Developing a Derivative-Enhanced
Object-Oriented Toolkit for
Scientific Computations

Paul Hovland, Boyana Norris, Lucas

Roh, and Barry Smath

CRPC-TR99800-S
September 1999

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted November 1999

Developing a Derivative-Enhanced
Object-Oriented Toolkit for

Scientific Computations *

Paul Hovland' Boyana Norris' Lucas Roh' Barry Smith'

Abstract

We describe the development of a differentiated version of PETSc, an object-
oriented toolkit for the parallel solution of scientific problems modeled by partial
differential equations. Traditionally, automatic differentiation tools are applied to
scientific applications to produce derivative-augmented code, which can then be used
for sensitivity analysis, optimization, or parameter estimation. Scientific toolkits play
an increasingly important role in developing large-scale scientific applications. By
differentiating PETSc, we provide accurate derivative computations in applications
implemented using the toolkit. In addition to using automatic differentiation to
generate a derivative enhanced version of PETSc, we exploit the component-based
organization of the toolkit, applying high-level mathematical insight to increase the
accuracy and efficiency of derivative computations.

1 Introduction

In complex computational models of physical phenomena, it is often necessary or desirable
to compute the derivatives of a function f : z € R" — y € R™ where f is defined by
a computer program with n inputs and m outputs. We call z the independent variable
and y the dependent variable and denote the Jacobian matrix f'(z) by J. There are many
ways in which the desired derivatives can be obtained. After a short summary of some
traditional approaches to computing derivatives, we discuss the differentiation of PETSc,
an object oriented toolkit for building scientific applications involving the solution of partial
differential equations.

One standard approach is to use divided differences (DD) to approximate the Jacobian
matrix. The i-th column of J is approximated by using first-order accurate forward
differences,

f(z + hiei) = f(2)
h; '
where the step size h; is a suitably chosen parameter and ¢; is the 7-th unit vector. The DD
approach has the advantage that the function is only needed as a black-box. The accuracy

*The submitted manuscript has been created by the University of Chicago as Operator of Argonne
National Laboratory (“Argonne”) under Contract No. W-31-109-ENG-38 with the U.S. Department of
Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on behalf of the Government.

"Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Ave,
Argonne, 11, 60439, [hovland,norris,bsmith]@mcs.anl.gov.

1

of approximations depends on the step size h; and may be difficult to assess. A small step
size is needed to suitably approximate the derivatives, but this can lead to cancellation
errors and loss of accuracy.

Another approach to obtaining the Jacobian matrix of a well-defined function is to
use a symbolic manipulation package such as Mathematica. Due to excessive resource
requirements, this approach is predominantly applicable to small problems (e.g., less than
50 lines of code).

Automatic differentiation is a powerful tool for augmenting arbitrary codes with
accurate derivative computations. When application codes are written “from scratch,”
automatic differentiation tools can be applied directly by the application programmer.
Scientific codes developed using numerical libraries or toolkits offer additional advantages:
not only can automatic differentiation tools be applied to the library code, but the library
programmers can use their own unique knowledge of the underlying algorithms to provide
more accurate derivative information faster.

The following section introduces the concepts of automatic and computational differen-
tiation. Section 2 addresses the consequences of differentiating approximate methods and
describes our approach to improving the efficiency of derivative computations, and applica-
tion areas in which AD can be successfully employed. Section 3 presents some experimental
results and future directions.

1.1 Automatic Differentiation

Automatic differentiation (AD) offers a black-box mechanism for accurately computing the
derivatives of arbitrary functions. Virtually any computer program written in Fortran,
C, or C++ can be automatically augmented to evaluate the derivative of f using
AD, a chain-rule-based technique for evaluating the derivatives of functions defined by
algorithms [4, 5, 6, 7, 10]. The code produced by AD tools computes both the function
value y and the derivatives of some of the outputs y with respect to some of the inputs z.

