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1 Introduction

Entropy maximization is one of the major computational components in the
Bayesian statistical approach to phase determination [2, 3, 5, 6, 28]. The
problem is formulated to maximize the entropy of a given crystal system
subject to a set of structural constraints. The maximum entropy obtained
by solving the problem is used to compute the probability distribution of the
system with given structure factors.

The entropy of a given crystal system is defined by the following integral,

Hip) == | plr)loglp(r)ldr, 1)

where V is the unit cell and p the electron density distribution. Note that
without any constraints H is maximized when p is a uniform distribution.
Let m denote the uniform distribution, m = 1/V, where V' is the volume of
the unit cell. Then H,,q., = H(m) =log V.

The relative entropy of a system p with respect to the uniform distribution
m is defined as the entropy loss of p from m,

Sn(p) = Hip) = H(m) = = [ p(r)loglp(r)/m(r)]dr. (2)

Let N be the number of electrons in the system and F* a given set of
structure factors, F* = {F]f[] :73=1,...,m}, where H; are three-dimensional
integer vectors in the reciprocal space of the crystal lattice. Then the prob-
ability distribution P(F™) of p with given structure factors in F* can be
computed by the following formula,

P(F*) = exp(NS.), (3)
where S is the optimal value of the entropy maximization problem,
max, Sn(p) (4)
s.t. / p(r) exp(ZﬁiHjTT)dr =F;, 7=1,...,m (5)
v J
dr = 1. 6
| plrydr (6)

Note that the objective function in (4) is concave and the constraints are
linear. Therefore, the problem is a convex program. In fact, the objective



function is even strictly concave, and hence, the solution to the problem must
also be unique.

Bricogne [2] reduces the problem (4) to a system of equations, which is
equivalent to the dual problem of (4) [1]. A standard Newton’s method can
be used to solve the equations. While the Newton’s method converges fast
(local quadratic convergence), it requires O(m?) floating point operations in
every iteration. This can be a computational bottleneck when m is large. For
example, in phase refinement, the entropy maximization problem needs to
be solved many times with m possibly in order of thousands. An alternative
method is proposed in [2] which computes the inverse of the Jacobian ma-
trix approximately with O(mlogm) floating point operations. However, the
convergence rate of the method is slowed down because of the approximation.

In this paper, we propose a method which has the same convergence rate
as the standard Newton’s method but computes the exact inverse of the
Jacobian matrix in order of mlogm floating point operations. The idea of
the method is based on the observation that the Jacobian matrix has a special
structure with a positive definite matrix plus a rank-one update. Therefore,
by applying the Sherman-Morrison-Woodbury theorem [9, 15, 27], the inverse
of the Jacobian can be obtained in a special form, which can be computed
via fast Fourier transform in O(mlogm) floating point operations.

In Section 2, we describe the entropy maximization problem in greater de-
tail. We discuss previous approaches in Section 3, and present our algorithm
and related convergence and complexity results in Section 4. We conclude
the paper in Section 5.

2 Entropy Maximization

In this section, we derive the equations for solving (4) and show that the
solution to the equations can also be obtained by solving a dual problem of
(4). Most of the results can be found in [21, 22, 1, 2, 5]. However, they were
presented informally, and some were not accurate. We describe them more
formally and give mathematical proofs for key facts. In particular, we verify
the regularity condition for maximum entropy problem, which is necessary
for deriving the entropy equations and the dual entropy problem. In [1], an
upper bound for the maximum entropy was established by considering the
dual entropy problem, however the strong duality condition when the duality



gap is equal to zero was not discussed. We show a necessary and sufficient
condition for the strong duality condition to hold. We also provide a proof
for the positive definiteness of the Jacobian matrix of the entropy equations,
which is also the Hessian of the dual entropy problem.

For convenience, we write the entropy maximization problem (4) in the
following general form,

max,  Salp) g
s.t. Cj(p):cj:Fﬁ], j=1,....m (8)
CO(p) = (o = 17 (9)

where C; are linear constraint functionals defined as
Ci(p) = / p(r)Ci(r)dr, j=0,...,m, (10)

with

Ci(r) = eXp(QWiH]TT), j=1,....m (11)
Co(r) = 1. (12)

We now form the Lagrangian function for (7) as follows,
L(p;Aos- -3 An) = Sulp) + 3 MilCilp) — ¢l (13)
=0

If p is a local maximizer of (7), the partial derivative of the Lagrangian
function with respect to p is necessarily equal to zero. We then obtain

