Simulating Electrical Action
Potential Propagation in the Heart
with Parallel Computation

Christa Eruin

CRPC-TR99806-S
August 1999

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted November 1999

Simulating Electrical Action Potential
Propagation in the Heart with Parallel
Computation

Christa Erwin

Summer 1999

1 Motivation

One of the central questions in the field of cardiac dynamics is the mecha-
nism of the decay of ventricular tachycardia, characterized by spiral waves
of electrical activity, to fibrillation, characterized by “incoherent” electrical
wave behavior, resulting in failure of the heart’s pumping action. This prob-
lem is being chipped away at from various perspectives by various groups
in physiology, mathematics, physics and engineering. Numerical simulation,
coupled with experimental feedback, is a necessary and powerful tool in this
area, as in many other growing areas of computational science.

The focus of this summer project was to explore the effect of geome-
try and fiber architecture of the left ventricle on electrical wave dynamics.
This question was motivated by earlier numerical experiments performed in
a rectangular slab model of the ventricle, which showed that the rotating
anisotropy inherent in cardiac tissue could lead to wave instability. This ro-
tating anisotropy is pictured in Figure 1 (from [4] and [5]). Our goal was to
construct a minimally realistic geometrical model of the left ventricle and to
simulate electrical wave propagation in this three-dimensional model.

Dissection results reveal a nested layered geometry for the left ventricle,
where a single macroscopic muscle fiber bundle starting at the basal plane
outside the midwall (toward the epicardium) traverses down toward the apex
on an outer surface, and at some point before reaching the apex, changes di-

rection, traverses back along an inner surface reinserting at the basal plane
inside the midwall (toward the endocardium) [6]. The simple fact that elec-
trical propagation along a fiber is several times faster than perpendicular to
it suggests that this nested architecture can be important in the propogation
of electrical waves in the heart. In particular, transmural propagation can
still be achieved in a nested geometry even when propagation perpendicular
to the fiber is weakened or cut off.

A geometrical model of the left ventricle has been developed by Sima Se-
tayeshgar in the Applied Mathematics Department at the California Institute
of Technology [1], based on previous works [2], [3]. In this model, the fiber
surfaces are given by nested cones, and the fiber trajectories by geodesics on
these surfaces, consistent with experimental observation. Figure 2 shows the
fiber trajectories on one fiber surface.

The objective of this summer project was to investigate the effect of the
realistic (a) nested conical geometry and (b) fiber architecture of the left
ventricle on action potential propagation, using the above model. In the
process, the project provided an introduction to the following:

e Numerical methods for scientific computing, in particular, finite differ-
ence solutions to nonlinear partial differential equations

e Parallel computing using MPI

e HTML form submission and CGI programming as a front-end for run-
ning parallel code on Caltech’s Boewulf machine.

2 Model

The FitzHugh-Naguomo (FHN) model, a two-variable “caricature” of action-
potential propagation in the heart, was used. We included the effect of the
anisotropic conductivity of the three-dimensional mycocardium, in both the
rectangular slab and conical geometries. The governing equations are:

ou
o = [0+ V- (D-Vu), (1)
% = g(u), (2)

where D is the diffusion tensor, containing information about the fiber ar-
chitecture, and the FHN kinetics are given by:

flu,v) = 3u—u®—v (3)
gu) = €(u—9). (4)

u is the action potential, and v is equivalent to a “gating variable” (describ-
ing the action of membrane pumps in transporting ions), and € and ¢ are
adjustable model parameters. No-flux boundary conditions were used at all
physical boundaries.

3 Implementation

3.1 Numerical scheme

In addition to using a simple model, a simple numerical scheme was im-
plemented in an effort to keep the computational effort tractable given the
geometrical complexity of the problem. Second order finite-differencing with
explicit Euler time-stepping was used in the numerical simulations. The sta-
bility restriction on the time step is onerous in this problem. As an example,
it takes approximately 20 CPU hours on a single 450Mz Pentium Pro work-
station to generate a single spiral period. Clearly, to use these numerical
simulations as a practical experimental tool, speedup is needed. Hence, the
code was parallelized.

3.2 MPI

Problems involving a large amount of computation that can be divided up
into pieces are highly amenable to parallelization. Message Passing Interface
(MPI), is a library of functions that can be called from within a C, C++,
Java or Fortran program. These functions allow a programmer to take a serial
program (code written for one computer) and parallelize the program (code
written to be run on multiple computers simultaneously). The MPI functions
allow for the data transmission between computers (also called processes or
nodes), which is usually required to complete the overall computational task.

