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Abstract

We pursue the study of concavity cuts for the disjoint bilinear programming prob-
lem. This optimization problem has two equivalent symmetric linear maxmin refor-
mulations, leading to two sets of concavity cuts. We first examine the depth of these
cuts by considering the assumptions on the boundedness of the feasible regions of both
maxmin and bilinear formulations. We next propose a branch and bound algorithm
which make use of concavity cuts. We also present a procedure that eliminates degen-
erate solutions. Extensive computational experiences are reported. Sparse problems
with up to 500 variables in each disjoint sets and 100 constraints, and dense problems
with up to 60 variables again in each sets and 60 constraints are solved in reasonable
computing times.
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1 Introduction

The disjoint bilinear programming problem can be written as follows:

max c'z—u'Qzx + u'd
(BILD) z5u
st ze X, wuelU

where
X={zeR"™: Az <a,z > 0}; U={ueR" :u'B<b,u>0}
celR™; aeR"™; AeR™"; Qe R"™*";
deR"™; belR™; B¢cR"™* ",

Several methods have been proposed in the literature to solve (BILD). All of them, except
for those of Thieu [11] and Audet et al. [4], assume that the sets X and U are bounded.

A first class of methods corresponds to cutting-plane algorithms. Konno [9] proposes an
algorithm of this class with a convergence to an e-optimal solution although he shows that
there always exists an optimal solution which lies at one of the extreme points of X and
U. This algorithm consists of two phases which are repeated until an e-optimal solution is
obtained. The first one aims at finding a pair of e-locally maximum basic feasible solutions,
by alternately solving parameterized linear programs and then, if necessary, moving to an
adjacent pair of basic feasible solutions (this is called augmented mountain climbing). In
the second phase, a concavity cut which exploits the two basic solutions of the first phase is
computed. It allows the elimination of solutions with a value which is never more than ¢ far
away from the incumbent one. Very few computational results are available. Konno presents
results obtained on a dozen of test problems of small size, the largest of them contains 10
(z) and 13 (u) variables with a set of 22 (X) and 24 (U) constraints. Independently, Vaish
and Shetty [14] propose a cutting-plane very similar to Konno’s one, but again with no
guarantee of finite convergence. Sherali and Shetty [10] later show that finite convergence
can be obtained with the addition of disjunctive cuts. Unfortunately, those cuts are quite
expensive to compute.

Polyhedral annexation defines a second class of methods. Vaish and Shetty [15] propose
an interior approximation algorithm with a finite convergence. They mention that numerical
difficulties quickly arise when the size of the problems increases. Gallo and Ulkiicii [7]
present an algorithm which combines cutting-planes and outer approximation, with however
no finite convergence. Thieu [11] develops an interior approximation method which is finite.
It exploits a reformulation of (BILD) as a concave optimization one, and includes the solution
of a parameterized linear program to solve it when the concave function is bounded below.

Several authors have observed that the (BILD) problem can be reformulated as any of the
following two concave optimization problems:

max f(z),  maxg(u)



where f : IR"* — IR and g : IR"* — IR are the following two piecewise linear convex objective
functions

flz)=cz+ max u'(d — Qx), g(u) = u'd + ma%(ct —u'Q)z.
uwelU re

By taking the dual of the optimization operator, they can be rewritten

z)=cx+ min b , u) = u'd + min vta,
f(@) Jmin by g(u) Jmin,

where Y (2) and V(u) are two parameterized polyhedrons:

Y(z) = {yeR™:By>d-Qu, y>0} CR™,
Vi) = {veR™ :v'A>c —u'Q, v >0} CR™.

This leads to reformulations of the general bilinear programming problem (BILD) as one
of the following two equivalent linear maxmin problems:

min by
y
LMM,, max | ¢z + min b = max cz _
( v) na ( +er(z) y) N + st. By>d—Qzx |-
y=>0
s.t. Az <a
x>0
min v'a
t . t t v
LMMy, max [ v'd 4+ min v'a) = max u'd t t_ ot
( ) nas ( ‘|‘U6V(u) ) ¢ + s.t. v'A > —u'Q
v>0
s.t. u'B<b
u>0

Audet et al. [4] exploit these reformulations to build an efficient branch and bound
algorithm to solve (BILD). No assumptions are made on the boundedness of the sets X and
U. The algorithm consists of two phases. The first one detects if the optimal value of (BILD)
is bounded or not. If it is bounded, the second phase (designed for bilinear programs with
a bounded optimal value) is applied and finds its optimal solution. The algorithm creates
an implicit enumeration search tree, and exploits the complementary slackness conditions
of the primal and dual expressions of the functions f and ¢ of the above reformulations. A
binary branching is proposed. In one branch, it fixes a variable (or slack variable) to 0, while
in the other one the corresponding complementary constraint (or non-negativity constraint)
is transformed into an equality. Lower bounds are computed by iteratively solving finitely
many parameterized linear programs: optimize iteratively f(z) to obtain u and g(u) to
obtain = until both function values agree; this is the mountain climbing procedure of Konno
[9]. Upper bounds are obtained with a relaxation of the linear maxmin programs.



The reader interested in a more detailed overview of the different methods of the literature
is referred to the surveys written by Al-Khayyal [1] [2] and Floudas and Visweswaran [6], or
to Audet [3] for links with other optimization problems.

The aim of this paper is to study the usefulness of incorporating concavity cuts in a
branch and bound procedure for the disjoint bilinear program. The paper is organized as
follows. We first recall in Section 2 the definition of a concavity cut in the context of linear
maxmin problems. Section 3 is devoted to the study of the depth of the cuts for different
assumptions on the boundedness of the domains. In Section 4, we present a branch and
bound algorithm which includes concavity cuts. If the domain is unbounded, then it first
checks boundedness of the optimal value (this is done by solving auxiliary programming
problems see Section 4.3). In order to improve the efficiency of the algorithm, we discuss
how to remove degenerate solutions (Section 4.4). A small example is provided in Section
4.5 to illustrate the algorithm. Section 5. contains extensive computational experiences
on sparse and dense, bounded and unbounded randomly generated test problems. Sparse
problems with up to 500 variables in both sets and 100 constraints and dense problems with
up to 60 variables again in both sets and 60 constraints are solved in reasonable computing
times.

2 Concavity cuts

We recall and extend the definitions of the concavity cuts for the linear maxmin problem.
The reader is referred to Tuy [12] and to Horst and Tuy [8] for a reference on the original
definitions. The extension here is with respect to the fact that the functions f and g are not
defined everywhere but only on a restricted domain which corresponds to a projection.

Let & be a non-degenerate vertex of the polyhedron X. We do not consider here the
degenerate case, as we propose in Section 4.4 a way to eliminate degenerate solutions.

Let N, = {1,2,... ,n,} and {2' : 1 € N,} be the set of points of X that can be obtained
by performing a single simplex pivot from #. These points are called neighbors of . Since
z is assumed non-degenerate, there are exactly n, neighbors of z.

For i € N,, if ||2* — &
direction is defined to be \' = &* — 7, otherwise #' is an extreme ray of X and A is defined
to be the normalized direction Z=Z.. Observe that if Y (2) = () or if Y (#%) = ) for some 1,

llz* =l

then f(2) = oc or f(#') = oo, and hence (BILD) is unbounded (see Section 3 for details).

is finite, then 2* is a vertex of X and the i** feasible neighboring

Consider a scalar v satisfying f(2) < yand f(2 +X) <~ (1=1,2,... ,n,).

