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Abstract. We review a Bayesian statistical approach to the phase problem
in protein X-ray crystallography. We discuss the mathematical foundations and
the computational issues. The introduction to the theory and the algorithms
does not require strong background in X-ray crystallography and related physical
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1 Introduction

X-ray crystallography is the most practical approach to protein structure
determination. In a total of about 8,000 protein structures deposited in the
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BNL PDB data bank, more than 80 percent of them were obtained through
X-ray crystallography. With the development of recombinant DNA technol-
ogy, which makes protein crystallization and amino acid sequence determi-
nation more feasible than ever before, even more structures are expected to
be solved through X-ray crystallography in the next five to ten years.

The basis of crystallography is to determine the structure for a protein
through the X-ray diffraction pattern produced by crystals of the protein. To
prepare for this, the protein needs to be purified, crystallized, and examined
by special equipment to obtain a set of X-ray patterns. Once these procedures
are completed, the diffraction data are examined and the structure is deduced
(39, 15, 23, 24].

An X-ray beam, when passing through a protein crystal, is diffracted
through scattering by the electrons of the atoms in the protein. The diffracted
X-ray is therefore related to the distribution of the electrons in the crystal.
The diffraction pattern can be specified by a set of complex numbers called
structure factors, {Fg : Fu = |Fu|e®®}, each reflecting in some sense
the brightness of the X-ray light (the amplitude |Fy|) and the light wave’s
origin (the phase ag). Let the electron density distribution of a crystal
system be denoted by a function p(r) where r is a three dimensional vector
representing an arbitrary point in the three dimensional space. Then, there
is a correlation between the electron density distribution and the structure
factors by the following Fourier transform pair,

Faa = /V p(r) exp(2riH - 1) dr, (1)

p(r) = %: Fyexp(—2miH - r), (2)

where V is the unit cell of the crystal and H a three-dimensional integer
vector.

iFrom equations (1) and (2), we see that if we know all the structure fac-
tors, we can immediately obtain the electron density distribution function,
and vice versa. Once we have the electron density distribution function, a
standard procedure can be used to obtain the atomic coordinates via anal-
ysis of electron density contouring. However, in practice, we do not fully
know the structure factors from the experimental data. ;From the X-ray
diffraction measurements, we see only the magnitudes, while the phases are
missing. Here, there arises the well-known phase problem, which has chal-



lenged scientists for decades to find an efficient and reliable solution to it,
that is, given all the intensities (or amplitudes) of the structure factors, find
all the phases and then use them to determine the structure of the crystal.
If we view the crystal as a set of separate atoms each surrounded by its
electrons, the equation in (1) can be simplified to the following form,

g = z”: fiexp(2miH - r;), (3)

i=1

where n is the number of atoms in the unit cell of the crystal, r; is the three
dimensional position of atom j7, and f; is called the atomic scattering factor,

Ji= | plr)exp(2niHl 1) dr, (4)
J
where V; C V is the volume containing only atom j. It is reasonable to
assume that all atoms of a given type have the same electron density dis-
tribution. Then, the integral in (4) can be calculated and tabulated with
quantum mechanical methods for every different atomic type.

Still, given the amplitudes, there can be arbitrarily many possible values
for the phases. Therefore, the phase problem seems not fully defined and
has even been considered unsolvable in the past. However, if we write Fg in
(3) in the explicit complex form, we will be able to obtain a set of nonlinear
equations,

| Fa|exp(1®n) Zf] exp(2miH - r;), (5)

for all H for which | Fg| is given in the diffraction data. Let m be the number
of structure factors, and consider both the real and imaginary parts of each
equation. We can then have total 2m equations, while there are only 3n +m
unknowns, the coordinates r; and the phases ay. Since usually m > n
for small molecules, the unknowns are over-determined, and in principle,
the equations can be solved. In particular, a solution can be obtained by
minimizing a nonlinear least squares function for the equations subject to
a set of constraints that agree with certain structural invariant and semi-
invariant properties of the phases. Hauptman and Karle [28] developed a
method based on these observations and applied it successfully to small and



centrosymmetric systems. Their work followed by later developments led
them, in particular one of them, Herbert Hauptman, as a mathematician, to
win the Nobel prize in chemistry in 1984.

The equations in (5) become difficult to solve when applied to large
molecules such as proteins. First, it is difficult to obtain enough diffrac-
tion data for large systems as required. Second, which is also related to the
first, the solution for such a system usually converges slowly, if not diverges,
due to inherent approximations, large search spaces, as well as poor initial
points. Several research groups have worked on improving the algorithms so
that they can be applied to large molecules, such as with the Shake-and-Bake
method by Hauptman, et al [10, 11, 26].

In this paper, we review an alternative approach to the phase problem, the
Bayesian statistical approach, proposed and pursued by Bricogne and several
others in the last ten years or so [1, 2, 6, 3, 4, 5, 12, 13, 14, 17, 20, 21, 22, 41,
45]. This approach finds a solution to the phase problem by using statistical
techniques rather than satisfying the equations in (5). With this approach,
inaccuracy in the data or the model are better tolerated, different levels of
experimental knowledge can be incorporated in the solution procedure, and
the solution is deduced with Bayesian statistical inference tools.

The central idea of the Bayesian statistical approach is to use the Bayesian
Theorem to evaluate the posterior probability of any hypothetical values
for a subset of phases given the prior knowledge of the amplitudes for all
the structure factors. A set of values for the phases are selected when the
posterior probability is maximized. The process can be repeated by adding
more trial phases until all of them are included and the crystal structure is
determined.

