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Abstract

We study a local feature of a Newton logarithmic barrier function method and a Newton
primal-dual interior-point method for the nondegenerate inequality constrained optimization
problem. In particular, we study the radius of the sphere of convergence of Newton’s method
applied to the nonlinear systems of equations associated with the two aforementioned interior-
point methods. Our theoretical and numerical results are clearly in favor of using Newton
primal-dual methods for solving the optimization problem. This work is an extension of the
authors’ earlier work [13] on linear programming problems.

Key words. Newton logarithmic barrier method; Newton primal-dual interior-point method;
equivalent systems, sphere of convergence

1 Introduction

Linear and nonlinear programming problems are often solved by formulating and solving a sequence
of parameterized systems of nonlinear equations associated with the optimization problem. Two
popular approaches that have been a subject of study for solving the nonlinear program include
the Newton logarithmic barrier (log-barrier) function method and the Newton primal-dual interior-
point method. Each method applies Newton’s method to a parameterized system of nonlinear
equations and damps the step, if necessary, to produce strictly feasible points. The Newton log-
barrier method can be viewed as applying Newton’s method to the system of equations (barrier
system) arising from the log-barrier formulation of the optimization problem. Similarly, the New-
ton primal-dual method can be viewed as applying Newton’s method to the system of equations
(perturbed system) obtained from the perturbed optimality conditions of the optimization problem.
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Recent work, such as [9, 14, 15, 17], has focused on studying the performance of Newton log-
barrier methods for the inequality constrained optimization problem. Since Newton primal-dual
methods have been a success for solving the linear program, current investigation [3, 5, 11, 12] has
focused on extending these methods to solve the nonlinear program.

Recently, Villalobos, Tapia, and Zhang [13] showed dissimilar behavior in the radius of the
sphere of convergence associated with the Newton log-barrier and the Newton primal-dual methods
for nondegenerate linear programming problems. Their results imply that fewer Newton iterations
would be required by the Newton primal-dual method as the solution to the optimization problem
is approached. This result provides an explanation for the success of Newton primal-dual methods
in linear programming.

In this paper, we show distinct local behavior between the Newton log-barrier method and the
Newton primal-dual method for nondegenerate inequality constrained optimization problems. Our
study shows why Newton primal-dual methods should be applied to solve the nonlinear program.
We extend our work in [13] and study the radius of the sphere of convergence of Newton’s method
applied to the barrier and perturbed systems for the nondegenerate nonlinear program. S. J.
Wright [15] establishes a lower-bound, which is dependent on g and has order greater than one,
for the radius of the sphere of convergence associated with the barrier system. However, we prove
a stronger result showing that the radius of the sphere of convergence associated with the barrier
system decreases to zero with the same order as p decreases to zero.

The paper is organized as follows. In Section 2, we present background material discussing
the optimality conditions for the inequality constrained optimization problem. Then we briefly
discuss the Newton log-barrier and the Newton primal-dual interior-point methods for the nonlinear
program. Section 3 discusses the sphere of convergence of Newton’s method. In Section 4 we present
theoretical results for the radius of the sphere of convergence of Newton’s method applied to the
barrier and perturbed systems, and Section 5 presents numerical results supporting our theoretical
findings. Finally, some concluding remarks are presented in Section 6.

2 Background

In this section, we present the inequality constrained optimization problem and then discuss two
commonly studied interior-point methods. We conclude the section with a discussion on the tra-
jectory of solutions produced by the two equivalent systems under consideration.

2.1 Optimality Conditions

We consider the following nonlinear inequality constrained optimization problem

minimize f(
T

z) (1)
>0

subject to  g(z)

where f : R® — IRand g : IR* — IR™ are twice Lipschitz continuously differentiable. We will use
gi(z) to denote the ith component of g(z). The optimality conditions of problem (1) are formed
by considering the Lagrangian function
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L(z,2) = f(z) = ) _zigi(x),
=1
where the elements of z € IR™ are the Lagrangian multipliers associated with the inequality con-
straints.

Let z* be a local solution of problem (1). Let B = {i : ¢g;(z*) = 0}, i.e. B denotes the
set of indices corresponding to the active constraints. Regularity holds at z* if the set of active
constraint gradients, that is, {Vg;(z*) : 7 € B} is linearly independent. If f and ¢ are differentiable
and regularity holds at z*, then the following Karush-Kuhn-Tucker (KKT) conditions are satisfied
for z* and a multiplier z*

VeL(z*,2*) =0, Z*g(z*)=0, g(z*)>0, z>0 (2)
where Z* = diag(z*) and V L(z*,2*) = V f(z*) — Zz;‘Vgi(m*) is the gradient of the Lagrangian
=1

function. We collect the equations in (2) to form the system

m

Flz,2) = Vi@ =) =wVai) | g (3)

Za(x)

Strict complementarity holds if for all 7, zf+¢;(2*) > 0. By the second-order condition for problem
(1), we mean that for n # 0 and Vg;(z*)Tn =0,i € B
nIVEL(z*, 2*)n > 0.

Then the sufficiency conditions are satisfied at z* if the KKT conditions and the second-order
condition hold. For further details on Lagrange multiplier theory, see Avriel [1].

2.2 Newton Logarithmic Barrier Function Method

We now discuss the Newton logarithmic barrier function method and the barrier system, which is
associated with the optimality conditions of the logarithmic barrier function formulation for the
nonlinear program.

