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Abstract

Loop fusion is important to optimizing compilers because it is an important tool in manag-
ing the memory hierarchy. By fusing loops that use the same data elements, we can of the
ensure that uses after the first can take data from cache or registers rather than memory,
avoiding costly cache misses. Unfortunately the problem of optimal loop fusion for reuse
has been shown to be NP-hard, so compilers must resort to heuristics to avoid unreason-
ably long compile times. Greedy strategies are often excellent heuristics, and can be used
to produce high-quality solutions in reasonable running times. We present an algorithm for
greedy weighted fusion, in which the heaviest edge (the one with the most reuse) is
selected for possible fusion on each step. The algorithm is shown to be fast in the sense
that it takes O(VE + V) time, which is arguably optimal for this problem.

1.0 Introduction

Because processor speed has been increasing far more rapidly than memory speed, compilers

have become increasingly concerned with the management of memory hierarchies, in an attempt
to increase the frequency with which data values are reused from cache or registers, thus reducing
the number of costly cache misses. Loop fusion is an important tool for increasing reuse because

it can bring uses of the same data element closer together. Fusion is particularly important in an
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Introduction

array language like Fortran 90 because the typical compiler strategy is to “scalarize” array state-

ments by converting them to simple one-statement loops. For example, the two statements:

A(1:1000) = A(1:1000) + C
B(1:1000) = B(1:1000) + A(1:1000)

would be converted to:

DO I =1, 1000

A(I) = A(I) + C
ENDDO
DO I = 1, 1000

B(I) = B(I) + A(I)
ENDDO

It is easy to see that if these two loops are fused, a load of array A could be saved on each iteration
of the second loop. However, in a complete program there may be many loops that can be fused
and many statements that cannot be fused with any loop. Often the choices of which loops to fuse
are not clear as fusing one pair of loops may make it impossible to fuse others. Rather than carry-
ing out loop fusion by trial-and-error, which could be expensive in compile time, we need a way
to select groups of loops that are both legal and profitable to fuse. Ideally this selection process
should maximize the savings in accesses to memory. This is the job of a global fusion algorithm—
it examines the entire program and determines collections of loops that should be fused. Since the
size of programs can be large, such an algorithm should be reasonably efficient if it is to be

included in a compiler.

To develop such an algorithm, we will model the problem as a graph in which vertices represent
loops and edges represent dependences between the loops, where there exists a dependence
between two loops if there is a dependence between the statements in the bodies of those two
loops. In addition, each edge will have a different weight reflecting the amount of reuse to be
gained through fusing the loops at its endpoints. For example, two different fusion choices might

have different iteration ranges:

Ll: DO I =1, 1000
A(I) = B(I) + X(I)
ENDDO
L2: DO I =1, 1000
C(I) = A(I) + Y(I)
ENDDO
S: 7Z = FOO(A(1:1000))
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L3 DO I =1, 500
A(I) = C(I) + 2
ENDDO

In this example, statement S, which cannot be fused with any loop, must come after loop L1 but

before L3 because there is a true dependence from loop L1 to statement S and a true dependence
from S to L3. Thus, L1 and L3 cannot be fused. Similarly, loop L2 must come between loops L1

and L3 because of similar dependence patterns. However, since there is only an input dependence
between L2 and S, they may occur in any order. Therefore, loop L2 can fuse with either L1 (if it

stays before S) or L3 if it is moved after S. The dependence pattern for this loop is shown in

Figure 1 below. Note that an undirected edge represents an input dependence.

FIGURE 1  Weighted dependences for the fusion example.

The diagram in Figure 1 makes it clear that L2 may not fuse with both L1 and L3 because that
would introduce a cycle in the dependence graph through statement S, so a choice must be made
about which fusion to select. Here the choice favors fusing the loops with the largest iteration

ranges: L1 and L2.

A slight variation on this example illustrates another way that different fusion opportunities may

differ in value.
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The Weighted Fusion Problem

Ll: DO I =1, 1000
A(I) = B(I) + X(I)
ENDDO
L2: DO I =1, 1000
C(I) = A(I) + Y(I)
ENDDO
S: Z = FOO(A(1:1000))
L3 DO I = 1, 1000
A(I) = C(I+500) + 2z
ENDDO

In this case the loop iteration ranges are the same, but when L2 is aligned with L3, there are only

500 iterations on which there is reuse.