The basic underlying principle of AD is that any computation, no matter how complex,
can be viewed as a limited set of arithmetic operations and elementary function calls.
By applying the chain rule to the composition of elementary operations, AD produces
augmented code computing the derivatives of f exactly (to machine precision). AD tools can
be used in a black-box fashion for differentiating large scientific applications. Derivatives
computed using AD can be used by computational scientists for sensitivity analysis of
computational models, i.e., the sensitivity of a model’s output to perturbations in its
physical and computational parameters. AD can also be used to help generate derivatives
needed in design optimization, parameter identification, and the solution of stiff differential
and algebraic equations.

The ADIC (Automatic Differentiation in C) tool [6, 7] provides automatic differen-
tiation of programs written in C. Given a collection of C subroutines and an indication
of which program parameters correspond to independent and dependent variables, ADIC
produces C code that allows the computation of derivatives of the dependent variables with
respect to the independent variables.

1.2 Computational Differentiation

We use the term computational differentiation (CD) to designate the approach that couples
AD technology with high-level knowledge about the code being differentiated. In general,
AD tools operate on the level of simple arithmetic operations, applying the chain rule in

order to compute the derivatives of a given code. In some cases, we can reduce the memory
requirements and increase the performance and accuracy of derivative computations by
analytically deriving and hand-coding the derivatives of frequently used computational
components (e.g., solving of a system of linear equations).

Using AD, it is easy to produce derivative code that computes gradients with no round-
off error. However, when approximate (e.g., iterative) methods are used, AD computes the
derivatives of the algorithm implemented rather than those of the model function; thus,
the resulting values may depend on the particular algorithm. This dependence may be
an undesired side-effect of differentiating a program instead of the mathematical function.
The use of CD in high-level computational components can minimize this effect. In the
following section, we consider the computational differentiation of linear equation solvers.

1.3 PETSc

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an object-oriented
toolkit for the parallel solution of scientific problems modeled by partial differential
equations [1, 2, 3]. PETSc includes a suite of parallel linear and nonlinear equation solvers
and unconstrained minimization modules that may be used in application codes written in
Fortran, C, and C++.

PETSc is organized hierarchically, allowing users to employ the level of abstraction
that is most suitable for a particular problem. This decreases the development cycle
and increases the software’s maintainability. The actual implementations of most data
structures and algorithms can be specified at run-time, allowing for great flexibility in
choosing the best combination. The object-oriented organization of PETSc makes applying
an AD tool straight-forward.

1.4 Combining AD Tools and Scientific Toolkits

AD tools provide a mechanism for the simplified generation of derivative-enhanced versions
of scientific toolkits, which in turn simplify the differentiation of applications implemented
using these toolkits. With minimum effort, one can perform sensitivity analysis of existing
scientific codes, or build extensions utilizing the derivatives in some outer computation
(e.g., an optimization toolkit).

Augmenting PETSc with derivative code is a natural extension to the toolkit’s
functionality. Large scientific models that have been implemented using the toolkit can
be analyzed and verified in a straight-forward fashion. AD-enabled large-scale multivariate
sensitivity analysis can help identify model deficiencies and possible improvements. A
differentiated version of PETSc can also be useful in design optimization of complex
systems, where the main goal is to select optimal values for critical model parameters
in order to attain some specified design objectives.

PETSc provides standardized interfaces to each of its major components. This enables
us to fully automate the process of generating a derivative-enhanced version of the toolkit,
which is essential for keeping up with new releases.

2 Taking advantage of common algorithmic structures

Many computational methods for solving partial differential equations involve the solution
of sparse linear systems of equations. The linear solver is usually inside the application
being differentiated. The Scalable Linear Equation Solver (SLES) component of PETSc
provides a uniform interface to a variety of methods for solving large sparse linear systems

in parallel. These methods find the solution of the system

(1) A(s) - z(s) = b(s),

where s is a m-dimensional parameter, A(s) is a matrix and b(s) is a vector. This linear
system of equations represents an implicit definition of a function z(s). We wish to find
the derivatives dz/ds (designated by Vz) of the solution of (1). A detailed analysis of
differentiating parametric linear systems can be found in [8]. For brevity, we will write
equation (1) as Az = b.