The log-barrier framework was introduced implicitly by Frisch [6] and consists of solving problem
(1) through a sequence of log-barrier subproblems for decreasing values of > 0. For a given u > 0,
the log-barrier subproblem is

minimize f(z) = f(z) —,uZloggi(ac) (4)

(9(z) > 0)

where f(z) is the barrier function and p is the barrier parameter. The first-order optimality
conditions for problem (4) are
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Fp(z;p) = Vef(z) =0,  (g9(z) >0) (5)
where
V.(e) = VS(a) - 3ot V) ©)

is the gradient of the barrier function with respect to z. We will call the nonlinear system of
equations in (5) the barrier system for problem (1). The Jacobian of system (5) is given by

m m
Fp(z;p) = Vif(z) — Z ',u Vigi(z) + Z 2,u Vi) VT gi(2).
— gi(z) = 9: (2)

Let z* denote a local solution for the inequality constrained problem (1), and let z}, denote
a solution for system (5), whenever it exists, for ¢ > 0. The Jacobian is positive definite at 7,
for small g > 0 when strict complementarity and the second-order sufficiency conditions hold at
z*. Therefore, 77 is an unconstrained minimizer of the log-barrier subproblem (4). Under mild
conditions [4], the solutions z, converge to z* as y decreases to zero.

A Newton log-barrier function method for the nonlinear program applies Newton’s method to
approximately solve the barrier system. In order to stay inside the feasible region of the inequality
constraints, the Newton step is damped, if necessary. The procedure is continued for decreasing
values of g > 0 until an approximate solution to the nonlinear program is obtained.

2.3 Newton Primal-Dual Interior-Point Method

We present the perturbed system which forms the basis of a Newton primal-dual interior-point
method for the nonlinear program. The equivalence of the barrier and perturbed systems is de-
scribed in Section 2.4.

Let us introduce an auxiliary variable z € IR™ and define z; to be the term u/g;(z) that appears
in the gradient (6) of the barrier function. Then 2z = p/g;(z) can be written equivalently as
Zg(z) = pe where 7 = diag(z). These equivalent defining relations yield the system

m

Fpez) = | VO 2AVE@ oL s 7
Zg(z) — pe

The system Fp(z,z;u) will be referred to as the perturbed system for problem (1). The Jacobian
of Fp(z,z; ) is given by

o s = | Vil@2) V()
Fp(z,z0) = [ ZvTg(z) G(‘g

where G'(z) = diag(g(z)), Vg(z) is an n X m matrix whose ith column consists of the gradient of
gi(z), and V2{(z, z) denotes the Hessian with respect to z of the Lagrangian function
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m

Uz, 2) = f(2) =) _zigi(e).

=1

The Jacobian Fp(z*, 2*;0) is nonsingular if regularity, strict complementarity, and the second-order
sufficiency conditions for problem (1) are satisfied. We note that system (7) can also be obtained
by deriving the optimality conditions of problem (1) and perturbing the complementarity equation,
Zg(z) =0, by pe.

A Newton primal-dual interior-point method for the nonlinear program (1) consists of applying
Newton’s method to the perturbed system and damping the Newton step, if necessary, to strictly
satisfy the inequality constraints, z,g(z) > 0. The procedure is continued with decreasing values
of > 0 until an approximate solution to the nonlinear program is obtained.

The algorithms for the Newton log-barrier method and the Newton primal-dual interior-point
method are similar. The main distinction lies in the different nonlinear system that is associated
with each method.

2.4 Trajectory of Solutions

Systems (5) and (7) are parameterized by y > 0. For a particular value of p > 0, let z, denote
the solution to system (5), and similarly let (27, 2}) denote the solution to system (7). Under mild
conditions, for p small and positive, the Jacobians of Fg(z;u) and Fp(z,z;u) are nonsingular at
the solutions z7 and (z},2}), respectively. In addition, the solution (z*,z*) at u = 0 exists for
system (7).

Assume f and ¢ are twice continuously differentiable and z* satisfies the sufficiency conditions
and regularity. Then a trajectory of solutions exists for system (5) which is described by

Cs={z} : F(zh;u) =0, g(z}) >0, 0< pu < ja} (8)

for some i > 0 (see [4]). In particular lim,_z} = 2, where z* is a solution of problem (1).
McLinden [8] was the first to show the global existence and smoothness of the trajectory of solutions
for a convex nonlinear program.

Systems (5) and (7) are equivalent, in the sense that for 0 < u < ji and z7, € Cs,

Fg(z;p1) =0 <= Fp(x),z,;1) =0

for (23,); = p/g(x})i, © =1,...,m. For system (7) we also have lim,_o(z}, z;) = (2%, 2%). For the

perturbed system the trajectory is defined as

Cp=A(z},2,) : Fp(z}, z55m) =0, 0 < < i, 27, g(x7,) > 0} (9)

We refer the reader to the proofs given by Fiacco and McCormick [4] for further details on the
existence and smoothness of the trajectories (8) and (9).
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3 Sphere of Convergence

Under a set of standard assumptions, local convergence theory of Newton’s method (see for ex-
ample [2]) provides the existence of a neighborhood about a solution where Newton’s method is
well-defined. More importantly, starting from any point in the neighborhood, Newton’s method
converges to the solution of the nonlinear system. The local convergence analysis of Newton’s
method can be applied to the barrier and perturbed systems for a fixed value of g. In this manner,
we also obtain a neighborhood about each point on the trajectory, equivalently given by (8) and
(9).

We begin now by providing a definition for the sphere of convergence below.

Definition The closed ball with radius r centered at v* is defined as B(v*,r) = {v : |[v—v*||2 < r}.

Definition For a given nonlinear system, F'(v) = 0 and a solution v*, the sphere of convergence of
Newton’s method at v* is defined as the largest closed ball centered at v* such that starting
from any interior point in the sphere, other than v*, Newton’s method is well-defined and
generates a sequence that converges to v*.

We note that the Jacobian of F'(v) is allowed to be undefined or singular at v* since we restrict
Newton’s method to be defined elsewhere in the neighborhood except at v*.

We are primarily concerned with the behavior of the radii of the spheres of convergence of a
pure Newton’s method applied to the barrier and perturbed systems as p decreases to zero. The
asymptotic behavior of the radii will provide an explanation for the performance of the Newton
log-barrier and the Newton primal-dual interior-point methods. It is our belief that if the radius
for the sphere of convergence of Newton’s method applied to the barrier or perturbed system is
bounded away from zero as p decreases to zero, then this implies that few iterations would be
required by Newton’s method to converge to a solution on the trajectory (8) or (9). However, if
the radius decreases to zero, then more iterations would be required by a Newton interior-point
method to converge to a solution on the trajectory and, in general, to obtain a solution to the
nonlinear program.

