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Three Galerkin methods using discontinuous approximation spaces are intro-
duced to solve elliptic problems. The underlying bilinear form for all three methods
is the same and is nonsymmetric. In one case, a penalty is added to the form and in
another, a constraint on jumps on each face of the triangulation. All three methods
are locally conservative and the third one is not restricted. Optimal a prior: hp error
estimates are derived for all three procedures.
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1. Introduction

Over the last two decades there has been a collection of papers devoted to
the use of approximation spaces with weak continuity for finite element approxi-
mations to elliptic and parabolic problems. The motivation for developing these
methods was the flexibility afforded by local approximation spaces. These ap-
proaches allow meshes which are more general in their construction and degree of
nonuniformity both in time and space than is permitted by the more conventional
finite element methods. In general, numerical methods defined for discontinuous
spaces have less numerical diffusion/dispersion and provide more accurate local

approximations for problems with rough solutions. Another advantage that has
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recently become apparent is the application of domain decomposition algorithms
for the discrete solution.

In this paper, we discuss three numerical algorithms for elliptic problems
which employ discontinuous approximation spaces. The three methods are called
the nonsymmetric interior penalty Galerkin method (NIPG), the nonsymmet-
ric constrained Galerkin (NCG) method, and the discontinuous Galerkin(DG)
method. The three algorithms are closely related in that the underlying bilinear
form for all three is the same and is nonsymmetric. Moreover, for all three meth-
ods, one can employ an unusual space IP; on quadrilaterals which have dimension
substantially lower than Q. IPy is the set of polynomials in two variables of total
degree k, and Q) is the set of polynomials of degree k in each variable. In addi-
tion, in all three methods, the error for the mass conservation can be retrieved
element by element. In that sense, all three methods are locally mass conser-
vative. The main advantage of the DG method is that the error in the mass
conservation is zero.

In the NIPG method the bilinear form of the interior penalty Galerkin
method treated by Douglas and Dupont [4], Wheeler [5], Arnold [6], Darlow
and Wheeler [7] is modified. In this paper, an optimal hp error estimate is ob-
tained in H' and in L2. In particular the NIPG method only requires a positive
penalty rather than one bounded below by a problem dependent constant as in
the proofs described in [5].

The second approach is based on constraining the approximation spaces:
jumps on each edge of the triangulation are required to have integral average
zero. Here optimal hp estimates in H' and L? are derived.

The DG method with this bilinear form was first introduced by Baumann
and Oden in [3],[9]. In [3], Baumann showed that the method is elementwise con-
servative and he proved a stability result in one dimension for polynomials of at
least degree three. Numerical experiments showed that the method is robust and
gives high-order accuracy where the solution is smooth. In this paper, theoretical
optimal results are obtained for the DG method in H' for n = 2 and suboptimal
for n = 3. To our knowledge these results represent the first convergence results
for DG in higher dimensions.

This paper consists of four additional sections. In §2, notation and problem
definition and formulation of the three methods are described. In §3, §4 and
§5, the proofs of the error estimates of the three methods described in §2 are

respectively given. Conclusions are described in the last section. Part II of this
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paper describes computational results with the DG method.

2. Definition of the Problem, Methods
2.1. Notation and Approzimation Properties

Let © be a polygonal domain in IR",n =1,2,3and let &, = {Fy, Es, ..., En, }
be a nondegenerate quasiuniform subdivision of €2, where F; is a triangle or a
quadrilateral. The nondegeneracy requirement is that there exists p > 0 such
that if h; = diam(£};), then E; contains a ball of radius ph; in its interior. Let
h = max{h;, j=1...N,}. The quasiuniformity requirement is that there is
7 > 0 such that % < 7 forall j € {1,...,Ny}. We denote the edges of the
polygon by {el,eg,...,eph,eph+1,...,th} where e, C 2,1 < k < P, ,and
er C O, P+ 1<k < M. With each edge e , we associate a unit normal

vector vg. For k > P, v is taken to be the unit outward vector normal to 0.
For s > 0, let

H*(&) ={ve L*(Q) :v|g, € H(E;),j =1...Ny}.

We now define the average and the jump for ¢ € H*(&,), s > Let

1 <k < Py. For e, = 0F; N OF; with v, exterior to E;, set

1
5-

1 1
10} = 5 @lB)le, + 501E e, [8]= (DlE)]e, = (DB, ey
We consider K = (k;;)1<i j<2, kij € L=(Q),a € L>(Q) where
0 < ko<kij(z) <k <oo, 0<afz) VzeQ.

