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ON CONVERGENCE OF MINIMIZATION METHODS:
ATTRACTION, REPULSION AND SELECTION*

YIN ZHANG!, RICHARD TAPIA}, AND LETICIA VELAZQUEZS

Abstract.
In this paper, we introduce a rather straightforward but fundamental observation concerning the
convergence of the general iteration process

Rt =k — a(xk)B(rk)_1Vf(L‘k)

for minimizing a function f(z). We give necessary and sufficient conditions for a stationary point of
f(z) to be a point of strong attraction of the iteration process. We will discuss various ramifications
of this fundamental result, particularly for nonlinear least squares problems.

Key words. Strong attraction, weak repulsion, selective minimization.

AMS subject classifications. 65K05, 90C30

1. Introduction. We consider the unconstrained minimization problem
(1.1) min f(z),

where f : R" — R is assumed to be twice (Frechet) differentiable, and the general
iteration:

(1.2) 2P =2k — oK (BF)TIV ().

This iterative framework has been studied extensively and many results are available
for various choices of o and B that guarantee convergence, see the classic books by
Ortega and Rheinboldt [6], and Dennis and Schnabel [2] on this subject.

A less frequently asked question is the following. Given certain conditions on o
and B* what type of stationary points of f(z) are or are not points of attraction of
the iteration (1.2)7 In this paper, we try to shed some light on this question.

The spectral radius of a matrix M will by denoted by p(M), and an eigenvalue by
Ai(M). Moreover, Apax (M) and Apin (M) are the maximum and minimum eigenvalues
of a symmetric matrix M. We use the the usual partial ordering for symmetric
matrices: A > B means A— B is positive semidefinite; similarly for other relationships
=, = and <. The norm || - || will be either the Euclidean norm for vectors or the norm

it induces for matrices, unless otherwise specified.

2. Iterative Methods. Most iterative methods can be represented as a fixed-
point iteration:

(2.1) 2P = T(25)
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2 Y. ZHANG, R. TAPTIA AND L. VELAZQUEZ

for some function 7' : R" — R". For unconstrained minimization, T'(z) is often
defined through (1.2), namely,

(2.2) T(z) =z — a(z)B(z) 'V f(z).

This iterative framework includes Newton’s method, quasi-Newton methods and gra-
dient methods with variant step-length control schemes. In the case of nonlinear least
squares problems, it also includes the Gauss-Newton and the Levenberg-Marquardt
methods.

It is clear that any stationary point of f(z) is a fixed point of the iteration (2.1).
In order to classify fixed points of (2.1), we will need the derivative of T'(z), T'(z),
at stationary points of f(z). The following proposition shows that for 7"(z) to exist
at a stationary point z* of f(z), the function a(z)B(z)~! need not be differentiable
at x*; instead, continuity at x* will suffice. This result is a special case of 10.2.1 in
Ortega and Rheinboldt [6]. For completeness, we include a short proof.

PROPOSITION 2.1. Let x* be a stationary point of f(z). Assume that a(z) and
B(z) are continuous at x* where B(z) is also nonsingular. Then the derivative of
T(z) in (2.2) exists at x*, and

(2.3) T'(z*) = I — a(z*)B(z*) "'V f(z").

Proof. Let H(z) = a(z)B(z)~!. Tt suffices to show that the derivative of
H(z)Vf(z) exists at z* and is H(z)V?f(z). The continuity of a(z) and B(z) at
z* plus the nonsingularity of B(z*) imply the continuity of H(z) at z*. Noting
Vf(z*) =0, we consider

[H (" + h)Vf(x" +h) = H(z")Vf(z*) = H(z")V f(z")h]/|| 2|
= H(x" + h)[Vf(x" +h) = Vf(z") = V*f(2")h]/|| A
+[H (2 + h) — H(")(Vf(z")h/||A]]).

By continuity of H () and differentiability of f(z) at *, both terms on the right-hand
side vanish as ||h|| = 0. This completes the proof. O

3. Points of Attraction and Repulsion. We now give the definition of “point
of attraction” of the iteration (2.1), first introduced by Ostrowski (see 10.1.1 in [6]
and the references therein).