In order to take this approach, the set of structure factors often is divided
into two subsets, a basis set H and a non-basis set K. Algorithms are
designed to select or refine the phases in the basis set, and extend them by
including more phases from the non-basis set. The given condition is the
known values for the amplitudes of the factors in both basis and non-basis
sets, and the decision for accepting a set of phases in H is based on the
conditional probability P(H/K) for H given K, meaning the probability of
having a crystal structure with factors in H given the fact that it already
has the factors in K.

Recall in the statistical theory [35, 34], given a set of random events,
C;, g =1,...,n, with C;’s pairwise disjoint, and an additional event D, the
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conditional probability of C; for any j given D is computed by the Bayesian
Theorem,

P(C;)P(D/Cy)
P(D) ’

P(C;/D) = P(D)=)_P(C)P(D/Cy). (6)

By using the Bayesian Theorem, the conditional probability P(H/K), or
more accurately, the posterior probability of H given K, should be
P(H)P(K/H)

P(H/K) = PR

P(K) =Y P(H)P(K/H). (7)

The Bayesian statistical approach to the phase problem requires evaluat-
ing, or in other words, maximizing the conditional probability in (7) in every
step, and therefore, its major computational components are computing the
probabilities required in (7), and in particular, P(H) and P(K/H). One
reasonable way of calculating the probability P(H) is by using the maxi-
mum entropy theory of statistical mechanics and information theory. The
conditional probability P(K/H), according to standard statistical theory, is
the likelihood of H giving rise to K. The computation of this probability
requires maximum likelihood calculations.

In the following sections, we will describe in greater detail the Bayesian
statistical approach to the phase problem. Following closely its develop-
ment by Bricogne et al, we discuss the mathematical foundations and the
computational issues, and show how the approach can be applied to phase
determination, and in particular, phase refinement and extension. Our goal
is to understand the mathematical structure and the computational problems
through a complete and accurate description of the approach. We also wish
to provide a relatively self-contained review on the approach so that readers
do not need to search the literature or to have background or experience in
X-ray crystallography and related physical disciplines. We start with a brief
introduction to protein X-ray crystallography in Section 2. The historical
development of the direct methods for phase determination is reviewed in
Section 3. A full description of the Bayesian statistical approach is given in
Section 4. The computational problems for entropy maximization and max-
imum likelihood calculation are discussed in Sections 5 and 6. The phase
determination procedure is demonstrated for phase refinement and extension
in Section 7. Comments and remarks are made in Section 8 on issues yet to
be addressed in the approach and possible future developments.



2 Protein X-ray Crystallography

Before taking an X-ray diffraction data, the protein needs to be purified and
crystallized, usually requiring substantial laboratory efforts which do not
necessarily succeed every time. Many protein crystals take weeks, months,
or even years to grow. A crystal consists of atoms arranged in a certain
pattern that repeats periodically in three dimensions. It diffracts X-rays,
and produces regular diffraction patterns which can be recorded on X-ray
detectors. Since proteins are large molecules and the diffraction tends to
be weaker than that from small molecules, powerful X-ray sources, such as
synchrotron radiation, often are required for protein crystals.

An individual X-ray pattern typically shows a two dimensional image with
numerous diffraction spots nicely arranged in lattices. Typically one hundred
or so of these images are taken while slowly rotating the crystal in the X-ray
beam to yield a set of diffraction intensities mapped in three-dimensions.
Once this data set is obtained, the crystal structure can be deduced from
the positions and intensities of the spots since they correspond to the three
dimensional arrangement of the atoms in the crystal. However, a nontrivial
mathematical problem needs to be solved to achieve this.

More accurately speaking, the X-ray diffraction is generated by the elec-
trons in the crystal. When an electron is hit by the X-ray beam, it “feels” the
wave of the X-ray light and oscillates. It scatters the X-ray as it oscillates,
the result of which is what we observe as diffraction. The electrons move
quickly around the atoms. Their configuration can only be described by an
electron density distribution function. The atoms can then be identified in
the high-density regions of the function.

The total diffraction from an atom with many electrons, called atomic
scattering factor and given in (4), is assumed the same for the same type
of atoms. It can therefore be calculated with standard quantum mechanical
methods and tabulated for multiple uses.

In the above sense, the atoms can be regarded as higher level units than
electrons scattering the X-ray beams. The diffraction from the whole crystal
is an aggregation of all atomic scattering. Each structure factor is simply the
complex sum of the scattering factors contributed from all the atoms to the
particular factor as shown in (3).

The periodic structure of the crystal is key to the X-ray diffraction. Crys-
tals are built with repeating structures, called unit cells, aligned in a certain
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Figure 1: (a) A two-dimensional view of a crystal lattice, (b) X-rays scattered
by the atoms in different directions

order in three dimensions. A unit cell may have one or more atoms, or one or
more molecules, but all the cells have the same atoms or molecules and the
same three-dimensional structure. If one atom appears in one unit cell, it ap-
pears with the same position in all others as well. All these atoms then form
a three-dimensional lattice. The lattice structure is invariant with the choice
of the origin and only depends on the structure of the crystal. Formally, a
three-dimensional lattice is a set of points L defined as

L:{p|p:Ma+Vb+£C7 ,LL,I/,fEZ, a7b7C€R3}7 (8)

where a, b, and ¢ are unit vectors specifying three lattice dimensions. For a
crystal lattice, a, b, and ¢ often are chosen for convenience to be the axes of
the unit cell.

Suppose that we have a crystal lattice with an atom at each point of the
lattice as shown in two dimensions in Figure 1. When atoms are hit by the X-
ray beam, they start scattering X-rays in different directions. The diffracted
X-rays from different atoms interfere and cancel each other except for some
particular directions where they are enhanced instead. As a result, we observe
certain patterns of diffraction from which the structural information can be
derived.