The L? inner product is denoted by (.,.). The usual Sobolev norm on

E C IR" is denoted by || - ||;m,z. We define the following broken norms for m

. !
@], = (ZI@ WE) -
i=1

Let r be a positive integer. The finite element subspace is taken to be

positive integer:

Np
D, (&) = H P.(Ej),
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where P, (F;) denotes the set of polynomials of (total) degree less than or equal
to r on K.

The following hp approximation properties as defined in [1] and [2] are used:
Let £/ € &, and ¢ € H*(L;). Then there exists a constant C' depending on s, 7, p
but independent of ¢,r and h and a sequence z" € P, (E;), r =1,2,... such
that for any 0 < ¢ <s

B—q
| /
16 = 2 llo5, <C—=l10llsmyy 520,
“_% 1
16 = 2 lloq < C—==x1lls,5,, 5> o
rd73

where gt = min(r+ 1, s) and v; C JF;. Using the same technique as in [1], it can
be shown that we have the additional approximation result:

J
S

3
olls,By 8> 5

6= =lha < C .

= 3
reT 2
As a corollary of the above results, the following global approximation prop-

erty is obtained. Let ¢ € H*(2). Let &, be the subdivision described above of

Q. There exists 2" € D, (£,) N CP such that for any 0 < ¢ < s,

hH—a

rs—4

o — 161ls.2, (2.1)

where ¢ = min(r+ 1,s) and C' is independent of ¢, r, h and &,. Note that this
result also holds if z} € D, (&).

q,QSC

2.2. Problem and Nonsymmetric Bilinear Form

The following elliptic problem is considered:

-V - (KVp)+ap=f in Q, (2.2a)
p=py on [I'p, (2.2b)
KVp-vy=g on Iy, (2.2c)

where the boundary of the domain, 012, is the union of two disjoint sets I'p and
I'x. We denote vp (respectively vy) the unit normal vector to each edge of I'p
(respectively ['y) exterior to €.

If we assume that k;; is Lipschitz continuous and f € L2(f), then the
problem (2.1) has a unique solution in H!(€) when I'p # §. On the other hand,
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when 9Q = 'y, the problem (2.2) has a solution in H'(Q2) which is unique up to
an additive constant, if f satisfies [, f = 0. There is a constant C' such that

IPll2,0 < C{ll fllog + lIpllo.a},
for all p € H?(f2) solution of (2.2).

We will consider the non-symmetric bilinear form:

Np
ans(h,9)=3 [ (KV9Vo+are)
i=1"%

Py
—Z {I§V¢ v} [ Z {KVfb'Vk}W]
k=1

—/ (KV4-vp)+ / (KVé-vp)o.
FD 1_‘D
We define the linear form:

L) = (f,é)+ | (KVé-vn)po+ /F g

I'p
2.3. Methods

First, we introduce the following interior penalty term:

‘]g7ﬁ(¢7 lP) - |€k|ﬁ /

where oj, is a real positive number associated to the interior edge er, where
lex| denotes the length of e; and where g > 1 is a real number. The Galerkin
approximation PNIFG ¢ D, (&) solves the following discrete problem:

ans(PNTPCG vy 4 JOP(PNIPG v) = L(v), Yo € D.(&). (2.3)

Lemma 2.1. Suppose that f is smooth and that the solution p to (2.1) exists
and KVp e H'(&,). Then p satisfies the formulation (2.3). The converse is also

true if we assume sufficiently smoothness on p.

Proof.  First, suppose that p is a smooth solution of (2.1). Let v be an element
in D, (&r). We multiply the first equation by v, integrate on F; and sum over all
7.

My,

Ny,
Z;/E KVpVu+apy =3 | {KVp-v}v] - /aQ(KVp o= (o)

k=1" €k
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Using the boundary conditions, we get:

Nh Ph
Z/ KVpVu+apy— Z {KVp- v} [v] —/ (KVp-vp)v = (f,v) —}—/ gu
7=1 E; k=1"°¢k I'p Iy

We add fr_(K'Vv-vp)p to both sides and we note that [p] = 0. We clearly have
(2.3). To prove the converse, suppose that p is sufficiently smooth and satisfies
(2.3). By the Green identity, we have:

Ny, P,
:_]Z::I/E] (V.KVp)v+/8Q(KVp.y)v—|-kz::1/ek(1(vp.,,k)[v]

Combining this result with (2.3) and noting that the penalty term vanishes:

Np
Z/ (=V - KVpv + apv) —1—/ (KVp-vn —g)v
=UE Ty

P
—I_Icz::l ek{lﬁvv‘yk}[p]—l—/l‘p (KVv-vp) (p—po):/ﬂfv

By choosing appropriate test functions, we conclude that p satisfies :
-V - (KVp)+ap=f in £,
p=po on Ip,
KVp-vy=g on Iy.
O

We note that on each element, the mass conservation for the NIPG method

can be written as

. Ok
/E P - 9E {BVPNIFS voE, } + Z lex|? / [P = /E 4
J J ex EIE;\OQ Gk J

The constrained discrete space is defined as follows:

Np
'D:(Eh):{’UGHPT(E]‘):/[U]:O VkZl,...,Ph}.

