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Abstract

Motivated by field and laboratory observations of unusual wave propagation, we
investigate the behavior of simple model problems involving transport with competi-
tive adsorption of H' and a metal cation. In the absence of diffusion/dispersion, the
model problem yields two shocks with the velocities expected from classical theory.
In the presence of diffusion/dispersion, the solution exhibits an additional feature, a
pulse of metal ion concentration that moves rapidly and independently of the metal
ion shock. This ‘fast wave’ is associated with the pH shock in the simplest model
problem studied here. Theoretical analysis of this problem yields a jump condition
which numerical experiments confirm. Along with diffusion/dispersion, proton sorp-
tion/desorption appears to be prerequisite for this phenomenon. This extension of
classical chromatography theory may explain several field and laboratory observations.
One practical implication of this finding is the importance of accurate handling of diffu-
sion and dispersion in numerical simulation of reactive transport problems. Another is
that estimates of species migration based on simple theory, such as retardation factors,
may fail to capture important features of the actual behavior.

Submitted to Industrial and Engineering Chemistry Research issue in recognition of Prof.
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1 Introduction

Prefatory Remarks by S. Bryant. Reactive transport through porous media is but one
of many areas of science and engineering to which Prof. Robert Schechter has made notable
contributions. Having been privileged to work under Prof. Schechter’s supervision, I would
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venture that the aesthetic appeal of reactive transport has been at least as important a
motivation for him as its numerous practical applications.

Chemical interactions between a flowing fluid phase and a stationary solid phase give
rise to remarkably rich behavior. For example, reactive transport applications are among
the few in which it is possible to get something for (almost) nothing. One can inject a
fluid containing a species at a concentration C'; into an appropriate porous medium initially
containing a solution with that species at concentration C;, and extract from the medium
(for a limited time) a fluid with species concentration exceeding both C; and C;. The
modern-day ubiquity of chromatographic columns has perhaps dulled our appreciation of
what would have been regarded a miraculous separation process in the not-too-distant past.
And there is an element of beauty in the mathematics that underlies reactive transport, from
the method of characteristics to the hodograph space of Rhee et al.

That so much can spring from so little — a couple of one-dimensional mass balance
equations and a few chemical equilibrium expressions suffice — is remarkable. An admixture
of wonder and serendipity stimulated the work described below, and my colleagues and I are
delighted by the opportunity to include it in a celebration of Prof. Schechter.

2 Motivation

In this work we explore some of the mathematical and physical aspects of a fast-moving
concentration peak that is distinct from the concentration fronts expected from classical
theory. The original motivation for this work arose from simulations of metal cation migra-
tion through an aquifer from a high pH source. The simulations showed a ‘hot spot’ of metal
ion moving at close to groundwater velocity. Given the strong affinity of the ferrous oxyhy-
droxide minerals in the aquifer for the cation at high pH, the metal should have remained in
the immediate vicinity of the source for millenia. Exhaustive examination showed that the
fast-moving peak was not an artifact, and indeed such movement was consistent with field
observations showing significant migration within decades [1], [2].

Figure 1 illustrates this phenomenon in a simplified version of this problem. In this
example, the strontium cation sorbs on a substrate S according to the following reaction

Srtt+S—S-Srt+HT (1)
and protons sorb according to
H"+S—S-H* (2)

with simple mass action equilibria for both reactions. The computed concentration profiles
of Fig. 1 are at a time shortly before one pore volume of fluid has entered the medium, as the
location of the tracer front indicates. The initial pH in the medium is 6 (i.e. [OH | = 107%)
and the initial Sr concentration is taken to be 107°. The inlet (distance = 0) is held at [Sr*+]
=10"* and pH = 11 ([OH~] = 1073 ). The strontium shock moves slowly in this example
and induces a small drop in pH, associated with the displacement of H* from the substrate.
Downstream of this front is the pH shock, marking the consumption of sorbed H™ by the
incoming hydroxyls. The two fronts satisfy expectations of classical theory outlined below:
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Figure 1: Simulated injection of a pH 11 solution containing 10~* M Sr and a
conservative tracer into a porous medium at pH 6 yields a dispersion-induced
wave of Sr. This wave moves rapidly, almost at interstitial fluid velocity, as

indicated by the location of the tracer front.