—1 = loglp(r)m(r)] + - A,Cy(r) =0, (14)
Solve the equation for p to obtain
plr) = mlr) exp(o — 1) expl3 A, ()] (15)

Let \p — 1 = —log Z. Then,

m(r)

plr) = 7 expl 30,0 (16)
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Since p satisfies the normalization constraint (9),

Colp) = | plr)Colr)dr = | plr)dr =1, (17)

we then obtain Z as a function of Ay,..., A,
Z(Mye i A) = /V m(r) exp[> A C;(r)]dr. (18)
7=1

By applying other constraints (8) to p, we have

m(r) S
- - MCi(r r)dr = 19
/VZ()\l,...,)\m esz; ( e (19)
for y =1,...,m. These equations can be used to determine A,..., A, and
hence p in terms of (16). A compact form of the equations can be written as
0;(log Z)( A1,y Am) =¢;, J=1,...,m. (20)

We state these results more formally in the following propositions.

Proposition 2.1 Let p be a local mazimizer of problem (7). Then there

exist a set of parameters Ag, ..., A, such that
L(0)+ S ACHp) = 0, 21)
Cilp) = [ p(r)Cir)dr = e G=0,....m. (22)

Proof. Given the fact that C; and hence C} are linear independent, the
regularity condition holds at p. Then, there must exist parameters Mg, ..., A,
such that the first order necessary condition for p to be a local maximizer
of (7) is satisfied, which implies that (21) and (22) are necessarily true.
Moreover, since (7) is a convex program, the conditions are also sufficient. O

Proposition 2.2 A sel of parameters Xg,..., M\, salisfy the equalions in
(21) and (22) if and only if the parameters Ay, ..., A, solve the equations,
Vllog Z) (. An) = (23)

where ¢ = (c1,...,¢n)T and 7 is defined as in (18).
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Proof. The proof is as discussed in the beginning of the section and demon-
strated through the derivation from (13) to (20). O

Let GG be a function and () the average value of GG by a probability
distribution p,

(@) = | p(r)Grydr. (24)
Then it is easy to verify that
di(log Z) = (Cj), (25)

I (log Z) = (C;Ck) = (Ci)(Cr) = ((C; = (C))(Cr — (Ck))), (26)

where (C}, — (Cy)) is the complex conjugate of (Cy — (C%)). It implies that
the Hessian of log 7, or the Jacobian of the entropy equations (23), is a
covariance matrix of the deviation of C;’s from their averaged values.

Proposition 2.3 The Hessian of log 7 is the covariance matriz of the de-
vialion of C;’s from their averaged values by the probability distribution p,
and

Vi(log Z) = ((C = (C)(C = (C)T), (27)
where C = (Cy,...,C)T, (C—(C) is the complex conjugate of (C —(C)),

and () is taken component-wise.

Proof. By the definition of 7 in (18),

/\,ﬁexpi/\ Ci(r r)dr (29)
= [ pl)Cir)dr = (C). (30)
It follows that
afk(log Z) = % JQkZ— %@Z&Z (31)
(CiCr) —(C){C) (32)
= ((C; = (C)(Ck — (CK)))- (33)

The Hessian of log 7 is then obtained in the form of (27). O



Corollary 2.1 The Hessian of log 7 is positive definite.

Proof. Let = = (z1,...,7,)" be a nonzero vector and z the complex
conjugate of z.

PV log Z)r = 2((C — (C))(C — (C)F)a (34)
= (2"(C—(O)(C —(C))"x) (35)
= (lz"(C = (C)P) (36)
> 0. (37)

Assume that the equality holds for some =,
252 (log Z)z = (J"(C — (C))) = 0. (3%)

We then have

(C —(C)) =0. (39)

Given the fact that C; # (C;) and C; — (C;) are linear independent of each
other,  must be equal to zero, contradicting to the assumption that = be a
nonzero vector. Therefore,

eV (log Z)x = (]="(C = (C))) > 0, (40)

and V?*(log Z) is positive definite. O

We now show that solving the entropy equation (23) is equivalent to
solving the dual problem of (7). According to the standard theory of convex
programming [15], the dual problem of (7) is a minimization problem for
the Lagrangian function subject to a necessary condition that the partial
derivative of the Lagrangian function with respect to p is equal to zero, that

18,

it Sale) + 30N Cp) - i (41)
s.t. SL(p) + i A;iCH(p) = 0. (42)