X-rays are nothing more than very energetic light waves and can be de-
scribed by a complex function,

27

), 9)

X = Aexp(s

where X is the displacement of the wave, A the magnitude, A the wavelength,
and ® the phase.

As shown in Figure 2, let A; and A, be two atoms with a distance in
between equal to d, X; and X, two incident X-rays on A; and A,, and X
and X} two scattered X-rays by A; and Aj, respectively. The scattered X-
rays X] and X} have the same wavelength as the original X-rays, but their
phases are different by an amount related to the distance p 4+ ¢. ;From
Figure 2 we can see that

p+q=dsinb, + dsin 0. (10)

For X-rays X] and X} to be enhanced rather than canceled by each other,
the phase difference in between has to be a multiple of the wavelength, that

18,

dsin#; + dsinf, = n), (11)

where n is an integer.

The equation in (11) is called the Laue Equation. Note that in general
the angles #; and 6, are not equal. However, the scattered X-rays X; and
X can be viewed as if they were reflected from X; and X3 on two imagined
reflecting planes Ry and R,, respectively, with a reflecting angle §. Based on
this observation, the Laue Equation can then be simplified as

2d' sin 0 = n), (12)

where d' is the distance between the two reflecting planes. The equation in
(12) is called the Bragg’s Law of X-ray diffraction, and X-ray diffraction is
hence also called X-ray “reflection”.

Now consider the atoms in the three-dimensional crystal lattice along
directions a, b, and ¢. In order for a reflecting plane to have reflections
enhanced from the atoms along all these directions, it must satisfy the Bragg’s



Figure 2: X-ray diffraction-reflection from a crystal lattice

Law for the atomic pairs along a, b, and ¢ simultaneously. Therefore,
2d, sinf = R, (13)
2dysinf = kX, (14)
2d/ sinf = I\, (15)

[u—y

where h, k, and [ are integers, and d, d;, and d/, are the distances between
the neighboring reflecting planes along a, b, and ¢, respectively. Since each
of the reflecting planes corresponds to one of the reflections and is determined
uniquely by the triplet (h,k,!), the latter, called the Miller index, is used as
a label for the reflecting plane as well as the corresponding reflection. It also
defines a point in the reciprocal lattice of the crystal.

Let a crystal lattice L be defined by (8). Then, the reciprocal lattice of
L is defined as

L*={p* | p* = ha" + kb* +ic*, h,k,l € 7}, (16)
where
b xc axec axb
@ v v € v (17)



where V' is the volume of the unit cell of the crystal lattice.
There are several important relationships between the crystal lattice and
its reciprocal lattice. We state them in the following propositions.

Proposition 2.1 Let a, b, and c be the unil vectors for the crystal lattice,
and a*, b*, and c* those for the reciprocal lattice. Then,

a® = b:-b"=c-c" =1, (18)
a-b"=a.-¢® = b-a"=b-c"=c-a"=c-b"=0. (19)

Proof. It follows immediately from the definition of a*, b*, and ¢*, and the
facts that

a-(bxec) =V (20)
b-(axe) = V (21)
c-(axb) = V, (22)
and
a-(axb) = a-(axe)=0 (23)
b:-(bxe) = b-(axb)=0 (24)
c-(axe) = c-(bxe)=0. (25)
O

Proposition 2.2 Let H be a vector, or in other words, a poinl in the recip-
rocal lattice,

H = ha™ + kb* + Ic”. (26)
Then, H is normal to the reflecting plane (h,k,l) in the crystal lattice.
Proof. Let r be a vector on the reflecting plane (h, k,[) and
r=za+yb+ zc. (27)

Let the projections of a distance vector d between two neighboring planes
on a, b, and ¢ be d,, d}, and d.. Then, d = d,a+ d;b+ d.c, and d/, d}, and
d’ are proportional to h, k, and [, respectively, that is,

d, d, d.

a

A - ; «a (28)
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for some a # 0.
Since the distance vector is perpendicular to the reflecting plane,

d-r:d’ax—l—dgy—l—dlcz:a(hx—l—ky—l—lz):0. (29)

It follows that
Hr=hx+ky+lz=0, (30)

and H is normal to the reflecting plane (h,k,[). O
Proposition 2.3 Let A be an alom in the crystal lattice with a position
ra = zaa+ yab + z4c. Let H be the norm of the reflecting plane (h,k,1),

H = ha* + kb* + Ic*. Then the contribution to the diffraction spot (h,k,I)
from atom A, denoted Fg, is a function of ry4,

F4 = faexp(2miH -14) = faexp[2mi(ha s + kyas + 124)], (31)
where f4 is the atomic scattering factor of atom A.

Proof. By the definition of Fj,
FA = / p(r) exp(2niH - r)dr, (32)
Va
where V4 C V is a volume containing only atom A. Let r = r’ 4+ r4. Then,

Fg = / p(r' 4+ ra)exp(2miH - r')dr’ exp(2miH - r4) (33)
v

= fAzxp(QwiH ‘T4) (34)
= faexp2mi(hxa + kya + lz4)]. (35)
O

The reflection from the whole unit cell of the crystal lattice is the sum of
the reflections from all the atoms in the unit cell, and therefore,

Fa=) Fy=)_ [jexp(2miHl 1r;) = [;exp[2mi(ha; + ky; + 12;)], (36)
j=1 j=1 j=1
where Fgy is the reflection (h, k,[) from the whole unit cell, and is also called
the structure factor (h, k,[) of the crystal lattice.