Definition 2.1 For alli € {1,2,... ,n,} the y-extension along the direction \* is the point



A

2+ 0;\ where 0; € IR = IRU {+oc} salisfies

éi = mﬁax{@i s f(z 4+ Hi)\i) <~}

The ~-extension & + 0: )\ necessarily satisfies 0; > 1. Moreover, 0; may be infinite.

Proposition 2.2 Let & be a non-degenerate vertex of X, and X' one of ils feasible direction.
The value of the parameter 8; of the y-extension of & along \° is equal to the optimal value

of the linear program

max 6;
i,y

s.t. (x4 Qi/\i) +by <~
y €Y (2 +0:)).

Proof: Let & + 0;\' be the v-extension along the direction A\*. The parameter 0; satisfies:

YEY (&40, %)

b

0, = max {92' L@ 400+ min by < ’Y}

=—max<f;: min by <~y—c(F+0:))%.
; { yEY (#+0; M) =7 ( )

However, for a fixed value ;, imposing that the minimum of b’y over Y (#+6;\") is less than or
equal to a given threshold is equivalent to imposing that there exists a point y € Y (2 + ;")
with value b’y less than or equal to this threshold. .

Convexity of the function f ensures that all the points x contained in the convex envelope
defined by & and the n, vy-extensions are such that f(z) <. Thus, the inequality induced
by the hyperplane going through the v-extensions defines a valid cut.

Definition 2.3 The concavity cut induced by the non-degenerate point & of X can be writlen
mp(x — &) > 1, where m.(x — ) = 1 defines the unique hyperplane going through the ~-
extensions & + 0;\' (i € N,).

The depth of a concavity cut is defined to be the distance that separates the hyperplane
from the vertex that induced it. We next define a deep concavity cut.

Definition 2.4 The concavity cut induced by a non-degenerale extreme point & of X is said
to be deep if for each i € N,., we have either 0; = oo or f(& + 0;)°) = v or both.



3 Properties of disjoint bilinear programming

Different assumptions can be made when considering the disjoint bilinear problem (BILD) or
one of its linear maxmin reformulations (LMM,,) or (LMM,, ).

For (BILD), a usual assumption is that both polyhedrons X and U are bounded. For
(LMM_, ), it is often assumed that the set {(z,y) : = € X,y € Y(z)} is bounded, and that
the optimal solution lies in that set.

Both the assumptions on (BILD), or those on (LMM,, ) are alone sufficient to ensure that
the optimal value of the problem (BILD) or (LMM,,) problem is bounded. However, these
assumptions are not equivalent. Suppose that the first assumption is violated and there is
a solution (z',u’) such that =’ belongs to X and u’ is an extreme ray of U, that yields an
unbounded function value, i.e., f(z') = co. In such a case, it follows from the duality theory
of linear programming that the set Y () is empty. This may not necessarily affect the second
assumption. The set {(z,y) : z € X,y € Y(z)} still might be non-empty and bounded. This
contradicts the second assumption which states that the optimal solution Solutions where
Y (z) = 0 are not to be considered by (LMM,,). Similar observations can be made for the
(LMMy,, ) problem.

We investigate further these different assumptions below and analyze their consequences
on the depth of concavity cuts. Before going on with the discussion, we recall the definition
of the FORBIDDANCE decision problem proposed in Audet et al. [4].

Definition 3.1 Given two polyhedrons X € IR™ and P € IR™*", does there exist a point
x in X such that the projection of P on the y-space, i.e., Y(z) = {y € IR™ : (z,y) € P}, is
empty?

It is shown in [4] that the FORBIDDANCE problem is strongly NP-complete.

3.1 Boundedness assumptions on the linear maxmin reformulation

The first formulation of the linear maxmin problem is due to Falk [5] where both levels of
constraints are combined into a single non-empty polytope P C IR™*"™ (the dimensions of
the vectors and variables are defined as in the introduction):

(LMM) mgxmyin{ct:li + by : (z,y) € P}.

Define P, = {z : (z,y) € P for some y € IR"™} to be the projection of P on the y-space,
and define P,(z) = {y : (z,y) € P} to be the set of values that the variable y may take for
a fixed z in IR"™. It follows that (LMM) may be rewritten as

z€P, yEPy ()

max <Ctl’ + min bty> .
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It is enough to assume that P is bounded to ensure that the optimal value is bounded. This
formulation is however not equivalent to (LMM,, ). Problem (LMM,,) is more general since
there may be an z € X such that Y(z) = 0, thus yielding an optimal value of +oco. The
dual counterpart of this solution in (BILD) is such that x belongs to X and w is an extreme
ray of U along which the function value satisfies limg_yo, ¢’z — ku'Qz + ku'd = oc.

This behavior is impossible with (LMM) since for any = € P,, the set P,(z) is never
empty. This is due to the fact that both sets are constructed from the same non-empty
polytope P.

3.2 Boundedness assumptions on the bilinear formulation

Different cases must be considered when studying the disjoint bilinear problem (BILD). If
both X and U are bounded, then the optimal value of (BILD) is necessarily bounded.

Let & be a non-degenerate vertex of X. Recall that the y-extension induced by z along
the feasible direction A is obtained by computing the largest value 0; of ; for which the
value f(# + 0;\") is less than or equal to 7. Consider the following convex piecewise-linear
function

h:IR —- R

0; — h(0;) = f(& +0,\) = (3 + 0:)7) + max u' (d — Q&+ m-x’)).
uelU
If the domain U is bounded, then A(#;) is bounded for any value of 6;,. However if U is
unbounded, it may happen that for a large enough (9}, the value h(éz) is unbounded. This is

illustrated by the following small example in IR. Consider max u(f;, —2). 1If 0, > éZ = 2 then

h(6;) = co. This means that for values of §; larger than (91', the set Y/(2 +6;\") is empty. This
leads to the following proposition that studies the depth (see Definition 2.4) of concavity
cuts.

Proposition 3.2 [f the set U is bounded, then the concavily cuts with an extreme point of X
are deep, and symmetrically, if X is bounded, the concavity cuts generated with an extreme
point of U are deep.

There are three possible types of y-extensions:

A

(a) finite and deep with h(6;) = v;
(b) infinite (thus deep) with h(6;) <~ for non-negative values of ;;

(¢) finite and not deep with h(éz) < v and h(§;) = oo for every 6; > 0.
It occurs when the domain U is unbounded.



Figure 1: Evaluation of y-extensions.

These three cases are illustrated in Figure 1.

Consider again the case where X is bounded and U is unbounded. Audet et al. [4] show
that the optimal value of (BILD) is unbounded if and only if that of the auxiliary bilinear

program
td —
Jppx, w(d=Qu)
s.t. u'B <0,
u'l <1,
u >0,

is strictly positive, where 1 denotes the vector whose elements are all ones. The same authors
propose to use their algorithm (for bilinear problems with a bounded optimal value) to solve
this auxiliary bilinear problem. However, it is time consuming as the optimal solution of the
auxiliary program is highly degenerate when the optimal value of (BILD) is bounded. Indeed,
all the constraints (except u’1 < 1) go through the optimal solution u = 0. Moreover, observe
that the feasible region with respect to u is a truncated cone vertexed at the optimal solution.
We suggest an easier way to detect an unbounded optimal value.

