Semantic Checking in HPJava

Bryan Carpenter, Geoffrey Fox, and
Guansong Zhang

CRPC-TR99802
May 1999

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted November 1999

Semantic Checking in HPJava

Bryan Carpenter, Geoffrey Fox and Guansong Zhang

Northeast Parallel Architectures Centre,
Syracuse University,
111 College Place,
Syracuse, New York 18244-410
{dbe,gcf,zgs} @npac.syr.edu

May 18, 1999

Abstract

The article discusses various rules about use of distributed arrays in
HPJava programs. These rules are peculiar to the HPspmd programming
model. They can be enforced by a combination of static semantic checks,
compile-time analysis and compiler-generated run-time checks. We argue
that the the cost of any necessary run-time checks should be acceptable,
because, by design, the associated computations can be lifted out of inner
loops.

1 Introduction

HPJava [3] is a Java language binding of a programming model we call the
HPspmd model. This is a particular version of the general SPMD programming
model that adds special support for distributed arrays of the kind defined by the
HPF standard. The arrays are bound to the base language through a series of
syntax extensions. The assumption is that the syntax extensions will be handled
by a relatively simple preprocessor which emits an SPMD program in the base
language.

Of course this implementation strategy has been followed with varying de-
grees of success in many translation systems for HPF and similar languages [7, 9].
The difference in the HPspmd approach is that it is assumed the source code is
already written in an explicitly MIMD style. The HPspmd syntax provides only
a thin veneer on low-level SPMD programming, and the transformations applied
by the translator are relatively simple and direct—mno non-trivial analysis should
be needed to obtain good parallel performance. Meanwhile the language model
provides a uniform model of a distributed array, which can be targetted by
libraries for parallel communication and arithmetic.

Of course SPMD programming has been very successful. There are countless
applications written in the most basic SPMD style, using direct message-passing
through MPI [10] or similar low-level packages. Many higher-level parallel pro-
gramming environments and libraries assume the SPMD style as their basic
model. Examples include ScaLAPACK [1], DAGH [13], Kelp [5] and the Global
Array Toolkit [11]. While there remains a prejudice that HPF is best suited for
problems with very regular data structures and regular data access patterns,
SPMD frameworks like DAGH and Kelp have been designed to deal directly
with irregularly distributed data, and other libraries like CHAOS/PARTI [4]
and Global Arrays support unstructured access to distributed arrays.

These successes aside, the library-based SPMD approach to data-parallel
programming lacks the uniformity and elegance of HPF. All the environments
referred to above have some idea of a distributed array, but they all describe
those arrays differently. Compared with HPF, creating distributed arrays and
accessing their local and remote elements is clumsy and error-prone. Because
the arrays are managed entirely in libraries, the compiler offers little support and
no safety net of compile-time or compiler-generated run-time checking. These
observations motivate our introduction of the HPspmd model.

This article concentrates in particular on the issue of semantic checking in
HPspmd languages. The basic features of the HPspmd language model are
introduced in the Java context in section 2. Section 3 adds a discussion of array
sections. This discussion serves to introduce the ideas of subranges and general
process groups in HPspmd. Building on these ideas, section 4 describes some
general rules about access to distributed array elements, and section 5 describes
how a translator can ensure these conditions are met.

2 HPJava—an HPspmd language

HPJava [3] is an instance of our HPsmpd language model. HPJava extends
its base language, Java, by adding some predefined classes and some additional
syntax for dealing with distributed arrays.

We aim to provide a flexible hybrid of the data parallel and low-level SPMD
paradigms. To this end HPF-like distributed arrays appear as language primi-
tives. But a design decision is made that all access to non-local array elements
should go through library functions—either calls to a collective communica-
tion library, or simply get and put functions for access to remote blocks of a
distributed array’.

