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ALGORITHMS FOR NONLINEAR CONSTRAINED
OPTIMIZATION: GLOBAL CONVERGENCE ANALYSIS
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Abstract. This paper presents a broad class of trust-region multilevel algorithms for solving
large, nonlinear, equality constrained optimization problems, as well as a global convergence analysis
of the class. The work is motivated by engineering optimization problems with naturally occurring,
densely or fully-coupled subproblem structure.

The constraints are partitioned into blocks, the number and composition of which are determined
by the application. At every iteration, a multilevel algorithm minimizes models of the reduced
constraint blocks, followed by a reduced model of the objective function, in a sequence of subproblems,
each of which yields a substep. The trial step is the sum of these substeps. The salient feature of the
multilevel class is that there is no prescription on how the substeps must be computed. Instead, each
substep is required to satisfy mild sufficient decrease and boundedness conditions on the restricted
model that it minimizes. Within a single trial step computation, all substeps can be computed by
different methods appropriate to the nature of each subproblem. This feature is important for the
applications of interest in that it allows for a wide variety of step-choice rules.

The trial step is evaluated via one of two merit functions that take into account the autonomy
of subproblem processing.

The multilevel procedure presented in this work is sequential. If a problem exhibits full or
partial separability, or if separability is induced by introducing auxiliary variables, then the multilevel
algorithms can easily be stated in parallel form. However, since this work is devoted to analysis, we
consider the most general case—that of a fully coupled problem.

Key words. Constrained optimization, nonlinear programming, multilevel algorithms, global
convergence, trust region, equality constrained, multidisciplinary design optimization
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1. Introduction. This work is concerned with establishing global convergence
theory for a new, broad class of optimization methods, called multilevel algorithms
for large-scale trust-region optimization, abbreviated as MAESTRO. The class will
be presented 1n application to the smooth nonlinear equality constrained problem:

minimize  f(z
Problem EQC: { subject to C((CL‘)) =0,
where f: R” - N and C : R* — N m < n. A subclass of multilevel algorithms
is applicable to solving square and underdetermined systems of nonlinear equations
[1, 2].

Multilevel methods can be used to solve any general constrained optimization
problem or a general system of nonlinear equations, but their development has been
motivated by engineering design problems that give rise to large-scale optimization
formulations with naturally occurring, tightly or fully-coupled block subproblems,
such as problems that arise in the engineering multidisciplinary design optimization
(MDO) environment. Overviews of MDO may be found in, e.g., Alexandrov and Hus-
saini [5] and Sobieszczanski-Sobieski and Haftka [30]. One of the main requirements
for any prospective optimization algorithm intended for solving engineering design
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problems 1s the capability to solve parts of the problem autonomously. Multilevel
methods satisfy this requirement.

The proposed algorithms were inspired by the local class of Brown-Brent methods
for nonlinear equations (e.g., Brown [8, 10], Brent [6], Gay [19], Dennis [20], Martinez
[24]). Subclasses of MAESTRO may be viewed as a globalization of the Brown-Brent
methods and their generalization to constrained optimization.

The multilevel class is characterized by the following features:

e The constraints or equations of the problem are partitioned into blocks in a

manner suitable to an application. No assumptions are made on the structure
of the problem or the strength of coupling among its components. Once the
problem is partitioned, at each iteration the algorithm solves a sequence of
progressively smaller dimensional subproblems, each of which yields a sub-
step. The trial step is the sum of the substeps.
Separability or partial separability can be used to extract parallelism. They
may be introduced into problems where they do not occur naturally. However,
since this paper is devoted to analysis, we will consider the most general
case—that of a completely non-separable (fully coupled) problem.

e Instead of specifying a method for solving the algorithm’s subproblems, we
require that substeps comprised by the trial step satisfy mild decrease and
boundedness conditions with respect to model subproblems. Both the bound-
edness and the decrease requirements are satisfied by most methods of interest
for solving the subproblems, allowing for a wide variety of substeps.

This feature is significant because in applications such as MDO, constraint
blocks originate from different disciplines and almost certainly require differ-
ent approaches to solving the subproblems.

Specific ways to compute the substeps give rise to members of the MAESTRO
class.

e The globalization strategy for the multilevel class is the model trust-region
approach. Two variants of the £5 penalty function are used as merit functions.
The procedure for updating the penalty parameters accounts for autonomous
processing of the subproblems. The updates are based on those introduced by
El-Alem in [14]. The approximation to the Hessian of the objective function
is only assumed to be bounded.

e The multilevel methods belong to the class of out-of-core methods. In prin-
ciple, there is no limit to the size of the problems they can solve.

e When they are applied to linear systems of equations with subsystems solved
by iterative methods, multilevel algorithms are block-approximate direct solvers.
For example, one choice of the trial step yields the block approximate Gaus-
sian elimination.