4 Theory for the Radius of the
Sphere of Convergence

We analyze the behavior of the radius of the sphere of convergence of Newton’s method applied
to the barrier and perturbed systems of the inequality constrained optimization problem (1) as u
decreases to zero. For p sufficiently small, S. J. Wright [15] established a lower-bound of C'u® where
a > 1 and C' > 0 for the radius of the sphere of convergence of Newton’s method applied to the
barrier system.

In Section 4.2, we provide a sharper result for the radius of the sphere of convergence of Newton’s
method on the barrier system showing that the radius is bounded below and above in O(p). This
result implies that the radius of the sphere of convergence associated with the barrier system
decreases to zero in the same order as p decreases to zero. Qur proof uses the same assumptions on
the functions f and ¢ of problem (1) as S. J. Wright [15]. We also consider range and null subspace
information of the active constraint gradients.
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Finally in Section 4.3, we conduct a similar analysis on the radius of the sphere of convergence
of Newton’s method applied to the perturbed system as p decreases to zero.

We note that in the proof of Lemma 4.1.4 an upper-bound i is shown to exist to prove the
boundedness of the constraints ¢(z) close to the solution. To simplify our notation and proofs, we
will make extensive use of i and without loss of generality, we will assume the subsequent lemmas
and theorems hold for p < fi.

4.1 Preliminaries

We present some preliminary results and lemmas for the analysis of the radius of the sphere of
convergence of Newton’s method applied to the barrier system. A nondegeneracy assumption is
assumed to hold for the lemmas and theorems in the remainder of the section. We state some
results on functions given by Lemmas 4.1.1 and 4.1.2. We will make much use of Lemma 4.1.3,
which is taken from [2] and is presented here for completeness and used in the proof of Lemma
4.2.7 for the barrier system.

Recall that B = {i: g;(z*) = 0}, i.e. B is the set of indices of the active constraints at z*. All
norms, || - ||, are understood to be the Euclidean norm unless otherwise stated. Now, let Ug(z)
denote an orthonormal matrix that spans the range space of the active constraint gradients at z.
Let Uy (z) denote an orthonormal matrix that spans the left null space of the active constraint
gradients at z. Then [Ug(z) Ups(z)] is orthogonal.

Nondegeneracy Assumption At the solution z*, regularity, strict complementarity, and the
second-order sufficiency conditions are satisfied.

Lemma 4.1.1 Given c: D C IR — R™, where D is a compact set. If c is Lipschilz continuous
over D with Lipschitz constant M; > 0, then cc! is Lipschitz continuous over D with Lipschitz
constant

M = 2M1 Te
where T, = max{||c(z)|| : z € D}.
Proof Let z,y € D. Then

le(2)e()" = e)e@)] = [e(z)e(z)" = e(z)e(y)” + e(z)e(y)” — e(y)e(
= Je(2)(c(2)" = e)T) + (c(z) = c()ely)||
< le@llle(z)" = e+ lle(z) = e llle) "]l (10)

Since ¢ is bounded and is Lipschitz continuous with constant M; > 0, then from (10) we obtain

"l

le(z)e(2)" = e(y)em)™| < Mz -yl

where M =2 M, 7..
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Lemma 4.1.2 Given h : D C IR* - R™" and v : D C IR* — IR, where D is a compact and
conver set. Assume h is Lipschitz continuous over D with Lipschitz constant My > 0, and v
is continuously differentiable with v(z) # 0 on D. Then for a positive integer p, h(z)/vP(z) is
Lipschitz continuous in D with Lipschitz constant

My | pyry?!

M=+

m

where 1 = max{||Vv(z)|| : « € D}, 7 = max{||h(z)]| : € D}, v = max{|v(z)| : = € D}, and

k£ = min{|v(z)|: 2z € D}.

Proof Let z,y € D. Then

h‘(Z)(vp(Z) —v"(y)) H
(

| vP(2) [ ~(2) = h(y
| vP(2) vP(y) |

L A(2) [ v7(2) — v*(y) ||

| v (2) vP(y) |

—+

(11)

Using the Lipschitz continuity of A and the first-order Taylor Series of v?(z), we obtain from
(11) that for £ between z and y, and M; > 0

h(z) _ () H < Mullz=yll  ITAG) TP OV (€|)T(Z—y) 5

vP(z)  oP(y) | vP(y) | | vP(2) vP(y)

Since Vv is bounded above, then | Vo(€)T (2 —y) |[< 5 || 2 — y ||, and since h and v are bounded,
we obtain

ﬂﬁ_ﬂﬂ”gzmu—w

vP(z)  oP(y)

for constant M = My /kP 4+ pnryP~1/K?P.

a

Lemma 4.1.3 Let I/ : IR® — IR™ be continuously differentiable in the open convex set D C IR".
Let I be Lipschitz continuous at x € D under a vector norm and the induced matriz operator norm
with Lipschitz constant v. Then, for any z +p € D,

1F(@+p) = F(2) = F'()pll < Slpl™

The following lemma provides bounds on the values that the inequality constraints g;(z) can
take for points z that lie close to the trajectory (9), which is parameterized by p. Recall Cp =

{(z5,25) « Fp(ah, 25 pm) =0, 25, g(27) > 0,0 < pu < i} (see (9)).
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Lemma 4.1.4 Consider > 0 and (z},, z},) contained in Cp. Assume g : D C R* — R™ is con-

tinuously differentiable on the compact, convexr set D. Then under the nondegeneracy assumption,

there exist i > 0 and constants K,.Jy,J2,.J3 > 0 so that for p < ji and ||z — x| < Ku where
x € D, we have
Jip < gi(z) < Jop i € B, (12a)
gi(z) > Js i € B. (12b)
Proof Tor (z},2}) € Cp, we have
Gi(en) ()i = =1, m. (13
Under our assumption, we have (77, z%) — (2*,2*) as u — 0 ( see [4]). Because g is continuous,