In order to construct an algorithm to address the weighted fusion problem, we must assign to each
loop-crossing dependence d in the program a weight W(d) that measures the benefit to be gained if
its source and sink were located in the same iteration of the same loop. In other words, if the loops
containing the source and sink were to be fused, W(d) memory operations (loads and stores)
would be saved over the version of the program where the endpoints remain in different loops.

The numeric labels on edges in Figure 1 represent the weights.

2.0 The Weighted Fusion Problem

Now assume that we have a collection of weighted dependence edges and a collection of fusible
loops, along with a collection of statements that cannot be fused with any loop. In the discussion
to follow, we will refer to these non-fusible statements as bad vertices. In addition, assume that
we may have certain edges, called bad edges, along which fusion is not possible. For example, in
previous discussions we have seen the existence of fusion-preventing dependences. Although
such dependences are less important in the cases discussed in this chapter, we will nevertheless
include them in the problem model.

Now we are ready to map loop fusion onto an abstract problem. First we begin with the definition
of a special kind of graph that contains both directed and undirected edges. In our problem, the

undirected edges will be used to model input dependences.

Definition 1. A mixed-directed graph is defined to be a triple
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M= (‘/’ de Eu)

where (V.E,) forms a directed graph and E, is a collection of undirected edges between
vertices in V. By convention, no pair of vertices can be joined by both a directed and an
undirected edge—that is, E,NE =.

Definition 2. A mixed-directed graph is said to be acyclic if G;=(V,E) is acyclic. A ver-
tex w is said to be a successor of vertex v if there is a directed edge from v to w, i.e.,
(vw) € E,;. In this case, vertex v is a predecessor of vertex w. A vertex v is said to be a
neighbor of vertex w if there is an undirected edge between them. From above, note
that a neighbor of vertex v cannot also be a successor or a predecessor of v.

Definition 3. Given an acyclic mixed-directed graph M = (V, E;, E,,), a weight function W
defined over the edges in EjUE,,, a collection of bad vertices BV that cannot be fused
with any other vertex in V, and a collection of bad edges E,,cE,, that prevent fusion of
their endpoints, the weighted loop fusion problem is the problem of finding a collec-
tion of vertex sets {Vy, V5, ...,V, } such that

a. UV, =V ,ie., the collection covers all vertices in the graph,
i=1

b. Vi, j1<ij<n(V,nV)z@—i=j i.e. the vertex sets form a partition of V.

c. Vi, l<i<n,((V,nB=V)v(V,NB=0Q)) , 1.e. each set contains either no bad verti-

ces or exclusively bad vertices.

d. For any i, there is no directed path (all edges in E,;) between two vertices in V; that passes

through a vertex not in V;.
e. For any i, there is no bad edge between two vertices in V.

f. The total weight of edges between vertices in the same vertex set, summed over all vertex

sets 1s maximized.

Note that condition (c) implies that we never fuse bad vertices.

3.0 Greedy Weighted Fusion

Finding the optimal solution to this problem has been shown to be NP-hard [14], so we will need
resort to heuristic approaches. The heuristic we present here is designed to be relatively simple
while displaying modest computational complexity. It employs a greedy strategy that iteratively
selects the edge of highest weight and fuses the endpoints of that edge, along with all edges on a
path between them into the same vertex set.
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Because the implementation of this algorithm will require sophisticated data structures, we will
begin with an outline of the implementation that will illuminate some of the algorithmic issues.

The algorithm can be thought of as proceeding in six stages:

1. Initialize all the quantities and compute initial successor, predecessor, and neighbor sets. This

can be implemented in O(V+E) time.
2. Topologically sort the vertices of the directed acyclic graph. This takes O(E; + V) time.

3. Process the vertices in V to compute for each vertex the set pathFrom[v], which contains all
vertices that can be reached by a path from vertex v and the set badPathFrom[v], a subset of
pathFrom[v] that includes the set of vertices that can be reached from v by a path that con-
tains a bad vertex. This phase can be done in time O(E,; + V) set operations, each of which
takes O(V) time.