Proposition 3.3 Let X be a bounded polytope. The oplimal value of (BILD) is unbounded
if and only if the optimal value of

(Fv) max  u'(d — Qx)

reX, ueKy
is strictly positive, where Ky is the truncated cone {u > 0:u'B < 0,1 <u'l < 2}.

Proof: It is shown in [4] that when X is bounded, the optimal value of (BILD) is unbounded
if and only if FORBIDDANCE (existence of an x € X such that Y (z) = () is verified. Moreover,
FORBIDDANCE is verified if and only if the optimal value of the linear maxmin problem

min 0
y
max min 0 = max _
z€X yeY (x) reX 5.t By 2 d Ql’,
y >0,



is unbounded. The corresponding bilinear programming problem is

max u'(d — Q)

reX, u
s.t. u'B <0,
u > 0.

The feasible region of the variable u is a cone. The result follows by observing that for fixed
z, the function u'(d — Qx) is linear with respect to the variable u, and thus, if there is an
extreme ray along which the objective value goes to infinity, then it must be strictly positive
at the intersection of the ray and the plane defined by u’1 =1 (since it is null at the origin).

A symmetric result can be obtained when only the set X is unbounded using the following
auxiliary disjoint bilinear programming problem:

(Fx) max (¢ —u'Q)z,

reKx, uelU
where Ky is the truncated cone {z > 0: Az < 0,1 < 1%z < 2}.

When both domains are unbounded, a third auxiliary problem, denoted (Fx), must be
solved to verify if the optimal value of the problem (BILD) is bounded. It is defined as a
disjoint bilinear problem where the constraint set is made of the two truncated cones Ky
and K.

(Fxu) max  —u'Quz.
reKx, ueKy

Proof is omitted since it is essentially identical to that appearing in [4].

3.3 Difference of convex sets

We recall that a set M C IR"* is equal to the difference of two convex sets, i.e., is a d.c.
set for short, if it can be expressed as D \ C where D and (' are respectively close and
open convex sets in IR™. The d.c. sets have been well studied, see, e.g., Tuy [13]. In this
subsection, we present links between the FORBIDDANCE problem and d.c. sets.

It can be observed that solving the FORBIDDANCE problem corresponds to finding if there
exists a solution belonging to a d.c. set. Let X, P and Y(2) = {y : (z,y) € P} define the
FORBIDDANCE problem. Without any loss of generality, we assume that the set P is full
dimensional.

Proposition 3.4 The answer lo FORBIDDANCE is NO if and only if M is emply, with
M = X\ P, where P, = {x € IR" : (z,y) € P for some y } and where the circle above a

set denotes the largest open set contained in il.



Proof: Assume that the answer to FORBIDDANCE is NO, i.e., that Y(z) # 0 for all z € X.
It follows that for any = € X, there exists a y such that (z,y) € P, and therefore X C P,.

Consequently, M = X \ ISI C P\ IgI and thus 2\04 = (.

Conversely, assume that M # (). Choose z in a ball entirely contained in the open set
M in such a way that = is not on the boundary of P,. Definition of M implies that = € X
and x & P,, therefore (z,y) € P for any y, thus Y (z) = 0. .

4 Solving disjoint bilinear programming problems

We next recall the mountain climbing procedure of Konno [9] to find a first feasible solution.
Consider a point 2° € IR™*. The value f(2°) is evaluated, yielding in the process a vector
u' in U (even if the vector z° does not belong to X). Then, the objective function value
g(u') is evaluated, yielding in the process a vector z' in X. These steps are reiterated,
creating (z'*1, w'*t1) from (z°,u’) until the objective function value f(z‘*!) coincides with
g(u't1). This process is finite, as an increasing sequence of objective function values is
generated where each solution corresponds either to a vertex or to an extreme ray of a
polyhedron. In the latter case, the process is stopped and the optimal value of the problem
is unbounded. Solutions (z’,u’) obtained as an output of a mountain climbing procedure
with 2 as a starting point, will be denoted by (z',u’,v") + MC(z?), with v/ = f(z') = g(u)
and 2’ € X, v’ € U. Similarly, (z/,u',7") < MC(u°) will refer to the symmetrical case when
starting a mountain climbing procedure with a point u° € IR™.

This section is divided into five parts. We first present the basic algorithm that finds the
optimal solution of any instance of (BILD) with a bounded optimal value following by the
presentation of the cut’s keeping strategy. We then show in the third part how to use the
basic algorithm to solve problems when it is not assumed that the optimal value is bounded,
by answering FORBIDDANCE questions. In the fourth part, we add a feature to the basic
algorithm that allows removal of degenerate solutions. Finally, the algorithm is illustrated
on a small example.

4.1 Basic algorithm for finite valued instances

A common drawback of cutting-plane algorithms lies in a slow convergence with cuts which
are almost parallel and eliminate a very small part of the domain. When the domain is
unbounded, it may happen that the cuts are not deep enough to completely eliminate it. We
present an algorithm, called CBA, that combines concavity cuts with the branch and bound

algorithm BB of Audet et al. [4].



We propose to perform first a preprocessing phase which generates concavity cuts. It
corresponds to the algorithm CC described below. Concavity cuts are iteratively added to
the sets X and/or U until one of the following stopping conditions is satisfied.

C1. A solution with a positive unbounded value is found.

C2. Either X or U is reduced to the empty set: the incumbent solution is the optimal
solution.

C3. There has been more than m, attempts to add a cut in X, and more than m, in U.

C4. The depth of the last " consecutive cuts in X was less than e, and the depth of the
last k" consecutive cuts in U was less than &,.

C5. No cuts were added to X and to U in the last iteration.

Where m,, m, and k are integers, and ¢, > 0 and ¢, > 0 are real numbers. We now
describe the algorithm CC which iterates until one of these conditions is met.

Algorithm CC (iterate until one of the above 5 conditions is satisfied)

Step a. Find a starting point (2%, u°). If there are still no cuts in X and U, initialize
(2% u?) + 0, otherwise let (2% u") be the reflection (defined below) of the last vertex
(2',u') through the last cut.

Step b. Find a feasible solution (z',u’). Perform two sets of mountain climbing itera-
tions: let (z/,u',~") + MC(2°) and (2",u",4") « MC(u°). Select the one with largest
value: if 4" > 4 reset (2, u’, ') to (2", u",4").

Step c. Incumbent Update. If v/ > 4 reset (2,4,9) to (2/,u',v'). Stop if ¥ = oco: the
optimal value of (BILD) is unbounded. Go to Step d.

Step d. Improve the current feasible solution in X. Apply the appropriate case.
Case d1: 2’ is non-degenerate: If there is a neighbor 2" of 2’ such that f(z") > f(z')
reset (', u',v") + MC(z") and go back to Step c. Else, go to Step e.
Case d2: 2z’ is degenerate: Do not add any concavity cut to X. Go to Step e.

Step e. Improve the current feasible solution in U. Apply the appropriate case.
Case el : v is non-degenerate: If there is a neighbor u” of v’ such that g(u”) > g(u’)
reset (2',u',v") « MC(u") and go back to Step c. Else, go to Step f.
Case e2: u' is degenerate: Do not add any concavity cut to U. Go to Step f.