A subscripting syntax is applied to distributed arrays to reference elements.
But an array element reference must not imply access to a value held on a dif-
ferent processor. To simplify the task of the programmer, who must be sure
accessed elements are held locally, the languages adds distributed control con-
structs. These play a role something like the ON HOME directives of HPF 2.0

IThe distributed arrays are orthogonal to the sequential arrays of the base language—we
deliberately keep them completely separate.

Procs2 p = new Procs2(P, P) ;

on(p) {
Range x = new BlockRange(M, p.dim(0)) ;
Range y = new BlockRange(N, p.dim(1)) ;

float [[,]] a = new float [[x, yl]l, b
¢ = new float [[x, yl] ;

new float [[x, yll,

. initialize values in ‘a’, ‘b’

overall(i = x for :)
overall(j = y for :)
c[i, jl =a[i, jl +b [i, jI ;

Figure 1: A parallel matrix addition.

and earlier data parallel languages [8]. One special control construct—a dis-
tributed parallel loop—facilitates traversal of locally held elements from a group
of aligned arrays.

Array mapping is described in terms of a slightly different set of basic con-
cepts from HPF. Process group objects generalize the processor arrangements of
HPF. Distributed range objects are used instead HPF templates. A distributed
range is comparable with a single dimension of an HPF template. These sub-
stitutions are a change of parametrization only. Groups and ranges fit better
with our distributed control constructs.

Figure 1 is a simple example of an HPJava program. It illustrates creation of
distributed arrays, and access to their elements. The class Procs2 is a standard
library class derived from the special base class Group. It represents a two-
dimensional grid of processes. Similarly the distributed range class BlockRange
is a library class derived from the special class Range; it denotes a range of
subscripts distributed with BLOCK distribution format over a specific process
dimension. Process dimensions associated with a grid are returned by the dim()
inquiry. The on(p) construct is a new control construct specifying that the
enclosed actions are performed only by processes in group p.

The variables a, b and c are all distributed array objects. The type signature
of an r-dimensional distributed array involves double brackets surrounding r
comma-separated slots. The constructors specify that these all have ranges x
and y—they are all M by N arrays, block-distributed over p.

A second new control construct, overall, implements a distributed parallel
loop. The constructs here iterate over all locations (selected by the degenerate
interval “ : ”) of ranges x and y. The symbols i and j scoped by these con-
structs are bound locations. In HPF, a distributed array element is referenced
using integer subscripts, like an ordinary array. In HPJava, with a couple of
exceptions noted below, the subscripts in element references must be bound
locations, and these must be locations in the range associated with the array

Procs2 p = new Procs2(P, P) ;

on(p) {
Range x = new ExtBlockRange(N, p.dim(0), 1, 1) ;
Range y = new ExtBlockRange(N, p.dim(1), 1, 1) ;

float [[,]] u = new float [[x, yl] ;

. some code to initialise ‘u’

for(int iter = 0 ; iter < NITER ; iter++) {
Adlib.writeHalo(u) ;

overall(i = x for 1 : N - 2)
overall(j = y for 1 + (i€ + iter) % 2 : N - 2 : 2)
u[i, j1=0.26 ¥ (u [i -1, jl +u i+ 1, jl+
uwfi, j-1] +uw [i, j + 1) ;

Figure 2: Red-black iteration.

dimension. This rather drastic restriction is a principal means of ensuring that
referenced array elements are held locally.

The general policy is relaxed slightly to simplify coding of stencil updates.
A subscript can be a shifted location. Usually this is only legal if the subscripted
array is declared with suitable ghost regions [6]. Figure 2 illustrates the use of
the standard library class ExtBlockRange to create arrays with ghost extensions
(in this case, extensions of width 1 on either side of the locally held “physical”
segment). A function, writeHalo, from the communication library Adlib up-
dates the ghost region. This example also illustrates application of a postfix
backquote operator to a bound location. The expression i‘ (read “i-primed”)
yields the integer global loop index.

Distributed arrays can be defined with some sequential dimensions. The
sequential attribute of an array dimension is flagged by an asterisk in the type
signature. As illustrated in Figure 3, element reference subscripts in sequential
dimensions can be ordinary integer expressions.