The discrete approximation PNCC € Dz (&) satisfies:

ans(PNCC v) = L(v), Vv e DI(Er). (2.4)
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Lemma 2.2. Suppose that f is smooth and that the solution p to (2.1) exists
and KVp e H'(E,). Then p satisfies the formulation (2.4). The converse is also

true if we assume sufficiently smoothness on p.
Proof. The proof is very similar to the one given above. O

The Discontinuous Galerkin approximation PP% € D,.(&,) satisfies the for-

mulation
aNS(PDG, v) = L(v), Vv € D, (En). (2.5)

The fact that this scheme is consistent with the problem (2.1) has been shown
by Baumann [3].

Clearly the discrete solution of each of the three methods exists and is
unique. Indeed, since it is a discrete problem, it suffices to show uniqueness
of the solution. For instance for the NCG method, choose f =0 and v = PNCC,
Thus, |||K%VPNOG|||0 + |||0z%PNOG|||0 = 0. This easily implies that PN = 0.

3. A priori error estimates for NIPG method

In this section, we derive an a priori error estimate for the Neumann problem

(Ty = 09).

Theorem 3.1. If « =0, then

o=

Ny, 12(p—-1)
1 [ j
"llﬁ 2V(PNIPG _ p)mo f 0(57 K) (Z 7Z25_4 HpHZEJ)

7=1

If o> g > 0, then

|-
[P = pll < O, K |

N 2D 2
04”00) Z ;25_4 HpHs,E] )

i=1
where p = min(r + 1, s) and s > 2.

Proof. 1In all the proofs, C will be a generic constant with different values on

different places, that is independent of A and r. Since p is continuous, we have :

ans(p,v) + J37 (p,v) = L(v), Yo € D.(&).
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Thus, we have the orthogonality equation:
ans(PNTPG —p v) + JOP(PNTPE — p o) =0, Vo € Do (&).

Denote x = PNIPG _p Take p € C°(Q) N D,, the interpolant of p satisfying
(2.1).

ans(x, x) + I3 (x,x) = ans(x, 5 — p) + J37 (x, 5 — p) = A

We note that [p — p] = 0.

A= Z/ KVXV(p - p+/axp p+E ARV @ —p) v} [,

Al <IKZVXIl KV (5 = p)lo + loZ Xllolla? (5 - p)llo

Py
+ D IKEV (B =) - v Hloe, 1xDllo,es
k=1
1 1. 1,
< K2 vx|5 + —|||K2 (B — P2+ ellaz xlI2 + Ellloﬁ(p—p)lllg
Jex|? :
€L . ok
+E ( ) HEVG=0) - vdlocs (725 ) 100
If we choose ¢ = 1. we obtain:

27

Al <CIK>V (5 - p)IE + Clla® (5 - p)I3

(Zl ex/” I {KV (- p)- Vk}HOEk) I (o),

<CIK=V (5 - )|||o+C|||a2(p »I

|€k|
[{KEV B =) v} [5.,-

B

e3P (x, x) + Cle Z

Again, if € = % , we have:

Ph ﬁ
L €k - -
ASCIKEVGE=p)3+Cllaz(-p)I3+C Y lai IH{EV (B~ p) vi} [[5e,-
k=1

Using the trace theorem and an approximation result, we get:

Np h2#+l3 3

Ph /3
|ex| o -
> —I{KV(5-p) 'Vk}l\g,ekﬁC(;,K)Zigs —IPl3 &,

k=1 Tk 7=1
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where 1 = min(r + 1, s). Besides, we also have by the approximation property:

. Nh 2(/“_1) 2
WGV@—MMSCUQ<Xbé:ﬁWM@)v

i=1

X Np hQﬂ %
llo2 (5 = p)lo < Clladleo | 3- 5 lPll s, | -

i=1

Combining all the results and assuming that 5 > 1, we conclude that:

-1
152 xlg + llexllg < €

hr=t 1 h# 1
— 1Pl K2 Vxllo + Clleleo — Pl s> xlo
T T

where C'= C'(1, K). a
Theorem 3.2.