In typical X-ray crystallography experiments, each structure factor Fyg
corresponds to a spot of the light on the X-ray detector, and the intensity
of the light is proportional to the square of the amplitude of Fg. Therefore,
the amplitudes of all Fg can be obtained by measuring the intensities of the
recorded diffraction on the X-ray detector.
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3 Direct Methods for the Phase Problem

The structure factor can be defined in a general form in terms of the electron
density distribution function p(r), that is,

Fua = /V,o(r) exp(2mH - r) dr, (37)

where V is the unit cell of the crystal. This formula reduces to (36) when
the integration is taken by part for each of the atoms. On the other hand,
p(r) can be expanded as a Fourier series with the structure factors in (37)
being the coefficients,

p(r) = > Fuexp(—2miH -r). (38)

The formulas (37) and (38) show a direct relationship between the electron
density function and the structure factors, or in other words, a relationship
between the crystal structure and the X-ray diffraction pattern. If we know
all the structure factors, we can immediately obtain the electron density
distribution function and hence the atomic structure of the crystal. However,
from X-ray diffraction experiments, all we know about the structure factors
are their amplitudes but not the phases, given the fact that they are complex
numbers and physically represent both intensities and directions of diffracted
X-rays. In order to determine the crystal structure, we have to first solve
a so-called phase problem, that is, find all the phases based on the given
experimental data for the amplitudes so that the electron density distribution
of the crystal can be fully determined.

The phase problem is not trivial to solve. Usually, not much knowledge is
available about the structure of the crystal. Then, for a given set of values for
the amplitudes, the phases can be anything to fulfill the equations in (37) and
(38). On the other hand, if we set the phases to some arbitrary values, the
function p(r) they define will most likely give a meaningless structure. For
example, it may become negative in some regions, which completely violates
the physics.

However, if we consider the structure factor Fy as given in (36) and write
it explicitly in its complex form, we then obtain the following equation,

| Fa|exp(i®u) = Zn: fiexp(2miH - r;). (39)

i=1
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Given f;’s a priori and |Fg| from the experiment, the equation has the
unknowns @y and r;’s. For a whole set of H, we obtain a system of equations
over-determining the unknowns: If we separate the real and imaginary parts
of the equations, we obtain 2m of them, where m is the number of known
| Faa|’s, while there are m + 3n unknowns with m phases and 3n coordinates
and m > n. Therefore, in principle, the phases together with the coordinates
of the atoms can be determined by solving a system of equations defined
by (39). The solution for the phases ®g will provide a description of the
crystal in terms of its electron density distribution. The values for the atomic
coordinates r; will suffice to determine the crystal structure at the atomic
level, which should also be consistent with the results from the electron
density distribution.

The phase problem has been a great challenge in X-ray crystallogra-
phy. Many approaches, experimental, mathematical, and computational,
have been pursued and applied to important applications. A direct method
for the phase problem is a method of determining the phases for a given
set of diffraction data by solving the equations (39) without assuming much
prior knowledge about the structure. Historically, it also has a strong flavor
of using probability theory to find the most probable solution to the phase
problem. Work on direct methods started in 1950’s. The most important
landmark in the area was the book by Hauptman and Karle [28] published
in 1953. Hauptman and Karle laid fundamental work for direct determina-
tion of the phases from the observed amplitudes. In particular, they studied
equations (39) and developed a solution method in a probability-based least
squares sense [27, 28, 31]. More specifically, phases and atomic positions
in equations (39) were sought to fit the experimental data. In addition to
the observed amplitudes, important relationships among phases or structure
factors were also developed and used in the solution process, including the
joint probability distribution of the structure factors, structural invariant
and seminvariant properties of phases, etc. The work by Hauptman and
Karle followed by later developments led to successful phase determination
for small molecules, for example, with less than 100 atoms. Their method
has been used in many of the laboratories as a routine procedure for crystal
analysis.

Direct methods have been further studied and developed for decades since
Hauptman and Karle. Improvements were made for more reliable and effi-
cient procedures. However, a big challenge still remains for the methods to

13



apply for large molecules such as proteins, as demanded in the fast grow-
ing area of structural molecular biology. For large molecules, the data ob-
tained from the X-ray experiment is not as sufficient and accurate as re-
quired by the direct methods. The system of equations (39) becomes diffi-
cult to solve because of too many variables (more than thousands). More
information about the phase relationships is also necessary to restrict the
search to more probable regions. Several new approaches have been pur-
sued in recent years, including the convolution equation method , the max-
imum determinant method, as well as the original Hauptman-Karle method
[18, 43, 25, 33, 40, 36, 44]. In particular, a so-called Shake-and-Bake method
extended from the original Hauptman and Karle approach has been devel-
oped and tested on a set of small protein problems [10, 11, 26].

The direct methods have not been as successful for protein structure de-
termination. Among all protein crystals studied so far, most of them were
determined by using other more experimental approaches such as isomor-
phous replacement, molecular replacement, multiple wavelength anomalous
dispersion, etc. [23, 24]. These methods incorporate more experimental or
physical knowledge about the crystal structure and are able to determine
specific molecules effectively. However, they are more problem specific, rely
on the availability of structural knowledge or special experimental facilities,
and therefore, cannot be applied to general cases. A general and efficient
direct method for ab initio phase determination is still of great interest and
importance to the structural determination of large molecules.

4 The Bayesian Statistical Approach

The Bayesian statistical approach uses statistical theory to derive the phases
directly from the known amplitudes of the structure factors. The general
principle applies to non-direct determination of the phases as well.

The central idea of this approach is using the Bayesian Theorem to eval-
uate the posterior probability of a set of structure factors given any prior
knowledge of their amplitudes (or phases). The most probable ones are se-
lected, from which the correct phases are determined.

The whole process starts from a small set of factors H,

H:{Fﬁ]:jzl,...,mH}. (40)

14



Let K be another set of factors with all but H factors,
K= {FI*<] cj=1,...,mg}. (41)

Then, the Bayesian Theorem is applied to compute P(H/K) for any partic-
ular H given K, that is, the probability of having the factors in H given the
factors in K. An optimal set H is selected when P(H/K') is maximized. The
next step is to expand H to include more factors from K. The process then
repeats until H is expanded to the whole set of factors.