4. Invert the sets pathFrom and badPathFrom respectively to produce the sets pathTo[v] and
badPathTo[v] for each vertex v in the graph. The set pathTo[v] contains the vertices from
which there is a path to v; the set badPathTo[v] contains the vertices from which v can be
reached via a bad path. This can be done in O(VZ) time.

5. Insert each of the edges in E = E,UE,, into a priority queue edgeHeap by weight. If the prior-
ity queue is implemented as a heap, this takes O(EIgE) time. Note that since 1gF < lgVZ:
21gV, the complexity of this stage can be rewritten as O(ElgV)

6. While edgeHeap is non-empty, select and remove the heaviest edge (v,w) from it.

a. Collapse v, w, and every edge on a directed path between them into a single node.

b. After each collapse of a vertex into v, adjust the sets pathFrom, badPathFrom, pathTo, and
badPathTo to reflect the new graph. That is, the composite node will now be reached from
every vertex that reaches a vertex in the composite and it will reach any vertex that is
reached by a vertex in the composite.

c. After each collapse, recompute successor, predecessor and neighbor sets for the compos-
ite vertex and recompute weights between the composite vertex and other vertices as

appropriate.

A more detailed version of the algorithm is given in Figure 2. Note that phases 1 through 5 can be
implemented in O(EV + V24 ElgV)=0(EV + V2) time. It would be good if the total time for
phase 6 could be limited to this asymptotic bound as well. To understand whether this is possible,

we need to examine the steps in these phases more carefully.
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FIGURE 2  Greedy weighted fusion.
procedure WeightedFusion(M, B, W);

P1:

P2:
L1:

P3:
L2:

L3:

/I M = (VE,E,) is an acyclic mixed-directed graph
/I B is the set of bad vertices
/I W is the weight function

/I pathFrom[v] contains all vertices reached by a path from v;
/! badPathFrom[v] contains the set of vertices reachable from v
/I by a path containing a bad vertex

/I edgeHeap is a priority queue of edges

InitializeGraph(V, E,, E);
topologically sort the vertices using directed edges;

edgeHeap = O,
InitializePathinfo(V, edgeHeap);

while edgeHeap # & do begin
select and remove the heaviest edge e = (v,w) from edgeHeap;
if v € pathFrom[w] then swap v and w;
if w € badPathFrom|[v] then
continue L2; // cannot or need not be fused

/I Otherwise fuse v, w, and all vertices on a path between them
worklist := &,
for each x € successors[v] do
if w € pathFrom[x] then worklist := worklist U {x};
if worklist = & then add w to worklist; // (v,w) undirected

while worklist # & do begin
select and remove the first vertex x from worklist;
if x #w then
for each y € successors[x] do begin

if w € pathFrom[y] and y ¢ worklist.ever then begin

worklist := worklist U {y};
end
end

// fuse x into v;
rep[x] =v;

// update pathFrom and pathTo sets
UpdatePathInfo(v,x);

Fast Greedy Weighted Fusion
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// update the graph representation
UpdateSuccessors(v,x);
UpdatePredecessors(v,x),
UpdateNeighbors(v,x);

// delete vertex x

delete x, predecessors|x], successors|x], neighbors[x],
pathFrom|[x], badPathFrom|x], pathTo|x],
and badPathTo|x];

delete x from successors[v];

end L3
end L1
end WeightedFusion;

Code for the initialization routines is given in Figure 3 and in Figure 4. Note that we are comput-
ing not only pathFrom and badPathFrom sets but also the inverse sets pathTo and badPathTo,
where x € pathToly] if and only if y € pathFrom[x]. These sets are needed for the update opera-
tions that will be performed after collapses.

FIGURE 3 Initialize predecessors, successors and neighbors.
procedure InitializeGraph(V, E; E,);

for each v € V do begin
successors[v] := &,
predecessors[v] =,
neighbors[v] .= &,
end

for each (x,y) € E;do
successors[x] := successors[x] U {y};
predecessors|y] := predecessors[y] U {x}

for each (x,y) € E, do begin
neighbors[x)] := neighbors|x] U {y};
neighborsly] := neighbors[y] U {x};
end
end /nitializeGraph;

FIGURE 4 Initialize path sets.
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procedure /nitializePathlnfo(V, edgeHeap);

/l'v is the vertex into which merging is taking place
/I x is the vertex currently being merged.