Use the condition (42) to obtain p as in (15). It then follows that

MOEDWICIDEE (13)
S / r)log[p(r)/m(r)]dr + g% \[Cip) — ] (44)
- /V p(r)[i X Ci(r) — 1)dr + g% AilCi(p) — ¢l (45)
_ / rydr — E Aje; (46)

= /V eXpZ —1dr—Z/\c] (47)

/\Omiglm /V m(r) exp[i A Ci(r) = 1]dr — i: Ajcj. (48)

..... =0

Let the partial derivative of the objective function with respect to Ag be
equal to zero and solve the equation for Ag. Then, the problem can further
be reduced to

mAinD()\) =log Z()\) — c''), (49)

where A = (Ay,..., )T, e = (e1,...,¢,)T, and Z is defined the same as in

(18). In general, we have for any dual feasible p, Ao, ..., Ap,
) + Z A [C =log Z(A) — "X = D(N). (50)

A necessary condition for A to be a solution to problem (49) is that the
gradient of the objective function at A is equal to zero, and therefore,

V(log Z)(\) = ¢, (51)

which is the same as the equation in (23). Since the Hessian of the objective
function (49) is equal to V*(log Z) which is positive definite, the necessary
condition (51) is also sufficient, and it determines A uniquely.

As a standard result from the duality theory for convex programming, we
obtain the following relationship between problems (7) and (49).
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Proposition 2.4 Let p be any feasible solution of problem (7). Then,
Sa(p) <D(N) (52)

for any X. If p is the maximizer of (7) and X the minimizer of (49), the

equality will hold, and vice versa.

Proof. Consider the dual problem (41). Given any A = (Ay,..., )7, let
Mo =1=log Z(Ai,...,An), and

m(r)

M) = s el M) (53)

Then Ao, A1,...,An, and p) together satisfy the dual constraint (42). In
other words, they form a feasible solution to the dual problem (41).

Let p be a feasible solution to the primal problem (7). Since Sy is concave
and C; are linear, it follows that

Sa(p) < Salpa) +Sp(pa)(p —pa) (54)
= Sulpa) = 2 ACi(p2)(p = ) (55)
< Sulpn) + L AC0) ~ €] (56)
= Sulm) + A Ciln) — el (57)

By the definition of p) and its dual feasibility along with Ag, ..., A,

m

Salpa) + 3 NG (1) - o] = log Z(A) — A = D(A). (58)

=0

The inequality (52) is thus proved.

Suppose that the equality of (52) holds for some p* and A*. Since S (p) <
D(X) for any primal feasible p and any A, there cannot be such p # p* or
A #£ X\* that

8(p) > Salp?) = D(N) > D(A). (59)
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Therefore, p* must be optimal for (7) and A* for (49).
Now let p* be the maximizer of (7) and Aj, AT,..., A% the corresponding

Lagrangian multipliers. Then p* and Aj, AT, ..., A, must also be dual feasible.
It follows that

D(X*) = log Z(A*) — " A" (60)
= Sale) + 2 X[CT) — (61)
— S, (62)

Since D(A) > Sm(p*) = D(A*) for all A, A* must be optimal for (49). O

3 Previous Approaches

The problem (49) can be solved by a standard Newton’s method, as proposed
by Bricogne [2]. The Newton iteration for the problem can be formulated as
follows.

2D — 0 0 [Vz(log Z)()\(l))]_l[V(log Z)()\(l)) — ¢, (63)

where al!) is a step length. Since V?(log Z) is always positive definite, the
Newton’s direction is descent at any point. With a line search procedure,
the method will be able to decrease the function value in every step. If the
function is bounded below, which is the case for problem (49), the method will
eventually converge to the minimum. Moreover, it converges quadratically
when the iterate is close to the optimal solution [9].

We now consider the computation of the Newton step (63). ;From the
discussion in the previous section,

di(log Z) = (Cy), (64)
V(logZ) = (C), (65)
and
I (log Z) = (C;Cr) —(C;)(Cy) (66)
VilogZ) = (CCH"y—(CYCH)Y. (67)



By its definition,

So, in terms of structure factors,

010 7) = Fi, (69)
%(logZ) = Fu,_m, — Fu,F_n,, (70)

and in a general form,

V(logZ) = F, (71)
VilogZ) = K—FFY (72)

where F' = (Fg,,..., Fy, )T, F is the complex conjugate of F', and K a
matrix with Kz = Fy,_n,.

Given any A), we can immediately construct a density distribution func-
tion p() as in (16), and compute V(log Z)(A) and V%(log Z)(A") with the
formulas (69), (70), (71), and (72).