The short examples here have covered the basic syntax of HPJava. The
language itself is relatively simple. Complexities associated with varied and
irregular patterns of communication are dealt with in libraries, which can im-
plement many richer operations than the writeHalo and cshift functions of
the examples. The remaining important extensions to the language itself can
be motivated most easily by considering the need to support Fortran 90 style
sections of distributed arrays.

Procsl p = new Procsi(P) ;
on(p) {
Range x = new BlockRange(N, p.dim(0)) ;

new float [[x, N]1], c = new float [[x, NI] ;
new float [[N, x]], tmp = new float [[N, x1] ;

float [[,*]] a
float [[*,]1]1 b

. initialize ‘a’, ‘b’

for(int s =0 ; s < N ; s++) {
overall(i = x for :) {
float sum = 0 ;

for(int j = 0 ; j < N ; j++)
sum += a [i, j1 * b [j, il ;

c [i, (i¢ + s) % N] sum ;

}
// cyclically shift ‘b’ (by amount 1 in x dim)...

Adlib.cshift(tmp, b, 1, 1) ;
HPspmd.copy (b, tmp) ;

Figure 3: A pipelined matrix multiplication program.

3 Array sections

HPJava has a syntax for representing subarrays. An array section expression
has a similar syntax to a distributed array element reference, but uses double
brackets. Whereas an element reference is a variable, an array section is an
expression representing a new distributed array object. The new array contains
a subset of the elements of the parent array. Those elements can subsequently
be accessed either through the parent array or through the array section. The
HPJava implementation of an array section is closely related to the Fortran 90
idea of an array pointer—in Fortran an array pointer can reference an arbitrary
regular section of a target array.

In the previous section it was stated that the subscripts in a distributed
array element reference are either locations or (restrictedly) integer expressions.
Options for subscripts in array section expressions are freer. For example, a
section subscript is allowed be a triplet. In the simplest kinds of array section
the rank of the result is equal to the number of triplet subscripts. If the section
also has some scalar subscripts, this will be lower than the rank of the parent
array. We would like to be able define the mapping of an arbitrary array section.

The mapping of a distributed array is defined by its distribution group and
its list of ranges. In earlier examples the distribution group of arrays defaulted
to the process group specified by the surrounding on construct. In general the
distribution group can be specified explicitly by appending an “on” clause to
constructor itself:

new type [[zo, 1, ...]1] on p

Here each of zg,z1,... is a range object or an integer (in which case the di-

mension is sequential), and p is a group contained within the set of processes

that create the array. The ranges must be distributed over distinct dimensions

of p. If there is any dimension of p which is not a distribution target of some

range from 9,21, . .., the array is replicated over that process dimension. The

inquiries grp and rng(int r) return the group and ranges for any array?.
Now consider array section b defined by

float [[,]] a = new float [[x, y]] on p ;

float [[L]] b=a [[0 : N-1:2,0:N/2-1]1] ;

(see Figure 4). What are the ranges of b? In fact they are new kind of range
called a subrange. For completeness there is a special syntax for constructing
subranges directly:

Range u = x [0 : N -1 : 2] ;
Range v =y [0 : N/ 2 - 1] ;

The extents of both u and v are N / 2.
The distribution group of b can be identified with the distribution group of
the parent array a. But sections constructed using a scalar subscript, eg

2For a sequential dimension the result of rng(r) is a member of the subclass
CollapsedRange.

J03 04 dos] [d08] d07]
a[1,3] a[1,4] a15] | &1,6] a1,7]

@[2,4} a[2,5] a[2,6] a[2,7]
a3,3] a3,4] 43,5 a[3,6] a3,7]

A4 48] [d46] d47]
a5,3] a[54] a55] | a56] &57]

@[6,4} a6,5] a6,6] a6,7]
73] d7,4] a7,5] a7,6] a7,7]

Figure 4: A two-dimensional section of a two-dimensional array (shaded area).

float [[1]1 ¢ = a [[0, :1]

(see Figure 5) present another problem. Clearly c.rng(0) is y. But identifying
the distribution group of ¢ with p is not right. It would imply that c is replicated
over the first dimension of p. Where does the information that c is localized to
the top row of processes go?