DEFINITION 3.1 (Attraction). A fized point z* of T'(z) is said to be a point of
attraction of the iteration (2.1) if there is an open neighborhood N of x* such that for
any point x° € N, the iterates {x*} generated by (2.1) all lie in N and converge to
z*.

The well-known Ostrowski Theorem (10.1.3 in Ortega and Rheinboldt [6]) says
that a sufficient (but not necessary) condition for a stationary point z* to be a point
of attraction of the iteration (2.1) is that the spectral radius of T"(2z*) be less than
one, i.e., p(T'(z*)) < 1. We call a stationary point satisfying this condition a point
of strong attraction.

DEFINITION 3.2 (Strong Attraction). A fized point * of T(z) is said to be a
point of strong attraction of the iteration (2.1) if T(z) is differentiable at * and

p(T'(2)) < 1.
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Given the iteration (2.1) and certain conditions on the choices of «(z) and B(z),
we are interested in knowing what types of stationary points are not or not likely to
be points of attraction. To this end, we introduce the following definition.

DEFINITION 3.3 (Weak and Strong Repulsion). A fized point z* of T'(x) is
said to be a point of weak repulsion of the iteration (2.1) if T(z) is differentiable at
z* and p(T' (%)) > 1, i.e.,

. ! *
Jpax (T (@) > 1.

Moreover, we say that x* is a point of strong repulsion of the iteration (2.1) if

: . ! *
min [\ (T(@7)] > 1.

4. Convergence and Weak Repulsion. In this section, we discuss necessary
conditions for a sequence {z*} generated by the iteration (2.1) to converge to a point
of weak repulsion. The discussion is for general fixed-point iterations, not necessarily
limited to the particular form of (2.2).

At any point of weak repulsion z*, the iteration (2.1) repels points away from z*
in the eigenvector directions associated with the eigenvalues of T'(z*) of magnitude
greater than one. This fact is given in the following proposition.

ProOPOSITION 4.1. Let z* be a point of weak repulsion of the iteration (2.1).
Then there exists € > 0 such that for any € € (0,€), one can find a point z that
satisfies ||z — 2*|| = € and

IT(2) = 27| > ||z — 7.

Proof. Being a point of weak repulsion, 7”(z*) has at least one eigenvalue A;
satisfying for some ¢ > 0

|)\J| =1+4o0.
It follows from the differentiability of T'(z) at z* that there exists € > 0 such that
IT(2) = T(2") = T'(x")(x — 2")|| < ofle — 27,

whenever ||z — z*|| < é&. Given any ¢ € (0,€), let £ = z* + e¢v where v is a unit
eigenvector corresponding to A;. Hence, we have ||z — z*|| = ¢, T'(z*)(z — z¥) =

Aj(z — 2*), and

IT (@) = 2*[| > 1T () (2 = ") - |T(2) - T(z") = T'(a") (2 — 27)|
> (1+0)lle — 27| - ofle — 27|

=l — "]

This completes the proof. O

This proposition implies that the iterates generated by (2.1) cannot approach
a point of weak repulsion z* from the eigenspace associated with an eigenvalue of
magnitude greater than one.

Let 2* be a point of weak repulsion of the iteration (2.1) that is not also a point
of strong repulsion, i.e.,

: . 7 * . 7 *
(4.1) min [\ (T'(@)] £ 1< max ()
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Suppose that 7"(z*) is diagonalized by a matrix U so that

A1
Az
(4.2) U™ (") U = A = ,
An
where, without loss of generality, for some m < n
(4.3) Al > A2l 2o 2 ] > 12 A | 22> Al

Obviously, the columns {u;} of U are eigenvectors of 7"(z*). Moreover, let
o= |Am|—1>0.

Then

(4.4 Nl > (1+0), ¥ <m.

The following lemma gives necessary conditions for a sequence generated by the
iteration (2.1) to converge to a point of weak repulsion.