The combination of a Krylov subspace method and a preconditioner is at the core
of most modern numerical codes for the iterative solution of linear systems. This is
the approach implemented in the linear equation solver (SLES) component of PETSc.
SLES defines a standard interface to solving a linear system using preconditioned iterative
methods. At present, PETSc provides about ten different preconditioners and ten Krylov
subspace methods.

The derivatives produced by augmenting iterative algorithms do not necessary converge
at the same rate as the function being differentiated [8, 9, 11]. Thus, when the stopping
criterion for the original iteration is satisfied, the derivative code may not have reached
the same accuracy as the solution, or may have converged to a satisfactory value in fewer
iterations than the solution. In either case, the programmer has little control over the
accuracy or performance of derivative computations.

To compute Vz, we can differentiate (1), producing:

AVz +VAz = Vb
(2) A Vz Vb—- VAz
(3) Ve = A7YVb-VAz).

While logically the Jacobian is given by (3), in practice we obtain it by solving the linear
system (2). The above derivation applies to the most general case, in which both A and b
are dependent on the independent variable s.

In our implementation, we consider four cases depending on the relationship between
A, b, and the user-specified independent variables s. The simplest case is when b is the
independent variable, and A is not a function of b, i.e., Vb = I and VA = 0. In this case,
computing Vz is reduced to solving the linear system A Vz = I. When Vb # I and VA = 0,
we solve the system A Vz = Vb. Similarly, we provide implementations for the remaining
two cases. In each of the four cases, the major part of computing Vz involves solving a
linear system with multiple right-hand-sides. We use the SLES package, taking advantage
of the run-time flexibility in selecting the preconditioner, solver, and desired accuracy at
run-time.

By considering each of these cases separately, we avoid over-allocation of resources, and
ensure that any potential parallelism can be exploited. For example, solving (2) requires
that we first solve the system Az = b before we can compute Vz by solving the linear
system with multiple right-hand-sides. When A and b are not parameterized by s, we can
simultaneously solve for z and Vz.

In addition to providing efficient implementation of the derivative computation, we
provide a simple polymorphic interface for computing Vz. The user need not keep track
of the dependences between A, b, and z in order to use our CD methods—the appropriate
method is automatically selected at run-time.

Error in Gradient Computation, N=256, Num.Indep.=256 Execution Time, N=256, Num.Indep.=256
T T T T T T T

10

~

—— DD
AD
6 --- CD
107
ol
2
8 hS 8
i ~e ha
[. ~
S107° N g
5 ~. e
1S ~ = 3r
5 S £
z ~ 3
REIS Lol
10k BTN e e
S .. L L
1078 L L L L L 0 L L L L L
107 10° 107 10° 10° 107 10° 107 10° 10™ 10° 10° 107 10°
Convergence Tolerance Convergence Tolerance

Fia. 1. : Gradient error and execution time with varying convergence tolerances.

3 Experimental Results

ADIC has been applied successfully to the uniprocessor version of PETSc, producing
a derivative-augmented code for all components of the toolkit. In addition to the
automatically generated code, we have implemented the CD methods discussed in Section
2.

Due to the modular design and implementation of PETSc, relatively few changes in
the code were necessary to produce a working differentiated version of the toolkit. The
dynamic polymorphism in PETSc enables the simultaneous use of the undifferentiated
and derivative-enhanced versions in user applications. In general, AD can be applied
to any modular software package, extending its functionality significantly at a reduced
programming effort.

We have tested the differentiated version of PETSc, and in particular its SLES
component, with an example involving the solution of a linear system of equations Az = b
where A is the 256 x 256 matrix corresponding to a five-point stencil discretization of a
16 x 16 computational domain. In all plots, DD designates divided difference approximation,
AD designates black-box automatic differentiation, and CD stands for computational
differentiation using hand-coded derivatives of common algorithmic structures. In all of
the experiments, we have used a GMRES solver in combination with an incomplete LU
factorization preconditioner.