We are driven to define a new kind of group: a restricted group is the subset
of processes in some parent group to which a particular location is be mapped.
The distribution group of c is defined to be the subset of processes in p to which
the location x[0] is mapped. It can be written explicitly as®

p / x [0]

An equivalent definition of a restricted group is as some slice of a process grid,
chosen by restricting some of the coordinates to single values.

The idea of a restricted group may look slightly ad hoc, but the implementa-
tion is quite elegant. A restricted group is uniquely specified by its set of effective
process dimensions and the identity of the lead process in the group—the pro-
cess with coordinate zero relative to the effective dimensions. The dimension
set can be specified as a subset of the dimensions of the parent grid using a
simple bitmask. The identity of the lead process can be specified through a
single integer ranking the processes of the parent grid. So a general (restricted)
HPJava group can be fully parametrized by a reference to the parent process
grid together with just two int fields.

Now we can formally define of the mapping of a typical array section.
As a matter of definition an integer subscript n in dimension r of array a is

3The expression x[0] is “pure syntax” in HPJava. There is no Java type associated with
a location and no way to store a location value in a variable. The only named locations in
HPJava are the bound locations scoped by overall (and at—see section 7). Besides group
restrictions, expressions like x[0] can legally appear as array section subscripts or in the
header of an at construct.

a[2,0] a2,1] &2,2]
a[3,0] a3,1] 43,2

a4,0] 4d4,1] 44,2
a[5,0] a5,1] 45,2
a[6,0] a6,1] a6,2]
a7,0 a7, &7.2]

a[1,3] a1,4] a1,5]
a[2,3] a2,4] a2,5]
a[3,3] a3,4] 4a3,5]

a[4,3] a4,4] 44,5
a[5,3] a5,4] &a5,5]
a[6,3] a6,4] &6,5]
a[7,3] d7,4] &7,5]

a[1,6] &1,7]
a[2,6] &2,7]
a[3,6] &3,7]

a[4,6] &4,7]
a[5,6] &5,7]
a[6,6] a[6,7]
a7,6] a7,7]

Figure 5: A one-dimensional section of a two-dimensional array (shaded area).

equivalent to a location-valued subscript a.rng(r) [n]. By definition, a triplet
subscript /:u:s in the same dimension is equivalent to range-valued subscript
a.rng(r) [l:u:s]. If all integer and triplet subscripts in a section are replaced
by their equivalent location or range subscripts, and the location-valued sub-
scripts are 4, 4, . .., then the distribution group of the section is

a.grp(O) / i/ 5/ ...

and the sth range of the section is equal to the sth range-valued subscript.

Subranges and restricted groups can be used in array constructors on the
same footing as the ranges and grids introduced earlier. This enables HPJava
arrays to reproduce any alignment option allowed by the ALIGN directive of
HPF.

4 Variable usage rules

A Dbasic principle of the HPspmd model is that a program can only directly
reference locally held variables. Therefore we want to define the conditions under
which it is legal to access a particular variable (most especially, a particular array
element) at a particular point in a program.

In a distributed array element reference, as explained in section 2, a subscript
in a distributed dimension of an array must be a bound location, and this
location must be a location in the appropriate range of the array?. Hence

Rule 1 Subscripts in distributed array element references must be bound loca-
tions (unless the relevant dimension is sequential).

4We can relax this restriction slightly by adding rules for identifying locations in certain
closely related ranges. For example it is very natural to regard the locations in a subrange to
be a subset of the locations in the parent range.

Procs2 p = new Procs2(P, P) ;

Range x = new BlockRange(N, p.dim(0)) ;
Range y = new BlockRange(N, p.dim(1)) ;

float [[,]] a = new float [[x, y]] on p ;

float [[1] ¢

a [[0, :11 ;

on(p / x [N - 11)
overall(j = y for :)
c [T =3°; // error!