LEMMA 4.2. Let z* be a point of weak repulsion of the iteration (2.1), where
T'(z*) satisfies (4.1) and, together with a nonsingular matriz U, (4.2) and (4.3). If

a sequence {x*} generated by (2.1) converges to x*, then necessarily

U (@ = 2))il ,
4.5 lim =0, :=1,2,...,m.
( ) kLoo ||U_1(C[3k _$*)|| , 2 y 4y ,m

Proof. For a sequence {z*}, we define {e*} and {d*} by
(4.6) e =2f — 2 =Ud".

In this notation, (4.5) is equivalent to |(d*);|/||d*|| = 0,i=1,2,...,m.
Suppose that (4.5) does not hold for some j, 1 < j < m. Then there must exist
ko > 1 and 7 > 0 such that |(d*);|/||d*|| > 7 for all k > kg, or

lla* |
|(d*);]

1
(4.7) <=, Yk > k.

3

Let
= T(2F) = T(x*) = T'(x*) (2" — z*).
By (4.6) and (4.2), we can write the equality

o g = T/(:E*)(:Ek —z") + (T(:L‘k) —T(z*) — TI(JL‘*)(JL‘k —z"))

(4.8) UdFH! = T' (&)U d* + v* = UAd® 4 v* = U(Ad" + AF)
where h* = U~1rF. The equality (4.8) leads to the recursion

(4.9) d*t = AdF + R*.
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From the definition of r*, there holds the property: ||r*||/||e®|| — 0. Since this

property is norm-independent, we have
Lol (24
NU=eR | ld* |l

— 0.

Hence, there exists k1 > 0 such that for i =1,2,...,n

kY.
(4.10) |EI}:1’“)IT| <or, Yk > k.

It follows from (4.9), (4.4), (4.7) and (4.10) that for k£ > max(ko, k1)
(@ +1);] = [X(d); + (h5);]
> (14 o)[(d");] = |(h%);]
iyt (o MR TR ey
— 1)1+ (o= s )

J

> [0+ (= o7l
= |(d¥);1,
that is,
(@51 > 1(d);1, > max(ho, k).

This means that the sequence {d*} does not converge to zero; therefore, neither does
{e*} since ¢¥ = Ud* and U is nonsingular. We have proved that if (4.5) does not
hold, then {z*} does not converge to z*. O

REMARK 4.1. For T(z) defined by (2.2) (therefore T'(z*) defined by (2.3)), if

B(z*) is symmetric positive definite, then
7o) = Ba') ™2l — (") B )V ) B ) B

Hence, T'(z*) is similar to a symmetric matriz which is diagonalizable by a real
matriz. This, in turn, implies that T'(z*) itself is diagonalizable by a real matriz.
Consequently, Lemma 4.2 holds for such T'(z).

The following corollary provides an interpretation of Lemma 4.2.

COROLLARY 4.3. Let {e*} and {d"*} be defined as in (4.6), and
pr=dy, d5, ... di)T and ¢F = (db .y, dE s, o, dR)T

where m is also in (4.3). Under the assumptions of Lemma 4.2, if a sequence {z*}
generated by (2.1) converges to x*, then necessarily

1l
4.11 Iim ——— = 0.
(4.11) A ]

Proof. By Lemma 4.2, |(d*);]/||d*|| = 0,i=1,2,...,m. Therefore,

[ O | A ! e
1 = TR + I~ T+ (laF 1712
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Consequently, ||¢*||/||p*|| — oo, which implies (4.11). O

Under the assumptions of Lemma 4.2, in order for {z*} to converge to a point
of weak repulsion z*, one must have p* = o(||¢*||); namely, the error components in
the eigenspace associated with the eigenvalues of magnitude greater than one must
go to zero faster than the rest of the components do. In other words, convergence
to z* can take place, if at all, only asymptotically along the eigenspace associated
with the eigenvalues of magnitude not greater than one. Since all proper subspaces of
R™ have zero measure, from a probabilistic viewpoint one may argue that in general
convergence to a point of weak repulsion is improbable.