By the strict complementarity condition at x*, there exist f > 0 and .J > 0 such that for p < ji

gi(zy) > J i1 ¢ Band (z3); > J, i€B. (14)

Since zj, — 2%, without loss of generality for u < fi, we have

(23)i <227, i€B. (15)
Let
M = max{||Vg;(z)||:z € D,i ¢ B}, (16)
w = max{z] :1€ B},
K < ﬁ, and
J
o< MK’

Consider u < fi. Let z be such that ||z — 27| < Kpu. By Taylor’s Theorem, there exists ;
between z and zj, such that

gi(z) = gi(z;) + V(&) (z - z}). (17)

If we apply the Cauchy-Schwarz inequality to (17) and the quantities in (15) and (16), we have for
teB
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9i(z) > gi(zy) — [[Vgi(&)ll ll= — 2]
> 2 MKk
2z;
— Jl,u

1
where J; = (2— - MK) > 0.
w
Now we establish the second part of the inequality in (12a). In a similar manner, we obtain
from (17) that for, 1 € B

gi(z) < gi(zp) +[[Vai(&)ll [z = 23]
< w/(z)i+ MEKp. (18)
Applying (14) to (18), we have that
gi(z) < Jop

for J, = (1/J+ MK) > 0.
Now consider ¢ € B. By (14) and (17), we have

gi(z) > J+Vg(&)(z - a)
> J = IVgi&llllz — =l
> J- MKy
> J - MKj
> J/2,

where the last inequality arises from the upper-bound on & in (16). Then, we have for ¢ € B that
gi(z) > Js for Js = J/2 > 0.

4.2 Barrier System

In this section, we prove additional results required for the analysis of the radius of the sphere of
convergence of Newton’s method applied to the barrier system. Then we derive lower- and upper-
bound results for the radius of the sphere of convergence in Lemmas 4.2.8 and 4.2.9, respectively.

S. J. Wright [15] provides a representation for F'g(x;p)~" considering that y is sufficiently small
and that z is close to z7,. We have provided additional information on an upper-bound for p, given
in Lemma 4.1.4, to achieve a similar lemma. The proof for Lemma 4.2.5 below is omitted, and the
reader is referred to S. J. Wright’s proof [15] for details.

Lemma 4.2.5 Let the nondegeneracy assumption hold. Then for p < i and ||z — z}|| < Kp,
where i and K are given in Lemma 4.1.4, Fg(z;p)~" can be written in the following manner

e T T T
s = L w1 S} IR ][2]oo

where Hyq(z;p) = O(p), Hi2(z; 1) = O(p), and Hog(z; ) = O(1).
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S. J. Wright and Jarre [17] use the implicit function theorem to describe a continuous trajectory
of solutions for the system given in (3) with the right-hand side modified, that is,

Fla, 50,6 = [26]

where A € IR® and £ € IR. We make use of their lemma, modifying it with specific choices of A and
£ to suit our purposes. For a proof of Lemma 4.2.6 , we refer the reader to S. J. Wright and Jarre
[17].

Lemma 4.2.6 Under the nondegeneracy assumption, let the vector pair (Z(u),2(u)) denote the
solution of the nonlinear system
F(3,5) = [ 0 ]

e

for given pu > 0 and F defined as in (3). Then there are positive constants i > 0 and M > 0 such
that

(1) (2(p),2(p)) is a C? function of p in the neighborhood defined by

Ny =A{p:0< < i},

(ii) For py1,ps € Ny, we have

[ 2553 ] - [ i(uz) ] = F'(#(m), 2(m)) ™ [ (i _Om)e ] +r (20)

where
7| < M — p2)?.

Since F'(Z, 2) is continuous and nonsingular close to (z*, z*), then for g small, we obtain

18

Therefore, if we let p1; = p and py = 0, then

)| = otm-m.

ST
Y e
==
= =
e e
N—
|
TN
wr =
P S
==
[\~ [\~]
e e

(Fn) 2u) = (5,25 and  (#(ua), 2(u2)) = (", 7).

It follows that for some constant M > 0

(2 )]s &

The following notation and quantities will be used in the remaining lemmas. The next result,
Lemma 4.2.7, will be needed in the proof of Lemma 4.2.8 to obtain a lower-bound for the radius of
the sphere of convergence of Newton’s method on the barrier system.
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For our analysis on the radius of the sphere of convergence, we consider

oy —ay = Fp(o;p)™' [Fe(ah;p) — Fal;p) — Fp(z; p)(z) — z)], (22)

where z is the initial Newton iterate, z; is the subsequent iterate, and z7, is the solution to the
barrier system. We obtain upper-bounds on the quantities in the right-hand side of (22). So define
R as the vector on the right-hand side of (22), that is,

R(z;p) = Fg(zj;p) — Fp(e;p) — Fp(z; p) (e, — x)
= Ri(z;p) + Rao(z; p) + Ra(w; p) (23)

where

Ry(z;p) = Vf(z}) - Vf(z) - Vf(z)(a} - z),

) = 3 (V) + LYo
RQ(wwu) - ZEB( gi('r:Z)VyZ( u)—i_gi(x)Vgl( ) (24)
__r (x () (z* — 2 a 2g:(z)(z* — x
i) = Y (- e+ L Vg

__H (2 ()T (2* — 2 H 2g:i(x)(2x —2) ).
) (0} - ) + L) - 0))

Let i and K be given as in the proof of Lemma 4.1.4. For all 0 < g < 2 and for some constant
p>0,let

|z — 23|l < Kp C B(z*;p).