In the next section we discuss briefly the notion of sufficient decrease in the context
of the trust-region approach to globalization. Section 3 describes the multilevel class.
In Section 4, we present the global convergence theory for the first variant of the merit
function. Section 5 discusses the simpler global convergence analysis for the second
variant of the merit function. Section 6 concludes with a brief summary.

2. Sufficient predicted decrease. The concept of sufficient decrease plays an
important role in the trust-region strategy for improving the global behavior of local
model-based algorithms. Given z;, the current approximation to the solution, a trust-
region algorithm for minimizing an unconstrained function f(z) finds a trial step, s;,
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by approximately solving the unconstrained trust-region subproblem
. 1
(2.1) min{¢;(s) = f(z;) + Vf(:vi)Ts—l— ESTHZ'S sl <6}

where z;, Vf, s € ®"; H; € R"*" approximates V?f(z;); and &; > 0 is the trust-
region radius.

Global convergence analysis requires the trial step to satisfy a fraction of Cauchy
decrease (FCD) condition. That is, s; must predict at least a fraction of the improve-
ment in f predicted by the steepest descent step within the trust region (the Cauchy
step). Specifically, we must have, for some positive constant ¢ not dependent on 7,

(2.2) 3:(0) — i(5:) > ol6i(0) — (s,
where

SZ»CP = —ozZ»CPVf(:Ei),

@;

v f(z)|]? . vi(z)?
cP _ { Vfglglz)g(m@'f(m il Srigrrdrey < 6 and VS (2:) " HiV f(x:) > 0

W otherwise.

FCD is easily satisfied computationally, and it implies a weaker condition in a con-
venient form frequently used in analysis of trust-region algorithms (e.g., Powell [23];
Moré [25]):

LEMMA 2.1. Let s; satisfy the fraction of Cauchy decrease condition. Then

. o (IS
(2.3) 8:(0) — i(s:) > §||Vf(ri)llmm{w,5i}-

Powell [23] established a global convergence result under a number of very mild
assumptions. Namely, if f is continuously differentiable and bounded below on the
level set {z € R" : f(z) < f(zo)}, if the Hessian approximations { H;} are uniformly
bounded, and if the iterates {z;} satisfy either (2.2) or (2.3), then weak first-order
stationary convergence holds; that is,

lim inf |V f (z;)[| = 0.

Surveys of the trust-region approach to unconstrained optimization and nonlinear
equations can be found in Dennis and Schnabel [21] and Moré [25]. Detailed treatment
of the corresponding convergence theory can be found in Powell [23], Moré [25], Moré
and Sorensen [26], Shultz et al. [29], and Sorensen [32].

Note that the model Hessians in [23] do not have to be symmetric or positive
definite or have to satisfy any condition of accuracy (compatibility) as approximations
of V2f(z;). Thus, instead of describing a specific, detailed algorithm, [23] provides a
general globally convergent framework for unconstrained optimization.

Some recent work on constrained optimization (e.g., [1, 4, 13, 15, 16]), including
the present research, has similar intent. Namely, instead of proposing and analyzing a
specific algorithm for constrained optimization, a framework is proposed that allows
for a wide variety of step choices under the weakest possible requirements placed on
the step. Such frameworks are particularly interesting for realistic design problems,
because engineering optimization frequently gives rise to formulations that include
computational components produced under widely varying conditions.
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3. A class of general trust-region multilevel algorithms for equality
constrained optimization. This section starts with an overview of the MAESTRO
class applied to problem EQC, followed by a summary of notation and the statement
of assumptions. We then discuss the trial step computation and other components of
the algorithm—the merit function and its model, the stopping criterion, the trial step
evaluation, updating the penalty parameters, the trust-region radii, and the iterate.
The section ends with a formal statement of the algorithm.

3.1. Overview of the class. The MAESTRO class applied to problem EQC
can be conceptually described as follows. The constraint system is partitioned into M
blocks C(z), ..., Cau(x), with each Cy : " — R+ 224:1 my = m. (Individual com-
ponents of the system, as opposed to blocks, will be denoted by ¢;(z),j=1,...,m.)
In practice, this block decomposition may be obvious or it may itself be a topic of
research.

At the current approximation z; to a solution xz, we set yg = x; and compute the
trial step §; as follows.

A substep s; approximately minimizes ||C1(yo) +VCY (yo)s||?, the Gauss-Newton
model of the first constraint block about yg in a trust region of radius ;. It yields
Y1 = Yo + s1.

The substep s; defines a hyperplane VCT (yo)(s — s1) = 0 parallel to the null
space of the Jacobian of the first constraint block. All further substeps of trial step
§; are restricted to this hyperplane. Thus the substeps sa, ..., spr41 do not change
the predicted improvement in the model of ||Cy (z)||%.