By using the Bayesian Theorem,

P(H)P(K/H)

PUHIK) = =557

P(K) =Y P(H)P(K/H). (42)

This formula reveals a relationship between the two sets of structure factors.
It can be used for dual purposes, that is, if K is somehow fixed, H can be
determined by solving an optimization problem,

max P(H/K), (43)
and if H is fixed, K can be optimized by
max P(H/K). (44)

Since the amplitudes for H and K are all known. The problems are essentially
for determining the phases. The first problem is used for phase refinement
or improvement for H and the second for extending phases to K with no
previous phase information.

We now consider phase refinement. Note that P(K) is constant no matter
what H is. Therefore, the problem becomes

max P(H)P(K/H). (45)

According to the standard statistical theory, P(K/H) is the likelihood of H
giving rise to K denoted A(H/K). So the problem in (45) really is to maxi-
mize the product of the probability of H and the likelihood of H giving rise
to K. The first issue here is how to compute the probability and the likeli-
hood. The probability P(H) can be computed by considering the entropy of
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the corresponding physical system, while P(K/H) through maximum likeli-
hood calculation. We explain the basic ideas in the following and leave more
details in Section 5 and 6.

In order to compute the probability P(H), we consider the entropy of the
crystal system that produces H. The term entropy is from statistical physics
and information theory [29, 30, 42, 37, 38]. It measures the uncertainty of a
physical system or the amount of information a communication system may
convey. Mathematically, if the movement of the particle in a physical system
is described by a probability distribution function ¢(r), where r is a random
position of the particle, the entropy of the physical system then is defined as

H(g) = - [ q(r)log g(r)dr. (46)

where V is the space that contains the system, and ¢ is positive everywhere
and

/V g(r)dr = 1. (47)

For two probability distributions ¢ and p, the relative entropy of ¢ with
respect to p is defined as

Si(a) = = | a(r)loglg(x)/p(x)]dr. (43)

where p is also called a prior distribution of q.

It is easy to verify that a uniformly distributed system has the maximum
entropy, that is, Hee = H(m) = log V', where m(r) = 1/V is the uniform
distribution function, and V' is the volume of the system. We now consider
the relative entropy of any ¢ with respect to m. From the definition in (48),

Snla) =~ [ a(x)loglq(x)/m(r)]dr. (49)

Note S;(q) measures the entropy loss of a system. It is zero when ¢ is
equal to m, and negative otherwise (losing entropy). On the other hand,
if Sin(q) = 0, ¢ must have the maximum uncertainty and be equal to the
uniform distribution m. If S5 (q) < 0, ¢ must be restricted and less uniform,
and Sz (q) is the maximum entropy allowed by the restraints,

max, Sz(q) (50)
sit. qecC, (51)
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where C is the feasible set of q.

For a crystal system with a normalized electron density distribution p(r),
the entropy of the system can be calculated by solving problem (50. In
particular, if p is such that the structure factors have the values in H, the
entropy of p can be obtained by maximizing the entropy function subject to
the constraints for the structure factors in H,

max, Sa(p) (52
s.t. / p(r)exp(2mH; -r)dr = Fg., j=1,...,myg (53)
v J

/V p(r)dr = 1. (54)

Let the maximum entropy be denoted by &7 and the corresponding density
distribution by pg. Then,

S, = Salpn) = = [, pu(x)loglps (x) /m(x)ldr, (55)

If the system has N electrons, the probability for the system to have a density
distribution py and hence the structure factors in H can now be computed
by the following formula,

P(H) = P(pn) = exp[NSn(pn)] = exp(NSL). (56)

In Section 5, we will see how S2 can be obtained by solving the entropy
maximization problem (52) as a convex programming problem.

We now consider how the probability P(K/H) is computed. The entropy
idea for P(H) also applies to P(K/H) for which the prior distribution be-
comes py instead of m. The entropy of any probability distribution p given
the prior pg is

Sonlp) = = [, p(x)loglp(x)/pr(r)ldr, (57)
while the entropy of p with any constraints is calculated by

max, S,,(p) (58)
st. pecC, (59)
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where C is the feasible set of p. If C is defined such that p has the structure
factors in K, the entropy of p can be computed by solving a similar problem

as in (52),
max, Sy, (p) (60)
s.t. / p(r)exp(2mK; -r)dr=Fg, j=1,....mg (61)
Vv J

/V p(r)dr = 1. (62)

Let the maximum entropy be denoted by S and the corresponding density
distribution by pgr. Then,

S = Soulpw) = = [ pic(x)loglp(x)/p (r)]dr. (63)

If the system has N electrons, the probability for the system to have a density
distribution pg and hence the structure factors in K given those in H can
now be computed by the following formula,

P(K/H) = P(px) = expINS,,(px)] = exp(NS2, ). (64)

However, in practice, Fj; are not fully given. Only their amplitudes are
known. The constraints in (61) then become nonlinear, making the problem
more difficult to solve. In Section 6 we describe how an approximate problem
can be formulated and solved instead.

5 Entropy Maximization

We now consider how to solve the entropy maximization problem in (52).
For convenience, we write the problem in the following general form,

max, Sa(p) (65)
st. Cilp)=¢j=Fg, j=1....m (66)
Co(p) = co =1, (67)
where C; are linear constraint functionals defined as
Ci(p) = [ p0)Ci(r)dr, j=0,....m. (68)
(69)
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with
Ci(r) = exp(2miH;-r), j=1,....m (70)
Co(r) = 1. (71)

Since the objective function is concave and the constraints are linear, the
problem is a convex program. In fact, the objective function is even strictly
concave, and therefore, the solution to the problem must also be unique.