L1:for each ve V in reverse topological order do begin
rep[v] :=v;
pathFrom[v] .= {v};
if ve B then badPathFrom[v] = {v} else badPathFrom[v] := O&;
for each w € successors[v] do begin
pathFrom[v] := pathFrom[v] U pathFrom[w];
badPathFrom|v] := badPathFrom|[v] U badPathFrom|[w];
if (y,w) is a bad edge or w € B then
badPathFrom[v] := badPathFrom[v] U pathFrom[w];
add (vww) to edgeHeap;
end
for each w € neighbors[v] do
if w € pathFrom[v] then begin
delete w from neighbors[v];
delete v from neighbors[w];
successors[v] := successors[v] U {w};
end
add (vw) to edgeHeap;,
end
invert pathFrom to compute pathlo;
invert badPathFrom to computer badPathTo;
end InitializePathlnfo;

Once it has selected an edge (v,w) along which to collapse, the greedy weighted fusion algorithm

will perform the following steps:
1. Create a queue named worklist and initialize it to contain all the successors of v that reach w.
If none of the successors of v reach w, then there is no path from v to w, so put w on worklist.
2. While worklist is not empty
a. Select an remove the oldest element x of worklist;

b. Add to worklist all elements y € successors[x] such that w € pathFrom[y] and y has never

been an element of worklist;
c. Merge x into v;

d. Reconstruct pathFrom sets for the entire graph. Note that if some vertex u reaches x and v

reaches another vertex z, then, after merging x into v, u reaches z..
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e. Create a new successor, predecessor, and neighbor lists for the composite v by merging
successors[x], predecessors|x], and neighbors|x] into successors|v], predecessors[v]. and

neighbors[v] as appropriate;

3.1 A Fast Set Implementation

A naive implementation of the steps above might use a list and associated bit vector for all sets.
Then, step 1 above would require O(V) operations because the bit vector would need to be initial-

ized to empty.

The cost of step 1 can be reduced to a constant amount of time per edge by using a well-known
but rarely-discussed strategy for avoiding the initialization costs for a set represented by an
indexed array. The trick is to use two integer arrays of length V for the set representation. The
array Q will contain all the vertices in the queue in order from element Q[rnext] to element Q[last].
The array In will serve as the bit array for element testing—I/n[v] will contain the location in Q of

vertex v.

To enter a new vertex y at the end of the queue requires the following steps:
last = last + 1; Qllast] =y; In]y] = last;

Note that this leaves the element In[y] pointing to a location in Q that is within the range [0:/ast]

and contains y; Thus the test whether a vertex z is a member of the Queue is:
next < In|z] < last and Q[In[z]] = z;

and the test whether z has ever been a member of Q is:
0 <In|z] £ last and Q[In|z]] = z;

Figure Chapter 5 gives a graphical description of the queue representation. Note that vertex 4 can-

not be mistaken for a member because no element of Q in the right range points back to 4.
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FIGURE 5  Fast queue representation

In 0
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4 1 |-— last
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Using this representation we can perform all queue operations in constant time including initial-

ization. This data structure will be used for many of the set representations in the algorithm.

3.2 Elaboration of Algorithm Steps

Returning to our analysis of the overall algorithm, we see that Step 2a could be done in constant
time by simple list operations. Steps 2b through 2e are involved with a merger and require some

analysis.

Step 2b. Suppose we charge the cost of traversing the edge (x,y) to the vertex y if y € pathFrom[v]
Since each vertex can be merged into another at most once, the total cost of such edge traversals is
O(V) over the entire program. Next consider those vertices y that are successors of some node in
the collapsed region, but are not themselves in that region. Such vertices become successors of
composite region represented by v. If we charge the cost of traversing edges out of x to such an
outside vertex y to the edge (x,y), an edge can accumulate O(V) charges over the course of the
algorithm. Thus the total cost of Step 2b over the course of the algorithm is O(EV).
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Step 2c is performed at most O(V) times so the tricky parts of the analysis arise from the update
operations in steps 2d and 2e. We will treat these steps separately. For the purposes of this discus-

sion, we will consider the these steps in reverse order.