3.8
P22 (n — 1
[PV plog < M0 Dy

for s > 2 and C independent of h,r, p. In particular, optimal L? rates of conver-
gence are obtained if 3 > 3 for n = 3 and if 5 > % for n = 3.

Proof. Consider the dual problem
-V -KVé¢+ap=PNPE_p in Q,
KV¢-v=0 on 09.

We assume that ¢ € H?(2) and that there is a constant C' that depends on ©
such that

[8]l2,2 < C||PNTFE — pllo.q.

Denote y = PNIPG _

p.
X0 = (=V+ KV + ap, x).

Integrating by parts on each element yields:

Nh Nh
IMBa=Y [ KVévx+aox-3. [ (KVo-v)x,
j:l E] j:l aEJ

Py,

Ny, Py
=Y [ KVoVx+aox-3 [ {KVe-n} -} [ [KVo-nl{x}
j=1"1 k=1"°¢k

k=1"°¢k
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By substracting the orthogonality equation, we obtain for ¢* € D,.:
Np
o= [ K9(-¢)Vx+a(- o)
=175
Pr
-> {Aw v Y[x] Z/ [KV¢ -1 ]{x}
k=1 Ck
P,
+30 | AEVx 67 - Z ARG = 5 0 ).
k=1

By noting that ¢ € H?(Q) and by choosing ¢* € C°, we are left with

Np
InBa=3 [, KV(6-&)Vx+alé- o)
Py,
SO RUS A Z [ {1V min,
Nhk_l
=Z[E KV (6~ 6")Vx +a(6 - 6°)x

Z {Kw ¢ - v }[X] —22 {Kw-uk}[x]-

The first two terms are bounded in the following fashion
Nh Nh 1
13 [ KV -6V SC Y 16 - g IKF Vo,
7=1 J 7=1

h 1
<C2olloall €3 9 xlo,

h 1
<O lIxlloal K2 Vxllo- (3.1)
Ny, h2
13 [ a6 - 6" < Cllalles 5 6]l
i=17Fs "

h?
<Cllafleo zlIxlloallxlo- (3.2)

The third term is bounded by using Cauchy-Schwarz inequality and the

previous theorem:

1
2

1 Py,
|E [ K560 I < C ol (mem&ek) ,
Gk ra2 k=1
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Y
h*"zlex|?
< C— = IIxllocllplls- (3.3)
The last term is bounded above by using trace theorems and the previous

theorem

2

Py 1 Py,
D) TSI IN [P A P (E H[xm%,ek) ,
k=1"%k h2 k=1

3 B
h*~2ex|?
<C——=—IIxlloalpls- (3.4)

Combining (3.1), (3.2), (3.3) and (3.4), and assuming that g > 1, we obtain
the final result:
-
h#~2ta(n -1 h
=Dl + ol

||XH07Q g ¢ 7‘5_3 r

+1
—lzls.

4. A priori error estimates for the NCG method

In this section, we derive an error estimate for the H'! norm and the L?

norm that are both h-optimal for the constrained Galerkin method.

Theorem 4.1. If « =0, then

1 N
|52V (PYCE — p)flo < C(K) =z llpls

If o> ag >0, then
AN o
IPNCE — pll < C(K, ldlee) 5=z IPlls
where y = min(r 4+ 1, s), C independent of h,r,p and s > 2.
Proof. We have the following orthogonality equation:
ans(PNY —pv) =0, Vo€ DiE).

We can show [8] that there is an interpolant p € D} (&) that is optimally closed
to p in the H™ Sobolev norms. Let y = PN¢E — p.

aNS(X7X) :aNS(p_ﬁ7X)7
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Np, Np
:Z:/E I(V(p—ﬁ)Vx—l—Z:/E ax(p - p)

—E {KVP p) - vk X E {KVX'Vk}[P—ﬁ]-

The first two terms are easily bounded by Cauchy-Schwarz and an approxi-

mation result:

Ny,
- - Sl 1 -
»» /E KV (p—p)Vx|<|K2Vx|ol K2V (p = D)o,

o=

N Nh h?ﬂf_?
<CIEIVAlo (Y Sl | - ()

i=1

In a similar manner, we have:

Ny,
- 1 -
1> /E ax(p = D) <llezxllolle(p — B)lo,
]:1 ¥

PR N p 20 :
<CllelZllaz xllo ZTJQSHPHg,E] : (4.2)

i=1

Now we try to estimate the third term. Let c; be any constant.

A= Z ARV (=) ] Z/S{KVP ) - vidlx — exl.