We now form the Lagrangian function for the problem as follows,

£(pAor o A) = Salp) + L AIC(0) il (72)

If p is a local maximizer of problem (65), the partial derivative of the
Lagrangian function with respective to p is necessarily equal to zero. We
then obtain,

1= loglp(r)/m(x)] + 32 A;Cs(x) = 0. (73)
7=0
Solve the equation for p to obtain

plr) = m(r) exp(ho — 1) exp[3° A, €] (74)

Let \p — 1 = —log Z. Then,

m(r)

plr) = " expl3 ) (73

Since p satisfies the normalization constraint (67),

Colp) = | p(r)Co(r)dr = [ p(r)dr = 1. (76)

\%
we then obtain Z as a function of Ay,..., A,
Z(Mye i) = /V m(r) exp[3 A;C;(r)]dr. (77)
7=1
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By applying other constraints (66) to p, we have

Th(r) m
for y =1,...,m. These equations can be used to determine A,..., A, and

hence p in terms of (75). A compact form of the equations can be written as
)0\, (log Z)( A1, ... ) = ¢, g=1,...,m. (79)
We state these results formally in the following propositions.

Proposition 5.1 Let p be a local mazimizer of problem (65). Then there

exist a set of parameters Ag, ..., A, such that
Snlp) +2_XCi(p) = 0, (80)
7=0
Cilp) = [ p)Cir)dr = e j=0,....m. (81)

Proof. Given the fact that C; and hence C! are linear independent, the
regularity condition holds at p. Then, there must exist parameters Ag, ..., A,
such that the first order necessary condition for p to be a local maximizer
of (65) is satisfied, which implies that (80) and (81) are necessarily true.

Moreover, since (65) is a convex program, the conditions are also sufficient.
O

Proposition 5.2 A sel of parameters Ao, ..., . salisfy the equalions in
(80) and (81) if and only if the parameters Ay, ..., A, solve the equations,

Vllog Z) (Ao h) = c. (52)
where ¢ = (¢, ...,¢,)7 and 7 is defined as in (77).

Proof. The proof is as discussed in the beginning of the section and demon-
strated through the derivation from (72) to (79). O

Let GG be a function and (G) the average value of GG by a probability
distribution p,

(@) = [ p(x)G(r)dr. (83)
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Then it is easy to verify that

di(log Z) = (Cj), (84)
wlog Z) = (C;Cx) = (C5)(Cr) = {(C; = (C)(Cr — (Ck))),  (85)
where (C}, — (C})) is the complex conjugate of (C} — (C%)). It implies that

the Hessian of log 7, or the Jacobian of the entropy equations (82), is a
covariance matrix of the deviation of C;’s from their averaged values.

Proposition 5.3 The Hessian of log 7 is the covariance matriz of the de-
vialion of C;’s from their averaged values by the probability distribution p,
and

Vi(log Z) = ((C — (C))(C — (C)"), (86)

where C = (Cy,...,Cn)T, (C—(C)H is the complex conjugate of (C—(C)),

and () is taken component-wise.

Proof. By the definition of 7 in (77),

/V %exp[ih@(ﬂ]cj(r)dr (88)
= [ p(nC(r)dr = (). (89)
It follows that
P(log 7) = %a;kz_%ajzakz (90)
= (C;Ck) = (C5)(Ch) (91)
= ((C; —(C)(Ck = (Ck))) (92)

The Hessian of log 7 is then obtained in the form of (86). O

Corollary 5.1 The Hessian of log 7 is positive definite.
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Proof. let x = (71,...,7,)" be a nonzero vector and x” the complex
conjugate of x.

x"V(log Z)x = x"((C—(C))(C —(C))")x (93)
= (x"(C-(C))(C - (C))"x) (94)
= (x"(C—{(C)P) (95)
> 0. (96)

Assume that the equality holds for some x,
x"V(log Z)x = (|x"(C — (C))]*) = 0. (97)

We then have

x7(C —(C)) = 0. (98)

Given the fact that C; # (C;) and C; — (C;) are linear independent of each
other, x must be equal to zero, contradicting to the assumption that x be a
nonzero vector. Therefore,

x"'V(log Z)x = (]x"(C —(C))[*) > 0, (99)

and V?*(log 7) is positive definite. O

Note that (C;) corresponds to the structure factor Fy; for some reciprocal
vector Hj, and (C;C}) corresponds to Fy,—_m,. Therefore,

0](logZ) = 1!711-1]7 (100)
% (logZ) = Fu,-m, — Fu,F-n,. (101)

Since all Fy, can be computed once in O(mlogm) calculations with fast
Fourier transform, the gradient and Hessian of log Z can be assembled in
O(mlogm) computation time.

Finally, we show that solving the maximum entropy equation (82) is
equivalent to solving the dual problem of the maximization problem (65).
According to the standard theory of convex programming [19, 16], the dual
problem of (65) is a minimization problem for the Lagrangian function sub-
ject to a necessary condition that the partial derivative of the Lagrangian
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function with respect to p is equal to zero, that is,

ming s, 0, Sa(p) + - Ai[Cilp) — ¢j] (102)
7=0

s.t. SL(p)+ D ACi(p) = 0. (103)
7=0

Solving p in the constraint and replace it in the objective function, we obtain
the following equivalent unconstrained minimization problem,

Hlin,\1 ..... A 10g 4 — Z )\]‘C]‘7 (104)

J=1

where 7 is defined in the same way as in (77).