We define the following terms for i =1,...,m
ri = max{||Vyg;(2)Vgi(2)"| : z € Bz*;p)}, (25)
o = max{|Vigi(o)] : o € B(a"ip),
Bi = max{||Vgi(z)| : 2 € B(z";p)},
v = max{g;(z):2z € B(z*;p)}, and
ki o= minfgi(a) ¢ o — @)l < K},

Lemma 4.2.7 Assume f and g are twice Lipschitz continuously differentiable over B(z*;p). Let
R be given as defined in (23) with domain B(z*;p). Assume i and K are given as in the proof of
Lemma 4.1.4. Then under the nondegeneracy assumption, for p < ji and constants C1,Cy > 0, it
follows that for ||z — z7|| < Ky,

1
1Us" () R(zs )| < Clﬁl\ﬁ—ﬂfﬁl\z and (26)
1
[Ux T (@) R(z; )] < Cz;l\ﬂﬁ—fﬁﬁllz- (27)
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Proof Consider u < ji and ||z —z}|| < Kpu. Let the functions Ry, Ry, and R3 defined in (24) and
UnxT and Ug” be evaluated at z for a given parameter p < fi. Multiplying UBT($) with R, yields

U™ (@) R(zs )|l < U™ || (1Bl + [ Ball + || B3]l (28)

We will obtain an upper-bound for ||UzT R|| by obtaining upper-bounds for each of the four terms
n (28).

Since ||UsT|| is independent of u, we have ||UsT|| < C for a constant C' > 0. Now for R; we
obtain

IRl = [IVF(z}) = V() = Vf(2)(z) —2)]|.
Applying Lemma 4.1.3 to the above term yields
D,
17l < = llef ==l (29)

where D; > 0 is the Lipschitz constant of V2f.
To determine upper-bounds for the terms, ||Ry|| and || Rs][, we will proceed as in the proof of
Lemma 4.1.3 to obtain the Lipschitz constants for VgVgT /g% and V2?g/g that depend on p. Let

zy = x+tp fort € [0, 1] and let p be the direction (2}, — ). Applying Lemma 4.1.3 to Ry, we obtain

14 " " T M 20:(2,
IRl < %g/ V) Ve - V(e
:u (1 T I 2., T * _ 2|l d
:u T 4 (z Az T *
<Y / A Vae)Vaia)” V) V@) | o — ol
§ : M 2 M 2, T * _ g .
+z€3/ gi(7y) V gi(x) = gi(x)v 6:(7) g It (30)

Since VgVgT is Lipschitz continuous by Lemma 4.1.1, then applying Lemma 4.1.2 to (30) yields

pM; 2;“72%%
< 3 [ [ 2 sl ol

€5

pl upzaz
#3042 o — e ol

€8

where 7;, p; > 0 and TZ, «;,7i, and k; are given in (25), and M; and I} are, respectively, the Lipschitz
constants for VgZVg and V?g;. By (12), J3 < k; for i ¢ B and we obtain

2;1772 Tm
] 2:/'[ 78] o =l o, ~ ol a )
F T
> [ ’”a]nﬁ oll ;| dr.

€5
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From the definition of z; and p, we obtain that ||z; — z|| = ¢ ||}, — z||. Making the substitution of
||z+ — z|| in (31) and integrating with respect to ¢, we obtain

pM;  2uniTiy; o | mEF: | ppioy 2
R < E o* ok

< Dapllaf, — || (32)

for some constant Dy > 0.
Similarly, we obtain for Rs3 that

1
pM; 2unTiy; .
Rl < 3 [ |+ 2 s — s )
- 0 K K:
ZEB k3 k3
1
pli | ppio
+ /—I—[——I——] xy — z||||2, — z|| dt.
DB A e Lt

Now, by (12a), Jip < k; and y; < Jap for i € B. Making these substitutions in (33) and integrating
we obtain

puM; 2/“72%"]2#] 2 [ pF ,Upia‘i:| 2
Rs3|| < [ + * — x|+ + z* — z||“.
Il < 3 |+ e e - ol + [ 7+ S| e )

Therefore,

1 *
[ R < DSEH% - |

for some constant D3 > 0. Collecting the upper-bounds obtained on the terms, ||[UsT|], ||R1||, || Rz]|,
and ||Rsl|, we obtain

1 %
1Us" R(2; )] < C1EH% - z|?

for a constant C > 0.
For the second part of the proof, we work with Uy and again will determine an upper-bound

for [|[UyT R||. We have

lUn" R [UN" Ball + 1Ux" Rall + 1UN " B3|

U TR+ [ Ral] + [ Un T Rl

Since ||[UxT|| is independent of u, we have |UxT|| < G for some constant G' > 0. We can use
the upper-bound estimates obtained in the first part of the proof for ||R;|| and ||Rz||. However,
the situation changes for estimating ||UxT Rs||, the term associated with the active constraints.
Following the proof as in Lemma 4.1.3, we have

<
<

Uv'hs = ) [/01LUNT(QS)V%(%)VT%(%)— Uy (2)V2gi(w:)

I
‘B gi(z:)* gi(z¢)
a K T V20 (2 v — 2*\dt.
gi(z)? s Y (x)Vigi(z)| ( )dt

Un"(2)Vgi(z) Vg () + p
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Then
1
UvTRs|| < / E e UNT(2) V() VT gi(ze) — ——UnT (2)V2g;(2
v Rl < 3 [ | U@ VeV a0 — SO @V a0
K T T H T 2
— Un" (z)Vyg:(z)Vyg; (z) + Un* (2)Veogi(x)|| ||z — == ||dt
oi()? (z)Vgi(z)Vg; () (@) (2)Vogi(z)]l |l M
< Z(TM—}-TM) (34)
icB
where
! K T T H T T
T = ——U 2)Vag;(z:)Vg;(x - —U 2)Vag;(2)Vg;(z
o= [ @V Ve - LUy ) V) V(o)
Hx—mﬁ”dt
and
[ |- o @vaten - Lo @9 1 - 2z
Ty = Un" (2)Vog;(xys) — v (2)Vaigi(z)]| ||z — =% ||dt.
: o [ty Y Vel = 2y :

We will work with 77; and 7T%; individually and obtain upper-bounds for each. Since Upr(z) is
orthogonal to the set of active constraint gradients at z, we obtain for 7T7; that

= 1 a e (z (z) T |z = z*||d
1= [ U @) Vaa) Ve | e =
/0 gi(HT)?UNT(x) [Vgi(xt)VQi(ft)T - Vgi(f)Vgi(ﬂf)T] ||z — wZHdt-

By Lemma 4.1.4, g;(z;) > Jip. Hence, we obtain

T; < Jllu,lﬂ HUNT(x)H/O }‘Vgi(xt)Vgi(xt)T — Vgi(x)Vgi(ﬁ)TH ||z — m’;”dt.

