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Abstract

This document reports work undertaken at NPAC, Syracuse under
the DOE Global Array Extension Project. This work was intended to
investigate the feasibility of interfacing, and perhaps eventually inte-
grating, GA, ARMCI and the Parallel Compiler Runtime Consortium
library, Adlib. In particular, we have reimplented parts of the Adlib
library in terms of ARMCI, and also produced a version of GA which
internally uses an Adlib-compatible array descriptor.
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1 Introduction

1.1 Context

The Department of Energy Advanced Computational Testing and Simulation
(ACTS) project combines multiple programming tools and environments to
support application codes addressing complex multidisciplinary problems.
The Global Array (GA) library developed at the Pacific Northwest National
Laboratory (PNNL) is one of the ACTS components. In ACTS the GA tool
kit will be extended to provide support for higher dimensional arrays and
additional distribution formats. The Adlib [4] parallel run-time library has
capabilities that can be used to implement these new features.

Development of the Adlib library was completed at NPAC, Syracuse in the
framework of the three-year Parallel Compiler Runtime Consortium (PCRC)
project. It incorporates experience gained over the years in parallel dis-
tributed array technology. PNNL determined that it would be cost effective
to transfer some of the multidimensional array capabilities from Adlib to
Global Arrays, rather than to develop them from scratch at PNNL.

PNNL proposed to build an implementation of the GA tool kit Applica-
tion Programming Interface (API) on top of a version of the PCRC library,
augmented with the ARMCI aggregate remote memory copy library. ARMCI
is being developed by PNNL. Towards this goal an initial study phase in fis-
cal year 1998 (reported on here) aimed to establish the basic feasibilty of this
approach. We had to provide evidence that a new layered implementation
would not lead to an unacceptable degradation of performance. For exam-
ple, it had to be demonstrated that the global-to-local subscript conversion
operations supported by the Adlib array descriptor (suitably optimized if
necessary) would not compromise the low latency of the current ga_get/put
operations. It was also considered that it would be very useful to reimple-
ment part of the Adlib collective communication library on top of ARMCI,
and compare the remote-memory-access approach with the current message
passing implementation.

1.2 Summary of achievements

In the pilot study parts of the Adlib library were reimplemented on top of
the ARMCI library. Early benchmarks show that the new implementation
is significantly faster than the original MPI implementation on shared mem-



ory platforms. In a second part of the study, a version of Global Arrays
was created that internally uses the Adlib distributed array descriptor to
parametrize the decomposition of multidimensional global arrays, and uses
associated functions from Adlib to perform address translations. The modi-
fied GA was benchmarked. The results indicate that the overhead of intro-
ducing the object-oriented DAD of Adlib into the GA implementation are
small—probably less than a microsecond for a ga_get operation.

1.3 This report

Section 2 reviews relevant aspects of the Adlib runtime library. For complete-
ness it also briefly reviews the Global Arrays toolkit and ARMCI. Section 3
describes work on using ARMCI in the implementation of Adlib. In partic-
ular it describes how various existing Adlib communication schedules were
reimplemented in terms of ARMCI, and gives benchmark results. It also dis-
cusses how ARMCI will allow the Adlib API to be extended with functions
for one-sided-communication. Section 4 describes the pilot work on using
Adlib-based techniques in the implementation of GA.

2 Background

2.1 The Adlib library

The Adlib library was completed in the Parallel Compiler Runtime Con-
sortium project [14] project. It is a high-level runtime library designed to
support translation of data-parallel languages [4]. Initial emphasis was on
High Performance Fortran (HPF), and two experimental HPF translators
used the library to manage their communications [16, 10]. Currently the
library is being used in the HPspmd project at NPAC [3]. It incorporates
a built-in representation of a distributed array, and a library of communi-
cation and arithmetic operations acting on these arrays. The array model
is more general than GA, supporting general HPF-like distribution formats,
and arbitrary regular sections. The existing Adlib communication library
emphasizes collective communication rather than one-sided communication.
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Figure 1: Structure of the Adlib DAD for a 3-dimensional array

Array descriptor

An important part of the Adlib library is its characteristic Distributed Array
Descriptor (DAD). Adlib is implemented in C++, and the underlying array
descriptor is implemented as an object of type DAD. A DAD object describes
how elements of a particular array are distributed across available processors.
It has a simple structure (Figure 1) containing three fields: an integer value
(r, say) defining the rank (dimensionality) of the array, a process group object,
and a vector of r map objects, one for each dimension of the array. The group
defines a multidimensional process grid embedded in the set of processes
executing the program, or some subset. Each map object consists of an
integer local memory stride and a range object.