We have by Cauchy-Schwarz and Holder inequality:
1 1
Py 2
Al < (Z I{EV(p—p) - Vk}l\g,ek) (Z Ix — ex]lls ek) - (43)
k=1

We look at one edge e;. We assume that e, = dE' N @E?, where E' and
E? are elements of &,. Let By and By be the matrices of the mappings from the

reference element E onto E! and F? respectively. It is known that
1
B < C—, ||Bi]| < Ch, |detB;] <Ch", i=1,2.

Then, by the trace theorem,

KKV (0 = B) - vk Hlo.er < Clexl2 (1B IV = o, + V2 (p = 5)llo
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HIBIHINV (2 = B)llo.z2 + V(2 = §)llo,52)-
Summing on £,

1
2

Pr
(E KKV (p—p) 'Vk}”(Q),ek) <C
k=1

The other factor is bounded in the following way.

(4.4)

1D = etllo.er < 10— er)lloer +110x = ex)2lloes-

Since PNYC ¢ Dz (&), we have

/ek (x)1do = /ek (x)2do.

Therefore, it suffices to estimate ||(x — ¢x)1]]o,e,-

10 = ex)illoe, < h2 X = ekllz2ce)-

ol
c= — do
|ek| ek(X)l

We note that ¢ = F}l J:(x)dé and that the mapping f f—|17| I fdé is continuous

on H'(é) and vanishes on constant functions. Thus,

Choose

1% = eklloe < €

Since the subdivision of Q is regular and since V¥ belongs to a finite-dimensional

space, on which all norms are equivalent, we get:

< CYIVxllo,-

1% = exlloe < €

Therefore,

(x = et) By lloer < Ch2 1Vxllo,5, -

Thus, summing on k, we have

Z Ix = exlllg e, < Czh VX162, - (4.5)

7=1
Combining (4.3), (4.4) and (4.5), we obtain a bound for A:

u—1

h 1
Al < €5 Pl [l 52 Vxlo- (4.6)
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The last term is bounded in the following way:
|| ARVl = 311 S CIVX 26 Hlos o = oy
Since @f( belongs to a finite-dimensional space, we have
HVx - e lo.es < Clexl (BT 11V xllo.m, + 1183l Vxlo,z ) -
The other factor is bounded by

~ B 1 _1 ~ ~
Il = Blllo,ex < Clexl>([detBi|™>p = pllo,5y + [V (p = B)lo,5,
1 ~ ~
Hdet By 72 |[p = 5" llog, + 1V (p = B)llo.2)-

Thus,
| [ &V x- 3o = 811 < Cleal (187 WVl + 187 111V .52
€k

1 _ .

(|detBq|~2||p — Dllo,g + IV(p — D) ||o,E,
1 N .

+|detBy|"2|p — pllo,m + [|V(P — §)|0,E,)-

Summing on £,

Py, h,u—l 1
1> [ AEVx-w}p - Bl < C—= Pl I K= Vo (4.7)
k=1"¢k

rs—

Combining (4.1) , (4.2), (4.7) and (4.6), we obtain:

h
ans(x,x) <C

! 1 L pt 1
—IPlls1K2 Vxllo + Cllel|zQ — Il xlo s
T T

Thus, if @ = 0, we obtain an optimal bound on the H' semi-norm, i.e. the
convergence rate of the L? norm of the velocities is optimal. If o is bounded

below by a positive constant, the full H' norm is recovered. O

Theorem 4.2.

hH
zllplls,

1PYCY — pllog < C—=
r

for s > 2 and C' independent of h, r, p.

Proof. We consider the auxiliary problem:

~V - (KVY)+ayp = PNYC —p in Q,
KVy-v=0 on 09.
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Denote y = PNYG — p. Thus, we have:
Ixll5.a=(=(V-KV¥)+ap,x),

Nh Ph
=Y [ KVeVxtavx- Y [ {KVOnI. ()
7=1 Ej k=1"°%k
Let ¥* be in D N C°(2). The orthogonality condition implies that:

Ny, Py,
0=3 [ KV +axe™ + 3 [ {KVE n)l (4.9)
i=1 7%

k=1" €k

Now, we substract (4.9) to (4.8):
Np,
InlEa=3 [ KV -6 Vx+als - 5
=17

P P
=23 [ {AKVY- v+ ) [ AKV (@ =) v} (4.10)
k=1"€k k=1"€k

The first two terms are easily bounded by using Cauchy-Schwarz, Holder inequal-

ities and the approximation property.

o=

Ny, Ny, 2 /N, X 7
>/ KW—w*)vac(ZHW—W)H%@) (ZHKWXH%,EJ) ,
Jj=1"" J=1

i=1

Nh h2 % .
<C Y FIel3m | 157 Valo,

=1
h 1
<2l all €39 xlo.