As an introduction to parallel computing with MPI, we started with par-
allelizing the code in the rectangular slab geometry. In this case, the elec-

3

trical potential is represented by a three-dimensional Cartesian matrix. The
matrix is divided up among a group of processors (also called nodes), intro-
ducing artificial boundaries between nodes. Since centered finite-differencing
requires knowing the solution at the points to the right and left of each point,
data on the artificial borders of each node must be communicated between
nodes at every time step. MPI functions were used for this message passing
(point-to-point communication).

MPI was also used to allow one process to take care of all the input and
output. A single node (node 0) was given the task of all reading in from and
printing out to files. MPI was used to distribute the input parameters to all
the processes as well as to gather the data from all processes by node 0 for
generating output, as well as other computing tasks requiring data from all
nodes (collective communication).

One major task in the implementation of parallelization with MPI is
attention to memory allocation. MPI function calls which pass information
between nodes require the starting address of the data being passed. More
data can be passed in fewer function calls, saving run time, if it is located
contiguously in memory. For memory allocation, we used Numerical Recipes
[7] utility routines. In particular, it was important to understand in detail
how memory is allocated to a 3d tensor, array3d:

array3d = d3tensor(0,nx + 1,0,ny + 1,0,nz + 1) (5)

where:

double ***d3tensor(long nrl, long nrh, long ncl, long nch,
long ndl, long ndh)

/* allocate a double 3tensor with range:
t[nrl..nrh] [ncl..nch] [ndl..ndh] */

{

long i, j,nrow=nrh-nrl+1,ncol=nch-ncl+1,ndep=ndh-ndl+1;
double ***t;

/* allocate pointers to pointers to rows */
t=(double ***) malloc((size_t)
((nrow+NR_END) *sizeof (doublex**))) ;
if (!t) nrerror("allocation failure 1 in d3tensor()");

t += NR_END;
t -= nrl;

/* allocate pointers to rows and set pointers to them */

t[nrl]l=(double #**)malloc((size_t)
((nrow*ncol+NR_END)*sizeof (doublex))) ;

if ('t[nrl]) nrerror("allocation failure 2 in d3temnsor()");

t[nrl] += NR_END;

t[nrl] -= ncl;

/* allocate rows and set pointers to them */
t[nrl] [ncl]=(double *)malloc((size_t)
((nrow*ncol*ndep+NR_END) *sizeof (double))) ;

if ('t[nrl]l[ncl]) nrerror("allocation failure 3 in d3tensor()");

t[nrl] [ncl] += NR_END;
t[nrl] [ncl] -= ndl;

for(j=ncl+1;j<=nch;j++) tlnrll[jl=t[nrl][j-1]+ndep;
for(i=nrl+1;i<=nrh;i++) {
t[i]=t[i-1]+ncol;
t[i] [ncl]l=t[i-1] [ncl]+ncol*ndep;
for(j=ncl+1l;j<=nch;j++) t[il[jl=t[i][j-1]+ndep;

}

/* return pointer to array of pointers to rows */
return t;

}

In this function, memory for the entire three-dimensional array is contiguous
if x is the slowest changing index and z the fastest. Thus, it is most conve-
nient to parallelize in the z-direction, allowing entire yz planes to be passed
between nodes by referring to the beginning address.

The parallelized code was run on the Beowulf computer at the Center for
Advanced Computing Research. This computer has 64 compute nodes, each
with a 300Mz Pentium Pro processor, 128Mb RAM, and 3.1Gb of hard disk
memory.

3.3 Performance results

The speedup due to parallelization was measured using wall clock time and
calculated according to:

speedup = serial code run time / parallelized code run time

Timing was tested for 4, 8, 16, 32, and 64 nodes, evenly dividing the number
of points in the x direction (for equal load distribution among nodes). The
timing results were obtained from running the code for a sufficiently large
number of iterations, such that the time spent on initialization constituted a
minor fraction of the total compute time. The performance of the parallelized
code ranged from 1.7 times faster for 4 nodes to 10.4 times faster for 64
nodes (see Figure 3). It appears that the “optimal” number of nodes for
this problem is 32, since there is not a significant gain between 32 and 64
nodes. We can identify one aspect of the computation (calculation of the tip
trajectory) which can be further parallelized.