A necessary condition for Ay,..., A, to be a solution to problem (104) is
that the gradient of the objective function at Ay, ..., A, is equal to zero, and
therefore,

d/oX(logZ)=¢;, 7=1,....,m., (105)

which are the same entropy maximization equations as (82). Since the Hes-
sian of the objective function is equal to V*(log Z) which is positive definite,
the necessary condition (105) is also sufficient, and it determines Ay, ..., A,
uniquely.

The problem (104) can be solved by a standard Newton’s method, as
proposed by Bricogne [1]. Let A = (A1,...,A\,)T. Then the Newton iteration
for the problem can be formulated as follows.

A = A0 — o[V (log Z)(AD)] 7' [V (log Z)(AD) — ¢], (106)

where a!!) is a step length. Since VZ(log Z)(A(") is always positive definite,
the Newton’s direction is descent at any point. With a line search procedure,
the method will be able to decrease the function value in every step. If
the function is bounded below, which is the case for problem (104), the
method will eventually converge to the minimum. Moreover, it converges
quadratically when the iterate is close to the optimal solution [9].
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6 Maximum Likelihood Calculation

The conditional probability P(K/H), or the likelihood A(H/K'), can be com-
puted in a similar way as for P(H) with entropy maximization. However,
the constraints on the structure factors in K often are nonlinear, making
the entropy maximization problem more difficult to solve: The factors are
constrained to have their amplitudes equal to some given values. Then they
cannot be solved for p explicitly. Also, the problem cannot necessarily be
solved by solving a dual problem since the constraints are no longer convex.

An alternative way to compute P(K/H) is to construct or approximate
the probability distribution in terms of the structure factors. With electron
density distribution,

P(K/H) = exp[NS,, (px)]. (107)

Let F,, = (Fu,,...,Fu,)T be the vector of the structure factors of pg,
and F,. = (Fg,,..., Fx,)T of px. Then S, (px) and hence P(K/H) can
also be defined as a function in terms of F,, and F,, . Let the function be

denoted by Sr, (F,,). The conditional probability P(K/H) then becomes
P(K/H) = eXp[NSFpH (F,r)]- (108)

By definition, S, (px ) has the property that it is equal to zero as px = py
and decreases to negative infinity as px deviates from pg. Correspondingly,
Sr,,, (F,) should also be equal to zero as F,,. = F,, and decrease to nega-
tive infinity as F,, deviates from F, . The probability P(K/H) can there-
fore be approximated by a Gaussian distribution function,

P([(/H) ~ exp[—N(FpK - FPH)HQ;II (FPK - FPH)]? (109)

where Qg is the covariance matrix of the structure factors in F,,,, which by
(100) is actually the Hessian of log 7, and can be obtained as a by-product
of the entropy maximization of P(H).

The joint probability distribution of a set of structure factors can be
expanded as an Edgeworth series [32], which can be approximated asymp-
totically as a Gaussian distribution function centered at the origin. The
distribution (109) can also be viewed as such an asymptotic approximation,
where the Gaussian is centered at F,, to define a conditional probability
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distribution of the structure factors. While it has the same asymptotic prop-
erty as the previous one, this approximation can especially be used for regions
away from the origin as well.

The formula (109) can be used to calculate the conditional probability
of K given any H, or in other words, the likelihood of H giving rise to K.
The likelihood is a function of H and K. If H is fixed, the likelihood can be
maximized by varying K, and vice versa. In the former case, the amplitudes
of K usually are given, and therefore, the likelihood is maximized when a set
of optimal phases for K are selected. For simplicity, let F,, be denoted by
F.F,, by Fy, and Qg by Qq. Then the problem can be formulated as,

maxp exp[—N(F — Fo)?Q;'(F — Fy)), (110)
st |Fg =gl 7=1,....mxk. (111)

Note that in (110), the objective function is convex, but the constraints
are nonlinear and non-convex. Therefore, the problem may have multiple
maxima, and a global optimization algorithm may be required to find the
maximum likelihood. Bricogne [1] and Bricogne and Gilmore [6] described
several solution methods for the problem, all related to specific applications.
A general algorithm for the problem is yet to be developed.

7 Phase Refinement and Extension

The Bayesian statistical approach to the phase problem can be used in vari-
ous contexts of phase determination, direct and non-direct, whenever statisti-
cal inference is required to derive phases from partially available knowledge.
Bricogne [5] described some of such applications as in molecular replace-
ment, multi-wavelength anomalous dispersion, phase refinement and exten-
sion, structure refinement, etc. We will use phase refinement and extension
as examples to show how the general approach is applied. The potential for
developing a general direct phase determination algorithm is discussed.

A simple phase refinement process is described in the outline Phase Re-
finement. First, a set of structure factors H is specified for which the phases
are to be refined. A set of values are then assigned to the phases, and the
probabilities, P(H) and P(K/H), are calculated by the methods described
in previous sections. This process is repeated for different sets of phase values
until the maximum of the product of the two probabilities is reached and the
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Phase Refinement

1. Initialize phases in H;

2. Compute P(H) and obtain Qp;

3. Construct Gaussian approximation to P(K/H);
4. Compute P(K/H) given all amplitudes in K;

5. If the maximum of P(H)P(K/H) is reached, stop;

6. Assign new values to the phases in H, and go to 2;

phases are refined with a set of optimal values. Note that the amplitudes of
the factors in both H and K are known, and the phases in H are assigned
to given values and are varied in the process, but the phases in K are un-
known. So in order to compute P(K/H), the phases in K need to be fixed or
integrated out from the distribution function. Bricogne and Gilmore [6] ap-
proximated the covariance matrix Qg by its diagonal elements. The phases
in K can then be easily integrated out, and the distribution function becomes
depending on only the phases in H together with the given amplitudes for
all the factors.