In Section 8, we will report numerical results on the behavior of iterates generated
the iteration (2.1)-(2.2) around points of weak repulsion.

To close this section, we mention that it is easy to verify that any sequence {z*}
generated by (2.1) cannot converge to a point of strong repulsion z*, unless z* = z*
at some finite iteration k.

5. Main Result. We now give our main result of the paper concerning necessary
and sufficient conditions for a stationary point to be a point of strong attraction. The
result is a rather straightforward observation with many interesting consequences. To
the best of our knowledge, this result does not appear in the literature.

THEOREM 5.1. Let * be a stationary point of f(x) and T'(z) be defined by (2.2).
Assume that

(i) B(z) and a(z) are continuous at z*,

(ii) B(z*) is symmetric positive definite, and a(z*) > 0.

Then

p(T' (") <1

if and only if

(5.1) 0= VEf(z") < -

Moreover, p(T'(z*)) < 1 if and only if strict inequalities hold in (5.1).
Proof. We note that 7’ (z*) is similar to the symmetric matrix

M =T - aa")Be*) "2V f(a") Ba) 12
and p(T"(z*)) < 1is equivalent to —1 < A\; (M) < 1, i.e.,
—I<M<I
The inequality M < I is equivalent to
o(e) B(z*) 1792 f(2) B(a) 7 = 0,

which is in turn equivalent to the left inequality of (5.1). On the other hand, the
inequality —I < M is equivalent to

21— a(")B(")" 2 V(") B") T 2 0,
or

B(")[2B(2%) - a(e")V*f(=)) B(") T = 0,
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which is in turn equivalent to the right inequality of (5.1). This proves (5.1).

The proof of the second assertion is entirely parallel. O

The left inequality in (5.1) immediately implies the following interesting fact.

COROLLARY 5.2. Under the assumptions of Theorem 5.1, any stationary point of
f(z) where the Hessian matriz has a negative eigenvalue is a point of weak repulsion
of the iteration (2.1).

We recall that a stationary point of f(z) is called a nondegenerate saddle point if
the Hessian matrix at this point has both positive and negative eigenvalues. We also
recall that a necessary condition for a stationary point of f(z) to be a maximizer is
that the Hessian matrix at this point be negative semidefinite. In view of Corollary 5.2,
we have the following observation.

REMARK 5.1. In the iteration (2.1), if one keeps B positive definite, then under
mild conditions all nondegenerate saddle points of f(x) and all mazimizers of f(z)
where the Hessian ts not the zero matriz are points of weak repulsion; hence, none of
these points can be a point of strong attraction of the iteration (2.1).

We call a stationary point z* a strong minimizer of f(z) if V2f(z*) > 0. Thus,
the left inequality in (5.1) always holds at any strong minimizer. We now consider
the right inequality in (5.1) for some particular choices of B(z*).

REMARK 5.2. Assume that a(z) is continuous.

(1) For B(z) = V2f(z), any strong minimizer is a point of strong attraction if and
only if a(z*) € (0,2). In particular, any strong minimizer is a point of attraction of
Newton’s method (a(z) = 1) as is well known.

(2) For B(z) = I (gradient method), any strong minimizer is a point of strong at-
traction if and only if a(z*) < 2/Amax(V2f(2*)). Moreover, we note the following
fact.

REMARK 5.3. A munimizer x* can be a point of weak repulsion if the Hessian
matriz at * is not majorized by 2B(z*)/a(z*).

6. Nonlinear Least squares Problem. For the nonlinear least squares prob-
lem, we have

(6.1) f(z) = SR (2) R(a).

where R : %" — R™, m > n, is twice continuously differentiable. The gradient and
Hessian of f(z) are, respectively,

(6.2) Vf(x)=J(x)TR(x) and Vf(z) = J(z)T J(z)+ S(),
where J(z) is the Jacobian of R(z) and
(6.3) S(z) = Z ri(2) V().
Consider the iteration (2.1) with a(z) =1 and
B(z) = J(:E)TJ(:E) + P(z).