3.2.1 Updating Successors and Neighbors

Step 2e. First, let us consider the cost of updating successors. The code for this operation is given

in Figure 6

FIGURE 6  Update successors.
procedure UpdateSuccessors(v,x);

/l'v is the vertex into which merging is taking place
/I x is the vertex currently being merged.

/I Make successors of x be successors of v and reweight
for each y € successors[x] do begin
if y € successors[v] then begin
W(,y) = W(v,y) + W(x,y) // charge to deleted edge (x,y)
reheap edgeHeap;
delete (x,y) from edgeHeap and reheap;
end
else if y € neighbors[v] then begin
successors[v] = successors[v] U {y};
W(,y) = W(v,y) + W(x,y); // charge to deleted edge (x,y)
reheap edgeHeap;
delete (x,y) from edgeHeap and reheap;
delete y from neighbors[v];
delete x from neighbors|y];
end
else begin // y has no relationship to v
successors[v] = successors[v] U {y};
replace (x,y) with (v,y) in edgeHeap; // no charge
end
delete x from predecessors[y];
end
end UpdateSuccessors;

This procedure is invoked once for each vertex x that is collapsed into another vertex v. Thus, it

can be invoked at most O(V) times during the entire run of the algorithm. For each such vertex,
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the procedure visits each successor. Since no vertex is ever collapses more than once, the total
number of successor visits is bounded by E. All of the operations in the visit take constant time,

except for the reheap operation on edgeHeap, which takes IgE = 1gV time.

One wrinkle that must be dealt with is the case where the edge from x to y is not deleted but rather
moved so that it now connects v to y. This is the third case in the if statement within UpdateSuc-
cessors. If we are not careful, it is possible that the same edge will be visited many times as col-
lapses are performed. However, note that the third case does no reweighting and no reheaping is
required to deal with it. Therefore the total cost contributed by the third case in the if statement is
at most. O(EV). The cost of operations in the other two cases can be charged to the edge being
deleted, so the total cost is bounded by O(EIgV).

Thus the cost associated with all invocations of UpdateSuccessors is O(EV + EIgV + V) = O(EV).
Similar analyses for UpdatePredecessors and UpdateNeighbors, given in figures Figure 7 and

Figure 8, yield the same time bound.

FIGURE 7  Update predecessors.

procedure UpdatePredecessors(v,x);

/l'v is the vertex into which merging is taking place
/Il x is the vertex currently being merged.

/I Make predecessors of x be predecessors of v and reweight
for each y € predecessors[x] do begin
if y € predecessors[v] then begin
Wi,v) = W(i,v) + W(y,x)
reheap edgeHeap // charge to deleted edge (y,x)
delete (y,x) from edgeHeap and reheap;
end
else if y € neighbors[v] then begin
predecessors[v] = predecessors[v] U {y};
Wy) = Wvy) + W(x,y);
reheap edgeHeap; // charge to deleted edge
delete (y,x) from edgeHeap and reheap;
delete y from neighbors[v];
end
else begin
predecessors|v] = predecessors[v] U {y};
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replace (y,x) with (y,v) in edgeHeap; // no charge
end
delete x from successors[y];
end
end UpdatePredecessors;

FIGURE 8  Update neighbors.
procedure UpdateNeighbors(v,x);

/l'v is the vertex into which merging is taking place
/I x is the vertex currently being merged.

/I Make neighbors of x be succs, preds, or nbrs of v, as appropriate;
for each y € neighbors[x] do begin
if y € pathFrom[v] then begin // make y a successor of v
if y € successors[v] then begin
W) := Wy) + Wx,y);
reheap edgeHeap; // charge to deleted edge;
delete (x,y) from edgeHeap and reheap;
else begin
W(vy) == W(x,y);
replace (x,y) with (v,y) in edgeHeap; // no charge
successors[v] = successors[v] U {y};
end
else if v € pathFrom[y] then begin // make y a pred of v
if y € predecessors[v] then begin
WQ,v) = W(y,v) + W(y,x);
reheap edgeHeap // charge to deleted edge;
delete (x,y) from edgeHeap and reheap;
end
else begin
W(y,v) := W(y,x);
replace (x,y) with (y,v) in edgeHeap;
predecessors[v] = predecessors[v] U {y};
end
end
else if y € neighbors[v] then begin // make y a nbr of v
W) = Wy) + Wx,y);
reheap edgeHeap // charge to deleted edge
delete (x,y) from edgeHeap and reheap;
end