A range object describes the extent (size) and distribution format of one
dimension of a distributed array. Adlib defines a class hierarchy of different
kinds of range object (Figure 2). Each subclass represents a different kind of
distribution format for an array dimension. The simplest distribution format
is collapsed (sequential) format in which the whole of the array dimension
is mapped to the local process. Other distribution formats (motivated by
High Performance Fortran) include regular block decomposition, simple cyclic
decomposition, and block cyclic decomposition. In these cases the index range
(thus array dimension) is distributed over one of the dimensions of the process
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Figure 2: The Adlib Range hierarchy

grid defined by the group object in the DAD. All ranges in a specific DAD
must be distributed over different dimensions of this grid, and if a particular
dimension of the grid is targetted by none of the ranges, the array is said
to be replicated in that dimension'. Some of the range classes allow ghost
extensions to support stencil-based computations.

The factorization of the DAD into separate map and range objects for
each dimension is convenient for several reasons. For example it simplifies
construction of Fortran-style regular sections of arrays. It means that ar-
rays with common distribution patterns for selected dimensions can share
the same range objects for those dimensions. Also, the range object is a
natural locus for the methods used to enumerate locally held index blocks
for a distributed array dimension. These methods are used in translation of
forall loops and similar data parallel constructs, and inside collective com-
munication libraries.

The DAD itself does not contain the address of the memory segment
where locally held elements are stored. Nor does it contain any information
about the type of those elements. This information must be maintained by
the user of the kernel library or (more often) in higher-level interface code
wrapped around the kernel library calls. This arrangement allows the kernel
DAD to be independent of details of the user-level programming language

180 there is no direct relation between the array rank and the dimension of the process
grid: collapsed ranges means the array rank can be higher; replication allows it to be
lower.



and the memory managment scheme used to allocate local array elements. As
an example of the kind of interface that is possible, there is a C++ user-level
interface to Adlib called ad++. This defines a series of template classes

template<class T>
class Arrayl ;

template<class T>
class Array?2 ;

template<class T>
class Array3 ;

These implement distributed container classes for elements of type T (arrays
of rank 1, 2, 3, ...). They are derived from the base class DAD, but add a
field pointing to vectors of local elements; their constructors allocate these
vectors.

Communication schedules

The Adlib communication library supports collective operations on distrib-
uted arrays. A call to a collective operation must be invoked simultaneously
by all members of some active process group, which may or may not be the
entire set of processes executing the program.

Communication patterns supported include HPF/F90 intrinsics such as
CSHIFT and TRANSPOSE. More importantly they include the regular-
section copy operation, remap, which copies elements between shape-con-
forming array sections regardless of source and destination mapping. Another
function, writeHalo, updates ghost areas of a distributed array. Various col-
lective gather and scatter operations allow irregular patterns of access. The
library also provides essentially all F90 arithmetic transformational functions
on distributed arrays and various additional HPF library functions.

All collective operations in the library are based on communication sched-
ule objects. Each kind of operation has an associated class of schedules.
Particular instances of these schedules, involving particular data arrays and
other parameters, are created by the class constructors. Executing a schedule
initiates the communications required to effect the operation. A single sched-
ule may be executed many times, repeating the same communication pattern.
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In this way, especially for iterative programs, the cost of computations and
negotiations involved in constructing a schedule can often be amortized over
many executions. This paradigm was pioneered in the CHAOS/PARTTI li-
braries [5]. If a communication pattern is to be executed only once, simple
wrapper functions can be made available to construct a schedule, execute
it, then destroy it. The overhead of creating the schedule is essentially un-
avoidable, because even in the single-use case individual data movements
generally have to be sorted and aggregated, for efficiency. The associated
data structures are just those associated with schedule construction.

A characteristic example from the standard Adlib communication library
is the remap schedule. The associated class has public interface:

class Remap {
public :
Remap (const DAD* dst, const DAD* src, const int len) ;

void execute(void* dstDat, void* srcDat) ;

}

The constructor is passed the DADs for source and destination arrays (or
sections) and the size of the array element in bytes. The execute member
is passed the base addresses for the locally held elements (the destructor for
the schedule is not displayed here). The ad++ wrapper function for single
use of this schedule with two dimensional arrays is

template<class T>
inline void remap(const Section2<T>& dst, const Section2<T>& src) {
Remap schedule(&dst, &src, sizeof(T)) ;

schedule.execute(dst.dat(), src.dat()) ;
}

The inquiry dat is a member of the ad++ array classes which returns a
pointer to the local data vector. The remap function copies all elements of
the source array (or section) to the destination array (or section)?.
Top-level schedules such as Remap, which deal explicitly with distributed
arrays, are implemented in terms of some lower-level schedules that simply
operate on blocks and words of data. These lower-level schedules do not
engage in operations on the DAD or its range and group components. The

2The SectionR<T> classes are base classes of the ArrayR<T> classes.