Fig. 1 contains the accuracy and performance results for various convergence tolerances.
The termination condition of the Krylov subspace methods is based on the relative
decrease of the [y-norm of the residual and the convergence tolerance value, which is
plotted along the z-axis. The y-axis of the accuracy plot is the lo-norm of the matrix
representing the difference between the derivatives produced by the various approaches
and the actual solution, V& = A~'b, which we compute separately up to machine precision
for verification purposes. For the DD and AD approaches the convergence tolerance refers
to the convergence of z, while in the CD approach it refers to the convergence of Vz. In
this example, the CD approach exhibits significant performance improvement over DD and

AD.

Error in Gradient Computation, N=256, Conv.Tol.=1e-8 Execution Time, N=256, Conv.Tol.=1e-8
T T T T 7 T T T T
—— DD —— DD
10 AD] AD
--- CD 6 --- CD 7
@5 1
=]
4 c
510 18
& har 1
£ 2
S =
E s 3r 1
S10°F 15 T
g -
52t - 1
107777 11 -7]
L L L L L 0 == - L L L L L
0 50 100 150 200 250 0 50 100 150 200 250
Number of Independent Variables Number of Independent Variables

Fic. 2. : Gradient error and execution time with varying number of independent variables.

Fig. 2 illustrates the accuracy and performance results for various numbers of
independent variables and a fixed convergence tolerance of 107%. Again, the convergence
tolerance refers to the computation of z in the case of DD and AD, and to Vz in the case
of CD. In other words, we set the convergence criterion for the solution to 1078 for all tests
in this example, which does not imply that the derivative converges to the same accuracy.
In fact, it has been shown that automatically generated derivatives of iterative solvers may
often converge more slowly than the solution [11]. The accuracy of the resulting gradient
is shown in the first plot. For larger numbers of independent variables, CD produces more
accurate results than AD, and both AD and CD are several orders of magnitude more
accurate than the DD approach.

Error in Gradient Computation, Num.Indep=64, Tol=1e-8

Execution Time, Num.Indep.=64, Conv.Tol.=1e-8
10 T T T T T T

N

— DD —— DD
AD 1.8 AD
10%--- CD | --- CD
1.6r q
_)
107 { 2141 g
e g
i @12k -1
i i -
£10°; 18
° = 1r B
5 g
Z 4107t] é 0.8 T
i
0.6 4
107 4
0.4r q
60 80 100 120 140 160 180 200 220 240 260 60 80 100 120 140 160 180 200 220 240
Matrix Size Matrix Size

Fic. 3. : Gradient error and execution time with varying problem sizes.

Fig. 3 shows the accuracy and timing results for varying problem sizes. The dimension
of the square grid varies from 8 to 16, with corresponding matrix sizes indicated on the
x axis. As in our previous experiments, we observe that the AD and CD methods for
computing the derivatives result in more accurate results than the traditional DD approach.
As described in Section 2, the CD approach involves the solution of a linear system with
multiple right-hand-sides. In our implementation we invoke an iterative solver for each
right-hand-side. An implementation that takes advantage of the multiple right-hand-sides
would improve performance significantly.

Execution Time, N=256

12 ;
AD, Tol=1e-2
AD, Tol=1e—-4
10 AD, Tol=1e-6 b
AD, Tol=1e-8
&« | —— CD, Tol=1e-2
2 gl --- CD, Tol=1e—-4 :
g |-~ - CD, Tol=1e-6
e | CD, Tol=1e-8
()
g 6 1
E
c T et
S | e e
S af e
P e
w o e T e
2t I T L 1
L= | | | |
0 50 100 150 200 250

Number of Independent Variables

Fic. 4. : Performance comparison between AD and CD.

Fig. 4 contains a summary of the execution time results obtained for varying numbers
of independent variables and convergence tolerances. As the convergence tolerance becomes
tighter, the execution time for the AD approach increases more rapidly than CD as the
number of independent variables grows. A large number of independent variables means
more time spent performing a single iteration when using the AD approach, whereas for
CD the time for a single iteration is the same, but the number of linear systems solved
increases.

Fig. 5 shows the performance of the three methods for computing Vz to an accuracy
of approximately 107%. Overall, we observe that for a fixed convergence tolerance
with respect to Vz, CD consistently outperforms AD and DD for various numbers of
independent variables. For the problem sizes in our experiments, CD is clearly the best
method for obtaining mathematically-meaningful derivatives of the solution to the linear
system. Sometimes, it may be desirable to compute the derivatives of the algorithm
itself, for example when evaluating the sensitivity of the model to perturbations in its
input parameters. In that case, CD-produced derivatives would be less meaningful than
derivatives obtained with AD tools.