A substep sy approximately minimizes a model of ||C2(z)||* about y;, restricted
to the hyperplane defined by s1, in a trust region of radius d5. The substep s5 is taken
to the point ys.

The process continues to compute substeps that approximately minimize re-
stricted models of progressively smaller dimensions. When all the constraint blocks
have been processed, n — m degrees of freedom still remain. They are used in build-
ing a quadratic model of the objective function about yar. The final substep spry1
approximately minimizes this model restricted to the intersection of the hyperplanes
parallel to the null spaces of the Jacobians of all constraint blocks. The final substep
yields the next approximation to a solution of problem EQC. The total trial step from

. M+1
T =YoiS S =) .1 Sk-

Unless the convergence criteria are met, the trial step is evaluated and, upon
updating all parameters of the algorithm, the procedure repeats in trust regions of
the size determined by the success or failure of the previous trial step.

It should be noted that although the MAESTRO procedure is consistent with the
Gauss-Seidel principle of using new information as soon as it is available, it is not
the Gauss-Seidel algorithm. The latter, applied to a linear system of equations, is an
iterative procedure; MAESTRO solves a linear system in one iteration.

I”

3.2. Summary of notation. Given the block structure of the algorithm, no-
tation becomes cumbersome. We abbreviate the notation whenever possible while
attempting to retain clarity.

The iterates and the trial steps are denoted by z; and §;, respectively. Computing
one trial step §; from the point z; involves solving a “sweep” of M + 1 subproblems. In
the course of the algorithm description, it will become evident that the subproblems
serve to compute a basis for the null space of the constraint system Jacobian. This
computation, however, is accomplished step by step, using information at different
points, in contrast with, say, the SQP methods, which use information at the current
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iterate and the entire block of constraints even when the constraint system is solved
iteratively.

The subproblems of a single trial step computation and the components within a
single sweep of subproblems are indexed by k. Unless stated otherwise, we will always
refer to one generic trial step computation and omit the reference to that step while
referring to the subproblem entities. For instance, the substep produced by solving
the k-th subproblem of a sweep is denoted by sx (k =1, ..., M + 1), while the points
generated within each sweep by taking these substeps are denoted by y (kK =0, ...,
M + 1) with yo = 2; and yar41 = 2i41. The total trail step §; = Ziw:"il Sk .

If one has to distinguish between the subproblem components that belong to differ-
ent trial steps, superscripts make the notation explicit. For instance, §; = ngztl 32,
while §;41 = QJ:T sfjl.

The trust-region radius for subproblem k, centered at yx_1, is denoted by g,
while the radius of the total trust region, centered at z; = yo, is 52 Py, denotes the
generic reducer matrix whose columns form a basis for the intersection of the null
spaces of VCT (yo), ..., VOI (yx-1). Huy denotes the approximation to Hessian of f
at yars.

The components of C7 will be numbered from n; = 1 to ny — 1, the components
of Cy will be numbered from ny to ng — 1, and so on. Finally, the components of Cjy
will be numbered from nas to m.

All norms are 5 norms.

3.3. Assumptions. Let {z;} be the sequence of iterates generated by a mem-
ber of the MAESTRO class with the corresponding subproblem iterates {yi}, k =
1,..., M 4+ 1. We make the following assumptions:

1. All z; and yé, k=1,...,.M+1,i=1,...lie in a convex set Q C RN".

2. f,C € C*Q).

3. f(z), Vf(z), V2f(z), Hi;, C(z), VC(z) [all Cx(z), VCk(2)], Viecj(z), j =
1,...,m, (VCF(2)VCy(z))~Y, Pi, k = 0,...,M (Pt = I), are uniformly
bounded in €. That is, there exist positive constants o1, ..., g, such that
1@ < o1, IVF@I < o3, V@) < 05, [1Hll < ox, ICE)] < o5,
V(@) < o5 9% @)]] < o7, j = L,.m, [(VCR (2)VCa(z)) 1] < o,
[|PL] < o9, k=0,..., M for all z € Q.

4. VCx(z), k =1,..., M, have full rank.

5. If the substeps of the algorithm are block-linearly feasible (see §3.4.1), then
the inverses {B; '} are assumed to be bounded.

These assumptions are conventional (see, for instance, [12, 13, 15, 16, 28]), although
some are stated in block form.

The analysis will be done under these assumptions and so they will not be repeated
in the statements of lemmas and theorems.