In this case,

(6.4) T(x) =z — (J(x)" J(x) + P(z)" " J(2)" R(x),
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and at any stationary point z* of f(x)
(6.5) T'(¢*) = (J(2*)" I (2*) + P(z*) " (P(*) — S(27)),

assuming continuity of P(z) and nonsingularity of J(z)7J(z) + P(z) at z*. Several
well-known choices of P(z) are the following:

1. Newton’s method: P(z) = S(z);

2. the Gauss-Newton method: P(z) = 0;

3. the Levenberg-Marquardt method: P(z) = p(z)I.
The Gauss-Newton method and the Levenberg-Marquardt method are popular choices
for nonlinear least squares problems because they do not require second-order deriva-
tives.

Now consider the iteration

(6.6) 2 =T (),

where T'(z) is defined in (6.4). The structure of least squares problem allows a sim-
plification of Theorem 5.1.

THEOREM 6.1. Let z* be a stationary point of f(x) = %R(I)TR(;L‘) where f(z) is
twice differentiable. Assume J(x)T J(x)+ P(z) is continuous and symmetric positive
definite at x*. Then

p(T'(x")) <1
if and only if

(6.7) —J(&)TJ(x*) < S(x*) < J(x*)T J(x*) + 2P ().
Moreover, p(T'(z*)) < 1 if and only if strict inequalities hold in (6.7).

The right inequality in (6.7) says that the more “positive” P(z*) is, the more
points of attraction the iteration may have. In view of this, we compare the Gauss-
Newton method and the Levenberg-Marquardt method.

PROPOSITION 6.2. Let x* be a stationary point of f(z) = %R(I‘)TR(;E) where
f(z) is twice differentiable and J(z) has full column rank.

1. If £* 1s a point of weak repulsion of the Levenberg-Marquardt method, it is
also a pownt of weak repulsion of the Gauss-Newton method.
2. If £* 1s a point of strong attraction of the Gauss-Newton method, it is also a
point of strong attraction of the Levenberg-Marquardt method.
The converses are not necessarily true whenever pu(z*) > 0 in the Levenberg-Marquardt
method.

Analogous to Corollary 5.2, we also have the following.

COROLLARY 6.3. Any stationary points z* of f(x) = %R(I)TR(Z‘) where the
Hesstan matrix has a negative eigenvalue, including all nondegenerate saddle points
and mazrimizers where the Hessian is not the zero matrix, are points of weak repul-
sion of the Gauss-Newton method whenever J(z*) has full column rank. The same
statement holds for the Levenberg-Marquardt method if either J(x*) has full column
rank or p(z*) > 0.

It is known that iterates are generally repelled from saddle points in the Gauss-
Newton method (see Bjorck [1], for example). Tt appears to us that the same property
for the Levenberg-Marquardt method is not known.
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7. Selective Minimization. Theorem 5.1 implies that a strong minimizer can
be a point of strong attraction of the iteration (2.1) only if the corresponding Hessian
matrix is majorized above by the matrix 2B(z*)/a(z*).

In most applications, one would ideally like to find a global minimizer. Short
of that, one would prefer local minimizers with low objective values. The fact that
a given iterative method may turn certain minimizers into points of weak repulsion
could be a useful tool for constructing algorithms whose iterates are attracted to
desirable minimizers, but repelled from some undesirable minimizers.

To demonstrate this, we consider applying the Gauss-Newton and the Levenberg-
Marquardt methods to minimization of nonlinear, nonconvex least squares problems
where the global minimum value of the objective functions is zero or very small. For
this type of problems, under mild conditions the global minimizers are points of strong
attraction while local minimizers of high objective values are less likely to be points
of strong attraction, as is illustrated by the following two lemmas.