The slower-moving pH and Sr

shocks, located at d = 275 and d = 50, respectively, behave as expected from
classical chromatography theory. The sorption reactions (1)-(2) satisfy mass
action equilibrium expressions with Kg. = 10733 and Ky = 10%%.



the concentration velocities for H* and Sr™" decrease in the downstream direction, so that
shocks form, and the shock velocities satisfy the jump conditions. Far ahead of both shocks,
moving almost at tracer velocity, is a peak of Sr. In this example the maximum concentration
in the fast-moving pulse is about 1% of the inlet Sr concentration. The pulse induces a small
decrease in pH, too small to be visible in this plot, corresponding to H™ displaced from the
substrate. The velocity of the pulse reflects the large concentration velocity (99.7% of fluid
velocity) of the strontium cation at pH 6. This high velocity motivated the term ‘fast wave’,
which we adopt for convenience in this paper, though it will be seen that a more descriptive
term might be ‘dispersion-induced wave’.

Flow of uranium-bearing solutions through bench-scale porous media shows analogous
behavior under certain conditions [3]. For most cases, the cation propagates in a classical
manner, but at high concentrations of injected cation, a relatively fast peak arises (cf. Figure
6d of [3]). This was attributed to interaction between the cation and H™, since the cation
concentration was high enough to affect pH in an unbuffered system. Barthelds [4] reported
a similar phenomenon during injection of polymer solutions into porous media containing a
second, immiscible fluid phase. A pulse of polymer at a concentration greatly exceeding the
injected value reaches the exit of the porous medium rapidly. This behavior was attributed to
competition between adsorption and excluded pore volume (pore space through which water
but not polymer molecules can flow). It thus differs mechanistically from cation migration.
Nevertheless the similarity is intriguing and raises questions of whether a more general class
of such phenomena may exist.

The remainder of this section lays out the mathematical foundation for the reactive
transport problem of interest. The metal ion migration problem originally involved dozens
of aqueous chemical species, several of which adsorbed to multiple substrates according to a
sophisticated two-layer surface complexation model [5]. This complexity hindered theoretical
analysis of the phenomenon, and it was thus of interest to find the simplest possible chemical
system that exhibited the fast-wave phenomenon. Subsequent sections describe two such
systems and results obtained from them.

2.1 Mathematics of reactive transport in porous media

We describe flow with competitive adsorption of solutes on a substrate by means of a
mass balance for chemical species. The balances includes accumulation, advection, diffu-
sion/dispersion, reaction and source/sink terms. In general the reactions include specia-
tion, precipitation/dissolution, oxidation/reduction, adsorption/desorption, ion exchange,
radionuclide decay, and biodegradation. Mass transfer between the flowing phase and a
stationary fluid phase can also be treated as a chemical reaction.

In the general case it is convenient to write the mass balances in terms of a basic set of
chemical components. This set is the smallest one from which all other species in the problem
can be created by means of chemical reactions (cf. [6]). In this case the accumulation term
includes species in the flowing as well as in the stationary phases:

a(Citot)
ot

where ¢ is the porosity of the porous medium, Cj, , is the total concentration of component

qb +V (Cz U—DV(Ciaq)) = q; (3)

aq
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i (sum of stoichiometric contributions from all species in all phases), Cj,, is the total flowing
phase concentration of component i, u is the Darcy velocity field, D is the diffusion/dispersion
tensor and ¢; is the net source/sink term. An explicit rate of reaction term does not appear
in the component mass balance. Accounting for all appearances of a component requires
forming linear combinations of individual species concentrations, and the coefficients in those
linear combinations are just the stoichiometric coefficients of the reactions. Thus the net
rate of reaction of a chemical component vanishes.

In practice some reactions will reach thermodynamic equilibrium on a time scale shorter
than the advection and dispersion time scales, while other reactions will be limited by ki-
netics. The equilibrium reactions impose relations between species concentration which can
be written as a set of algebraic equations, or as a constrained optimization problem (min-
imization of Gibbs free energy subject to mass balance constraints). We adopt the former
approach in this work.