3.4. The trial steps. During the constraint elimination stage of computing a
trial step §;, the substeps approximately solve the following subproblems:

minimize %Hck(yk—l) + VOT (y—1)s]|?
(3.1) subject to VC]T(yj_l)SZO,jZ 1,...k—1,
lIsll < 6k,
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k =1,..., M (there is no null space constraint for £ = 1). The objective function
subproblem is

minimize  ¢ar(s) = Flyar) + VI (ymr)s + %STHMS
(3.2) subject to VCJ»T(yj_l)sz 0,7=1,...,M
llsll < dar4a-

A change of variables s = Py_1v, where the columns of the reducer matrix Py _; form
a basis for ﬂ?;ll[N(VCjT(yj_l))], converts subproblem k with null space constraints
into an unconstrained trust-region subproblem. Reducer matrices and substep com-
putation will be discussed presently.

3.4.1. Some choices for reducer matrices and substeps. We describe two
explicit choices for the reducer matrix Py and substeps.

Orthogonal substeps. For relatively small problems, P, can be computed via
the QR decomposition of VCT (y) and updated for subsequent subproblems to bases
of progressively smaller dimensional intersections. All subproblems are explicit un-
constrained trust-region minimization problems.

Orthogonal substeps are appealing but can be expensive to compute. It is easy to
observe the relation between the unconstrained minimum norm substeps and solutions
of the subproblems. Direct examination establishes the following;:

PROPOSITION 3.1. Let s be the orthogonal substep from yx_1 to yi with the
assoctated trust-region radius 8. Then sé‘ 1s equal to the unconstrained minimum
norm substep on the shifted equation Cy(y) — [Ck(yk-1) + VO (ys—1)sit] = 0.

Readers familiar with Brent’s algorithm for nonlinear equations [7] will notice
that the unconstrained minimum norm step is the Brent step. Thus, for orthogonal
substeps, the multilevel class is a direct extension of Brent’s method to constrained
optimization and, in the case of nonlinear equations, a trust-region globalization of
Brent’s method. Details can be found in [2].

Another way to express the generalization of the Brent substep is to compute the
minimum norm substep and to truncate it to lie within the trust region if its length
exceeds the trust-region radius. Such a substep will be shown to satisfy the conditions
imposed on multilevel substeps.

Extension of the general block-linearly feasible substep. For large prob-
lems, the use of orthogonal substeps becomes prohibitively expensive. Extending the
well-known reduced-basis technique for computing the reducer matrices and the sub-
steps is an approach particularly well suited for the applications we have in mind.
Experience in the context of single-level, large optimization problems with constraint
systems formed by discretizations of partial differential equations [22] provides nu-
merical reinforcement for this idea.

In the block-linearly feasible approach, only the last subproblem of the sweep
needs to be an explicit optimization problem. The subproblems that eliminate the
constraints are solved implicitly.

Consider an example. Let the constraint system C(z) = 0 be partitioned into
three blocks, Cy(z) =0, Cx : " - R k=1,...,3.

Let us partition VCY (yo) into [B1|N1], where By is an m; x m; nonsingular
matrix. Column pivoting may be required to make B; nonsingular or to obtain the
most advantageous B;. Now

VCf(yo)S = BlsBl + N15N1 = —01(3/0).
6



Choosing sy, = 0 yields s, = —(B1)~'C1(yo) and a linearly feasible point

st = (sB,,sn5,)" = (=B ' Ci(y0),0)"

If s{™ lies within d1, set s; = s%”. Otherwise, truncate the substep to lie within the

trust region; i.e.,
_ Jlsif”
[l

S1

The substep is taken to obtain y; = yo + s1. Now we compute the substep on the
second block of constraints, restricted to the null space of the Jacobian of the first
block. We partition VCY (y1)Z; into [Bz|N2], where

7 = [ —B'N ]

van—ml

and Bs is a nonsingular ms X ms matrix, possibly obtained by column pivoting.
Similarly to !, we obtain

53" = (5B, 58,)" = (=87 ' Ca(w1), 0)7

The substep ss is truncated if it lies outside 5 to obtain y; = y; + s2. For the final
block of constraints, we partition VCT (y9) 727, into [Bs| N3], where

Z2:[ _B2_1N2 :|a

In—ml—m2

and proceed as above to obtain s3 and

In—ml—mg—mg,

Z3: [ _B3_1N3 :| .

Finally, we solve the unconstrained trust-region subproblem:

minimize  f(yar) + VL (yar) Z3Z2Z1v + %(ZgZzZlv)THM(ZgZzZlv)
subject to || Z37271v|| < d4

for v to obtain s4 = 737571 v.

This procedure causes the substeps to be parallel to hyperplanes formed by a
number of coordinate directions. Readers familiar with Brown’s method [9, 11] for
nonlinear equations will recognize that this way of computing the substeps includes,
as a special case, an extension of Brown’s method to constrained optimization, while
in the case of nonlinear equations it provides a trust-region globalization strategy for
the local Brown’s method.