Step f. Addition of a concavity cut in X vertexed at z’. Go to Step g if no cut is
required to be added to X (see Case d2). Else, compute the §-extensions in the
directions of all neighbors of x’. Add to X the concavity cut that goes through all
4-extensions. Stop if X = 0.

10



Step g. Addition of a concavity cut in U vertexed at u'. Stop if no cut is required
to be added to U (see Case e2). Else, compute the §-extensions in the directions of all

neighbors of u’. Add to U the concavity cut that goes through all 4-extensions. Stop
it U =0. .

In Step a, the initial point z° is obtained by the reflection of the last vertex x through
the last concavity cut 7, added to X, that is 2° is heuristically set to = +n,, (595 + ﬁ) T,
where 9§, is the depth of the cut 7, with respect to x. When no cuts have been added to X

0

during the last iteration, 2° is set to z. The procedure to initialize the point u° is similar.

The underlying idea of the reflection is to initialize the next mountain climbing procedure
with a starting point far from the last vertex x. The point x 4 4,7, lies on the concavity cut
defined by the normalized vector 7., and the starting point z° is chosen further in the same
direction, in the other half-space created by the cut. The closer z is to the cut, the further
on the other half-space the starting point z° is to the cut.

It is understood that Steps d and e are processed only when the current number of cuts
does not exceed the parameters m, and m,,.

We next show that whenever a cut is added to X or U, a local optimal solution is
eliminated from the remaining optimization domain. We start with the following lemma.

Lemma 4.1 If the feasible solutions x' and u' obtained by mountain climbing iterations are
non-degenerale and are not exchanged with a neighbor (Cases d1 and el) then they are local
optimal solutions of the current linear maxmin problems.

Proof: Convexity of the functions f and g ensures that

f(#)
g(@)

The proof follows directly from the fact that the linear maxmin problems correspond to the

.ﬁl}/ for all  in the convex envelope of LL'/ Ll','” : LL'//iS a neighbor of £E/
p Y g Y
g

(u')  for all @ in the convex envelope of {u’,u"” : u"is a neighbor of u'}.

maximization of the convex functions f and g. .

Proposition 4.2 A local optimal solution is eliminated whenever a concavily cul is added
in either Steps f or g.

Proof: A concavity cut added in Step f eliminates the current non-degenerate solution
processed in Case d1, and that of Step g eliminates the current non-degenerate solution
considered in Case el. Lemma 4.1 guarantees that the solution is indeed a local optimal

one. |
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The preprocessing phase, i.e. algorithm CC, yields the incumbent solution denoted (z, @)
with objective function value 4. If this first phase was not able to conclude the optimality
of this solution (the stopping condition of CC is C3, C4 or C5) , then a second algorithm
BB (see [4] for the details) is applied to either show that the incumbent solution is indeed
optimal, or to find the optimal solution.

When the concavity cuts are not enough (algorithm CC) to solve (BILD), it is usually
not worthwhile to keep all the cuts generated in X or U as it would increase the number
of additional dual variables y and v in the minimization subproblems of the linear maxmin
reformulations. Therefore, it is useful to define a selection rule to retain the most efficient
cuts. We present in the next subsection how to combine algorithm CC to BB.

4.2 Combing concavity cuts with a branch and bound algorithm

We present a rule to identify which concavity cuts produced by CC should be kept and which
should be eliminated. The rule relies on the value of the cosine of the angle between two
cuts. Recall that, if 7 and 7 are two normal vectors, then the cosine of the angle between
these vectors is m

For both domains X and U, the following iterative strategy is used to determine which
cuts are kept. Let {m,m2,... ,m,} be the finite set of cuts produced by algorithm CC in one
of the domains.

Initial cuts: Among all cuts eliminating the incumbent solution, conserve the furthest one
from the incumbent (using the Euclidean distance). Among all cuts that do not elimi-
nate the incumbent solution, keep the closest one to the incumbent. Initialize  to be
the set containing these cuts.

Additional cuts: For each index ¢ such that m; is not in Q, compute the sum S; =
m If the largest sum 5; is less than half the cardinality of €, then add the

TEQ
corresponding cut m; to ) and repeat this step. Otherwise stop, no more cuts are kept.

The initial cuts are chosen to eliminate a large part of the domain, and the additional
cuts are selected to maintain a wide variety of cuts. With this recursive rule, a cut is added
only if the average of the cosines of the angles between this cut and all others already added

is less than % It is added if the average angle is more than Z.

Having determined which cuts to keep, the next step consists in fixing the dual variables
v and y (dual with respect to the primal concavity cuts) to zero. Indeed, complementary
slackness conditions of linear programming ensure that at optimality, either the concavity
cut will be satisfied as an equality, or the corresponding dual variable will be zero. In our
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case, since we are looking for a solution that has a (strictly) larger objective value than the
incumbent value ¥, the concavity cuts can be treated as strict inequalities. It follows that in
the linear maxmin formulations, the added dual variables can be fixed to zero. Let X and U
be the domains reduced by the concavity cuts. The bilinear programming problem considers
in algorithm BB is therefore
max 'z — u'Qz + u'd,
ceX uell

and the equivalent linear maxmin problems are

max (ct:c + min bty) and max <utd—|— min vta>.
ceX yeY (z) uel veV (u)

The sets Y (z) and V/(u) are identical to those of LMM,, and LMM,,. The branching done
in algorithm BB only occurs on the original constraints of X and U and corresponding dual
variables.

We now show that the algorithm is finite and exact.

Theorem 4.3 The algorithm CBA solves in finile lime any instance of (BILD) having a
finite optimal value.

Proof: Upon execution of the algorithm, two scenarios are possible: either BB is called or
it is not called. In both cases, either the incumbent solution obtained by CC is the optimal
solution, or the true optimal solution is not eliminated by the finite number of concavity
cuts generated by CC (see, e.g., Horst and Tuy [8]).

Since each cut computed in CC requires a finite amount of time, and the total number of
cuts is bounded above by the parameters m, and m,, it follows that the total time required
by CC is finite. If BB is not called, then the incumbent solution provided by CC is the optimal
solution [8]. If BB is called, then it must solve a bilinear programming problem having a
finite number of variables and constraints, and thus, as show in Audet et al. [4], the branch
and bound algorithm BB solves it in finite time. .

4.3 General algorithm

Algorithm CBA can be applied to solve either an instance of (BILD), or one of the auxiliary
problems (Fx), (Fy) or (Fxy) with some minor modifications.

Let us call CBAT the modified version of algorithm CBA which is used to solve the
auxiliary bilinear problems. The differences are as follows. The incumbent value ¥ is first
set at 0. As soon as it is updated in either CC or BB, i.e., when a feasible solution with
a strictly positive objective value is obtained, algorithm CBAY stops. The answer to the
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FORBIDDANCE question is then YES, otherwise it is NO. Also, note that fixing the incumbent
value to 0 entails that all 4-extensions are evaluated with a value of ¥ = 0. This yields
deeper concavity cuts than selecting the true incumbent value.

Table 1 summarizes the sequence in which the instances are solved. For example, when
U is bounded and X is unbounded, the FORBIDDANCE question is answered through the
solution of (Fx) as described above by CBAT. If the answer is yes, then the optimal value
of (BILD) is unbounded, otherwise it is obtained by applying the algorithm CBA to (BILD).