Classical chromatography is a specialization of (3) to a single class of reactions, ad-
sorption/desorption, for constant velocity flow in single spatial dimension in the absence of
diffusion/dispersion:

¢a(citot) +ua(CZ)

ot ox
where C;,,, = C; + Z;, Z; being the concentration of species ¢ adsorbed on the substrate
in moles per unit pore volume. The equilibrium relations for these reactions often take the

form of Langmuir isotherms which determine the sorbed species concentrations as continuous,
differentiable functions of the flowing phase concentrations:

Zi = KiCi Zio /W (5)

=0 (4)

where Z,,; is the total concentration of adsorption sites on the substrate, K; is an equilibrium
constant measuring the affinity of species ¢ for the substrate, and W is given by

The total concentration of sites is also known as the adsorption capacity of the substrate,

and we have
Ziot = > _(Z;) + Z, = constant (7)
i

where 7, is the concentration of vacant sites.

These equations were first treated by De Vault [7] and later by Rhee et al [8] and Helfferich
and Klein [9], among others. The concept of concentration velocity arises naturally from this
hyperbolic system. The mass balance equation can be rearranged to

aCc;
i 1
%= (—1 ) ®
oz T 5C;
and using the chain rule, one finds
dz v
ve; = (57)|es = Tz 9)

dt 1+ 36



where v = u/¢ is the interstitial velocity. One simple wave arises for each sorbing species.
The simple wave is a shock if concentration velocity decreases in the direction of travel, a
rarefaction otherwise. When a shock arises, the differential mass balance is not well defined,
and an integral mass balance can be written across the shock:

AZl . AZQ _ AZN v

- =, .. =—"2F_ —1 10
ACYl ACQ ACVN Ushock ’ ( )

where A indicates the jump in a quantity across the shock, NV is the number of sorbing
species and vgpoq i the velocity of the front.

3 Model development

The classical theory of chromatography does not admit the ‘fast wave’ phenomenon. The
simplest model problem that exhibits this behavior differs from the system (4)-(6) in two
ways: the presence of diffusion/dispersion and the sorption of protons. The mathematical
consequences of these features are that dispersion introduces a second derivative into the
mass balances, and that the mass balance for protons is nonlinear in proton concentration.

To illustrate these differences, consider a competition for adsorption sites on a substrate
S between protons H' and a cation denoted M™:

M*+S—S-MT* (11)
H* +S — S-H*. (12)

The equilibrium expressions for these sorption reactions are taken to be the standard
Langmuir type, (5)-(6). The dissociation of water imposes an equilibrium relationship be-
tween the concentrations of proton H* and hydroxyl anion OH ~:

K
Cry = -2 13
on = & (13)
where K, is the dissociation equilibrium constant for water.

The mass balance equation for the metal component reduces to

0(Cum + Zur) +uaCM 0?Cy

ot ox -D or?

The mass balance for protons must account for water dissociation and becomes

é =0. (14)

8(CH—COH+ZH) 8(CH—COH) 82(0}1—00]{) .
¢ 5t +u o D 5 = 0. (15)

The quantity Cy — Copy is the acidity for this simple system [10].

We impose Riemann boundary conditions on this system. The initial state of the medium
is at low pH (Cyx = 107%) and background levels of metal ion concentration (Cyr = 107'2).
The inlet is held at high pH (Cy = 107'%) and relatively high metal concentration (Cp; =
1073). Typical Ky and Kj; are 10* and 103, respectively. The value of Z;,; depends on
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Figure 2: Fast wave behavior for model system (14)-(15) in which protons and
a metal ion compete for sorption sites. At a Peclet number of 100, the metal
concentration (solid) exhibits a shock at x = 40 and a fast wave associated with
the pH shock (dashed) at x = 68.

the porous medium. Here it is taken to be of order 10 2 so that the shock velocities are
convenient.

Classical theory indicates two simple waves for this problem, one for the proton and one
for the metal ion. An example of the numerical results obtained below, Figures 2 and 3,
shows that two such fronts do arise. The metal front is a shock lagging the pH front, which
is also a shock. In addition to the expected metal front, a pulse of metal concentration is
visible in the concentation profile of Fig. 2. This pulse is the fast wave, so called because it
moves much faster than the metal shock.