Figure 6: Erroneous access to non-local elements of a section

and

Rule 2 If a location appears as a subscript, it must be a location in the relevant
range of the array.

The rules just stated go a long way towards ensuring that only local elements
are accessed, but they don’t cover all cases. Consider the example of Figure
6. The subscripts on the element reference c[j] are legal—j is a location in
c.rng(0) (which is equal to y). But, referring to Figure 5, the section c is
localized to p/x[0]—the top row of processes in the figure—whereas the on
construct specifies that the element assignments are performed in the group
p/x[7]—the bottom row of processes.

Before we can give a general rule about accesses to elements of distributed
arrays we need to refine the concept of the active process group. Suppose the set
of processes currently executing the program text is represented by the group
q, and the construct

on(p) S

appears. For the body, S, of this construct, the active process group is changed
to p. The group p must represent a subset of the processes in ¢. Similarly,
suppose the current active process group is ¢, and the construct

overall(s = x for [: u : 8) S

appears. For S the active process group is changed to ¢/i. Unless z is a collapsed
range, the process dimension over which it is distributed must be a dimension
of q.

Applied recursively these rules define the active process group at any point
in a legal HPJava program.

Next we will define the home group of a program variable. The home group
of an ordinary variable (not a distributed array element) is the group that was
active at the point of declaration of the variable. For a distributed array element
the rule is similar to the definition of distribution groups of section: suppose
the subscripts in the reference

a [leo, e1, ...]
include locations i, 7, . . ., then the home group of the array element is®
a.grp(O) / i/ 5/ ...

(if the array has a replicated distribution this group may contain several pro-
cesses; otherwise it contains a single process).
An HPspmd rule for accessing a variable can be stated as follows:

Rule 3 A wvariable can only be accessed when the active process group is con-
tained in the home group of the variable.

This is essentially a statement that all processes executing the current text must
hold a copy of any variable accessed. Strictly speaking it is slightly stronger than
the requirement that the local process holds a copy of any element it accesses.
The version given here is convenient for formal discussion of programs.

5 Compiling usage checks

It is very important for the efficiency of HP Java programs that inner loops in the
translated code—especially those derived from overall constructs in the source
program—be kept as simple as possible. For example, the body of the emitted
loop should avoid calls to methods associated with the runtime descriptor of
the distributed array (unless, say, the programmer forced appearance of these
calls by including them in the source). In particular runtime checking code
associated with references to distributed array element should be lifted out of
loops wherever possible.

Rule 1 can be enforced at compile time by a trivial extension to normal type
checking. So far as Rule 2 is concerned, the intention is that run-time checks
needed to enforce this rule should be lifted outside of the loop body. Consider
this fragment

overall(s = x for [: u : s) {

.a L., 2, ...]

}

where 4 is the rth subscript in the list. Of course the expression a must be
a distributed array. A naive insertion of runtime checks might lead to code
something like

overall(i = = for [: u : s8) {
ASSERT(a.rng(r) .containsLocation(z, ¢¢)) ;

a .., 4, ...1]

}

5As a matter of definition, for a shifted location p/(i & ezpression) = p/i. The rationale is
that a shifted location is supposed to find an array element in the same process as the original
location (albeit that the element could be in a ghost region).

10

with the runtime test appearing immediately before the element reference. What
we want to achieve instead is something like

ASSERT (a.rng(r) .containsSubrange(x, I, u, s)) ;
overall(i = x for [: uw : s) {

.a L., 2, ...]

}

In fact we expect that in typical HPJava programs this transformation will
be legal. In simple cases there may even be enough static information about
the ranges of a to eliminate the run-time check altogether, because the lifted
assertion can be proven at compile time.