The Jumpshot program which comes with MPI software was also used
to look at timing. Jumpshot provides a graph of the CPU time spent in
each MPI function call. This gave a better understanding of which functions
took up a small amount of program time (eg., MPI Pack(), MPI Unpack(),
MPI Bcast(), used to distribute initial parameters and conditions), which
took up a moderate amount of time (eg., MPI Sendrecv(), used to pass
border data), and which took the most time (more than expected!) (eg.,
MPI_Gather(), used to gather zy planes of data for computing the spiral tip
at regular time intervals). Although the Jumpshot program provides a rela-
tive measure of the time spent in various MPI functions, it does not provide
concrete numbers with which to calculate speed-up. In general, we found it
not to be as useful as our “home-made” timing calls.

3.4 HTML interface

A web page interface for the parallelized heart code was developed. This
page allows for an interactive way to run the code and view the output. The
web page provides a form for the user to enter the numerical input parame-
ters and the number of nodes. A CGI script, written in C (utilizing a CGI C
library of functions) accesses the variables from the form and makes system

commands to run the parallel code and to display the output. The web page
can be found at:

http://naegling.cacr.caltech.edu/~ simas/

At present, the page can only be accessed by approved computers, including
computers on the network of the Caltech Applied Math department as well
as the Center for Advanced Computing Research.

4 Future Work

Currently the serial code for the conical model of the left ventricle has been
written. I have made substantial progress in parallelizing it, although this
task is not fully complete. The parallelization scheme for the code in the
rectangular geometry in Cartesian coordinates follows through very closely
for the code in the conical geometry in spherical coordinates. The added
complication in the latter case comes from allowing for a variable mesh in
the azimuthal direction as a function of the radial coordinate. The speedup
achieved from parallelization of the conical code will allow investigation of
the effect of geometry and fiber architecture on the dynamics of electrical
waves in the ventricle.

In additional to parallelization, the numerical scheme can be improved
from fully explicit to semi-implicit. We should note that the cross-derivative
terms arising from anisotropic diffusion would still need to treated explicitly,
even if an ADI (alternating direction implicit) scheme is used for the diagonal
diffusion terms.

The web interface can be further improved to provide a nice front-end
for organization and submission of runs to the Caltech Boewulf. Estimate of
the run time, as well as output file display and manipulation are among the
interactive features that will soon be added.

Numerical simulation in this minimally realistic geometry is almost as
straightforward and accessible as that in the commonly used rectangular
slab, in contrast with fully realistic whole heart finite element models. The
hope is that it will be a scientifically sound and numerically tractable tool
for exploring electrical wave activity in the ventricle.

5 Acknowledgements

Thanks to Tom Gottschalk at the Center for Advanced Computing Research
for his sharing of resources and information regarding the use of supercomput-
ers and programming with MPI. Thanks to Sima Setayeshgar for assistance
in programming and excellent mentorship.

References

[1] S. Setayeshgar, preprint.

[2] C. S. Peskin, Communications on Pure and Applied Mathemathics 42,
79 (1989).

[3] C.S. Peskin and D. M. McQueen, in Case Studies in Mathematical Mod-
eling: Ecology, Physiology, and Cell Biology, H. J. Othmer, F. R. Adler,
M. A. Lewis, and J. C. Dallon, eds., Prentice-Hall, Englewood Cliffs NJ,
309 (1996).

[4] D. D. Streeter, D. P. Patel, J. Ross and E. H. Sonnenblick,
Circ. Res. 24, 339 (1969).

[5] D. D. Streeter, W. E. Powers, M. A. Ross and F. Torrent-Guasp, in Car-
diovascular System Dynamics, J. Baan, A. Noordergraaf and J. Raines,
eds., Cambridge, M. I. T. Press, 73 (1978).

[6] C. E. Thomas, Americal Journal of Anatomy, 101, 17 (1957).

[7] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C (Cambridge Univ. Press, 1992).

DECILE

ENDOCARDIUM NG,
g |
WA

42 MID-
WALL

EPICARDIUM

Figure 1: Left: Rectangular slab of the left ventricle. Right: Fiber direction in
successive slices.

Wall clock time in seconds

3000

2500

2000

1500

1000

500

Figure 3: Parallelization timing performance.

Parallelization Timing Performance

Over 250 computation iterations

20

40
Number of nodes

11

60

80