In a similar manner, we have:

gfl /. (e =)y

Np
) 1
<CY NI = ) o,z lla? xllo,5,
=1

Nu p4 > Ny, X 3
<C Y lelie | | X llezxlEs, |
7=1 71=1
h? 1
< C5lxlloall K2V xo.
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Then, we will bound the third term in (4.10). Let p be an element of
D (E,) N C° and € be any constant vector.

P, Py
23 [ AKVE mi =23 [ {KVe-u) [PVO6 -],
k=1"°Ck k=1"°k

Py
=2) [ A(KVo =) u} (PVOC -,
k=1"Ck

As it was proved in Theorem 4.1, we have:

P, Np
SNPYCE =I5, < CYRIIVIPNYY = )5 5,
k=1 7=1

By the triangle inequality and Theorem 4.1, we have

Ny, Ny, Ny,
YIVPNCE —p)gg, < 2D IVPYCC =P 5, +2D IV (- D5,
i=1 i=1 i=1

h2,u—2 Ny, )
S(j;z;q‘E:HpH&Ef
=1

J
On the other hand, we have

- - s 1 -
I{(KVY = &) - vitlloe, < I{EVY = EHo.e, < CR2[IVIKVD)lo prup2-

If we assume that KV¢ € H'(E;) with

Np
YIVEYHGE < lIxlloq:

J=1

then

hH
5 lxloallpl

P,
12Y° [ {KVY-u}[X]|<C
k=1" €k

Let A denote the last term in (4.10). We have by Cauchy-Schwarz and
Holder inequality:

Py > /P, >
Al <C (Z V(Y —¢7) - Vk}H(Q),ek) (Z H[X]H?),ek) :
k=1 k=1
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By the approximation property:

P, ) Ny, b ) h
5SS T = 07) -l ey < O3 S0l 5, < Ol
k=1

i=1
We also have

P, ) h p2u—1
S IIG, < CoIVxlo < Cg=rlplls
k=1

Thus, we obtain:

hH
1Al < S lixllosllpls-

The theorem is obtained by combining all the results. O

5. A priori error estimate for the DG method

In this section, we derive an a priori optimal error estimate for the Dirichlet
or mixed boundary conditions problem. The estimate still holds for the Neumann
problem. We make several assumptions:

e pc H*(E;), Vji=1,...,N; and s2>2.

° I(:(kio,jo)v kiojo GCOO(E]‘), Vj:L...,Nh.

o K e [Whe(E)**2, Vj=1,...,Ns

e We denote K = (k;;), where k;; = |€1—k|fek{k”} We assume that K is sym-

metric positive definite (this is true if K is symmetric positive definite).

We first prove an approximation result that holds for n = 2.

Lemma 5.1. Let p € H*(&), for s > 2 and let r > 2. Let K = (k;;) where

k;; are positive constants, bounded above by k; and below by ko > 0. There is
p! € D,.(E) interpolant of p satisfying

/ (KVG = p)- ) =0, Yk=1,...,P
ek

/ KV —p) =0, Vek=P,+1,...,M,
€k
N h#
15" = pllos <C=lrls,

u—1

i h
IV = p)llo <C—lIpll
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where g = min(r 4+ 1,s) and C' = C(g—o)

Proof.  Let E be a triangle or a quadrilateral. We will show that given f € H*(F)
with s > 2 and given an edge e of the element F and v a unit normal vector to
e, there is a polynomial ¢ € IPy(F) such that ¢ vanishes on the other sides of
and that [ V(¢— f)-v=0.

First, we assume that F is a triangle, and we denote ay, ay the vertices of e.
There is a transformation that maps the reference element F onto FE such that
the vertex (0,0) is mapped onto a;. Take A; and Ay the barycentric coordinates

of a; and ay in F and choose

Q(Jf) = 4/\1/\29(012)7

where a9 is the midpoint of e. Let B be the matrix of the transformation that
maps I onto E. If & denotes the coordinates on a point of E, the following

relations hold:

r=Bi +a;
Vq-v=(B)"'V§ ||B'y|(B) v

55, = 44(0, %)(%1 (A1do)
= -44(0, )%
= 440, 5)(1 — &1 — 23»)
The coordinates of the vertex a; are denoted (al, a?).

1 1.1 1

_f{ a3 —aya; — a3
B = 2 2.2 2"

a3z — ay Gy — @

BtB: ( HCL3—611H2 * ) .
(a3 — a1)(a3 — aj) + (af — af)(af — af) |laz — a1
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Thus,

1B
det(B'B)
But when integrated from 0 to 1, the second term gives 0 so that

L I1B'v|llas — ai?