LEMMA 7.1. Let z* be a strong minimizer of f(z) = %R(I‘)TR(:E) where f(z) is
twice differentiable, J(z)T J(z) + P(z) is continuous and symmetric positive definite
at z*. Then z* is a point of strong attraction of the iteration (6.6) if either V?r;(z),
1=1,2,---,m, are not all zero and

Amin [ (2*)T T (2*) 4+ 2P (2*)]

Ty D 3 [ T I

or ||R(z*)|| > 0 and

S (192 (o[ < Aminld (@) T (27) + 2P ()]
(7.2) ;HV ri(2?)]| < R :

Proof. Tt suffices to show that the strict inequalities hold in (6.7). Note that
the left strict inequality in (6.7) , i.e., —J(z*)TJ(z*) < S(z), holds at any strong
minimizer. Since

[Amax (S(27))] < [IS(27)[| < [[R(27)]] (ZIIV%(I*)II) :

the right strict inequality in (6.7), i.e., S(z) < J(z*)T J(z*) + 2P(z*), holds if

IRl (lewn(év*)ll) < i [T (%) T (27) + 2P ()],

which, under the respective conditions, leads to (7.1) and (7.2).0

It is well-known that a strong minimizer z* is a point of strong attraction of the
Gauss-Newton method (or the Levenberg-Marquardt method) if either the residuals
r;(z*) or the Hessian matrices VZr;(z*), i = 1,2,---,m, are sufficiently small (see
Dennis and Steihaug [3], for example). The above lemma is an extension to a slightly
more general setting.

Now let us define

0; = ri(z*)/||R(z")|1, i =1,2,---,m,

(7.3) C* = 0:V7r(2").
i=1
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Clearly, C* is a linear combination of the Hessian matrices VZr;(2*), i = 1,2, -, m,
where the coefficients 6; satisfy |6;| € [0,1]and >_;~, |#;| = 1. To prove weak repulsion,
an assumption on C* is needed.

LEMMA 7.2. Let z* be a minimizer of f(z) = %R(SL‘)TR(CL‘) where f(z) is twice
differentiable and J(z)T J(z) + P(z) is continuous and symmetric positive definite.
Assume further that Amax(C*) > 0 where C* is defined in (7.3). Then z* is a point

of weak repulsion of the iteration (6.6) if
Amax (J (z*)T J(z*) 4+ 2P(z*))

(74 1BE)] > y—r) ,

Proof. We first note that S(z*) = ||R(z*)||;C*. A sufficient condition for z* to
be a point of weak repulsion of the iteration (6.6) is that

Anex(5(2*)) = R [ Amae () > M ()T T (2%) + 2P (),

which violates the right inequality in (6.7). Clearly, the above inequality is equivalent
to (7.4) whenever Apax (C*) > 0. 0

REMARK 7.1. Lemma 7.1 provides a guarantees that any strong minimizer with
sufficiently small residual value is a point of strong attraction of the iteration (6.6).
On the other hand, Lemma 7.2 shows that minimizers with sufficiently large resid-
ual values will become a point of weak repulsion of the iteration (6.6) under some
circumstances.

We have done some numerical experiments on applying the Gauss-Newton and
the Levenberg-Marquardt methods to global minimization of least squares problems
where the optimal residual value is either zero or very small. Our numerical results
have shown that the algorithms do skip some local minimizers, and have greater
chances of converging to a global minimizer than, say, Newton’s method which is
attracted to any stationary point under mild conditions.

For more general problems, it is also possible to construct minimization algorithms
that skip minimizers of high objective values while targeting lower-valued minimizers.
For example, the following is a simple scheme:

B I, flx) > €,
B(z) = { V2f(z) + D(z), otherwise,

where D(z) is a diagonal matrix chosen to ensure B(z) > 0, and

a(x) _{ 2/771 f(l‘) 267

B 1, otherwise,
where n > 0. With these choices, the iteration
ghtt =gk a(mk)B(xk)_1Vf(mk)

will have the properties:

1. Any minimizer z* with f(2z*) > ¢ and Apax(V2f(2*)) > 5 is a point of weak

repulsion.
2. Any strong minimizer z* with f(2*) < & is a point of strong attraction.
Although we do not claim that the above construction is of any practical value,

we do hope that combined with some random sampling techniques such as simulated
annealing [4], the selective minimization property may lead to improved global opti-
mization algorithms. This topic merits further study, but is outside the scope of this
short paper. Instead, in the next section, we present a simple example showing the
phenomenon of selective minimization.
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8. Numerical Examples. In this section, we provide a couple of simple exam-
ples to illustrate the following points: (i) if {B*} is uniformly positive definite and
{a*} uniformly positive, then convergence to a point of weak repulsion seems to be
highly unlikely in general; (ii) selective minimization does occur for certain problems.
All our numerical experiments were done using Matlab.