U Bounded U Unbounded
Problem Algorithm ||Problem Algorithm

Iy CBA*

X BILD CBA
Bounded BILD CBA
Fx CBAt Fx CBA*
X Iy CBA*
Unbounded| BILD CBA Fxu CBAT
BILD CBA

Table 1: Sequence of bilinear programs to be solved

Theorem 4.4 Given any instance of (BILD), the sequence of bilinear problems (FORBID-
DANCE ones and the original one) described in Table 1 can be solved in finite time with both
algorithms CBA and CBA™ yielding an optimal solution, with possibly an unbounded value.

Proof: Unboundedness of the optimal value is detected by solving the bilinear formulation
of FORBIDDANCE problems [4]. Therefore, by Theorem 4.3, the FORBIDDANCE question is
answered in finite time, and if the answer is no then the optimal value of the original (BILD)
is bounded and obtained in finite time by the algorithm. .

4.4 Degeneracy removal procedure

Computational difficulties arise when a degenerate extreme point is produced by the moun-
tain climbing method. Such a point has therefore more neighbors than the dimension of the
space. In the algorithm CC described above, concavity cuts are not added when degeneracy
is encountered. In the literature (see e.g., Horst and Tuy [8]), authors have handled such
a case with the addition of a concavity cut induced by the degenerate point using the ~-
extensions in all neighboring directions. However, with such an approach, the NP-complete
problem of enumerating all neighbors of a degenerate vertex must be solved.

14



We propose a method to eliminate the degenerate point which does not require the
computation of all its neighbors. The underlying idea consists in adding a concavity cut
induced by one of its non-degenerate neighbors (it is not necessary to enumerate them all).
We present substitutes for Steps d and e that may remove the degeneracy. Replace Case d2
of algorithm CC by the following cases.

Case d2’: 2’ is degenerate and +' < 4:

If it is not possible to find a non-degenerate finite neighbor of =’ by applying a
single simplex iteration for each non-basic variable, then do not add concavity
cuts to X. Otherwise, let " # 2’ be such a finite non-degenerate neighbor, and
proceed in one of the two ways.

i- If f(2") > 4, reset (2',u’,y") < MC(z") and go back to Step c.

ii- If f(z") < 4, consider the neighbors of 2”. If there is a neighbor " of " such
that f(z") > 4 reset (2',u',~") < MC(2") and go back to Step c¢. Otherwise
reset 2’ + 2" and go to Step e.

"t

Case d2” : 2’ is degenerate and ' = 4:
Do not add any concavity cut to X. Go to Step e. .

Case e2 is replaced by Cases €2’ and e2”, having the same structure as Cases d2’ and d2”
but switching the roles of the variables.

4.5 TIllustrative example

Consider the following example in which both variables z and u are in IR?.

max —dr; —6xy — 3uixy + 2ugxy + 4dugxy —10u; — 15uq
s.t. —2x1 + 22 <0 —47uy + 16uy < 16

-t ax, <1 —19u; + 9uy < 16
T9 < 4 —u1 + 3uy <16
1+ 2o <12 up — duy < 2
3x1 — 22, < 16 u>0
r1 — dxy <2
x>0

The domain X is bounded and U is unbounded. These domains are illustrated on the
left and top-right part of Figure 2. Both vertices (0,0) and (8,4) of X are degenerate. Near
each vertex of X and U is written the objective function value of the vertex, and below is the
corresponding solution in the other variable. For example, at the vertex (6,1) of X, we have
that f(6,1) = —35 and v = (0, 1) is an optimal solution of the parameterized linear program
appearing in the function f. The bottom right part of Figure 2 displays the truncated cone
Ky needed to answer the FORBIDDANCE question (Fy).
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Uy

Figure 2: A Small Example

Prior to solving this problem, the FORBIDDANCE question must be answered in order to
detect boundedness of the optimal value. The auxiliary bilinear problem (Fy/) must now be
solved. The mountain climbing iterations in Step b yield the non-degenerate vertices

31
' =(6,1) and v’ = (Z’ Z) with objective value v = —9.5.
The A-extensions (with 4 set to 0) in the direction in the neighbors (2,0) and (8,4) of 2" are

both infinite, thus the corresponding cut reduces X to the empty set. Therefore, the answer
to forbiddance is NO, and the optimal value of (BILD) is bounded.

The original problem (BILD) must now be solved. A first iteration of CC is started. The
mountain climbing iterations in Step b yield

z' = (0,0) and v’ = (0,0) with objective value 4" = 0.

The incumbent value 4 is set at 0 in c. Since z’ is a degenerate vertex of X and 4/ = 4, Case
d2” applies and no cuts are added to X. However, u’ is non-degenerate and its neighbors
are (2,0) and (0,1). Since ¢(2,0) = =20 < 4 = 0 and ¢(0,1) = =15 < 4 = 0, Case el
applies and then a concavity cut vertexed at u’ added to U in Step g, yields

17
—— Uy Z 1.
64
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A second iteration of CC is initiated. The mountain climbing procedure of Step b is
called again, leading to

' = (8,4) and u' = (2,6) of objective value 7' = —6.

Again, z' is a degenerate vertex of X, but v/ < 4, thus Case d2’ of the degeneracy removal
procedure applies. A concavity cut vertexed at the non-degenerate neighbor (6,1) of 2’
is evaluated. The j-extensions in the directions of the neighbors (2,0) and (8,4) of the
current solution (6,1) are respectively (—25.75, —6.9375) and (8.24,4.36). The value of ¥
used is 0 and not —6, and thus deeper cuts are generated. The concavity cut that goes
through these points —.127081z; + .38234z5 > .619854 eliminates all these points. Thus,
the degenerate solution has been removed. For the variable u, one neighbor of (2,6) is the
degenerate vertex (12, %), and the other is at infinity in the direction (1,3). The §-extension
of the first is (—.9605, —.25) and that of the second is at infinity. This yields the concavity
cut 4+.063333u; — .19uy; > —.01333167. Figure 3 illustrates the current reduced feasible
regions. The number next to each vertex is the objective function value. For each point of
X, the corresponding optimal solution in U is always (11.0834, %). For each point of U, the
corresponding optimal solution in X is always (.97217,1.94434).

T2 U2
—256.5 —246.0
4
3
U
64
1 —211.9  —306.5
| 213.
2
1.94434
—211.9
0 290
1 3 5 7.1569 11.0836 299
Z1 Uy

Figure 3: Example after two iterations

A third iteration is initiated. The mountain climbing steps of the third iteration yield
the solution 2’ = (.97217,1.94434) and v’ = (11.0834, %2) having objective value —211.885.
The concavity cut vertexed at x’ eliminates the whole domain X, and thus the algorithm

stops. The optimal solution is z* = (0,0),u* = (0,0) and the optimal value is v* = 0.
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5 Numerical results

In this section, the algorithm CBA is extensively tested and its performance is discussed
on a large number of randomly generated instances. All computational experiments are
conducted on a SUN ULTRA 1/167 station under Solaris 2.5-06 with 256M of RAM. The
algorithm is coded in C' (compiler gcc) and uses the CPLEX 5.0 library to solve the linear
programs. Audet et al. [4]’s implementation of the branching part BB is used.