Fast Greedy Weighted Fusion
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else begin // no relationship—make them neighbors
neighbors[v] = neighbors[v] L {y};
replace (x,y) with (vy) in edgeHeap; // no charge
end
delete x from neighbors[y];
end
end UpdateNeighbors;

3.2.2 Updating Path Information
Step 2d. We now turn to the problem of updating the pathFrom, badPathFrom, pathTo, and bad-

PathTo sets after a collapse. This step must be performed before the successor, predecessor and
neighbor sets are updated because it uses the old relationships to perform the update.

The key difficulty with this step is that any vertex that reaches the vertex x that is being collapsed
into v, now transitively reaches any vertex reached by v. This problem is illustrated by the diagram

in Figure 9.

FIGURE 9  Illustration of the path update problem.
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If we were to recompute the pathFrom sets from scratch after each collapse, it would take a total
of O(F Ve V3 ) time, since a single application of the pathFrom computation takes O(EV + VZ)

time.

To reduce this time bound we must ensure that we do no more work than is required. The basic
strategy is to compute newPathSinks, the set of vertices reached from v but not from x, and new-

PathSources, the set of vertices that reach x but not v.

FIGURE 10 Solving the path update problem.

| I
\ I
newPathSources \ﬂ :
I/
/
/
/
/
/
/
I/
\
\
1
/ \
/’ ~&— newPathSinks
4 A

Once we have these sets, we will update the pathFrom sets for every vertex in newPathSources

and we will update the pathTo set of every vertex in newPathSinks.

One way to do this would be the following:

for each b € newPathSources do

pathFrom[b] := pathFrom[b] U newPathSinks;
for each b € newPathSinks do

pathTo|b] := pathTo[b] L newPathSources;
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The problem with this approach is that it might take O(Vz) time because there could be O(V) ver-
tices in newPathSinks L newPathSources and the set operations each take O(V) time. Thus the
total time would be bounded by O(V?), making it more expensive than any other part of the algo-

rithm.

One reason the cost is high is the possibility that we are doing unnecessary work. Since we only
increase the size of the pathTo and pathFrom sets, if we use bit matrices of size V2 to represent
these sets and we only turn on bits once, we will limit the total amount of work to O(V?). How-
ever, in the strategy above, we may attempt to turn on the same bit many times. This is because
vertices in newPathSources might already reach vertices in newPathSinks if there is an edge

between the two sets that bypasses v and x.

To avoid such redundant work we will back up through the vertices in newPathSources taking
care not to turn on any pathTo bit more than once. Similarly, we will move down through new-
PathSinks to turn on pathFrom bits at most once. In the procedure UpdatePathInfo, given in
Figure 11, these processing passes are encapsulated in calls to UpdateBothWays, which calls
UpdateSlice, given in Figure 12, once for each direction—upward from its second parameter x
and downward from its first parameter v. Note that there are at most eight calls to UpdateSlice for
each of the O(V) collapses. To achieve the desired time bound, we must bound the total amount of
work in each these calls by O(EV + V2).

FIGURE 11  Update pathFrom and pathTo sets.
procedure UpdatePathInfo(v,x);

/I First, check for the case where (v,x) is an undirected edge

/' and neither vertex reaches the other.

/I In this case, update pathFrom for variables that reach v but not x
/I and pathTo for vertices that are reached from x but not v.

if x ¢ pathFrom[v] then begin // special case: undirected (v,x)

UpdateBothWays(x,v,pathFrom, pathTo);
UpdateBothWays(x,v,badPathFrom, badPathTo);
end

/I Now update pathFrom for vertices that reach x but not v,
/I and pathTo for vertices reached from v but not from x
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UpdateBothWays(v,x,pathFrom, pathTo);
UpdateBothWays(v,x,badPathFrom, badPathTo);

end UpdatePathlnfo
procedure UpdateBothWays(v,x,pathFrom, pathTo);
/I Traverse upward from x and downward from v

newPathSinks := pathFrom[v] — pathFrom[x];

newPathSources = pathTo|x] — pathTo[v];

pathTolv] := pathTo|v] U newPathSources;

UpdateSlice(x, pathFrom, newPathSources, newPathSinks,
successors, predecessors),

UpdateSlice(v, pathTo, newPathSinks, newPathSoures,
predecessors, succcessors),

end UpdateBothWays

We now examine the work done in a single call to UpdateSlice. In each call, the parameter path-
From is meant to represent the pathFrom or pathTo sets, depending on the direction of the tra-

versal. (Note that a second set of calls passes badPathFrom and badPathTo to this parameter.)