KVq-v=—2lelk114(0,=
/e Va-v = =2lelknd(0,5) 3 B

KVq-v= {~kiillaz — ar|*23 — k12 (1 = 2d2)((az — a1) (a3 — ai) + (a3 — af) (a3 — a}))}

But,

i1

B0 ~ BT

| B*v|| > > Cpp

Thus, the coefficient of (0, —)

E
that is independent of A when the triangulation is regulal Now, 1f F is a quadri-

ko, a constant

lateral, the process is easily modified. Let f = p — p!, where p! € IP.(F) is the

standard Lagrange interpolant ot p. Then,
|det B|?

2k11l|az — a1|]P|| BVl

qa2) = — /R'V(p —p') v
. 1
| [ RV 0= 0" vl <[l Rl 9 (0= ') o
< el BV G = )l
<k Clell BTV G = Pl + IV (B = P lo.5)
“ _ _1
< k1Clel|[ B[ [detBI BV (0 = ") o5 + | BIIIV*(p = p)ll.p)

Thus,

kl —lIBll I 2 I

_ B _
k
<— IV = PN loz + 1BV (2 = p)lo.2)
lllo, < [detB|>Clg(ar)]
k1 - 1
< /,C—(l)CldeU’i’l2 V(= p)lloz + IBIIIVZ(p = p))lo.5)

and

l _ ~
IVallo.p < IdetB|z | B=|Clg(ar2)|

< B9 (= p)llos + IBIIVH = )l e)
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So, if we consider ! = ¢+ p’, then
15" = pllog < ||f1||0 2+ 1" = plog
<Ch (HV(P = Plog + IV = pllog) + Ip" = pllog,
which has the same order of approximation as ||p! — p||o.q and
IV = pllog <[IVallog + IV - p)los
< O],Z—;(HV(I?I = Plog + IV = pllog) + VR = p)llog

which is also of the same order as ||V (p! — p)|o.q-
O

Theorem 5.2. Assume Q € IR%. If @ = 0 and K = K, then there is a constant
C' independent of h,r, p such that for s > 2

-1 DG N
152V (0 = P77 llo < C(K) S lIplls-
If @ > ag > 0, then the following inequality holds
BN o
I — PP < C(K, llefleo) 5= Iplls,

where g = min(r+41,s). If Q € IR*, then similar results hold with the suboptimal
bound L= p],.

Proof. PP and p satisfy:
aNs(PDG - D, U) =0, Vve Dr(gh).

We first prove the result for n = 2. We take v = PP% — 3! where p’ is the

interpolant of p constructed such that
/ (EV(p—p") - m} =0, Vk=1,..., P
[

The interpolant p’ has the same approximation error in L? and in H' as the

standard Lagrange interpolant. Denote y = PP% — pl.

Np
ans(x, x) = Z /E (KV(p—p") - Vx+alp—p")x)

—Z {BVp ') v }X] Z {KVx-Vk}[P—ﬁI]
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- [ V-5 vox+ [ (KVx ) )
I'p I'p

Np
ans(x,x) = E /E (KV(p—p") - Vx+a(p—p)x)

_E/e {(K - K)V ) - v} ] E/e {KEV(p—5") v} (IX] — ex)

+Z {I(Vx-uk}[p—ﬁf]
S / (KV(p— 1) - 1) (x — &) +/ (KVx-vp)(p-p")  (5.1)

er EFD
where ¢ is any constant depending on ey.

The first two terms in (5.1) can be bounded in the following way:

-1
|Z [, KV 0= VA <CIVGo =5l K79l

1
|Z [, atp =PI < Clallclp = #'lolla?xlo

To bound the other terms, we consider the contribution from each interior
edge. We assume that e, = JE'NOE?, where E! and E? are elements of £, and
we denote by B; and B; the matrices of the mappings from the reference element
F onto E' and E? respectively.

The third term in (5.1) is bounded by

[ (0 = BV 7 vy J|<—||A—AHOOE1/|W #) -l )
431 = Kl [ 1907wl
<3Ch [ 193wl

1
+5Che [ 19— wilV
We only look at the element E! since a similar result holds for £?.

~ l — ~ — ~
IV (p = 5") - villoe, < lexl? (HBI IV (e =8 llo,s2 + 1B NIBLUIIV (= ) 0,4,
Dllo.ex < Clexl= (1B HllIxllozr + 1185 Xl 22 + 19 xllo,102).