Three types of instances are considered: those in which both domains X and U are
bounded; those in which X is bounded and U is unbounded; and those in which both

domains are unbounded. A subsection is devoted to each type.

n | D BB CBA
(%) CC BB total
time nodes time  cuts | needed kept cuts  time nodes time
20| 30 pu 162.9 2808.4 1.4 8.3 0 - - - 1.4
o 77.8 1423.3 0.9 4.8 - - - 0.9
40 p 713.8 12276.5 || 159.4 1724 3 89.0 1644.7 11418.0 | 652.8
o 237.6 4204.3 || 243.2  225.7 44.0 1045.1  8295.0 | 1149.6
30| 20 p | >6014.71 >39186.4 107 21.3 0 - - - 10.7
o || >1549.2  >13516.3 10.2 174 - - - 10.2
40 | 10 p || >3835.22 >28437.4 3.1 4.9 0 - - - 3.1
o || >2939.2 >33736.6 3.4 4.3 - - - 3.4
50 5 u| >1619.4%  >6552.2 14 2.3 0 - - - 1.4
o || >2372.8 >8480.8 0.7 1.3 - - - 0.7

mgy =my = 250,6;, =¢, =.1land k =5

I Four problems were stopped after two hours of running.
2 Three problems were stopped after two hours of running.
3 One problem was stopped after two hours of running.

Table 2: Comparison between BB and CBA (X and U bounded)

In all tables of this section, the problems are generated by the same problem generator
used in [4]. The mean value p and standard deviation o of 10 randomly generated problems
of density parameter D are given for each series. Unless otherwise specified, the coefficient
n gives the instance dimensions: e.g. n = 10 means that n, = n, = n, = n, = 10.
The computing time in seconds is given in column time, the number of cuts generated by
algorithm CC appears in column cuts and the number of nodes required by algorithm BB is
displayed in column nodes. The parameter needed gives the number of instances out of the
ten that required use of algorithm BB. The parameter kept cuts defines the number of cuts
generated by CC that are kept. These cuts are additional constraints in the polyhedrons X
and U, and give indication on the size of the instances actually solved by BB. The means
and standard deviations in the BB columns are computed only with respect to instances
solved by BB. The last column summarizes the overall performance of CBA. Finally, the
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parameters for the stopping criteria of Section 4.1 (m,, m,, €., €, and k) are specified for
each table.

Before analyzing the behavior of CBA, we show that the cut preprocessing phase improves
the overall performance of BB. Comparative experience are described in Table 2. In four
series of problems out of five, the results show that cut algorithm CC is sufficient to find an
optimal solution with a proof of its optimality. Moreover, only very few cuts are needed;
this leads to a significant reduction of computing time (seconds vs. hours). For the fifth
one, 3 out of 10 problems require the use of BB but the average computing time is reduced.
However for the three problems where BB is called, the computing time is higher even if the
number of nodes explored is lower. This is due to the increase in the size of the problem

that now contains additional cuts.

5.1 Bounded Domains

Table 3 presents the behavior of the algorithm on small instances with X and U bounded
and for which algorithm CC succeeded in solving all ten instances of each series.

D n =10 n =20 n = 30 n = 40 n =50 n = 60
(%) time cuts | time cuts | time cuts | time cuts | time cuts | time cuts
5 w004 1.0 | 015 1.2 0.3 1.3 0.6 1.7 1.4 2.3 2.4 2.8
o | 0.01 0.0 | 0.0b 0.6 0.1 0.5 0.1 071 07 1.3 0.7 0.8
10 w | 005 1.1 | 0.18 1.5 0.7 2.9 3.1 49| 6.5 56 | 81.2 23.1
o | 0.01 03 | 006 0.7 0.3 1.3 34 43| 28 2.3 | 99.8 22.2
15 pw| 006 1.2 | 040 34 2.0 58 | 21.9 20.1
c |l 0.01 04 ] 030 24 1.6 39| 187 14.7
20 p || 0.06 15 | 042 3.0 | 107 21.3
c |l 0.02 05 |02 1.8 | 102 174
30 p || 007 16 | 1.35 8.3
c| 0.04 08 | 0.8b 4.8
50 p || 0.19 3.6
o || 0.10 2.1
100 p || 0.43 8.4
o |l 0.32 5.8

my =my, =250,6, =, =.1land k =5

Table 3: Complete solutions by CC (X and U bounded)

For larger or denser problems, algorithm BB is more often needed to find the optimal
solution or to prove its optimality as illustrated in Table 4. Tables 3 and 4 confirm that
the difficulty increases with n and D. There appears to be threshold values for n and D,
under which the algorithm CC can quickly solve any of these randomly generated instances.
When these parameters exceed these thresholds, solution time is still reasonable as long as
algorithm BB is not called. However, when algorithm BB is called, computing time increases
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very rapidly. Table 4 illustrates this observation for instances where n > 30, and where the

density parameter D is greater than the corresponding value of Table 3.

n D CC BB CBA
(%) time cuts needed  kept cuts time nodes time
20 40 7 1594 1724 3 89.0 1644.7 11418.0 652.8
o 243.2  225.7 44.0 1045.1 8295.0 | 1149.6
50 7 192.0 2218 2 101.5 1722.9 9773.0 536.5
o 222.3  205.7 6.3 1024.5 5532.4 976.8
60 I 375.1 3704 7 85.6 3296.6 22418.0 | 2682.7
o 242.1  209.4 40.5 1596.6 9550.9 | 2232.3
70 7 376.0 388.2 6 82.2 3135.6 21028.5 | 2257.4
o 218.9 180.4 44.8 1137.5 3239.8 | 2001.0
30 30 I 389.5 184.6 2 84.0 >6 hours - -
o 522.6  209.3 2.8 - - -
40 20 po|| 2105.8  405.9 8 96.1 >6 hours - -
o || 1104.3 194.8 23.2 - - -
50 15 po|| 2299.7  253.6 4 106.8 >6 hours - -
o || 2353.7 2279 16.0 - - -
60 15 po|| 7383.2 4495 9 99.4 >6 hours - -
o || 2771.9 1534 19.3 - - -
mgy =my = 200,6;, =¢, =.1land k =5

Table 4: Solutions where BB is needed (X and U bounded)

For each instance of Table 4 where BB is required, the stopping criterion observed of CC
is always C3: the number of cuts exceeds m, and m,. For all instances, CC has however
found the optimal solution and BB is only called to rigourously confirm its optimality.

As computational time grows significantly when algorithm BB is called, one might think
that we should avoid to use it by raising the upper limit on the number of concavity cuts
allowed. Consider for example the series n = 20 and D = 70%. Four of them are solved
by CC, requiring from 77 to 477 cuts. Raising the limit on the total number of iterations
m, and m, to 1000 yields the following. Out of the six instances previously unsolved by
CC, three more can now be solved. They require 702, 1167 and 1615 cuts. The three other
instances remain unsolved after 1000 iterations, for a total of 2000 cuts. However the mean
computational time of CC for these three instances is now approximately 42,500 seconds with
a standard deviation of 4775. Therefore, an upper bound on the number of cuts is justified.

Column kept cuts of Table 4 indicates that a significant proportion of the cuts generated
by CC differ one from the others, according to the cosine criterion of Section 4.2. Column
kept cuts shows that approximately 18% of the cuts (about 90 out of the 500 cuts generated
as BB is required) are kept, regardless of parameters n and D.

