the minimum frequency requirement, then we assume that we can safely reduce the
fixed cost associated with this direct to zero. On the other hand, if the amount of freight
and the number of empty trailers falls far below the minimum frequency on an edge, then we
do not change the fixed costs for the edge. For edges that fall between these two extremes
the fixed costs could be modified as a function of the difference between the total number of
trailers assigned (loaded and empty) and the minimum frequency.
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