By Lemma 4.1.1, VgngiT is Lipschitz continuous with Lipschitz constant 2503; where S > 0 is the
Lipschitz constant of Vg;. Then

1 1
Ty < —||UNT 25 6|2 — — x*||dt
1 < JWH N (OE)H/0 Billzs — x| [z — 23|
1 T * |12
< —JWS@HUN (@) [z — =,
G4 §
< 7ch—%ll2 (35)

for a constant G; > 0.
Now, we work with the second term T5; which is bounded by
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1
H 2 2 2
Ty < UNT/ Vi) — - Vgi(a
2 H H 0 gi(‘rt) ( t) gz(‘r) ( )

Applying Lemma 4.1.2 to the second norm in (36) and the bounds (12) given in Lemma 4.1.4, we
obtain

||z — || dt. (36)

1
pli | ppioy
Ty, < UNT/[ + ];r—:v z —z*||dt
2 < IOV o L e |z — || ol
pli | ppio 2
< |lunT — z*
< N g5+ S 1 - )
G
< o - (37)
1 Iz

where p;, G5 > 0 and F; is the Lipschitz constant for V2g;.

Collecting the upper-bounds (35) and (37) for T1; and T5;, respectively, we obtain that for some
Gs >0

G
[Un " Rs| < 73”56 — [, (38)
Using the upper-bounds on || Ry || and || Ro|| given in (29) and (32) and the upper-bound for ||[UnT R3]

in (38), we obtain

D G
T T 1 * * 3 *
xRl < U8 lles = 2l” + Daplley, = @) +7H$—%H2

INA

1
Cz;l\w - a3|?
for some constant Cy > 0.

a

The next two lemmas establish lower- and upper-bound results for the radius of the sphere
of convergence of Newton’s method applied to the barrier system. The two results are combined
to produce Theorem 4.1, which proves that the radius of the sphere of convergence of Newton’s
method on the barrier system decreases to zero linearly as p decreases to zero. Our result is stronger
than S. J. Wright’s result [15] which shows that the radius of the sphere of convergence is bounded
below by Cu®, where C' > 0 and a > 1.

Lemma 4.2.8 Under the nondegeneracy assumption, there exists i > 0 and Ky > 0 such that
the radius of the sphere of convergence, rg(u), of Newton’s method applied to the barrier system
Fg(z;p) =0, given by (5), satisfies

K < ra(p)
for all p < fi.
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Proof Let i and K be given by the proof of Lemma 4.1.4. Consider p < i and let z satisfy
|z —z3]| < Kp. We will prove the above result by showing that whenever the initial Newton
iterate 20 satisfies

la? = 2|l < Kip

for K1 > 0 and g < ji, then Newton’s method will converge to z7,. Consider Newton’s method
applied to Fg(z;u) = 0. Let z and z}, respectively denote the current iterate and the solution to
the system. Then at the following Newton iteration we obtain

vy —an = Fgz;p)~' [F(2h; p) — Fp(e;p) — Fp(z;p) () — z))
= Fp(z; )7 R(z; p).

where z is the subsequent Newton iterate, and R is defined in (23). Substituting (19) for the
inverse of the Jacobian and multiplying it with R produces

* O
ren = LU o ]| o o)
and taking norms yields
lz4 =il < 10U R+ O0()Ux" Bl +[|0()Us" B+ O(1)Uy" |-

Substituting upper-bounds (26) and (27) for ||UsT R|| and ||UnT R)|, respectively, we obtain

A

1 1 1
4 — 2]l < O(M)Clpl\ﬂﬁﬁ — | + O(N)C2;H$Z -zl + GCz;II-’EZ — z||?

A

1
W/—H.r:j — .rH2
w

for constants G, W > 0. Therefore, if the initial iterate z° satisfies
2% = 2}l < K,
where Ky = min{1/W, K}, we obtain convergence of the Newton sequence to z}.

a

Lemma 4.2.9 Under the nondegeneracy assumption, we have that for p < i, there exists Ko > 0
such that the radius of the sphere of convergence, rg(u), of Newton’s method applied to the barrier
system Fg(z;u), given by (5), satisfies

rp(p) < Kap.

Proof It suffices to show that there exists an z satisfying ||z — 27| < Ky, where K is given in
Lemma 4.1.4, from where Newton’s method does not converge or is not defined. From S.J. Wright’s
result (21), we have that |[z* — 27| < Mp for small p and M > 0. We will demonstrate two cases
regarding the relationship of K and M to prove our result. If M < K, then |[z* — z}|| < Ku and
gi(z*) = 0 for i € B. Thus, we can take K3 = M. Now assume K < M. Choose ji < ji such that
lz* — 23|| < Kji. Then for all u < ji, we have ||z* — 23| < Ky and g;(z*) = 0,7 € B. In this case,
we let Ko = K. Clearly, Fg(z;p) and Fg(z;u) are undefined whenever g;(z) = 0 for any 1.
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a

Theorem 4.1 Under the nondegeneracy assumption, there exist constants fi and Ky, K9 > 0 such
that for p < i, the radius of the sphere of convergence, rg(u), of Newton’s method applied to the
barrier system Fg(z;pu) =0, given by (5), satisfies

Kip <rp(p) < Kap.