Table 5 illustrates the behavior of algorithm CBA for large instances with low density.
We observe that only CC phase of CBA is required to solve all instances.
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D Nng =ny =50 | ngy = ny, = 100 Ng = Ny = 250 ng = ny, = 500
(%) time cuts time cuts time cuts time cuts
1 7 0.8 1.0 2.8 1.3 69.3 54 2400.7  22.1
o 0.2 0.0 0.7 0.5 21.8 1.5 1104.7 8.9
5 7 3.1 2.9 64.0 8.8 > 6 hours -
o 1.0 0.8 47.7 5.0 - -

my =my = 250,6, =, =.1land k =5
Table 5: Complete solutions by CC for n, = n, = 100 (X and U bounded)

For the problems with n, = n, = 250 and D = 5%, two instances are solved in less than
six hours: one takes almost 5 hours and 108 cuts, and the other takes around one hour and
only 31 cuts. The size of the problems in Table 5 is significantly larger than those solved by
algorithm BB alone [4].

The initial problems, randomly generated, are rarely degenerate when both domains are
bounded. The cuts added by algorithm CC usually does not increase degeneracy as the cuts
rarely pass through any vertex of the polyhedra X and U. Hence, the degeneracy removal

procedure is not often applied for the bounded case.

5.2 Bounded and Unbounded Domains

We now study the case where only one of the polyhedra is bounded. Without any loss of
generality, we study the case in which X is bounded and U is unbounded.

In the following tables, we detail the behavior of CBA on the forbiddance problems (Fy/),
(Fx) and (Fxp) and the original instance (BILD). The overall computing time is given in
the additional column total.

Table 6 details the performance of CBA when the optimal value is bounded, i.e., when
the answer to the forbiddance problem is NO. Before solving (BILD) it must be shown that
the optimal value of (Fy) is less than or equal to zero.

As before, most of the computing time is spent in CC. In all cases considered, except for
n = 20 and D = 70%, both the computing time and the number of cuts for CC are signifi-
cantly less for the forbiddance problem (F) than for the original problem (BILD). However,
the observed behavior nicely complements that of BB, since Audet et al. [4] observed that
BB is significantly faster when solving (BILD) rather than (Fy ).

The exception when n = 20 and D = 70% is due to the fact that CC generates deeper
cuts while solving instances of (BILD) than while solving instances of (Fy/). Hence, Algorithm
CC is prematurely stopped by criterion C4 when solving (Fyp ).

Another unusual result in Table 6 is the large computing time of BB when n = 20
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n D Problem CC BB CBA
(%) time cuts | needed kept cuts  time nodes time  (total)
20 | 10 Fu 0 0.6 8.9 3 2.3 201.1  11237.7 61.0
o 0.7 9.2 2.5 330.2 18532.4 | 1835
o 9.4 47.0 0.0 0.0 0.0 10.5 182.4
30 Fir I 2.5 17.9 6 3.3 1095.0 20601.2 | 659.6
o 1.4 9.7 2.2 1056.8 19445.7 970.1
BrLp M || 7T1.1 1684 10 19.8 565.5 19497.8 | 636.6 1296.2
o | 29.3  48.1 14.6 559.5 16488.6 | 573.7  958.1
50 Fu wol 19.5 50.6 4 17.0 2741.2  36627.5 | 1115.9
o || 36.2 78.1 14.9 1297.5 18403.0 | 1620.9
BrLp M || 64.0 148.8 10 17.9 962.2 26127.5 | 1026.3 2142.1
o |l 33.3  56.3 10.8 718.2 24975.6 | T07.9 1980.4
70 Fu gl 724 166.1 7 11.7 2001.5 26330.9 | 14734
o || 29.8 63.1 7.0 935.1 12164.4 | 1252.6
BiLp M || 45.8 112.0 10 16.6 1677.8 40839.9 | 1723.5 3196.9
o |l 31.3 486 19.4 677.2 19538.9 | 673.7 1452.3
30 5 Fu 0 0.5 4.1 3 1.7 34.8 1162.3 10.9
o 0.5 4.0 1.5 31.5 1071.6 22.5
BILD M 6.3 25.4 1 47.0 0.3 1.0 6.3 17.2
oc|l 175 60.8 0.0 0.0 0.0 17.6 26.3
10 Fir i 3.1 19.9 9 2.9 1687.4 36666.9 | 1521.8
o 0.7 4.8 1.2 1955.7  46345.5 | 1919.5
BiLp M || 35.1  88.6 10 14.3 37.6 33537.6 73.0 1594.7
o || 15.9 26.2 5.4 25.1 45177.1 36.8 1913.1
40 5 Fu 0 3.7 17.3 8 5.0 1322.8 28544.9 | 1061.9
o 1.7 7.5 5.3 929.4 20562.7 | 992.3
BIrLp M || 5.9 107.2 9 18.0 5.6 222704 60.9 1122.8
o || 39.8  46.3 15.2 8.8 22986.6 39.4 1000.7

mgy = my = 100, 6, =6, = .1 and kK = 15
Table 6: Complete solution by CBA (X bounded and U unbounded)

and D = 50%. Additional numerical experiments were performed by generating 15 other
instances. Out of these, only 4 are not solved by CC alone. For these 4 instances, BB required
1298.6 seconds (with a standard deviation of 635.9) instead of 2741.2 seconds as reported in
Table 6.

Degeneracy occurs frequently in (Fyy) for low density problems (e.g. n = 20 and D =
10%, or n = 30 and D = 5%). Recall from Proposition 3.3 that the feasible domain of (Fy/)
is composed of X and K, the truncated cone generated by the extreme rays of the set U.
Therefore, when the density of these randomly generated problems is low, the set U often
contains less than n, extreme rays, and thus the cone Ky is not full-dimensioned, which
u; < 1,u > 0} then
ul = 0,uz > 0}). The degeneracy removal procedure cannot provide any

explains the unfortunate degeneracy (for example if U = {(uy,us) :
Ky = {(u1,us) :

22



cuts in K. Nevertheless, most of these instances are solved by CC by adding concavity cuts
to X, and frequently invoking the degeneracy removal procedure on this last set.

For denser problems, the degeneracy removal procedure is called a comparable number
of times for both X and K77, and the total number of cuts added to X and Ky are also
similar. This follows from the fact that Ky is now full-dimensional, and degenerate solutions
arise less frequently. For instances of (BILD), degenerate solutions are rarely encountered,
but each time it occurs, the degeneracy removal procedure succeeds in eliminating it.

We conclude the discussion by observing that the same stopping criterion for both prob-
lems (Fy) and (BILD) are usually reached. For low-density instances, CC generally stops with
criterion C4, i.e., several consecutive cuts having low depth are generated. CC stops less
frequently with criterion C5 as the degeneracy removal procedure fails on both domains. As
the density increases, the active stopping criterion becomes C3, i.e., the maximum number
of iterations is reached.