As there is a Brown-Brent analog for any matrix decomposition in the linear
case, the Brown-Brent class may be viewed as an extension to the nonlinear case of
the direct linear solvers. Therefore, based on the choice of partitioning and pivoting
for the Jacobian of the constraints, MAESTRO class includes, as a special case, the
extension of the Brown-Brent class to constrained optimization and the trust-region
globalization of the class for nonlinear equations [2].

Methods for solving reduced subproblems. The block-linearly feasible ap-
proach leaves only one explicit reduced unconstrained trust-region subproblem to
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solve: the objective function subproblem. In general, every substep computation may
be an unconstrained trust-region subproblem. These can be solved by any method
suitable to the application, as long as they satisfy the two requirements described in
the next subsection. Because the MAESTRO class is intended primarily for large-
scale problems, the algorithms of Steihaug-Toint [34, 35] and Sorensen [31, 33] are
promising.

3.4.2. The general substep requirements. In the previous section, we de-
scribed some reasonable methods for computing the substeps, but the MAESTRO
class assumes that the user will select the methods most fitting the properties of a
specific block. The substeps are only required to satisfy two mild conditions.

Boundedness. Global convergence for multilevel algorithms with orthogonal
substeps was established by Alexandrov [1]. However, the expense of computing
orthogonal steps prompted us to propose using nonorthogonal substeps (Alexandrov
and Dennis [4]). Here we complete the analysis of convergence for a broader class
whose substeps s; are required to satisfy a weaker condition:

(3.3) sl < TallCk ()l & =1,..., M,

for some positive constant I'y independent of i. The constant need not be the same
for all blocks of constraints, but we take I'y to be the maximum of the individual
constants. Note that it is also true that

(3.4) ICk (k)| < Tallshll, £ =1,..., 0,

for some constant I's > 0. This follows directly from the definition of the orthogonal
or a block-linearly feasible step, and it follows from the sufficient decrease condition
(described below) in the case of a substep that solves the k-th subproblem explicitly.

Let N < M + 1 be the index of one of the substeps in the step §; = Zg@il sg. If
the substeps are orthogonal to each other, the Pythagorean theorem yields

N
1> sl < llsill

for any j between 1 and N; i.e., the length of any intermediate sum of the substeps is
bounded by the length of the total trial step. We obtain the following relaxation for
nonorthogonal substeps:

LEMMA 3.2. Let §;, = s1 4 ...sp41 be a trial step generated by a member of the
multilevel class from x;. Then for | < N < M + 1, the following inequality holds:

N
1D sell < Tallsi]
k=j
for all j € [1, N] and for some constant T's > 0 fized across all iterations.
Proof. For k=1,
IVCT (wo)s1ll = [[VCT (o) (51 + . + sar+1)]
On the other hand,

= [IVCT (wo)ill < IV Cill]|s:].

S —T
IVCT (wo)lt
8

IVCT (yo)s1 ]| >



The problem assumptions yield the constant. A simple inductive argument leads to
similar inequalities for other substeps, with I's taken to be the maximum of all block
constants. O

Sufficient decrease. Each substep sg is required to satisfy FCD on the reduced
quadratic model of the subproblem that it solves. The following lemma expresses
FCD for the subproblems in a convenient form.

LEMMA 3.3. Let §; = s1,...,Sm41 be a trial step generated from x; = yo. Then
there exist positive constants I'y, T's, and T'g, not dependent on i, such that

[1Cs (= 1)[* = 1Ck (yre—1) + VO (gr—1)k[1* > Tal|Cr (y—1) | min{Ts | Cie (1) I, 0k},

where k =1,..., M, and
o .
¢um(0) — dm(smry1) > §||P17\}Vf(yM)||mlﬂ{F6||P17\}Vf(yM)||75M+1}’

where Py forms a basis for ﬂyzl[N(VCjT(yj_l))].

Proof. The proof is a straightforward application of Lemma (2.1) and the problem
assumptions to subproblems £ = 1,..., M + 1 to obtain the values of the constants.
O

Properties of some substeps. The following theorem shows that a wide class
of methods for computing the substeps satisfies both requirements.

THEOREM 3.4. Let sli‘, 1 < k < M, be an orthogonal substep generated by
subproblem k of any trial step computation. Further, let 5%" be any block-linearly
feasible substep from yi_1 to the hyperplane defined by the linearization of the reduced
block Cy, about yi_1. Let 5 be the associated trust-region radius. If||sf,j”|| < g, then
let s = SZ”‘ Otherwise let

(Sksifn
S = g .
(el

Then there exists a positive constant I'y, not dependent on i, such that
sl < Ta|Ch(ye—1)ll

and

llsxll < Tal[Cr (we- 1)l

Moreover, si and sy, satisfy FCD on the reduced Gauss-Newton model of Cy about
Yk—1-

Proof. First, consider the boundedness condition. If Ck(yg—1) = 0, then s = 0
and the result holds. If Cx(yk—1) # 0, then

lsic Il < 11Pd_ 1V Cre (-1 [Pr—1V Cre(ye—1)] T [PE_ 1V Ci (1)1} I Cok (w—1)],

and the definition of the constant follows from the problem assumptions.