Table 1: Low-level Adlib schedules

operations on “words” | operations on “blocks”
Point-to-point MessSchedule BlockMessSchedule
Remote access DataSchedule BlockDataSchedule
TreeSchedule BlockTreeSchedule
Tree operations RedxSchedule BlockRedxSchedule
Redx2Schedule BlockRedx2Schedule

lower level schedules are tabulated in Table 1. Here “words” are contiguous
memory blocks of constant (for a given schedule instance) size. “Blocks”
are multidimensional (r-dimensional) local array sections, parametrized by
a vector or r extents and a vector of » memory strides. The point-to-point
schedules are used to implement collective operations that are deterministic
in the sense that both sender and receiver have a priori knowledge of all
required communications. Hence Remap and other regular communications
such as Shift are implemented on top of BlockMessSchedule. The “remote
access” schedules are used to implement operations where one side must in-
form the other end that a communication is needed. These negotiations occur
at schedule-construction time. Irregular communication operations such as
collective Gather and Scatter are implemented on these schedules. The tree
schedules are used for various sorts of broadcast, multicast, synchronization,
and reduction.

The original Adlib is implemented on top of MPI. All MPI communica-
tions are isolated in the low-level schedules. Ideally, one might hope that
retargetting suitable parts of Adlib to operate on top of ARMCI would be
simply a matter of reimplementing the low-level schedules. In practise, as ex-
plained in section 3, the layered implementation eased the task of retargeting
to ARMCI, but the APT of the low-level schedules had to be changed.

2.2 ARMCI and Global Arrays

ARMCI (Aggregate Remote Memory Copy Interface) is a new portable re-
mote memory copy library developed at PNNL for optimized communica-
tion in the context of distributed arrays. ARMCI aims to be fully portable
and compatible with message-passing libraries such as MPI or PVM. Un-
like most existing similar facilities, such as Cray SHMEM [1] or IBM LAPI



[9], it focuses on the noncontiguous data transfers. ARMCI offers a sim-
pler and lower-level model of one-sided communication than MPI-2 [12] (no
epochs, windows, datatypes, Fortran-77 API, complicated progress rules,

etc.)

and targets a different user audience. In particular, ARMCI is meant

to be used primarily by library implementors rather than application devel-
opers. Examples of libraries that ARMCI is aimed at include Global Arrays,
P++/Overture [15, 2], and Adlib.

ARMCI supports three classes of operation

data transfer operations including put, get and accumulate.

synchronization operations—Ilocal and global fence and atomic read-
modify-write, and

utility operations for allocation and deallocation of memory (as a con-
venience to the user) and error handling.

The data transfer operations are available with two noncontiguous data for-

mat:

1.

Generalized I/0 vector. This is the most general format intended for
multiple sets of equally-sized data segments, moved between arbitrary
local and remote memory locations. It extends the format used in the
UNIX readv/writev operations by minimizing storage requirements in
cases when multiple data segments have the same size. The associated
functions are ARMCI_PutV and ARMCI_GetV.

. Strided. This format is an optimization of the generalized I/O vector

format for sections of dense multidimensional arrays. Instead of includ-
ing addresses for all the segments, it specifies for source and destination
only the address of the first segment in the set. The addresses of the
other segments are computing using the stride information. The as-
sociated functions, ARMCI_PutS and ARMCI_GetS, take short wvectors of
strides as arguments allowing multidimensional array segments to be
handled in a single operation.

The Global Arrays (GA) [13] toolkit provides a shared-memory program-
ming model in the context of 2-dimensional distributed arrays. GA has been
the primary programming model for numerous applications, some as big as
500,000 lines of code, in quantum chemistry, molecular dynamics, financial
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calculations and other areas. The toolkit was originally implemented directly
on top of system-specific communication mechanisms (NX hrecv, MPL rcun-
call, SHMEM, SGI arena, etc.). The original one-sided communication en-
gine of GA had been closely tailored to the two-dimensional array semantics
supported by the toolkit. This specificity hampered extensibility of the GA
implementation. It became clear that a separation of the communication
layer from the distributed array infrastructure is a much better approach.
This was accomplished by restructuring the GA toolkit to use ARMCI hence
making the GA implementation itself fully platform independent. ARMCI
matches the GA model well and allows GA to support arbitrary dimensional
arrays efficiently.