Table 7 addresses problems of the same size as in Table 6, but for which the optimal
values are unbounded. For all these instances, only the forbiddance problem (Fy ) is solved.
Moreover, the solution process stops as soon as a feasible solution with a positive value is
obtained.

n D CC BB CBA
(%) time  cuts | needed  kept cuts time nodes | time
20 10 7 0.04 0.2 0 - - - 0.04
o 0.03 0.4 - - - 0.03

30 7 0.4 2.6 1 2.0 2.8 43.0 0.7

o 0.7 5.4 0.0 0.0 0.0 1.6

50 7 0.4 2.2 0 - - - 0.4

o 0.7 3.7 - - - 0.7

70 7 0.7 34 0 - - - 0.7

o 0.8 4.0 - - - 0.8

30 5 7 0.2 1.1 0 - - - 0.2

o 0.3 3.1 - - - 0.3

10 7 0.4 2.5 1 1.0 0.9 7.0 0.5

o 0.7 4.8 0.0 0.0 0.0 1.0
40 5 7 0.08 0.1 0 - - - 0.08
o 0.06 0.3 - - 0.06

my =m, =100, e, = ¢, = .1 and k = 15

Table 7: Detection of unboundedness by CBA (X bounded and U unbounded)

All 70 instances considered in Table 7 are quickly solved, and only 2 of them required
the BB part of the algorithm, C4 criterion being reached for these two problems.
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5.3 Two Unbounded Domains

In this last section, we now consider the case where both domains X and U are unbounded.
These problems are considerably more difficult than the previous instances since up to three
auxiliary forbiddance problems must be solved prior to the execution of the algorithm on
the original instance.

For each instance of Table 8, all three forbiddance problems (Fx ), (Fr/) and (F xyr) yielded

negative optimal values, thus guaranteeing boundedness of the optimal value of (BILD).

n | D | Problem CC BB CBA
(%) time cuts | needed kept cuts time  nodes time  (total)
20 | 10 Fx I 0.6 9.1 4 3.2 0.4 25.5 0.8
o 0.5 6.3 34 0.5 41.2 0.5
F, M| 0.8 117 5 7.0 110.0 6706.8 55.8
o 0.6 8.2 34 245.1 149549 | 173.7
Fxy M| 0.0 0.0 10 0.0 478.9 31738.3 | 478.9
ol 0.0 0.0 0.0 459.6 27932.8 | 459.6
BiLp M| 20 245 5 11.0 0.3 30916.6 2.1 5376
|l 1.7 207 7.7 0.2 34374.7 1.9  479.7
30 Fx M| 29 210 8 34 326.2 57955 | 263.8
o 0.8 4.2 2.7 429.3 T7161.9 | 403.2
Fy I 2.3 16.9 9 2.1 48.9 4131.3 46.3
c|l 0.8 6.2 0.9 77.9  5769.2 75.3
Fxy M| 0.1 0.2 10 0.2 3384.7 75925.7 | 3384.7
ol 0.1 0.4 0.4 3032.0 61055.1 | 3032.1
BILD M || 26.1 89.8 10 6.1 227.2 79200.1 | 253.3 3948.1
c|l 15.2 354 4.7 231.2 59489.1 | 234.9 2812.6
50 Fx I 4.7 21.0 2 8.0 318.2 4135.0 68.4
o 4.4 15.6 1.4 315.8 4160.6 | 173.9
F, M|l 86 36.6 5 12.8 561.6 8519.6 | 289.4
c|l 44 16.5 3.8 730.8 11504.3 | 571.9
o | 30 128 3 13 10482 41488.7| 5875
|l 5.8 20.0 1.5 761.8 6626.3 | 1006.0
BILD M| 27.0 81.7 10 6.8 860.8 26645.4 | 987.8 1933.1
c|l 19.5  39.1 6.7 1120.0 242104 | 11124 17414
70 Fx p|l 11.9  45.7 9 10.6 320.3  3525.3 | 299.1
ol 2.3 7.3 5.6 549.3  5227.9 | 528.7
Fy p|l 11.8 458 9 13.7 459.8  T7140.7 | 425.7
o 2.0 7.0 5.6 531.0 5829.4 | 522.2
Fxu M| 67.0 146.3 7 16.0 1395.9 25300.4 | 1044.1
o || 42.3  83.0 5.8 621.8 4804.2 | 877.1
BrLp M| 27.1  79.0 10 8.8 1078.9 34367.4 | 1105.9 2874.8
o |l 24.0 48.7 13.0 665.6 14656.9 | 646.7 1122.4

mg = my = 100, ¢, =&, = .1 and k = 15 for gy, and Brrp
Mg =my =25, 65 =64 = .1 and K =15 for g, and g,

Table 8: Solutions by CBA (X and U unbounded)
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Most of the instances of Table 8, including the forbiddance ones, are not solved by CC
(as shown by the parameters needed). The total computing time strongly depends on the
number of times CC fails to solve (F xr7). This explains why the total time when D = 30%
is higher that the time for the denser problems.

The previous analysis of the degeneracy is again valid for both Ky and Ky. Degenerated
solutions of (BILD) is only observed for D = 10%.

Problem (Fxg) has degenerate solutions in both domains Kx and Ky. When D is
less than or equal to 30%, the degeneracy removal procedure fails systematically on both
domains, and CC always terminates because of the degeneracy of both truncated cones Kx
and Ky. When D = 50%, domains Kx and Ky are often degenerate. The degeneracy
removal procedure is however able to provide a concavity cut half of the time and most of
the instances are solved by CC in that case. For D = 70%, only few degenerate solutions
are observed. When one appears, the degeneracy removal procedure always provides a cut.
However, many instances are not solved by CC for this value of D, as the stopping criterion
C3 is then reached.

The stopping criteria for CC varies from one instance to the other. For D = 70%, the
criterion C3 is activated most of the time. For problem (BILD), CC reaches the criterion C4
for all values of D, excepted for D = 10% where (BILD) is solved by CC half of the time.

In Table 9, we solved problems with unbounded optimal values of the same size and
density as in Table 8.

n D Problem CC BB CBA
(%) time  cuts | needed  kept cuts time nodes | time

20 10 Fx 7 0.1 1.7 0 - - - 0.1
o 0.2 2.3 - - - 0.2

30 Fx I 0.7 5.7 2 2.0 6.5 105.0 2.0

o 0.7 6.4 0.0 8.5 144.2 4.4

Fu 7 1.1 8.0 1 1.0 1.5 25.0 1.8

o 1.3 9.9 0.0 0.0 0.0 2.4

50 Fx I 0.6 3.2 0 - - - 0.6

o 1.3 7.0 - - - 1.3

70 Fx 7 0.2 1.0 0 - - - 0.2

o 0.4 1.7 - - - 0.4

My =My = 20,6, =6, =.1land k = 15

Table 9: Unbounded Solutions by CBA (X and U unbounded)

Unboundedness of the optimal solution is always detected while solving the forbiddance
problem (Fx) except for two instances where it was detected by (Fy). For these two in-
stances, CC showed in less than 1.4 seconds that the optimal value of (Fx) is negative, and
thus allowing the possibility that the optimal solution of the original problem be bounded.
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Then CC is called to solve (Fy/). For the first of these two instances, CC succeeds in finding
a positive feasible objective value, and for the second one, CC fails to solve (Fy) as the

stopping criterion C4 is reached. Algorithm BB is called and successfully finds a positive

objective value.

For all the other instances except two, CC yields a positive valued feasible solution. For

the two others, BB is called since the stopping criterion C4 is reached once again.
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