Phase extension is referred to as a process to determine some unknown
phases based on a given set of phases as well as the amplitudes for all the
factors. For example, we may already have all low resolution phases, but we
want to extend them to include all high resolution ones as well. A typical
procedure for phase extension is outlined in Phase Extension. Suppose that
a set of structure factors H is given and all phases in H are known. Let K be
the set of structure factors whose phases are to be determined. First we need
to compute the probability P(H) and obtain a covariance matrix Qg. We
can then construct a Gaussian distribution function as an approximation to
the probability distribution of P(K/H). The phases for the structure factors
in K can be determined by maximizing P(K/H) subject to the constraints
that the amplitudes of these factors must be equal to the known values. Once
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Phase Extension

1. Compute P(H) and obtain Qg;
2. Construct Gaussian approximation to P(K/H);
3. Maximize P(K/H) to obtain an optimal K;

4. Extend H to include K;

an optimal set of phases are determined, they can be included in H, and H
is said to be extended to K.

Phase refinement and extension can be combined to construct a general
phase determination algorithm. First we start from a small set of structure
factors H, and apply a refinement procedure to H to obtain a set of phases
for H. We then choose a small set of structure factors from K, and extend
H to this set of factors. The whole process can be repeated for the extended
H until all structure factors are included in H. Note that in the extension
process, multiple minima may be obtained for the likelihood maximization
problem. Therefore, H may be extended to several possible sets of factors,
each subject to further expansion. The entire procedure will then proceed
as spanning a tree of structure factors. Hopefully, an optimal set of fac-
tors can be found at the end of the tree branches. The whole procedure
is outlined in Iterative Refinement and Extension. For more detailed
descriptions about the refinement, extension, as well as full determination of
the phases using the Bayesian statistical approach, readers are referred to all
the references by Bricogne et al.

8 Remarks

Focusing on the phase problem, this paper introduces the theory and prac-
tice in protein X-ray crystallography. In particular, a Bayesian statistical
approach to the phase problem is reviewed. The mathematical and com-
putational issues in this approach are discussed. Two of the major compo-
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Iterative Refinement and Extension

1. Put initial H in T;

2. Select a H from T;

3. Refine the phases in H;

4. Extend H to Hq,..., H;

5. Set T ={Hy,....H;} U T \ H;

6. If T is empty, stop; otherwise, go to 2;

nents, entropy maximization and maximum likelihood calculation, are de-
scribed along with their formulations, mathematical properties, and solution
methods. General algorithms for phase refinement, extension, and full-scale
determination are presented and discussed. The paper is intended to intro-
duce computational X-ray crystallography to computer scientists and applied
mathematicians. Therefore, principles of X-ray crystallography, historical
development of direct methods for the phase problem, as well as the funda-
mental theory of the Bayesian statistical approach are all introduced in great
detail. Proofs for some of the related mathematical results are also provided.
The goal of the paper is to understand the fundamental problems and moti-
vate cross-disciplinary interests among computer science, applied mathemat-
ics, and X-ray crystallography that may result in fruitful collaborations in
solving the critical computational problems in protein X-ray crystallography.
We conclude the paper by discussing two computational issues in the
Bayesian statistical approach to the phase problem, one related to solving the
entropy maximization problem and the other to maximizing the likelihood.
As we have described in the paper, the entropy maximization problem
for computing the probability P(H) is a strictly convex program and can be
solved efficiently by using a standard Newton’s method. While this is true in
the sense that the Newton’s method converges to the solution in fewer iter-
ations (local quadratic convergence) than other methods, it requires O(m%;)

28



computation in each iteration, where my is the number of structure fac-
tors in H. This can be a computational bottleneck when H becomes large
since the phase determination algorithm requires solving the entropy maxi-
mization problem many times, especially for phase refinement. In order to
work around the problem, it is suggested in [1] to compute the Hessian of
log Z approximately with Fg,_m, instead of Fg,_m, — Fu,F_n, for every
(7, k) element. The inverse of the Hessian can then be obtained through fast
Fourier transform rather than numerical factorization, reducing the compu-
tation to O(mplogmpy). However, the convergence rate of the algorithm
may be slowed down because of the approximation. The algorithm must be
used only when the Newton’s method becomes un-affordable.

As we have mentioned in the paper, the problem (110) for maximizing
the likelihood function P(K/H) may have multiple local solutions when the
amplitudes of the structure factors in K are restricted to some given values.
Although in practice the global maximum may not be necessary, when it is
desired, the problem may become very difficult to solve. Note that when
the probability distribution P(K/H) is approximated by a Gaussian, the
maximization problem is equivalent to minimizing the quadratic exponent
subject to the amplitude constraints. If we reformulate the problem in real
space, 1t can be written in the following general form,

min, (X — Xg)7 Ag(x — Xo) (112)
s.l. 11;3]-_1—|—:(;§j :bf, j=1,....mg, (113)
where A is equivalent to Qg in (110), x = (x1,...,Tom, )’ , and z9;_; and

xq; correspond to the real and imaginary parts of the jth component of F. In
general, this problem can be hard to solve. For example, for a centrosymmet-
ric system, zg; = 0 for all 7, and the problem becomes a discrete optimization
problem where z3;_; can take only two discrete values. However, the prob-
lem can be reduced to an unconstrained optimization problem. For example,
it is equivalent to,

min  (x(a) — x0)T Ag(x() — Xq), (114)
ozl,...,ome
where x(a) = (z1,...,%am )7, @ = (a1,...,0m )T, T2;_1 = b;cosa; and

x9; = b;sin a;. However, a global minimizer is still required for the problem
while the objective function apparently has many local minimizers because
of the trigonometric functions.
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The computational issues discussed above are critical for efficient imple-
mentation of phase determination algorithms with the Bayesian statistical
approach. Work on the issues is important for future development of the
approach.
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