V(log Z)(AY) = FO, (73)
Vi (log Z)(AD) = KO — pO[pOF (74)
with
dillog Z)AV) = Fy, (75)
P(og 2)N) = Ff)_y, — FYFY,, (76)
where for any H;,
ng) = /Vp(l)(r)exp(QwH]TT)dT. (77)

Since all structure factors F}IZJ) can be computed once in O(mlogm) cal-

culations with fast Fourier transform, the gradient V(log Z)(A()) and the
Hessian matrix V(log Z)(A) can be assembled in O(m log m) computation
time. However, the inverse of the Hessian matrix requires matrix factoriza-
tion which takes O(m?) time. Therefore, the time complexity for the whole
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Newton iteration (63) is O(m?®). With such an order of complexity, the
computation of the Newton step can be a computational bottleneck when
m is large. It certainly becomes impractical when the procedure is called
repeatedly as in the Bayesian statistical method for structure determination.

An alternative approach to the problem is to compute the inverse of the
Hessian matrix approximately, without using matrix factorization, and hence
to reduce the total computation time for the Newton iteration. There are
many ways to approximate the inverse Hessian such as the BFGS method.
Bricogne [2] suggested to use the matrix K in (71) as an approximation to
the Hessian V?(log Z). This matrix is known as the Karle-Hauptman matrix
[23]. While its elements can be obtained by doing a fast Fourier transform for
the corresponding density distribution function, the elements of the inverse
can also be obtained by the same procedure for the inverse of the density
distribution function. Let K~' be the inverse of K. Then [K~!'];, = Ey,_n,,
where

Ey,_m, = /V,o_l(r) exp[2m(H; — Hk)Tr]dr. (78)

Since the inverse of K can be computed by fast Fourier transform for the
inverse of the density distribution function, the computation for the iteration
(63), when V?log Z is approximated by K, can be arranged to require only
O(mlogm) calculations. However, the fast convergence property of the orig-
inal Newton’s method is no longer guaranteed by the approximation method.
As a trade-off between fast convergence and low complexity, an ad hoc ap-
proach is taken in the crystallography software BUSTER [5]: The Newton’s
method is used as default, but switched to the approximation method when
more phases are included in the refinement process and the corresponding
entropy maximization problem becomes very large.

4 An Efficient Newton’s Method

We propose a method which uses the same Newton iteration (63), but com-
putes the inverse of the Hessian differently, requiring only O(mlog m) calcu-
lations. The method is based on the observation that the Hessian V?(log 7)
consists of the Karle-Hauptman matrix K with a matrix update F'F'¥. Since
K is positive definite, the Sherman-Morrison-Woodbury formula can be used
to derive the inverse of V*(log 7) as the inverse of K plus a simple matrix
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update. The inverse of K can be obtained by doing a fast Fourier transform
for the inverse of the density distribution function p. Therefore, the inverse of
K and hence of V*(log Z) can be computed in only O(mlogm) floating point
operations. From algorithmic point of view, this method is still the Newton’s
method. However, computationally, it requires only order of m log m compu-
tation, and can thereby be applied to large-scale problems. While requiring
the same order of computation as the approximation method, this method
has the advantage of the Newton’s method and converges to an optimal solu-
tion quadratically when the iteration is close to the solution. It also provides
an accurate Hessian estimate at the solution, which subsequent computation
can benefit from.

We first present the method for computing the inverse of the Hessian
and then the whole algorithm. Some of the computational issues will be
discussed.

The following proposition is a result of extending the Sherman-Morrison-
Woodbury Theorem (see, for example, [9]) to positive definite matrices.

Proposition 4.1 Let T and S be two Hermite matrices, U a vector, and
T=5-UU", (79)

Let 0 = URS™YU. Then T is positive definite if and only if S is positive
definite and o < 1. Furthermore,

—17777H ¢—1
T7-'=87"14 w (80)

1l—0o

Proof. We first show that if T" is positive definite, S is positive definite and
o < 1, and the inverse of T' can be computed by (80).