8.1. First Example: Weak repulsion. We consider the following function
f:R" > R (Levy and Gémez [5]):

n—1
(8.1) Fla) = sin®(my) + > (yi — 1)*[1 + sin® (7yi1)] + (yn — 1)%,
i=1
where
zi—1 .
ylzl—‘rm 1221121""1711

4

and n is the number of variables in x. This function has many local minima but a
unique global minimum at F =1,¢=1,2,...,n, where f(z*) =0.
We use the gradient method to construct an iteration

(8.2) = T(.Z‘k) =2F - onf(:Ek)
and always choose
_
Amax (V2 f(2*))
so that at least one of the eigenvalues of T"(z*) = I —aV?f(z*) has an absolute value
greater than one. By this very construction, the global minimizer z* is a point of
weak repulsion of the iteration (8.2) since |Amax (7" (z*))| > 1.
We applied iteration (8.2) to problem (8.1) for n = 2,3,10,50,100. The actual

values of the steplength a vary with n and are not of interest here. For each n value,
we selected 100 random starting points close to *, namely

a >

z' = 2* 4 ¢(rand(n, 1) — 0.5),

where ¢ = 1073 and rand is the Matlab command for generating a uniformly dis-
tributed random n-vector with components in [0,1]. The stopping criterion used in
our experiments is that either ||V f(z*)|| < 10~* or the number of iterations reaches
100.

In all of our numerical experiments, we did not obtain a single case of convergence
to a point of weak repulsion. These experiments give a rather strong indication that
convergence to a point of weak repulsion may be improbable in general.

In Figure 1, we present a specific example for n = 3 and

3

a = m =4.3061.

For this choice of «, the three eigenvalues of 7' (z*) are
A= —2, Ay =As=0.7182.

In order to dramatize the situation, we choose a starting point 2! = (1,1.3709, 0.6647)
so that 2' — z* is in the direction of vy — the eigenvector direction corresponding to
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2 X

Fi1Gc. 8.1. Non-convergence to a point of weak repulsion

the eigenvalue Ay = 0.7182. In the picture, the small circles represent the positions
of the iterates, and the numbers beside the circles are the iteration numbers. As one
can see, initially the iterates approach z* along the direction of v;. However, as the
iterates get closer to * (with ||V f(z)|| & 10~*), unable to stay in the direction of vs
they start to drift away from z* along the direction of v1, which is the eigenvector
direction corresponding to the eigenvalue A; = —2.

8.2. Second Example: Selective Minimization. We now consider the fol-
lowing two-dimensional least squares problem

1
(8.3) f(@y) = SRz, y)" R(x,y),
where, for « = 1.2 and g = 6,
asin(n(1 + z/4))
Blx/M)[1 + a?sin®(x(1 + y/4))]/?
2 ) = y/4
(8.4) R(z,y) = asin(r(1l + y/4))
Bly/N[1 + a?sin®(n(1 4 2/4))]'/?
z/4
This function f(z,y) is symmetric about both the z-axis and the y-axis, and has a
unique global minimizer at the origin with zero-residual. We will concentrate our

attention to the square: —5 < z,y < 5, which will be considered to be the area of our
interest. In this square, the function has four local minimizers at

(z*,y") ~ (£3.64, £3.64)

with relatively high residual value f(z*, y*) ~ 34.09. The function also has four saddle
points in the square of interest at

(z*,y") ~ (£2.98,+2.98)
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with residual value f(z*,y*) ~ 36.12. See Figure 2 for a plot of f(z,y) in the square
of interest.
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Fic. 8.2. The 2-dimensional Test Function

We apply the Gauss-newton method, i.e., the iteration (6.6) with P(z) = 0 in
(6.4), to minimizing f(z,y) defined in (8.3) and (8.4). In our experiments, we have
found that the Gauss-newton method is always well defined in the square of interest.