In the case of nonorthogonal substeps, our assumptions guarantee that we can
always find, possibly with pivoting, an invertible By in a reduced block-Jacobian with
Bk_1 uniformly bounded. Therefore, P, = Z;,k = 1,..., M, are uniformly bounded
as well. It follows that the block-linearly feasible substeps, si™, and the truncated
block-linearly feasible steps, si, are bounded in terms of the constraint block norms.
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The problem assumptions provide the definition of the constant, and the constant I'y
1s the maximum of those for sli‘ and sy.

Now consider the sufficient decrease condition. The conclusion is obvious for slf
and for s; = SZ”. Therefore, let us assume that 0 < (x = Hs(ﬁiﬁll < 1.

We have

ICx (- )II> = |Cx (wk—1) + VO (ge—1) 5|

= [|Ck (y—1)II” = [|Ck (gs—1) + GV CE (ys—1) ™ |I?

> [|Cr (yr—1)11* = [(1 = Ce)ICk (we—1) || + Cel|Cr (ws—1) + VO (1) 5™ []?
=[1 = (1= ¢)*Ck (we-1)II*.

The definition of SZ” and the boundedness of the reducer matrix yield the conclusion.

O

3.5. Measuring progress toward solution. In this work, we focus on mod-
ified £y penalty functions in keeping with using weak assumptions sufficient for es-
tablishing a global convergence analysis. It would also be easy to include a modified
augmented Lagrangian as a merit function, by imposing the boundedness assumptions
on the Lagrange multipliers. However, we relegate this line of research to the study
of the local convergence properties of the class.

The substep s predicts decrease for ||Cy||? from yx_1 to yx. Because the model
of ||Cgl|? is restricted to the intersection of the null spaces of Jacobians numbered
1,...,k — 1, s conserves predicted improvement for all ||Cj||?, j = 1,...,k — 1.
However, there is no prediction at all about how s; + ...+ s; changes, and possibly
increases, ||C}||%, j = k+1,..., M. Neither does any substep, except spr41, predict
the behavior of the objective function.

Components of a progress measuring scheme include a merit function and its
model, the definitions of the actual and predicted reductions in the merit function,
and procedures for updating the parameters of the merit function. To account for
the autonomous processing of subproblems, we consider two alternatives for such a
scheme. Detailed global convergence analysis will be presented for Variant I. We will
then point out the modifications to accommodate the simpler Variant II.

3.5.1. Variant I. Let pg, k= 1,..., M, be positive scalars greater than or equal
to 1. To simplify notation, let p, be the vector of the first k& such scalars; i.e.,
P = (p1,- -, pr). Let Sp = {s1,..., s} be the set of the first k£ substeps.

To measure the progress of the algorithm toward a solution, we introduce a new
merit function—a modified ¢5 penalty function:

M M
Plaipy) = f2) + Y _(IT ri)llCr (@)%,
k=1 j=k
For instance, in the case of two blocks of constraints, we have

P(x; o) = f(2) + p2ll|Co(2) ] + pal|Ca(2) ).

The initial choice, pg = 1, is arbitrary and scale-dependent. The only requirement for
our analysis is that py > 1. Of course, in practice, more care would likely be needed
to choose 1nitial penalty constants.

10



Because VO (y—1)s; = 0 forall j =k +1,..., M + 1, we model each ||Cy(z; +
5:)||? at yare1 = @ + 8 by ||Cr(yk—1) + VCkT(yk_l)SkH2, and so we model the merit
function at z; 4+ §; by

M M
M(Sar115par) = Snr(snr41) + D H MCk(ye—1) + VO (yr—1)sx][*.
k=1 j=k

We define the actual reduction in the merit function by

(3.5)  ared; = Plxi; piy) — Pz + 55 055) = Plyo; o) — Pluarss; piort).
The predicted reduction models the actual reduction and is defined as

(3.6) pred; = P(x; plyr) — M(Sars1; o).

This function penalizes for the possible predicted increase in the constraint blocks
k,..., M, and in the objective function that may have occurred while computing the
substeps numbered 1,...,k — 1.

The arguments in the definition of ared; and pred; are evident, but we shall not
use them explicitly—throughout throughout the remainder of the paper. The same
convention holds for the partial predicted reductions. Thus

Cpredy = [|C1(yo)lI* = ||C1(yo) + VOT (yo)s1f?
denotes the partial predicted reduction in the first block of constraints and
Cpredy = ||Cx(yo)l|* = ||Cr(yr—1) + VCi(yk—1)7 si||> + pr_1Cpredi_1

denotes the partial predicted reduction in the k—th block of constraints, k = 2,..., M.