Proof Application of Lemmas 4.2.8 and 4.2.9 produces the result with g < j.

4.3 Perturbed System

Now we investigate the behavior of the radius of the sphere of convergence of Newton’s method
applied to the perturbed system as u decreases to zero.

Lemma 4.2.6 provides the existence of F]’D(mz,zﬁ;,u)_l for 0 < p < ji. Since (z},y)) exists,
and Fp(z,z;u) is Lipschitz continuous and nonsingular at (z7,2) the standard assumptions for
Newton’s method are satisfied at (z},z2};). Hence, there exists a ball centered at (z7},z2};) such
that starting from any point in the ball Newton’s method will converge to the solution (7, 27).
The following theorem states a new result showing that the radius of the sphere of convergence of
Newton’s method applied to the perturbed system is bounded away from zero as p decreases to

Zero.

Theorem 4.2 Under the nondegeneracy assumption, there exist constants ji, D > 0 such that for
all 0 < p < fi, the radius of the sphere of convergence, rp(u), of Newton’s method applied to the
perturbed system I'p(z,z;u) =0, given by (7), is bounded away from zero, that is,

D <rp(p).

Proof We will prove the above result by showing that the Newton iterates converge to the solution
(%, 2%) if the initial Newton iterate (29, 2%) satisfies

()] &

for some constant D > 0. Consider 0 < g < j. Assume Newton’s method is applied to the

perturbed system Fp(z,z;u) = 0 for a fixed p. Let (z,2) and (z7},2}) respectively denote the

current Newton iterate and the solution to the perturbed system for a given value of u. Then at
the subsequent Newton iteration, we have

( i::zﬁt ) = Fp(z,2ip0)7" [Fp(a), 25 1) — Fp(2, 2 1)
= Fp(a, 2 m{(e}, ) — (2, 2)}] - (40)

Taking norms in (40), we have
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H( zi::u )H < |[Fp(a, 2z 0) 7| x

-z
Since ||Fp(z,z;u)7 | < M for some M > 0 then a straightforward application of Lemma 4.1.3
yields that for some constant N > 0

(=2 < =20

*
Tus 2

(5] ke

Therefore, D < rp(p) where 0 < D <

To obtain convergence of the Newton sequence in (z, z) to (23, z3), it is sufficient to have

MN"

5 Numerical Experimentation on the Radius of the Sphere of Con-
vergence

In this section, we obtain numerical upper-bound estimates for the radius of the sphere of conver-
gence of Newton’s method on the two equivalent systems for various values of p > 0.

Our numerical experiments were conducted similar to the implementation done in [13] for the
linear program. We briefly describe the algorithm and new modifications.

We applied Newton’s method to the barrier and perturbed systems for various values of p > 0.
Initial points for Newton’s method were of the form

0 _ %
—'Uu‘l‘/\vou

where v, was chosen using the Matlab function rand, which selects random entries from a uniform
distribution on the unit interval (0,1). The point v} is the solution z7 and (z7}, 2}) for systems
(5) and (7), respectively. The initial point v° was merely 20 for Newton’s method on the barrier
system. The first n components of the initial point v" for the perturbed system composed the point
2° and the remaining components composed the point 29 for Newton’s method.

The experiments were begun with initial points v? close to vy, that is, A was initialized close
to zero. Full Newton steps were always taken. If for a given A > O Newton s method generated an
iterate that satisfied a convergence criterion, then A was incremented and Newton’s method was

started with a new initial point v°. The convergence criterion was given by
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xt— 2 —z

I =l 5=l )
L+ ([zi]] 1+ l=]]

where (zz); = p/g:(xy) for the barrier system for ¢ = 1,...,m, and the convergence tolerance was

set to tol = 1078, Nonconvergence of Newton’s method was recorded when the maximum number
of iterations, which was set to 100, was reached.

Ten unit random directions v, having positive and negative components were generated. For
each direction, v,, Newton’s method was applied to the barrier and perturbed systems until the
convergence criteria (42) was met at some A,. For a given value of g > 0, the numerical upper-
bound estimate for the radius of the sphere of convergence of Newton’s method applied to the
barrier or perturbed system was recorded as the minimum of the ten A,’s , that is,

min{\,},

where A, = ||2°—=27|| for the barrier system and A, = |[v®—v7 || for the perturbed system. Newton’s
method was applied to the barrier and perturbed systems with the following parameterized values
of u:

w=0.45, 0.25, 0.10, 0.05, 0.01 0.0075, 0.005, 0.0005, 0.00005 (43)

as in the experiments for the linear program [13].

A subset of nondegenerate problems were considered from the Hock and Schittkowski test set
[7]. Table 1 shows the problem numbers in the first column followed by the number of variables
and inequality constraints. The problems were run on a Sun Ultra Sparc workstation using Matlab
version 5.2.

Table 1: Test Problems

Problem | n | m
HS10 |2 |1
HS11 |21
HS12 |2 |1
HS16 |2 | 5
HS17 | 2| 5
HS22 | 2] 2
HS33 |3 |5
HS34 |3 |5
HS43 | 4| 3

Now we present several numerical results on upper-bounds for the radius of the sphere of
convergence of Newton’s method. We show only four of the problems whose results are typical
to the other problems that are not presented. Figures 1- 2 show the radius of the sphere of
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convergence associated with the two equivalent systems graphed against the values of p given in
(43).

The numerical experiments show the radius of the sphere of convergence of Newton’s method on
the barrier system decreasing towards zero for small values of ¢ > 0. However, the radius associated
with the perturbed system clearly stays away from zero. In addition, the radius associated with the
perturbed system is also larger than the radius associated with the barrier system for all g values.
These numerical results confirm our theory for the radius of the sphere of convergence of Newton’s
method on these two equivalent systems for nondegenerate problems.