Since the effect of the calls in different directions is symmetric, we will analyze the cost of a sin-
gle call to update all the pathFrom sets in newPathSources. For each vertex w in the slice, repre-
sented by newPathSources, we will compute a set newPathFrom[w] that represents the set of new
vertices reached from w after the collapse. As each vertex is processed, we will visit all its prede-
cessors. At each predecessor y, we will examine each vertex z in newPathFrom[w] to see if it is in
pathFrom[y]. If z is not in pathFrom[y], we will add it to pathFrom[y] and to newPathFrom[y].
The algorithm is given in Figure 12.

FIGURE 12 Update pathFrom sets for a slice of vertices reaching or reached from x.

procedure UpdateSlice(x, pathFrom, newPathSources, newPathSinks,
cesors, pcesors);

/I x is the vertex that is being collapsed
/I pathFrom is the set that is being updated
/I newPathSources is the set of vertices that can reach x

/! but not the vertex it is being collapsed into
/I newPathSinks is the set of vertices reachable from the vertex being
1 collapsed into but not from x
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/I cesors is the successor set (if traversing backward from x)
/I pcesors is the predecessor set (if traversing backward from x)

/I Update pathFrom sets backing up from x in newPathSources
/I adding vertices in newPathSinks

S0: newPathFrom|x] := newPathSinks;
L1:for each b € newPathSources— {x} do newPathFrom[b] := &,
worklist := {x};
L2: while worklist # & do begin
pick an element w from the front of worklist and remove it;
L3:  for each y € pcesors|w] such that y € newPathSources do begin
if y ¢ worklist.ever then add y to worklist;
L4: for each 7 € newPathFrom[w] do
St1: if z ¢ pathFrom[y] then begin
pathFromly] := pathFrom[y] U {z};
newPathFrom|y] := newPathFrom[y] U {z};
end
end
end
end UpdateSlice;

We establish the correctness of procedure UpdateSlice by induction on the order in which ele-
ments are removed from worklist. Since the first element off the worklist is x, we are certain that
its newPathFrom set is correctly computed because it must be the original newPathSinks by the
way we have computed it. Now assume that pathFrom[b] and newPathFrom|[b] are computed cor-
rectly for every vertex that comes off the worklist before vertex w. Furthermore, assume that ver-
tex w has an incorrect pathFrom set when it comes off the worklist. This can only be because
pathFrom[w] has some bit off that should be on. This bit must correspond to some vertex in new-
PathSinks. But this means that none of the successors of w have that bit turned on in either their
pathFrom or newPathFrom sets, but since there must be a path from w to the vertex represented by
that bit, then some predecessor, which necessarily came off the worklist before w, must have the

bit for that vertex set incorrectly as well, a contradiction.

To show that the algorithm stays within the desired time limits, we must consider several aspects
of the implementation. If we use the indexed set representation described earlier, we can initialize
each newPathFrom set and the worklist to the empty set in constant time. Since the procedure is

entered at most O(V) times and there are at most O(V) vertices in a slice each of which is put on
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the worklist at most once, the body of loop L2 is executed at most O(V?) times. Loop L3 visits

each predecessor of a vertex, so its body should be executed at most O(EV) times.

Unfortunately the work done in the body of L3 includes the loop L4. We must have some way of
bounding the work done by the body of loop L4 which consists of a single if statement S1. The
true branch of the if statement is taken only if the collapse has made y reach w and this is the first
time that fact is noticed. We charge the constant time of this branch to the entry in the pathFrom
matrix that is being set to true. Thus the true branch of the if statement can be executed only

O(Vz) times over the entire algorithm.