3.5.2. Variant II. This is a simplified merit function based on [2]. It replies on
the fact that the norms of the substeps are bounded by the norms of the constraint
values, which “pulls” the subiterates to a single point.

The merit function is defined simply as

(3.7) P(;p) Ef(r)+p2||0j(r) ’

with ared; defined as for the Variant I. But now the predicted reduction will be defined
as

M

pred; = f(yo) = dna (snr41) + pi Y _[I1Cs(yi-2)II* = 1G5 (y-1) + VOT (y7-1)s41).
j=1

Note that this merit function has a single penalty parameter. While this variant is
simpler than the first one, the relative efficiency of the two variants remains to be
determined by numerical experimentation.

3.6. Updating the penalty parameters. The penalty parameters are up-
dated upon completion of each trial step, before the step is evaluated. The updating
scheme for Variant IT is simply that proposed by El-Alem [15], with the distinction
that the predicted reduction contains information about M constraint blocks instead

of the single block.
11



The updating scheme for Variant IT extends the one proposed by El-Alem [15, 16]
to account for cumulative predicted reduction. It ensures that, unless an optimum is
reached, the total trial step predicts at least a portion of FCD predicted in the model
of the first block of constraints.

ALGORITHM 3.1. Updating penalty parameters
Set pl = ... = p}; =1 and choose 3 € (0, 1).
dok=1M-1

if at least one of s; #0,7 =1,..., k; then update p:

if k = 1; then
Compute Cpred; and Cpred,
else
Compute Cpredg 41
end if
if Cpredg41 > %Cpredk; then
et = ri
else
Pt = px + B,
where g = 2[||Ck+1(yk)+ch+éf:£;:+l|l2_|lck+l(y0)||2]
Recompute Cpredg 41
end if
else
Pt = i
end if
end do

if at least one of s; # 0,7 =1,..., M + 1; then update p;:
Compute pred;

if pred; > %C’predM; then

P = P
else
Pt = pu + 0,
where pyr = 2[om é}\;;};f Yo)]
Recompute pred;
end if
else
Par = P
end if

We choose the penalty parameters so that for each substep si the predicted
reduction accumulated by s; + ...+ sg 1s at least a fraction of the predicted decrease
accumulated by s1 +...+ sp_1.

This scheme increases the penalty parameters but does not do so excessively,
which helps to alleviate the numerical problems caused by a possibly too rapid growth
of the penalty parameters. Also note that taking substep k restricted to previous null
spaces preserves the decrease prediction for the blocks already processed before the
k-th block and, thus, should weaken the rate of growth of the penalty parameters as
well. However, if the penalty parameters do become large, they can be “re-started”
from smaller values. The subject of nonmonotone penalty parameters 1s studied in
El-Alem [17]. For the purposes of our discussion, we will consider only nondecreasing

12



penalty parameters.
The following lemma summarizes the properties of the penalty parameters com-
puted in this scheme.
LEMMA 3.5. Let pr, k= 1,..., M be the penalty parameters generated by Algo-
rithm (3.1). Then
1. The sequences {pi}, k=1,..., M are nondecreasing.
2. The partial predicted reductions satisfy

k .
(3.8) Cpredgy1 > %Cpredk > %C]oredl,
and the total predicted reduction satisfies
M
(3.9) pred; > 'O_TMCpredM > %C’predl.

3. If a pi 1s increased, it 1s increased by at least 3.

Proof. Direct examination of the updating scheme yields a straightforward proof.

Note that inequalities (3.8) and (3.9) are satisfied whether or not the penalty
parameters are increased. If they are not increased, the inequalities are satisfied with
the previous values. Otherwise, they are satisfied with the updated values. 0

In summary, the only substep that is certain to predict an improvement from
z; = yo in ||C1(2)||? is s1, which is the reason for the first block being the most
heavily weighted one. Equivalently, without adjusting the penalty parameters, the
entire step §; predicts decrease for the first block only. An alternative scheme would
be to place the penalty parameter only on the first block of constraints, i.e., to have
a merit function of the form

Ple) = f(z) + Z 1C; (@) + plIC1 () I

with an appropriate scheme for updating p. While theoretically this scheme would
not be fundamentally different from the one we adopted, in practice it is expected to
have more numerical difficulties.

Finally, we emphasize that the step computation is independent of the penalty
parameter computation.