There are cases where lifting the usage check may be problematic. Consider
this example

Range y = x [1 : N - 2] ;
float [[1] a = float [[yl]l ;

overall(i = x for 0 : N - 1) {

if(i¢ > 0 && i < N - 1)
. a [i]
}

The array is defined over some subrange of x. We iterate over the whole of x, but
mask the disallowed accesses with a nested conditional construct. Such usage
would block naive lifting of runtime range-checks out of the loop. The lifted
range-check would cause an exception although the code is apparently legal.
Another potential difficultly is that the expression a is not a loop invariant with
respect to the overall construct scoping the subscript. For example:

float [] [[J] s = new float [n] [[1] ;

. allocate individual distributed arrays in ¢

s’ ...
overall(i = x for :) {

for(int j

= j < n; j++)
s [j1 [il]

0 ;
= foo(j, i) ;
}

The variable s is a Java array of HPJava distributed arrays. The array expres-
sion, a, is now s[j]. This expression is not loop invariant with respect to the
overall construct. Without detailed (and not obviously practical) compile-time
analysis the range check for the distributed array reference cannot be lifted out
of the loops®.

6Both examples would probably lead to inefficient translated code anyway, because various
other computations associated with element reference cannot be lifted out of loops.

11

We assume these uses are idiosynchratic. In the first case the desired effect
could be normally achieved more directly by changing the triplet in the overall
header”:

overall(i = x for 1 : N - 2) {

. a [i]
}
In the second example the appearance of i as a common subscript for all dis-

tributed arrays in s strongly suggests that these have a common range, probably
x. So replacing s with a two-dimensional distributed array,

float [[*,]] s = new float [[n, xI1] ;

would probably be acceptable, and would remove the blockage to lifting the
range-check.

Because efficient translation is a primary concern, and the examples above
are difficult to translate efficiently, we outlaw them by adding a new rule

Rule 4 Logically, the effects of any bound location subscripts appearing in a
program are resolved at the head of the construct that scopes the location.

Interpretations of this rule (which is more pragmatic than beautiful) include

a) a range check error may be thrown by the overall construct, even if later
conditional code masks the element usage—so far as range checks are
concerned the use is assumed to be unconditional—and

b) if a bound location subscript is applied to a distributed array expression
(in an element reference or array section), the array expression must be
invariant in the scope of the location.

The translator may apply suitable dataflow analysis to verify condition b)2.

Next we consider Rule 3 of section 4. We assume that the translator makes
the current state of the active process group visible in a variable of type Group
called apg®. Most naively, the range checks for the example in Figure 6 could
be inserted as follows:

float [[,]1] a

new float [[x, yl] on p ;

float [[1] ¢

a [[0, :11 ;

on(p / x [N - 1])

7"We emphasize that the problem here is not with appearance of conditional code in general
inside an overall construct—it is only with use of conditional code to mask element references
otherwise forbidden by range-checking considerations.

8Dependence of the array expression on field variables (effectively global variables) may
frustrate this analysis, if method calls also appear inside the loops.

9The variable apg is not a conventional Java global variable. It is more closely akin to
the this expression of Java. It will be passed to HPJava-aware methods through a hidden
argument.

12

overall(j = y for :) {
ASSERT((c.grp() / j).contains(apg)) ;
c [31 =3°;

}

We note, however, that this can be optimized by lifting the assertion through
the overall scoping j:

on(p / x [N - 11) {
ASSERT(c.grp() .contains (apg)) ;
overall(j = y for :)
c 3] =3
}
and the lifted assertion is even simpler to compute, because the restriction by

j is no longer needed.
In general in

overall(j = y for 1 : u : s) {

‘.ASSERT((a.grp() / ... /4%/ 3/ k/ ...).contains(apg)) ;
.a [oeny g, 200

}

provided the ellided code between the overall header and the assertion contains
no statements that change apg (ie, no other overall or on headers) the assertion
can be lifted and simplified as follows:

ASSERT((a.grp() / ... / 2/ k / ...).contains(apg)) ;
overall(j = y for [: uw : s) {

ca [oeny g, 20l]

}

We can legitimize the lifting, even if the element reference appears in conditional
code inside the loop, by appealing to Rule 4. If overall constructs are suitably
nested this transformation can be applied recursively.