3 Implementing Adlib Communication in ter-
ms of ARMCI

As explained in section 2.1, the kernel Adlib library is implemented directly
on top of MPI. We anticipated that reimplementing parts of the collective
communication library on top of ARMCI would lead to improved perfor-
mance on shared memory platforms (at least). Also, this task exercises the
ARMCI API in a new context and should help to prove it as a good interface.
There is a difference between the way the GA array descriptor is im-
plemented and the way distributed arrays are represented in Adlib, arising
from the different assumptions about communication: remote memory ac-
cess versus collective communication. In Adlib the basic DAD need only
be accompanied by a single pointer to the base address for the locally held
elements. In Global Arrays there is locally-held table of pointers containing
base addresses where the array segments are stored in every peer process.
To exploit ARMCI, an Adlib program must at some point set up this
table of remote pointers. In principle (at least in non-shared memory im-
plementations) this could be done either when the distributed array was
created, or at the time the remote pointers are needed (at schedule construc-
tion or execution time). The advantage of the latter approach is that the old
Adlib interface might be preserved—the user code could maintain just the
local base address, and remote address tables could be regenerated on the
fly. But regenerating the table clearly involves some rendezvous between the
peers, which is likely to involve a significant and repeated overhead. Also it
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would imply some complication of the ARMCI interface, because currently
the ARMCI Malloc function is responsible for both allocating memory for ar-
ray elements and distributing handles to peers. These two functions would
have to be separated.

These considerations indicate that the table of remote pointers should be
set up at array creation time (as in GA). As explained in section 2.1 the kernel
DAD structure does not hold pointers to array data, so this requirement does
not imply any change to the organization of that structure. It does imply
some changes at the level of higher-level “container classes” (such as the
ad++ ArrayR<T> classes) and—more importantly—in the interface to the
schedule classes. The constructors (or execute members) of the schedules
must be passed tables of pointers rather than individual pointers.

3.1 New classes vs reimplementation of existing ones

As noted above, the ARMCI implementation implies changes to the actual
interfaces of kernel Adlib classes. We might consider changing the Adlib
API in future releases, but this wasn’t practical on the time scale of the
current project. In any case it seems that there will continue to be a place
for arrays that do not carry full remote table pointers. Creating a standard
Adlib distributed array is a purely local operation and therefore very fast.
In the data parallel style of programming it is quite common to create short-
lived distributed arrays as temporaries; to properly support this paradigm
we want creation of these arrays to be as fast as possible. Creating a GA
array is itself a collective operation, and intrinsically slower.

In summary, we can distinguish two useful kinds of distributed array: the
“local” distributed array of Adlib and the “global” distributed array of GA.

For the initial experiments we added a new series of container classes to
ad++ that parallel the pre-existing “local” distributed arrays, but implement
GA style “global” distributed arrays:

template<class T>
class ArrayRM1 ;

template<class T>
class ArrayRM2 ;

template<class T>
class ArrayRM3 ;

12



(In fact these classes are derived from the corresponding classes in standard
ad++, so ordinary Adlib operations that don’t need remote pointer tables
are still applicable to them.)

Similarly for communication schedules, we have implemented a subset
that parallels standard Adlib ones, with different APIs. For example

class RemapRM {
public :
RemapRM(const DAD* dst, void* dstDat,
const DAD* src, const int srcOff, void** srcPtrs,
const int len) ;

void execute() ;

}

For further discussion see section 3.3.

In the longer term we may want to consider a more uniform treatment
of the two kinds of distributed array. One possibility is to elevate the group
field of the DAD to include more general contextual information, in a manner
reminiscent of the way MPI decorates its groups to form communicators.
This contextual information might include information about whether the
array supports remote memory operations, the associated extra tables, and
perhaps other flags specifying information such as whether an array is held
in-core or out-of-core.

3.2 ARMCI-compatible Adlib arrays

One other minor problem was encountered in the construction of Adlib-like
arrays supporting ARMCI-based communication.