The fast wave originates numerically as a slight ‘kink’ in the metal front in the vicinity of
the pH shock. This is visible in Figure 3, where we have shown numerical solutions for metal
and pH in the neighborhood of the pH front at early time. The metal front is beginning
to separate into two waves, one which will lag well behind the pH front, and the fast wave.
The fast wave occurs over a range of boundary conditions and equilibrium constants. In
this model problem the fast wave travels with the pH shock, while in the example of (1)-(2)
it travels independently of the pH shock. The existence and behavior of this pulse are the
subject of the numerical and theoretical sections to follow.

3.1 Theoretical results

From the standpoint of chromatography theory, the fast wave is an anomaly. A central
question early in this research was whether the wave had a mathematical basis, or whether
it was merely a numerical artifact. In view of the importance of the pH shock to the existence
of the fast wave in the system (14)-(15), we sought conditions that the metal concentration
profile must satisfy in the vicinity of the pH shock.

One further simplification of the two-component model (14)-(15) facilitates a perturba-
tion analysis of the behavior. In the numerical simulations, the pH front moves at essentially
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Figure 3: Formation of the fast wave for the two-component model. At early
time the metal profile (solid) shows a kink at the shock in proton concentration

(dashed), which evolves into the fast wave.

a constant velocity. Thus for the purpose of analysis we eliminate the proton mass balance
(15) from consideration by assuming the pH front moves at velocity a < 1, with Cy = 0 to
the left of x —at = 0 and C'y = 1 to the right of x —at = 0. For convenience we also set Ky
=10, Kyy = 1, Zj,y = 1 and u = 1. This simplification yields a single-component problem

expressed in terms of the metal concentration c:

dc+2z)  Oc D &c

BT +8_x_ @:0, z>0,t>0

with
c(0,t)=1, t>0
and
c(r,0)=10"" >0
where

[4
Z:{ e % <al
C
Titer >0t

(16)

(19)

and a is assumed to be the velocity of the pH front. The key feature of this single-component
problem is the influence of the discontinuity in the sorbed concentration z at z — at = 0.
In order to analyze the behavior of (16), we first consider the related model problem

01+ H(x —at))c Oc %c

Bt tor P =0

(20)



in which the Heaviside function H captures the qualitative behavior of the discontinuous
sorbed concentration. The perturbation analysis starts by replacing H by a smooth approx-
imation H,(z — at) = 1 (n), where n = £=% and € > 0 is small. Thus (20) becomes

Oc OH, dc D d%c

1+ H)— — —-D—=0. 21
Y T M =il (21)
Near x = at, we expand c:
C(:E, t) = u(n: t) = u0(07 t) + €Uy (77: t)a (22)
which gives
Jdc ouq
e _ w1 23
ox on (23)
820 1 82U1
Z - - = 24
0x? € On? (24)
Oc dug ouq ouy
= = 2=y 25
ot @ Yo Tm (25)
Substituting into (21) we find
dUO 8u1 8u1
1+ H){— —a— +e—
1+ ){dt “on eat}
a ou; Do*uy
——’lf) {U0+€U1}+a——?an2 =0 (26)
Collecting terms of order ¢! gives
0%u
U/w/’u,o + D 6,',]21 = O (27)
or
6u1
ap(n)ug + Da—77 = constant. (28)
Since the solution c is classical for z < at and = > at, this implies
oc, oc,
D {5_x(at 1) — a—x(at ,t)} + ac(at,t) = 0. (29)

Thus the discontinuity in the accumulation term imposes a relation between the velocity
of the discontinuity, the concentration profile and the dispersive flux in the vicinity of the
discontinuity.

Returning now to (20), we write

C C C
- _ H(z — at 30
¢tz c+1+c+{11+c 1+c} (2 = at) (30)

f(e) +g(c)H(x — at). (31)
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Repeating the procedure above we find for the single-component problem that

D {%(aﬁ, 5 — %(at_, t)} + ag(c(at, 1)) = 0. (32)

Thus the effect of the pH shock is to induce a discontinuity in the metal concentration
gradient. The consequent jump in the dispersive flux of metal ion at the pH shock balances
the rate at which metal must be supplied to advance the upstream sorbed concentration.
Since g(c) is negative, a metal concentration profile that decreases as it approaches the shock
must increase downstream of the shock. The kink in the profile is therefore not a numerical
artifact but rather a consequence of the pH shock in the presence of dispersion.