In the case when the maximum number of iterations was reached, we observed that the final
Newton iterate was infeasible for the two equivalent systems. As in the linear programming case
[13], we observed also that infeasible Newton iterates did not always preclude convergence to the
solution of the perturbed system. However, convergence was precluded for Newton’s method on
the barrier system if an iterate became infeasible. As a result, the Jacobian became increasingly
ill-conditioned.

HS 11 HS 16

oL Perturbed System ] prean

Perturbed System

w0 1 w0 ——— et 1

Barrier System

Barrier System

10° 107 10° 107
Values of u Values of u

(a) (b)

Figure 1: Radii of the spheres of convergence for Newton’s method applied to the barrier and
perturbed systems

6 Conclusions

We studied an aspect of the local behavior of a Newton log-barrier function method and a Newton
primal-dual interior-point method. The Newton log-barrier method can be viewed as applying
damped Newton’s method to the barrier system. Similarly, the Newton primal-dual method can be
viewed as applying damped Newton’s method to the perturbed system of the optimization problem.
In particular, we analyzed the radius of the sphere of convergence of Newton’s method applied to the
barrier and perturbed systems for nondegenerate problems as the barrier parameter p decreases to
zero. Previous results [15] showed that the radius of the sphere of convergence of Newton’s method
on the barrier system was bounded below in O(u®) for @ > 1, but no upper-bound was obtained.
Our theoretical results are stronger and establish that the radius of the sphere of convergence of
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HS 34 HS 43

10 f Perturbed System ] 10tk

10° Perturbed System

Barrier System

Barrier System

10° 107 10° 107
Values of u Values of u

(a) (b)

Figure 2: Radii of the spheres of convergence for Newton’s method applied to the barrier and
perturbed systems

Newton’s method on the barrier system decreases to zero with the same order as p decreases to
Zero.

In addition, we presented numerical experiments on the radius of the sphere of convergence of
Newton’s method applied to the barrier and perturbed systems for nondegenerate problems. Our
experiments reinforce the theoretical results obtained for the radius of the sphere of convergence
of Newton’s method applied to the barrier and perturbed systems. The numerical and theoretical
results imply that the radius of the sphere of convergence of Newton’s method applied to the
perturbed system is larger than the radius associated with the barrier system, at least for small
values. As a consequence, we expect fewer Newton iterations to obtain an approximate solution
to the nonlinear program. Our results clearly favor the use of Newton primal-dual interior-point
methods for solving the nonlinear program.

References

[1] M. Avriel. Nonlinear Programming: Analysis and Methods. Prentice-Hall, Englewood Cliffs,
NJ, 1976.

[2] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Non-
linear Fquations. Prentice-Hall, Englewood Cliffs, NJ, 1983. Reprinted by STAM Publications,
1996.

[3] A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang. On the formulation and theory of
the Newton interior-point method for nonlinear programming. Journal of Optimization Theory
and Applications, 89(3):507-541, 1996.

[4] A. V. Fiacco and G. P. McCormick. Nonlinear Programming, Sequential Unconstrained Mini-
mization Techniques. Wiley, New York, 1968. Reprinted by SIAM Publications, 1990.



VILLALOBOS, TAPIA, ZHANG 23

[5] A. Forsgren and P. E. Gill. Primal-dual interior methods for nonconvex nonlinear programming.
Technical Report NA-3, Department of Mathematics, University of California at San Diego,
1996.

[6] R. Frisch. The logarithmic potential method of convex programming. Technical report, Uni-
versity Institute of Economics, Oslo, Norway, 1955.

[7] W. Hock and K. Schittkowski. Test examples for nonlinear programming codes. In Lecture
Notes in Fconomics and Mathematical Systems. Springer-Verlag, 1981.

[8] L. McLinden. An analogue of Moreau’s proximation theorem, with application to the nonlinear
complementarity problem. Pacific Journal of Mathematics, 88(1):101-161, 1980.

[9] S. G. Nash and A. Sofer. Why extrapolation helps barrier methods. Technical report, Opera-
tions Research and Engineering Department, George Mason University, 1998.

[10] J. M. Ortega and W. C. Rheinboldt. [terative Solution of Nonlinear Equations in Several
Variables. Academic Press, Inc., San Diego, CA, 1970.

[11] Z. Parada and R. A. Tapia. Computational experience with a modified augmented lagrangian
merit function in a primal-dual interior-point method. Technical report, Department of Com-
putational and Applied Mathematics, Rice University, 1995.

[12] T. Urban, A. Tits, and C. T. Lawrence. A primal-dual interior point method for noncon-
vex optimization with multiple logarithmic barrier parameters and with strong convergence
properties. Technical report, University of Maryland, College Park, 1998.

[13] M. C. Villalobos, R. A. Tapia, and Y. Zhang. The behavior of Newton-type methods on two
equivalent systems from linear programming. Technical Report CRPC-TR98770-S, Depart-
ment of Computational and Applied Mathematics, Rice University, 1998.

[14] M. H. Wright. Why a pure primal Newton barrier step may be infeasible. SIAM Journal of
Optimization, 5(1):1-12, 1995.

[15] S. J. Wright. On the convergence of the Newton/log-barrier method. Technical Report P681-
0897, Mathematics and Computer Science Division, Argonne National Laboratory, 1997.

[16] S. J. Wright. Primal-Dual Interior-Point Methods. SITAM Publications, Philadelphia, 1997.

[17] S. J. Wright and F. Jarre. The role of linear objective functions in barrier methods. Technical
Report P485-1294, Mathematics and Computer Science Division, Argonne National Labora-
tory, 1997.

[18] Y. Zhang. Lipsol, version 0.4. Department of Computational and Applied Mathematics, Rice
University.

. Zhang, R. A. Tapia, and J. E. Dennis. On the superlinear and quadratic convergence o

19] Y. Zhang, R. A. Tapi d J. E. Dennis. On th li d drati g f
primal-dual interior point linear programming algorithms. SITAM Journal of Optimization,
pages 304-324, 1992.