In the Adlib model it is supposed to be possible for any group of processes
to collectively create a distributed array. The elements are divided across
processes in this group, which may or may not include all processes executing
the program as a whole. Processes outside the group do not have to engage in
the array creation at all—they may be executing some completely different
code at the time. This feature of the library was originally introduced to
support translation of a kind of nested parallelism that can occur in HPF
programs when (for example) some intrinsically parallel Fortran 90 array
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expressions appear nested inside a forall construct. It has been used in
practise to support “multiple data parallelism” [11], and also in work on a
parallel database classification algorithm using a divide-and-conquer style of
parallelism, combined with data parallelism [7].

The ARMCI functions ARMCI_Malloc, ARMCI_free allocate raw shared or
remotely accessible memory. In the original definition they were collective
across all processes on which the main program is initiated. To support the
Adlib requirements we prototyped versions with interface

ARMCI_MPI_Malloc(MPI_Comm comm, void *ptr_arr[], int bytes) ;
ARMCI_MPI_Free(MPI_Comm comm, void *ptr) ;

These versions are collective only within the process group associated with
the communicator argument. Similar functions will now be incorporated in
the “official” ARMCI API.

To illustrate the how construction of an Adlib array is affected, we sketch
the ad++ constructors for the original Array2<T> and the new Array2RM<T>
class®. The original constructor is

Array2(const Range& x_0, const Range& x_1, const Group& p)
Section2<T>(p) {

int size 1 ;

maps [0] Map(x_0, size) ;
size *= x_0.volume() ;
maps [1] = Map(x_1, size) ;

size *= x_1.volume() ;

data = new T [size] ;

}

The total size of the local segment is accumulated in the size variable. The
volume member of Range returns the number of locally held index values for
each dimension. Intermediate values of size are memory strides associated
with array dimensions and these are stored with the ranges in the Map ob-
jects of the DAD. Finally the space for the local elements is allocated. The
destructor just deletes data.

The ARMCI-compatible class contains two extra fields, ptrs—the table
of remote pointers—and offset—a constant offset to be added to these

3We re-emphasize that ad++ is just one possible, particularly simple, interface to kernel
Adlib. It illustrates the issues.
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pointers (it may become non-zero for certain array sections constructed from
the original array). The constructor is

ArrayRM2(const Range& x_0, const Range& x_1, const Group& p)
SectionRM2<T>(p) {

int size 1 ;

maps [0] = Map(x_0, size) ;
size *= x_0.volume() ;

maps [1] = Map(x_1, size) ;
size *= x_1.volume() ;

ptrs = new void* [AdlibNProcs()] ;
malloc_rm(ptrs, &comm, sizeof(T) * size) ;
data = (T*) ptrs [AdlibLocId()] ;

offset = 0 ;
}

The difference is that ptrs must be allocated, and then there is a call to
malloc_rm. This is a wrapper for ARMCI_MPI Malloc. The malloc_rm call
sets up an MPI communicator for the Adlib active process group and passes
it to ARMCI_MPI Malloc. Note that the comm argument is actually an out
argument; the communicator is cached in the ArrayRM2 record so that it can
eventually be passed to a matching free_rm call in the “ArrayRM2 destructor,
and thus to ARMCI_MPI Free. The destructor also deletes ptrs.

3.3 ARMCI-based collective communication schedules

A representative selection of the Adlib communication schedule classes were
reimplemented in terms of ARMCI. These included the Remap class, which
implements copying between regular sections of distributed arrays, the Gat-
her class, which implements copying of a whole array from a source array
indirectly subscripted by some other distributed arrays, and a few related
classes.

As explained in section 3.1 the ARMCI-based schedules needed a differ-
ent API to the standard Adlib schedules. Different arguments are needed
for constructor and execute member. In the event we implemented a com-
pletely new set of low-level schedules based on ARMCI. They are listed in
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Table 2: Low-level ARMCI-based schedules

operations on “words” | operations on “blocks”
non-collective RMSchedule BlockRMSchedule
collective Col1RMSchedule Col1lBlockRMSchedule

Table 2, which should be compared with Table 1. Compared with the MPI-
based schedules these classes have a simple role (and implementation). They
just store lists of individual data requests. The execution members simply
dispatch the ARMCI operations indicated by these lists. The only differ-
ence between the collective and non-collective versions is that the execution
members of the collective versions incorporate barrier synchronizations and,
where appropriate, ARMCI_Al11Fence operations.