4 Conclusions

Augmenting PETSc with derivative computations using automatic differentiation greatly
increases the functionality of the toolkit with minimum programming effort. While the
derivatives produced using AD are often more accurate, the performance of the augmented
code is somewhat worse than that of the original computation. Nevertheless, computing
derivatives using AD is often faster than obtaining them with less accurate methods, such
as divided differences.

We can draw several conclusions from our experiences:

e Toolkits providing good data and algorithm encapsulation allow computational

Execution Time, N=256, Sol.Acc.=1e—4

7 T T T
—— DD
AD
6--- CD 1
sl]
©
c
o
>
war 1
(0]
£
|_
C3’ 7
=]
5
[8)
Lo -
52 =T
1, -
0 Il Il
0 50 100 150 200 250

Number of Independent Variables

F1G. 5. : Execution time for achieving 10™* accuracy in the gradient.

differentiation techniques to be incorporated under existing interfaces.

e Computational differentiation is usually faster and more accurate than both automatic
differentiation and divided differences.

e Automatic differentiation can be used on an entire toolkit; subsequently, the com-
putational differentiation approach can be applied to important common algorithmic
structures.

e The simultaneous use of the toolkit and its derivative-enhanced version is possible.

e Toolkits maintain consistent interfaces for both non-derivative and derivative compu-
tations, while the underlying implementations may change. The applications using
the toolkit need not be aware of such changes.

While high-level knowledge about the algorithms used in a toolkit can be used to utilize
the faster and more mathematically meaningful CD approach to obtaining derivatives,
sometimes we wish to analyze the algorithms themselves. In that case, AD-generated
derivatives can be used. By augmenting PETSc with both types of computations, we
allow the user to specify at run-time the desired method for computing the derivatives.
This results in great flexibility, allowing the use of PETSc in a straightforward fashion for
sensitivity analysis, design optimization, parameter identification, and other computations
that need derivatives.

References

[1] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of parallelism in
object oriented numerical software libraries, in Modern Software Tools in Scientific Computing,
E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhauser Press, 1997, pp. 163-202.

[2]

[3]
[4]

—, PETSc 2.0 users manual, Tech. Rep. ANL-95/11 - Revision 2.0.22, Argonne National
Laboratory, 1998.

—, PETSc home page. http://www.mcs.anl.gov/petsc, 1998.

M. Berz, C. Bischof, G. Corliss, and A. Griewank, Computational Differentiation: Techniques,
Applications, and Tools, STAM, Philadelphia, 1996.

C. Bischof, A. Carle, P. Khademi, and A. Mauer, ADIFOR 2.0: Automatic differentiation of
Fortran 77 programs, IEEE Computational Science & Engineering, 3 (1996), pp. 18-32.

C. Bischof and L. Roh, ADIC user guide, Technical Memorandum ANL/MCS-TM-225,
Mathematics and Computer Science Division, Argonne National Laboratory, 1997.

C. Bischof, L. Roh, and A. Mauer, ADIC' — An extensible automatic differentiation tool for
ANSI-C, Software—Practice and Experience, 27 (1997), pp. 1427-1456.

H. Fischer, Automatic differentiation of the wvector that solves a parametric linear system,
Journal of Computational and Applied Mathematics, 35 (1991), pp. 169-184.

J.-C. Gilbert, Automatic differentiation and iterative processes, Optimization Methods and
Software, 1 (1992), pp. 13-22.

A. Griewank, On automatic differentiation, in Mathematical Programming: Recent Develop-
ments and Applications, M. Iri and K. Tanabe, eds., Kluwer Academic Publishers, Dordrecht,
1989, pp. 83-108.

A. Griewank, C. Bischof, G. Corliss, A. Carle, and K. Williamson, Deriwative convergence of
iterative equation solvers, Optimization Methods and Software, 2 (1993), pp. 321-355.