Exact computation of the group contains operation may be expensive—in
principle it is a set containment test. In the present case, where containment of
the active process group is the issue, an alternative is available. If all members
of the active process group make the assertion

ASSERT (p.contains (apg)) ;
this is essentially equivalent to them all making the assertion
ASSERT (p.amMember ()) ;

The amMember method on a group returns true if the the local process is a mem-
ber of the group and false otherwise. If the contains assertion is false, then
at least one member of the active process group will throw an exception. If

13

an exception is expected to abort the program globally, this is probably good
enough. The amMember function can be computed very efficiently—in fact an
extra boolean field should be added to the Group record containing this pre-
computed value, so it is simply a lookup.

Whether this approximation to the exact contains test is acceptable in
practise is a slightly open issue. In “normal” styles of HPJava programming
we expect that it is essentially equivalent to the exact set containment test.
But in principle its adoption alters the semantics of the program. Replacing
contains by amMember only weakens the requirement of Rule 3, which may not
be a problem, unless Java-like exact exception handling is expected. In general
our policy of lifting runtime checks is somewhat at odds with the Java ethos that
exceptions should be thrown and control switched at exactly the point where
the error (eg, the erroneous subscripting operation) occurred. In HPJava the
most important thing is to get good performance, and probably some aspects
of the strict Java exception model have to be sacrificed.

We did not discuss use of shifted locations as subscripts. They do not intro-
duce any fundamental issues. A runtime inquiry on array ranges will be needed
giving the size of the ghost extensions. Rule 4 can be interpretted to mean that
use of non-invariant expressions for the shift-amounts is disallowed.

6 Other Usage Rules

In this section we mention two usage guidelines which have some relationship
to the usage rules of the previous sections, but which are not required to make
a legal HPJava program, and are not checked by the translator.

The first relates to a coherence property of variables. Informally, we will call
a variable coherent if, at corresponding stages of execution of an SPMD program,
processes belonging to the variable’s home group always hold identical values
in their local copies of the variable. If the home group of a variable is a single
process, the variable is trivially coherent.

Giving a precise formal definition of coherence is quite difficult, because it is
difficult to define formally what is meant by “corresponding stages of execution”.
What we can give is a precise rule which will keep all variables in a program
coherent. This rule, which looks similar to usage Rule 3, is

Rule 5 A variable should only be updated when the active process group is iden-
tical to the home group of the variable.

Assuming that any external method calls also respect the coherence property'°
we assert that if this rule is applied throughout a program it will ensure all
variable stay coherent. An HPspmd translater does not try to enforce this rule
because the associated checks can be very expensive, and because judicious use
of incoherence is often convenient.

10Examples of methods that do not respect coherence include functions like MPI_Comm_rank,
which return results intrinsically dependent on process id.

14

It is often required that scalar arguments of collective operations should
be coherent. There is another common requirement collective operations on
arrays—namely that all copies of all elements of array arguments should be
held in the group of processes that collectively invoke the operation. We will
say that a distributed array a is fully contained (in the active process group) if
a.grp() C apg. Therefore a natural requirement is

Rule 6 All distributed array arguments of collective operations should be fully
contained.

This rule is not required for all non-local operations. For example it is not
required for get and put operations that implement one-sided communication.
So it is not appropriate for the translator to try to enforce this rule. Instead
checks such as

ASSERT (apg.contains(a.grp())) ;

should appear inside the implementation of collective library functions, as re-
quired.

7 Discussion

We have outlined a set of usage rules that HPspmd programs must follow to
ensure that only locally available array elements are accessed directly. Special
control constructs and other syntax in HPJava are designed to ensure that these
rules can be enforced by a combination of static semantic checks, compile-time
analysis and compiler-generated run-time checks. We showed how the language
can be set up to ensure that the cost of any run-time checks required should not
be prohibitive, even taking into account the complex index spaces of HPF-like
distributed arrays.