3.2 Numerical results.

A numerical approximation of the single-component problem (16) was implemented, and
from this model we checked the condition (32) numerically. Figure 4 shows plots of the
numerical solution in a neighborhood of the point z = at at various times. These figures
demonstrate the formation of a ‘kink’ in the solution, with the slope of the function on either
side of the kink varying according to (32). In these runs, we took D = 1.0 and a = 11/13.
The quantity on the left side of (32) was also computed numerically at each time and was
found to be on the order of 107°.

The single-component model thus provides reasonable assurance of the physical validity
of the fast wave. We then implemented a numerical approximation to the two-component
model (14)-(15) in order to study its fast-wave behavior in more detail. The approximation
is based on a simple finite difference scheme. We divide the interval 0 < x < L into J
intervals 0 = z1/2 < w32 < ... < Zy41/2 = 1 and choose a time-step At > 0. On each
interval [z; 1/2, ¥i41/2] and each time step ¢" we approximate Cyy and Cy by constants C7
and CF ;. The finite difference discretization of (14) is then

0i(Chyi + Ziy i) +udyChy; — DOLCYy, = 0, (33)
where
n n—1
g —9g
no_ 4
O:g At (3 )
Liv1/2 — Ti-1/2
9i+1—9i _ 9i—gi—1
3591' — Ti41— 5 ZTi—Ti—1 (36)
Tiv1/2 — Ti-1/2
and

Z?x[,i = Z(Clr\L/I,ia ng) (37)

A similar equation to (33) is used for CF; ;. These coupled nonlinear equations are solved using
Newton iteration. The same approximating scheme was used to solve the one-component
model (16).

10
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Figure 4: Numerical solution near z = at for single-component model (16). The
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Figure 5: Numerical solution, log(Cys) vs. z for D = 0.1 at ¢ = 80. Doubling the
grid resolution reduces the contribution of numerical dispersion to the mass in
the fast wave.

The numerical scheme has been used to study the fast wave behavior under many different
scenarios. An interesting feature of the fast wave is its behavior for different Peclet numbers.
In a representative case the initial state of the medium is Cy = 1072 and Cj; = 10 2. The
inlet is held at high pH (Cy = 10 '2) and relatively high metal concentration (Cps = 1073).
The values of Ky and K, are 10* and 103, respectively, Z;,; = 1073 and Ky = 10~
In Figure 5, we plot the approximation to Cy, for D = .1, L = 100, at time ¢ = 80.
Two different solutions are plotted to show the effect of grid refinement, one with 1600
subintervals (J = 1600) and one for 3200 subintervals. For comparison, we have plotted
the same solution for D = .01 in Figure 6. Note that the width and height of the fast
wave decrease as D decreases, indicating that the characteristics of the wave are functions of
diffusion/dispersion. In fact, as D — 0, we have observed that the fast wave slowly vanishes
under grid refinement, as seen in Figure 7. The fact that it appears at all when D = 0 is an
effect of numerical diffusion. Under Riemann boundary conditions, the metal and pH shocks
coexist at the inlet at time zero. Only an extraordinarily refined finite difference solution will
resolve the two shocks at early times, and thus typical numerical solutions will artificially
smear the profiles.

4 Discussion

The theoretical and numerical findings above demonstrate that the fast wave is a bona fide
feature of the reactive transport problem, not an artifact, and that it occurs over a range
of boundary conditions and chemical systems. Although rigorously established necessary
and sufficient conditions for the fast wave are not yet available, two features seem to be
necessary. One is the sorption of protons (or hydroxyls) on the substrate. Because of the
dissociation of water, the mass balance equation for protons includes a nonlinear term in
proton concentration. It is not yet clear how the nonlinearity in the proton mass balance

12
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Figure 6: Numerical solution, log(Cy/) vs. z for D = 0.01 at ¢ = 80. Compared
to the higher-dispersion case (D = 0.1) of Fig. 5, numerical dispersion plays
a larger role. The mass in the fast wave is considerably smaller than in the
higher-dispersion case.

equation induces a peak in the concentration profile of the other sorbing species, but it does
appear to be an intrinsic part of the phenomenon. If the proton is replaced in the model
problems above by any other cation, then there is no such nonlinearity in the corresponding
mass balance, and we have not observed the fast wave in such problems.