If T is positive definite, S = T'+ UU¥ must be positive definite. Then,
T-! and S~! exist and are also positive definite. Multiply (79) by S~! from
left and by 77! from right to obtain

STt =17t - s vyt (81)
It follows that

URSU = (1 = URSTT YU T > 0, (82)
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and UM S=1U = o must be less than zero. From (81), we have
T=' =S54 STWwURT ! (83)

Note that in the second part of the formula, if we substitute 7! recursively,

vutT=t = pUuR(sTt 4 STIUURT Y (84)
= vUist yuvtstyutT! (85)
= putsTtyutstvvutT! (86)
= UURST 4 oUURT, (87)
Therefore,
vut st
UURT = ———. (88)
1—0¢
Substitute (88) to (83) to obtain
S=yUH St
T =5"+ — (89)
— O

We now show that if S is positive definite and o < 1, T" must be positive
definite, and the same formula (80) for the inverse of T follows.
If S is positive definite and o < 1, we can construct a matrix,

-1 Hg-1
T =S""+ STUUTST (90)

1 -0
It is easy to verify that 7" is positive definite and
T =T'(S-UU?) = (S —UU")T" = I. (91)

Therefore, T" is the inverse of T and 7" must be positive definite. O

We now consider the Hessian matrix V?(log 7),
Vi(logZ)= K — FF", (92)

where K is the Karle-Hauptman matrix, K3 = Fy,_p,,and F = (Fg,,..., Fy,,)".
By applying Proposition 4.1, we obtain the following results.
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Proposition 4.2 Let 0 = FEK'F and [K~Y;;, = Eu,_m,. Then,

0<o=F'K'"F=> FyEy_pFu, <1 (93)
ik
Proof. The result follows directly from Proposition 4.1 and the fact that
VZ%(log Z) is positive definite. O

Proposition 4.3 Let 0 = FEK='F. Then, the inverse of V?(log Z) can be
computed by the following formula.
K 'FFHK
[Vi(logZ)] ' = K" 4 — = 2 (94)
l—0o
Proof. Since V*(log Z) is positive definite, K is also positive definite, and

o < 1 by Proposition 4.1. The formula can then be derived by using (80) for
Vi(log 7). O

By using the formula (80), we can compute the Newton step (63) directly
without doing numerical factorization, since the inverse of K can be obtained
from a Fourier transform of the inverse electron density distribution. Let us
write the iteration (63) in the following form,

AHD = A _ o0V (log Z2) D] [V(log 2)V — ¢], (95)
where V?(log 7)) and V(log 7)) are the Hessian and gradient of log Z at

M. Since ¢ is a vector of known structure factors F*, and
V(log ) = FO (96)
Vilog )V = KU - pO[pOHA, (97)
the iteration (95) is equivalent to
A+ — (O a(l)[K(l) _ F(l)[F(l)]H]—l[F(l) — F]. (98)
With the formula (80), we can further write (98) as
AED — A L (DA ND (99)
with
FO)H,0
0 — O 0
A =\ T [F(l)]Hu(l)u , (100)



where

v = [KO) e — O (101)
) = [KO)LpO, (102)

Figure 1 shows an outline of the proposed Newton’s algorithm with the
iterates computed using the above formulas. Note that in step 2b, a Fourier
transform is required to obtain all structure factors F]-(l), and the cost is in the
order of mlog m. In step 2c, [K(]~! can be obtained by a Fourier transform
which requires another O(mlogm) time. The remaining work is to form
two matrix-vector products, which may take O(m?) time if done explicitly.
However, the matrix-vector products can be computed by combining the
Fourier transform for [K()]~" with the vectors, each of which then requiring
only O(mlogm) calculations. So in total, the algorithm requires O(m logm)
floating point operations or computing time.

To complete the section, we verify the facts that the inverse of K as well
as the matrix-vector products K~'(F* — F) and K~'F can all be obtained
through certain forms of Fourier transforms.

Proposition 4.4 Let K be a Karle-Hauptman matriz, K;; = Fy,_g,, where
Fy_, = /V p(r) exp[2mi(H; — Hy)Tr]dr. (103)

Then K~' can be obtained with [K '], = Ey,_n,, where
B g, = /V p~ () expl2mi(H; — Hy)Tr]dr. (104)

Proof. Let L = KK~!'. We show that L is an identity matrix. By the

definitions of K and K1,

Lig = Y Fr-nbn-m, (105)
= > Fu,_n /V,o_l(r) exp[2mi(Hy — Hy)"r]dr (106)

= /Vp_l(r) exp[2mi(H; — Hy)"r] (107)

> Fy,_p, exp|—2mi(H; — H;)"r)dr (108)
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The Proposed Newton’s Algorithm

1. Input initial A(®). Set [ = 0.
2. Repeat

(a) Compute

70y = /V m(r)exp[iAy)q(r)}dr

pO(r) = /Vznfff%) eXp[;AE”CMdr

b) Compute, for 7=1,...,m
( pute, for j =1,...,m,
Fj(l) :/Vp(l)(r) exp(?m'H]Tr)dr

(c) Set

[F(l)]HU(l)
1— [FOHLO "
2D — A L (AN

AND = (0 4

I = 1+1

(e) If the optimality condition is satisfied, go to 3.