The discussion has been in the context of a Java-based HPspmd language
called HPJava. In [2] we have outlined possible syntax extensions to Fortran to
provide similar semantics to HPJava. One feature of the HPJava language that
was not discussed in this article is the at construct. This is very similar to the
overall construct except that it specifies execution for a single location. For the
purposes of this article it can be regarded as a special case of overall.

Two recent languages that have some similarities to our HPspmd languages
are F-- and ZPL. F-- [12] is an extended Fortran dialect for SPMD program-
ming. It does not incorporate the HPF-like idea of a global index space, so most
of the issues discussed in the this article do not arise in F--. ZPL [14] is a array
parallel programming language for scientific computations. ZPL uses pure array
syntax for accessing its parallel arrays, and does not allow them to subscripted
directly. So the range-checking issues are unlikely to be directly comparable to
those in HPJava.

15

8

Acknowledgements

This work was supported in part by the National Science Foundation Divi-
sion of Advanced Computational Infrastructure and Research, contract number
9872125.

References

[1]

[2]

[4]

[5]

[7]

[8]

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R. C. Whaley. ScaLAPACK User’s Guide. SIAM, 1997.

Bryan Carpenter, Geoffrey Fox, Donald Leskiw, Xinying Li, Yuhong Wen,
and Guansong Zhang. Language bindings for a data-parallel runtime. In
Third International Workshop on High-Level Parallel Programming Mod-
els and Supportive Environments. IEEE Computer Society Press, 1998.
http://www.npac.syr.edu/projects/pcre.

Bryan Carpenter, Guansong Zhang, Geoffrey Fox, Xiaoming Li, Xinying Li,
and Yuhong Wen. Towards a Java environment for SPMD programming.
In David Pritchard and Jeff Reeve, editors, 4th International Europar Con-
ference, volume 1470 of Lecture Notes in Computer Science. Springer, 1998.
http://www.npac.syr.edu/projects/pcrc/HP Java.

R. Das, M. Uysal, J.H. Salz, and Y.-S. Hwang. Communication optimiza-
tions for irregular scientific computations on distributed memory archi-
tectures. Journal of Parallel and Distributed Computing, 22(3):462-479,
September 1994.

Stephen J. Fink and Scott B. Baden. Run-time data distribution for block-
structured applications on distributed memory computers. In Proceedings
of the Tth SIAM Conference on Parallel Processing for Scientific Comput-
ing, February 1995.

Michael Gerndt. Updating distributed variables in local computations.
Concurrency: Practice and Ezxperience, 2(3):171-193, 1990.

High Performance Fortran Forum. High Performance Fortran language
specification. Scientific Programming, special issue, 2, 1993.

C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops
for distributed execution. IFEFE Transactions on Parallel and Distributed
Systems, 2(4):440-451, 1991.

C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steel, Jr., and M.E.
Zosel. The High Performance Fortran Handbook. MIT Press, 1994.

16

[10] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-
dard. University of Tenessee, Knoxville, TN, June 1995.
http://www.mcs.anl.gov/mpi.

[11] J. Nieplocha, R.J. Harrison, and R.J. Littlefield. The Global Array: Non-
uniform-memory-access programming model for high-performance comput-
ers. The Journal of Supercomputing, 10:197-220, 1996.

[12] R.W. Numrich and J.L. Steidel. F- -: A simple parallel extension to Fortran
90. SIAM News, page 30, 1997.

[13] Manish Parashar and J.C. Browne. Systems engineering for high perfor-
mance computing software: The HDDA /DAGH infrastructure for imple-
mentation of parallel structured adaptive mesh. In Structured Adaptive
Mesh Refinement Grid Methods, IMA Volumes in Mathematics and its Ap-
plications. Springer-Verlag.

[14] Lawrence Snyder. A ZPL programming guide. Technical report, University
of Waghington, May 1997.
http://www.cs.washington.edu/research/projects/zpl/.

17