The other essential feature is the presence of dispersion. The jump condition for the metal
ion concentration, (32), degenerates in the absence of dispersion. Furthermore the two shocks
of pH and metal concentration satisfy the zero-dispersion mass balance equations. The fast
wave is thus essentially a consequence of dispersion; it does not exist in the absence of
dispersion, as demonstrated numerically in Fig. 7.

While proton/hydroxyl sorption appears essential to the existence of fast waves, the
character of fast waves reflects the details of the sorption reactions. In the simplest chemical
system (11)-(12) the fast wave travels with the pH shock. The sorption reactions (1)-(2)
are slightly more complex, with the proton concentration appearing explicitly in the metal
sorption reaction. In this case the fast wave travels independently of the pH front, as seen
in Fig. 1. Still more complex sorption reactions, e.g. accounting for contributions of surface
charge, exhibit fast waves similar to that of Fig. 1.

The initial conditions also influence the existence and behavior of the dispersion-induced
wave. In the chemical system of (1)-(2) the dilute concentration velocity of metal ion depends
strongly on pH. In the chemical system of Figure 1, the inlet conditions produce a peak that
propagates very rapidly (99.7% of tracer velocity) ahead of the pH front, where the pH is
at its initial value of 6. When the initial pH is 7, the dispersion-induced wave is broader,
exhibits a smaller peak concentration, and does not propagate as rapidly, Figure 8a. This
is consistent with the lower metal concentration velocity (79% of tracer velocity) at pH 7.
When the initial pH is 8, the metal concentration velocity is much lower (4.6% of tracer
velocity), and no dispersion-induced wave can be sustained, Figure 8b.

These considerations suggest an empirical explanation for the existence of the dispersion-

13
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sufficient to induce the fast wave.
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the fast wave for the sorption reactions (1)-(2). (a) Injection of pH 11 solution
containing 10~ M Sr and a conservative tracer into a porous medium initially at
pH 7 yields a smaller peak concentration that moves more slowly than when the
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induced wave. For Riemann boundary conditions, both the pH shock and the metal shock
coexist at the inlet at time zero. For some period of time, until these shocks are sufficiently
separated, dispersion can transfer metal cation into the lower pH region ahead of the pH
shock. Once there, the higher concentration velocity ensures that the metal concentration
propagates as a separate entity. In the absence of dispersion, there is no mechanism for
establishing the metal ahead of the pH front, and no fast wave is possible.

If dispersive flux of metal across the pH front is the mechanism for generating the fast
wave, then the wave should weaken if the pH front is initiated farther from the metal source
(the high metal concentration upstream of the metal shock). This prediction was tested
numerically in the following manner. The initial condition of the medium was altered in a
small region at the inlet. This region was set at the same pH as the injected solution, but
contained only background metal concentrations. Consequently, at time zero the pH front
starts not at the inlet, but at the boundary between the altered zone and the rest of the
medium. Thus the metal front and pH fronts never coincide, as they do in the Riemann
problem, and there should be less flux of metal into the region ahead of the pH front.

Figure 9 illustrates this experiment for an altered region extending 0.02 pore volumes
(PV) into the medium. The finite difference grid was spaced at 0.01 PV, ensuring numerical
resolution of separate pH and metal fronts. In the absence of dispersion, no metal can move
into the region ahead of the pH front. Thus the metal concentration profile exhibits only
the classical shock upstream of the pH front and then rises to the value initially present in
the medium. In the presence of dispersion, however, a flux of metal ion is possible across
the gap between the metal and pH fronts. The resulting concentration profile exhibits the
fast-moving peak. The larger the dispersion coefficient, the greater the concentration of
metal in the peak.

A similar conclusion follows from consideration of the shock velocities. The slower the
pH shock moves, the longer the time before the dispersive flux from the metal source into the
region downstream of the shock is small. Thus the mass of cation in the fast-moving wave is
larger for slower pH shocks, and the peak concentration may also be larger, depending on the
degree of dispersion. Numerical experiments confirm this prediction. Peak concentrations
as high as 20% of the injected metal concentration have been observed. The shock velocities
depend on both the initial conditions and the boundary conditions and are inversely pro-
portional to Z;,, the total concentration of sites. Thus the magnitude of the fast wave is a
complicated function of the chemical system, the porous medium, the boundary and initial
conditions, and level of diffusion/dispersion.