The RMSchedule and Col1RMSchedule schedules use the ARMCI opera-
tions ARMCI_GetV or ARMCI_PutV in their execution members. The BlockRM-
Schedule and CollBlockRMSchedule schedules generally use ARMCI_GetS or
ARMCI_PutS (recall that the “blocks” recognized by low-level Adlib schedules
are multidimensional local array sections, parametrized by vectors of extents
and memory strides).

New top-level schedules are implemented in terms of these lower level

ones. The interface of RemapRM, for example, was already displayed in section
3.1:

class RemapRM {
public :
RemapRM(const DAD* dst, void* dstDat,
const DAD* src, const int srcOff, void** srcPtrs,
const int len) ;

void execute() ;

}

Where the old remap operation was implemented on top of the point to point
schedule BlockMessSchedule, the natural basis of RemapRM is Co11BlockRM-
Schedule. The detailed API and usage of Col1BlockRMSchedule is rather
different from BlockMessSchedule, so the old implementation of Remap in
terms of BlockMessSchedule cannot easily be recycled. Luckily Adlib in-
cludes a generalization of remap called vecGather. The schedule of the latter
is implemented on top of the old “remote access” schedule BlockDataSched-

16



ule, whose usage is quite similar to Col1BlockRMSchedule. So in practise
VecGather was retargetted to Col1BlockRMSchedule to create an ARMCI-
based schedule called VecGatherRM. The resulting code was simplified to
create RemapRM.

A minor difference between the the new RemapRM schedule and the old
Remap schedule (and conventional Adlib schedules in general) is that source
and destination data pointers are passed to the constructor rather than the
execute member. This is because the lists stored in the ARMCI-based sched-
ules are essentially arguments for ARMCI functions, which include pointers.
Conventionally Adlib stored only offsets (not absolute data addresses) in
schedules. This is less convenient when targetting ARMCI*.

As discussed earlier, the table of remote pointers for the source array
must be passed in to the schedule. Only the local pointer for the destination
array is needed. The argument src0ff is the offset mentioned in the previous
section. This may be non-zero if the source is an array section.

3.4 Benchmarking the ARMCI-based schedules

The benchmark presented here is based on the remap operation. The partic-
ular example chosen abstracts the communication in the array assignment of
the following HPF fragment

real a(n, n), b(n, n)
'hpf$ distribute a(block, *) onto p
'hpf$ distribute b(*, block) onto p
a=>b

The destination array is distributed in its first dimension and the source
array is distributed in its second dimension, so the assignment involves a
data redistribution requiring an all-to-all communication. In practice the
benchmark was coded directly in ad++ (rather than Fortran) and run on
four processors of an SGI Power Challenge. The timings for old and new
versions are given in Figure 3 and table 3. Generally the implementation of
the operation on top of ARMCI is more than twice as fast as the MPI imple-

1A goal in developing Adlib is always that it should be as “lean” as possible. Of
course we could have preserved more features of the old API. They were changed to avoid
superfluous array allocation and copying inside the implementation.
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Figure 3: Timings for original MPI vs new ARMCI implementation of remap.
The operation is a particular redistribution of an N by N array.

mentation®. The MPI implementation is MPICH using the shared memory
device, so the underlying transport is the same in both cases.

3.5 One-sided communication schedules for Adlib

By replacing the Col1BlockRMSchedule base class of RemapRM with the non-
collective version BlockRMSchedule (which doesn’t include barrier synchro-
nizations), and stripping down the code so that the destination array is just a
local sequential array rather than a distributed array, we produced a schedule
called Get. This schedule supports one-sided “get” (also “put”) operations
functionally equivalent to the GA operations ga_get and ga_put.

The ad++ get functions based on the Get schedule have interfaces like:

template<class T>

SFor small arrays the MPI version was actually slightly faster due to extra barrier
synchronizations used in the initial ARMCI implementation of RemapRM. For now these
synchronizations were implemented naively in terms of message-passing, and contribute
around 190us to the total times.
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Table 3: Times in milliseconds plotted in Figure 3
Array extent MPI-based ARMCI-based

32 0.20 0.21
64 0.43 0.25
128 1.11 0.52
256 2.07 1.08
512 11.7 5.35
768 29.4 13.8
1024 62.4 27.2
1280 86.8 39.0
1536 127.8 56.1

void get(const int str_0, const int str_1, T* base,
const SectionRM2<T>& src) ;

The destination local array is parametrized by a base address and a set of
local memory strides. The last argument is an arbitrary regular section of a
global distributed array. In particular this can be an arbitrary rectangular
patch, as for ga_get.