This leaves the false branch, which is empty. however, the test itself represents a constant time
cost for the false branch. How many times can the test be executed with the false outcome? Since
newPathFrom[w] is true, it means that the immediate predecessor w of y within the newPathFrom
set, has just had its pathFrom bit for z set to true. Thus we will charge this test to the edge between
y and w. Since a given pathFrom bit can be set at most once in the algorithm, each edge can be
charged at most V times, once for each vertex that can be reached from the sink of that edge. Thus,

the total cost of the charges for the false test over the entire algorithm is O(EV).

These considerations establish that pathFrom and badPathFrom can be updated in O(EV + V 2)
time over the entire algorithm. An identical analysis establishes the same time bound for the
updates to pathTo and badPathTo.

3.2.3 Final Observations

To sum up, the total cost of the algorithm is O(EV + V 2) for the first five phases, O(EV) for phase
6aand O(EV +V 2) for phase 6b. Thus the entire algorithm takes time O(EV + V 2).

A critical quality of the algorithm is the recomputation of weights. between a collapsed vertex and
some successor or predecessor. In the algorithm as presented the cost of a combined edge is com-
puted by adding the costs of the edges incident on the two original vertices. In many cases this is
not the best method. For example, in the fusion for reuse problem. We might have a use of the
same array variable in three different loops. Suppose that the loops each execute 100 iterations.

The graph for the three loops might look like the one in Figure 13.
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FIGURE 13 Weight computation example.

In this example, If vertices x and y are merged, reweighting by addition would compute an aggre-
gate weight of 200 between x and z, when the total additional reuse available after merging is 100.

In this case, using maximum as the reweighting operation would be more appropriate.

A nice feature of the algorithm presented is that edge reweighting is done at most O(E) times.
This means we can use a relatively expensive reweighting algorithm without substantively affect-
ing the asymptotic time bound. For example, suppose there are A different arrays in the program.
If we associate a length A array with each vertex that indicates the volume of usage of each array
in that loop, then reweighting could be done by taking the maximum of the usage counts of the
arrays in the two vertices being collapsed and then summing the minimums of the weights
between corresponding arrays in each successor of the composite vertex. This array-by-array
computation could be done in O(A) time. So the entire fusion algorithm would take time O((E
+V)(V+A)). If A = O(V) then the algorithm has the same asymptotic time bound as the fusion

algorithm that uses addition for reweighting.

Although the algorithm should produce good answers in practice, the diagram in Figure 14 shows

that it will not always produce the optimal result.
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FIGURE 14 Non-optimality of greedy weighted fusion.

11

bad
vertex

In this case the highest weight edge is (a,f), with a weight of 11. If we collapse this edge, the final
merge set will be {a, b, ¢, d, f} and the total weight of all edges will be 16. However, by merging
c and d with b, we have precluded merging ¢ and d with e because of the bad vertex on a path
from b to e. If we merged ¢ and d with e and finstead, the total weight saved would be 22, a better
result.

4.0 Implementation Status

This algorithm is being implemented in the D System infrastructure which supports compilation
of Fortran 90 and HPF. The D System uses a standard scalarization procedure for implementing
array assignments, so this should make it possible to accurately assess the value of the greedy

heuristic on scalarized Fortran 90 programs.
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5.0 Related Work

To my knowledge, the fusion algorithm presented here is the first published global fusion algo-
rithm that uses the greedy strategy. Kennedy and McKinley [14] developed the original proof that
weighted fusion is NP-complete and presented a heuristic strategy based on repetitive application
of Goldberg and Tarjan’s maximum flow algorithm for networks [14]. The resulting algorithm
takes time O(kE Vlg(VZ/E)), where k<V is the number of required applications of the max-flow
algorithm. It is not clear whether the solutions it produces are better or worse than those produced
by greedy weighted fusion. Gao, Olsen, Sarkar, and Thekkath [13] produced a solution to the 0-1
fusion problem in which the only weights for edges are 0 or 1. This approach, designed to support
the locality optimization of array contraction [16], used an O(EV) prepass to reduce the size of
the graph then successively applied max-flow on the reduced graph Gp = (E, V). The overall
algorithm takes time O(EV+ VRZE rlgVg). Thus the Gao algorithm produces a heuristic solution to
a subproblem of weighted fusion in a time which is asymptotically worse than greedy weighted
fusion. However, it is difficult to compare these algorithms because the solutions they produce

may differ due to the different heuristics used.
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