The fast wave differs qualitatively from mixed waves that are familiar from multiphase
flow. The latter typically comprise a shock trailed by a rarefaction and occur for suitably
complicated fractional flow curves (at least one inflection point) and appropriate boundary
conditions. Exactly analogous behavior arises in the reactive transport problem if the ad-
sorption isotherm contains an inflection point. The Langmuir isotherms used in the examples
presented above do not have inflection points. If the proton sorption isotherm is written in
terms of the acidity Cy — Cop, it does become sigmoidal. But the fast wave arises in the
metal concentration, not in the proton or hydroxl concentrations, and the metal isotherm
has no mixed wave character. In any event, if the phenomenon were a consequence only of
the shape of the isotherm, it would occur regardless of the presence/absence of dispersion.
Mixed waves exist independently of dispersion, whereas the fast wave does not.
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Figure 9: The physical basis for the fast wave is dispersive flux of metal across the
pH shock, illustrated here by a numerical experiment for the chemical system
(1)-(2). Computed metal concentration profiles are shown for different levels
of dispersion after 0.5 PV injection. The boundary and initial conditions are
identical to those for Figure 1, except that the medium extending 0.02 PV from
the inlet initially contains pH 11 solution containing only background metal
concentration. Thus the pH shock and metal shock are always separated by at
least 0.02 PV distance, whereas in the Riemann problem the two shocks coincide
at the inlet at time zero. The greater the dispersion coefficient, the greater the
mass of metal carried in the fast wave. In the absence of dispersion the fast
wave does not exist, because there is no mechanism for moving the metal ahead
of the pH front.
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The existence of dispersion-induced waves has implications for various applications. Clearly
an analysis of a problem based on classical (zero-dispersion) theory may neglect an impor-
tant feature of the behavior. Advection schemes which handle dispersion accurately will be
crucial for simulating the behavior of such systems.

Qualitatively we have observed the dispersion-induced wave in problems that are much
more complex chemically, as long as proton (or hydroxyl) adsorption occurs. Indeed the first
problem in which we saw this behavior involved amphoteric substrates which can be proto-
nated and deprotonated, cation sorption reactions that required simultaneous deprotonation,
and sorption energetics computed from a generalized two-layer model [5]. There were multi-
ple sorbing cations which underwent more than a dozen speciation reactions, many of which
involved protons or hydroxyls. The mass balance equation for protons was correspondingly
more complicated than the model system given above. Yet the salient feature of a rapidly
moving concentration peak still arose for one of the sorbing metal ions.

5 Conclusions

Classical chromatography theory explains the migration of sorbing species in terms of simple
waves, the character of which is determined by the concept of concentration velocities. For
certain problems involving flow and competitive adsorption, a novel type of wave arises
which cannot be explained in classical terms. A signature feature of this type of wave is the
relatively rapid migration of a concentration peak, whence the informal name ‘fast wave’.

Empirically, the necessary conditions for fast waves are nonzero diffusion/dispersion and
competitive adsorption of protons (or hydroxyls). The details of the chemical system do
not appear to be critical; the phenomenon arises for very simple two-component systems
as well as for multicomponent systems with speciation reactions and sophisticated sorption
equilibria. It appears that the fast wave can occur for any sorbing species except protons
(or hydroxyls).

The physical basis of the fast wave is the diffusion/dispersion of a sorbing species through
a proton concentration shock. The diffusive/dispersive flux establishes this species down-
stream of the pH shock, and a fast wave forms if the species concentration velocity is suffi-
ciently high at the conditions prevailing downstream of the shock.

Theoretical analysis of an idealized model problem establishes a jump condition at the
pH shock that the sorbing species concentration profile must satisfy. Numerical solutions sat-
isfy this condition, and numerical experiments for simple two-component (metal cation and
proton) sorption confirm the fundamental role of diffusion/dispersion in this phenomenon.

The theoretical and numerical results are consistent with field and laboratory observa-
tions of rapid cation migration in the presence of large variations in pH. For this class of
problems, careful handling of diffusion and dispersion is critical for accurate simulation of
reactive transport. Moreover, analysis based on classical theory (which does not account for
dispersion) or upon simplifications of such theories (e.g. lumped retardation factors) will fail
to capture an important aspect of such problems.
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