As a test case we transcribed the jacobi.F example in the GA release to
C++ using ad++ ArrayRM2 arrays and the get operation, and verified that
it reproduced the same results as the original Fortran.

In the past the lack of this kind of one-sided communication has been a
notable gap in the functionality of Adlib. ARMCI will allow us to close this
gap in future releases.

4 Adapting Global Arrays to use the Adlib
array descriptor

In an orthogonal but complementary development, we have produced a PCRC
version of GA that internally uses a PCRC/AdIib array descriptor to main-
tain the global array distribution parameters. The modularity of the GA
implementation, enhanced by the introduction of the ARMCI layer, made
changing the internal array descriptor a relatively straightforward task. An
immediate benefit is that direct calls to the optimized Adlib collective com-
munication library will be possible from the modified GA.
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4.1 Extensions to the DAD

The original Adlib array descriptor supported all distribution formats spec-
ified in HPF 1.0 [8]. These formats include simple block, simple cyclic, and
block-cyclic distributions. It did not support the kind of irregular block dis-
tributions allowed in Global Arrays. Version 2.0 of HPF [6] specified equiv-
alent block irregular distributions as an “approved extension”, so provisions
had been made in Adlib for this extension. But the extension had not been
implemented at the time the current project started.

A new subclass of Range called IrregRange was added to the hierarchy
of figure 2. The documented interface is

class IrregRange : public Range {
public :
IrregRange (Dimension dim, int blocks []) ;

}

The constructor creates an irregular block-distributed range distributed over
the process grid dimension dim. The array blocks has P elements where
P is the extent of the grid dimension. These elements define the block size
associated with each process. The extent of the range is

P
Zblocks [7]

1=0

This interface for the constructor is a natural one for directly supporting the
new GEN_BLOCK distribution format in HPF 2.0. We also included a second
(undocumented) constructor that is slightly more convenient for implement-
ing Global Arrays API:

IrregRange(const int extent, Dimension dim, Integer map []1) ;

The definition of map agrees with the definition of the corresponding argu-
ments of GA_.CREATE_IRREG: the elements are the smallest global index held
in each process.

Internally IrregRange uses an algorithm borrowed from the GA imple-
mentation for address translation. In particular the inline function find-
Block, used in the global-to-local subscript conversion method called locat-
ion, is an adapted version of the corresponding GA macro.

There remains one significant difference between the layout of elements
in a GA array and the corresponding Adlib array, even using IrregRange.
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In Adlib the same volume of memory is allocated in every member of the
process group specified for the array: this volume is the product of the maz-
imum local block sizes from each range. GA allocates a volume equal to
the product of the local block sizes (not the maximum), and this volume is
usually different in each process. Adlib exploits the constancy of the volume,
assuming that memory strides for remote array segments are the same as for
the local segment. These strides are stored in the DAD. Rather than try to
modify the DAD it was decided to live with this difference. Although it is
quite likely that some Global Arrays programs rely on the assumption that
the locally allocated array volume is identical to the number of locally-held
global array elements, we will see later that we did not encounter problems
with the example programs in the GA release package.

4.2 Modifications to Global Arrays

The original plan called for implementation of a small subset of Global Ar-
rays, including ga_create, ga_destroy, ga get, ga_put and ga_acumulate.
Originally it was intended that these would be Fortran wrappers around calls
to the Get schedule described in section 3.5.

To validate the subset, one or more test programs would be needed. Ide-
ally these would be semi-realistic Global Arrays programs. All the examples
in the GA release use around a dozen different GA operations. Unless some
very minimal test code was invented, it seemed that the proposed “small sub-
set” would have to be bigger than the original plan assumed. It became clear
that it would be very useful to recycle code from the existing Global Arrays
implementation to create the new interface. Most of the relevant routines
are implemented in the original GA source file global.core.c. That file
was about 3000 lines long. It was hoped that by cutting down the number of
entry points to just those needed for the current study, and retargetting to
Adlib with ARMCI/MPI, a much smaller file would be produced. Before that
attempt got very far, PNNL provided a new implementation of core global
arrays based on ARMCI. The corresponding file is called global.armci.c.