3. Set A* = X p* = p(), Stop.

Figure 1: Outline of the proposed Newton’s algorithm
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= /p r)exp[2mi(H; — Hk) rlp(r)dr (109)
= /Vexp[sz(Hj—Hk)TT]dT. (110)

It is easy to see that Ljz = 0if 7 # kand Ljz = 1if j = k. L is indeed an
identity matrix. The same result can be obtained for L = K~'K. O

Proposition 4.5 Let K be a Karle-Hauptman matriz, K, = Fg,_pg,. Let
L=KF. Then

L = / p- r)exp[2mi H r]dr, (111)
where

= Fpg, eXp(—ZmHjTT). (112)

i=1

Proof. We show that L; = Y7, [K~'];;Fy,. By the definition of p(r),

L, = /Vp_l(r)ﬁ(r)exp[QWiHlTr]dr (113)

= / p ' (r)> Fu, eXp(—QﬂiH]Tr) exp[2mi H r]dr (114)
% =

= 2 Em-nFn, (115)
i=1

= > [K7')yFn, (116)
i=1

O

Proposition 4.6 Let K be a Karle-Hauptman matriz, K, = Fg,_g,. Let
L=K"'YF*—F). Then

L= / p- r)exp[2mi H r]dr, (117)
where
=Y (Fr, — Fau,) exp(—2miH]r)dr. (118)
7=1

18



Proof. Similar to the previous proposition, we show that

Ll = Z [[(_l]lj(F;I] — FH])
J=1
By the definition of p(r),

L, = V,o_l(r)ﬁ(r)exp[QmHlTr]dr (119)

= p~ (r)> (Ffy — Fu )exp(—ZﬂiH]-Tr) exp[2mi H r]dr (120)
v ’ !

7=1
= > En-n,(Fg, — Fn,) (121)
7=1
= S [Ky(Ff - Fu,). (122)
7=1

5 Concluding Remarks

In this paper, we studied the maximum entropy problem in the Bayesian
statistical approach to the phase problem in protein X-ray crystallography.
Since the solution of the problem is required in every step of the Bayesian
method, an efficient algorithm for solving the problem is important especially
for large-scale applications. Previous approaches used standard Newton’s or
approximation methods. They were either costly, requiring O(m?®) compu-
tation time, or not able to guarantee the fast convergence, where m is the
number of structure factors of interest. We derived a formula to compute the
inverse of the Hessian in O(m logm) computation time, thereby reducing the
time complexity of the Newton’s method. With this formula, we will be able
to apply the Newton’s method to large-scale problems with low computation
cost and fast covergence rate.

We described the entropy maximization problem and reviewed previous
approaches to the problem. Some of the previous results were given only
informally in literature. We gave more formal descriptions and provided ac-
curate proofs for key mathematical facts. We think that this is necessary
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for understanding the problem correctly and finding a riguous solution to
it. In particular, we verified the regularity condition for the maximum en-
tropy problem, which was neglected in the previous approaches. We studied
the strong duality condition for the primal and dual entropy problems, and
showed a necessary and sufficient condition for the dual minimum to be equal
to the primal maximum. We also provided a proof for the positive definite-
ness of the Hessian matrix for the dual problem.

Our method for computing the inverse of the Hessian is based on the ob-
servation that the Hessian contains a positive definite matrix K and a rank-
one update FFH. Therefore, by using the Sherman-Morrison-Woodbury
Theorem, the inverse of the Hessian can be computed as the inverse of the
positive definite matrix K plus a simple matrix update. In the paper, we
first developed a Sherman-Morrison-Woodbury formula for positive definite
matrices, and then applied it to the Hessian matrix of the entropy problem
to obtain an inverse update. We also showed that the inverse of the pos-
itive definite matrix K can be computed in O(mlogm) through a Fourier
transform for the inverse of the electron density distribution.

Entropy maximization has broad applications. We only focused on its
application in phase determination. Interested readers are referred to [14]
for a general review on the subject. Here we would like to acknowledge
Yunkai Zhou for bringing the reference [14] to our attention.
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