From Lemma 7.1, we know that the global minimizer at the origin is a point of
strong attraction for the Gauss-Newton iteration. On the other hand, our calculation
shows that for the Gauss-Newton iteration, A;(7'(z)), i = 1,2, are, respectively and
approximately —16.86 and —2.29 at the four local minimizers. Therefore, they are
points of strong repulsion. The saddle points are nondegenerate and hence points
of weak repulsion of the Gauss-Newton iteration. In fact, (4.1) holds at the saddle
points which means that they are not points of strong repulsion.

For the purpose of comparison, we also apply the Levenberg-Marquardt method
and the Newton method to the problem as well. For the Levenberg-Marquardt
method, we choose P(z) = 107 in (6.4). With this choice, all minimizers in the
square, global or local, are points of strong attraction, and the saddle points remain
points of weak repulsion where (4.1) holds. On the other hand, all the stationary
points in the square are points of strong attraction of the Newton method.

We run the three methods starting from the following grid of initial points in the
first quadrant:

Since the function is symmetric about both axes, we can duplicate the behavior of
the methods in the first quadrant in the other three quadrants. For each method
and each initial point, we record whether or not the iterates converge to the global
minimizer at the origin, or to one of the other stationary points (some may be outside
of the square of interest), or do not converge within a prescribed maximum number of
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iterations, which is set to 100 in our experiments. The convergence criterion is that
the norm of the gradient be less that 1078,
We summarize the numerical results for the three methods below.

1. Gauss-Newton: From all the starting points without exception, the Gauss-
Newton method converged to the global minimizer at the origin. We note
that never did any starting point lead to a point of weak repulsion (saddle
point) no matter how close it was.

2. Levenberg-Marquardt: With the particular choice of P(z) = 107 for the
Levenberg-Marquardt method, all the starting points led to one of the five
minimizers in the square, with around 75% to the global minimizer and the
rest 25% to the local ones. Again, never did a starting points lead to a saddle
point.

3. Newton: For the Newton method, about 50% of the starting points led to
the global minimizer, and about 30% to other stationary points in the square.
The rest of points either led to stationary points outside the square, or were
such that the method did not terminate after 100 iterations.

-5 0 5
The Global Minimizer Other Stationary Points

Fi1Gc. 8.3. Estimated Regions of Attraction for the Gauss-Newton Method

In Figures 3, 4 and 5, we plot the (estimated) region of attraction of the global
minimizer and the combined region of attraction of all the other stationary points in
the square for the three methods, respectively. The asterisks represent points from
which a method converged to the global minimizer (in the pictures on the left) or to
one of the other stationary points inside the square (in the pictures on the right). On
the background, we also plot the contour of the test function.

In the picture on the right side of Figure 5, it appears that at each corner an area
of attraction of the local minimizer is separated by a narrow band from an area of
attraction of the nearby saddle point.

9. Final Remarks. For the general iteration process
:L‘k+1 — xk _ ak(Bk)_lv_f((Ek),

Theorem 5.1 has several interesting, but previously unnoticed, implications. We con-
sider the following two observations to be particularly worthwhile.

Firstly, as long as one keeps { B*} uniformly positive definite and {a*} bounded
away from zero, then the undesirable case of converging to a saddle point should not
be of general concern.
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0 5
The Global Minimizer Other Stationary Points

Fi1Gc. 8.4. Estimated Regions of Attraction for the Levenberg-Marquardt Method

The Global Minimizer Other Stationary Points

Fi1Gc. 8.5. Estimated Regions of Attraction for the Newton Method

Secondly, if one does not always enforce descent, then under favorable conditions
a method can actually generate iterates that skip some undesirable minimizers while
still being attracted to more desirable minimizers.
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