The plan now altered slightly. Rather than providing wrappers around
the new Adlib Get schedule, we would modify the file global.armci.c to use
the Adlib DAD, but leave direct calls to ARMCI in the file. The principle
functions that would need modification were the ones listed in table 4. The
structure global_array_t from GA would be retained, because it incorpo-
rates various fields used for management of arrays that have no counterpart
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Table 4: Functions from global.armci.c requiring modification

nga create nga _locate_ ga_scatter_acc_local
nga create_irreg | nga_locate_region_ | ga_scatter._
ga_create_irreg ga_scatter_acc_
ga_duplicate ga_fill_ ga_gather_local
ga_gather_
nga distribution_ | nga_proc_topology._
ga_access_ nga read inc_
nga_put_
nga _get._
nga_acc_

in the Adlib DAD. But several fields—dims, chunk, nblock, scale, mapc,
lo—would be deleted and replaced by a DAD.

Various kinds of changes were needed to global.armci.c and the asso-
ciated header global.armci.h. A number of global changes relate to need
to compile these files as C++ rather than C. Many of the functions had old-
style C argument lists, and these had to be changed to ANSI-style. Function
prototypes had to be added in various place, or the function definitions had
to be reordered to avoid forward references without prototypes. In some
places extern "C" clauses were needed. In some places explicit casts were
needed to pass the more stringent type-checking of C++.

Various old functions and macros became irrelevant and were deleted, in-
cluding findblock, gam GetRangeFromMap, gam CountElems, gam Compute-
PatchIndex, gam ComputeCount and gam setstride.

A few new classes and functions were added. A class similar to the Get
schedule, but specialized to reproduce exactly the functionality of nga _get,
etc, was defined (lists of block moves had to be constructed anyway, because
of the way GA randomizes the order of of individual remote accesses). The
class is called PatchTransfers.

Finally, functions in table 4 had to be modified to create and use the DAD
fields instead of the deleted global array_t fields. In ga_create_irreg a
suitable Adlib process grid has to be constructed or found before setting up
the DAD. The initialization and finalization functions had to initialize and
finalize Adlib.

Various other header files included by global.armci.c also had to be
modified to meet the strict prototyping requirements of C++-. These included
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globalp.h, global.h and ma/macdecls.h.

While this work was in progress PNNL provided a beta version of the
new n-dimensional GA. It was updated with the NPAC modifications, and
our work continued from that basis.

Once the new version of the core GA file could be compiled, we had to
address the problem of linking it. One option was to try to extract a suitable
subset of necessary modules in the GA release (including, for example, the
MA memory allocator). Selecting a suitable subset seemed more difficult
than recompiling the whole GA release to use the new core module. So the
make files were modified to compile just the core module with C++ and link
it with the rest of the library.

After some debugging, all relevant examples in the global/testing dir-
ectory— test.x, jacobi.x, patch.x, perf.x, perfmod.x, perform.x, p.x,
t.x, testeig.x, testsolve.x and ndim.x—could be run successfully with
the modified GA. A more detailed list of changes to the standard version of
GA is available from NPAC.

4.3 Benchmarking the DAD-based GA primitives

Figures 4 and 5 and tables 5 and 6 give timing results for the modified version
of ga_get, compared with the (new ARMCI-based) version of GA provided by
PNNL. Timings were obtained using the program global/testing/perf.F
from the GA release (once again on an SGI Power Challenge).

We conclude that using the object-oriented DAD of Adlib introduces
a small overhead in the ga get operation. This overhead appears to be
generally less than a microsecond®.

6The first naive implementation of GA using the DAD introduced a larger overhead
(a few microseconds). Some optimizations were applied to reach the performance quoted
here. However the current version is still not really aggressively optimized—the work
stopped when overall performance was comparable with the original GA.
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Figure 4: Timings for modified Global Arrays vs original. The operation is

a get operation on a dim by dim patch of an array. Timings when patch is
locally resident.
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Table 5: Times in microseconds plotted in Figure 4

Patch width Using DAD Original GA

1 5.69 5.23
3 7.20 6.22
4 6.45 6.03
9 9.66 8.33
16 13.9 13.3
24 22.8 21.5
30 33.0 29.1
48 70.7 69.1
64 138 126
91 351 337
128 835 825
171 2021 1967
256 7513 7433
353 15930 15766
440 25780 25638
512 26623 34371
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Figure 5: Timings as for Figure 4, but in case where patch is held remotely.
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Table 6: Times in microseconds plotted in Figure 5

Patch width Using DAD Original GA

1 11.6 10.5
3 14.2 13.7
4 15.3 15.0
9 21.8 20.7
16 63.8 63.0
24 111 114
30 144 143
48 373 368
64 636 640
91 1276 1247
128 2370 2075
171 4215 4449
256 12936 11970
353 23314 23443
440 34540 33341
512 39244 40716
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