22 B. Riviére et al. / Improved error estimales

Thus,

Ph = I h'u_l 1
| Z/ {(K=K)V(p—p") v} X <C—= Il I K2 Vo
k=1"°¢k

rs—
The fourth term can also be bounded as follows:

/Ek{KV(p— 1) v} (X = en)| < IHEV (0 = 57) - v} lloe, I = exlloe

By the trace theorem,

_ i S i i
IHEV (p = 57) - viHlloe, < Chilex|2 (BTN (2 = 5)llo, 1 + 11V (= 57) o,
HIB IV (2 = 5o,z + IV (0 = B7)llo,2)-

Take ¢; as follows:

1
o = _/ (PP _ 5],
|ek| ek

[X] — cxllo,e

1,d f L .
<lexl? | =l < Clexl 7 (|I9]

1
IDX] = cllo.e, < lexl

07EA‘1 —I_ HﬁX 07E‘2)
<Cllexl*r? (| K= Vxllo g + 1K= Vxlo g2 -
Thus,
| [ARY =) -}l < COOCheal (1B IV (= 7)o + 1920 = 5)llopror
€k

_ - L1 L1
BT IV (0~ ) lo.52) (1K xlloz1 + 1K xllo.52)

Combining the contributions from all the interior edges, we can bound the fourth
term of (5.1):

Ph —, I h;L—l 1
> [ AKV(p =) - wd (N = ) < CIE) 1K= Vxlolpl
k=1"€k

Now, we bound the fith term in (5.1):
| [ AKX} = 5 < BIKE Xl 2 = o
[
Since @f( belongs to a finite-dimensional space, we have

2 1 — LI _ PN
V- v o, < Cleal2r2 (BTN (Do 5, + 1B IV (O lo.5,)
~ 1 _ _
<Clexlzr? (BT X0,z + 187 119 xllo,5,)
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The other factor is bounded by
_ Lo T
112 = 5Tllo.cx < lexl2lllp — 5]lo,é

~ 1 — N —

<Clet (10 =7l o, + 190 =)o srue)
Ay L _1 _ _

< Clex|> (IdetBi| =2 [lp = 5 flo.e, + [V (0 = 5o,

1 _ _

+|det By|~2|lp — 5 [lo,5, + V(P = 3')lo, )

Thus,
| [ AR 3l = 51 < Chalerls? (BT I o5, + 155 1V xlo.2.)
€k

1 - ~
(|detBy|~=[p = 5[0,z + IV (p = B")llo.5,
1 ~ ~
+|det B2 ||p — 3 flo., + IV (0 — 57)llo,,)
Or,

u—1

Py,
. _ . h 1
1> [ {KVx-w}p -]l < C(K) ot Pl Vxllo
k=1"°%k

Let er € I'p.
| / (KV(p—5")  vi)(x = )| SNEV (0 = 5o llx — crlloex
€k
Take ¢ = |el—k| fek Y. As before, we have

. _ - 1, _ _
1KV (p = )0, < Clexl2 BTV (0 = ) o, + 1BV (0 = 5 lo,51)
1 1
X = exllo,e, < Clexl2r?|| K2V x]lo p

Thus,

o he!
ENV(p—=p7) - vi)(x = ex)| < C—=llplls

X :

The last term is also easily bounded and the theorem is obtained by com-
bining all the results together.
Now, we look at the case Q € IR®. We show that the interior penalty

approximation PNIP@ is very close to the discontinuous Galerkin approximation

PPG . Denote ¢ = PNIPG _ pDG and v = PNIPG _ p € satisfies the following

orthogonality equation:

ans(&v) + TP (PNIPC v) =0, Vv e D, ().
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Take v = &.

aNS(gvf) = _']gﬂ(PNIPGag)'

Since p is continuous, we obtain:

P, Ph
TEOPNIPG ) = g (3,6 = 3 1 [ NI < Ch S il €l
€k k=1

(5.2)
By the Theorem 3.1, we have:
P, ) 1 R2u—248
3~ aullili e, < gl
k=1
By the trace theorem, we have
Py .
Y lEllge, < CRTHIKZVE]G.
k=1
Thus,
_3_8
h*™272 1
ans(§,€) < Clo)— =~ lIplslI K= VeElo.
The theorem is obtained, since g > 1. O

6. Conclusion

In this paper we have presented hp convergence results for three methods for
modeling elliptic problems with discontinuous spaces. Unlike the interior penalty
methods, which were shown to be effective for modeling sharp fronts arising in
miscible displacement in porous media, the NIPG schemes do not require problem
dependent penalties to be defined. Even though we have obtained optimal hp
convergence results for the constrained NCG method, this procedure is more
complicated toimplement than the DG method. The latter is locally conservative.

Computational results for the DG method are described in Part 11 of this paper.
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