3.7. Evaluating the step and updating the radii and the iterates. Al-
though there are various interesting schemes for evaluating the trial step and updating
the trust-region radii, for ease of exposition, we adopt the following strategy: the total
trial step is evaluated, and all individual trust-region radii are equal and are updated
simultaneously by the same factor. Thus, for every &, 5; < (M +1)6;. The simultane-
ous expansion or contraction of the trust-region radii is not a technical requirement.
The algorithm for evaluating the step and updating the trust-region radii follows.

Let ared; and pred; be defined as in expressions (3.5) and (3.6). Let r = ;%‘fg:.

ALGORITHM 3.2. Step evaluation / trust-region update

Given 0 < dmin < 8 < dmaz, k = 1,.. 8041, 0 < m1 < 2 < 1, y1 € (0,1],
Y2 > 1, 7,

if » < 71 then (step not accepted; d; decreased)
Ok = y1lskll, fork=1,..., M +1
Tit1 = T4
13



else if r > 1y then (step accepted; dj increased)
0k = min{dmar, max{dmin,v20r}} for k=1,..., M+ 1
Tip = x; + 5
else (step accepted; d; unchanged)
O = max{dmin, 0kt fork=1,... M +1
Tip1 = x; + 5

end if

Typical values of the constants can be found in [13], for instance.

We note that if the step is not accepted, the trust-region radii are decreased
without any restrictions. However, if the step is accepted, the next trust-region radius
is set to be no smaller than a predetermined positive number, d,,;,. This technique
is used by El-Hallabi and Tapia [18], for instance. Its role in the global convergence
analysis is to ensure that the trust-region radii are bounded away from zero.

3.8. The stopping criteria. To terminate the algorithm, we require that

M
(3.10) P37V £ (yan)ll + D 1ICk (yr—1)I| < et
k=1

holds for some small €;,; > 0.

While this is a conventional termination criterion useful for analysis, in practice
one would impose a distinct termination criterion for each block of constraints followed
by the projected gradient of the objective. The more complex criterion is not used
here, as it complicates the sufficient decrease condition for the subproblems and 1s
better addressed in a work on implementation.

3.9. The statement of the algorithm. We can now provide a complete formal
statement of the MAESTRO class.

ALGorRITHM 3.3. MAESTRO class for problem EQC

Given zg € R", 0, >0,k =1,..., M + 1,

do
Set yo = x,
compute the trial step 3;:
dok=1M

if ||Ck(yk_1)|| > 0 then
compute sg that satisfies FCD on
minimize  ||Cy (yr—1) + VO (yr-1)s||?
subject to VC']»T(yj_l)s =0,7=1,...,k—1,
Isl'< 6
else
S = 0
end if
Ye = Yr—1+ Sk
end do
i |PL Y S ()| + 52, 1G5 (4-1)I] < oot then terminate
if ||PLY f(yar)|| > 0 then
compute spyr41 that satisfies FCD on
minimize  f(yar) + V7L (yar)s + %STHMS
subject to VC]»T(yj_l)s =0,j=1,.... M
51’ G314
14
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else
SM+1 — 0
end if
YM41 = YM + SM+1
the trial step is 5; = Zi\iil
update the penalty parameters using Algorithm (3.1)
update z; and di, k=1,..., M + 1 using Algorithm (3.2)
end do

Notice that every trial step §; results in an increase in the iteration count whether

Sk

or not it is an acceptable step. Recall also that after each acceptable step z;41 # z;,
6k Z szn

We should note that there is an option to eliminate only a subset of constraints
via the described procedure. In that case, the rest of the constraints and the objective
function would be restricted to the intersection of the null spaces of the Jacobians
of the processed constraints, and the resulting reduced optimization problem would
be solved by a chosen method. This approach has bearing on the computational
structure of some problems in engineering optimization, and we relegate it to future
work.

4. Global convergence analysis for Variant I. Global convergence analysis
for the MAESTRO class is composed of the following main ingredients. First, we
show that the total trial step satisfies a sufficient decrease condition, given that the
substeps satisfy FCD on the reduced subproblems. Second, the difference between the
actual and predicted reduction is shown to be bounded above by appropriate powers
of the total trial step norm. Third, the algorithm is shown to be well-defined; that
is, a successful step can be found after a finite number of trial steps. Fourth, the
penalty parameters are shown to be bounded under the nontermination hypothesis.
The trust-region radii are shown bounded away from zero. Finally, we establish weak
first-order convergence. The analysis follows that in El-Alem [15].

4.1. Accounting for autonomous processing of the subproblems. The
following lemma accounts for the effect of each substep s; on the constraint blocks
numbered k + 1,..., M and on the objective function.

LEMMA 4.1. There exist positive constants py, ..., us independent of i, such
that

(41 N1C(yolI” = ICk (=) > —pan—1; E Cilyi-1ll, k=2,...,M, and

M

(4.2) Fyo) = flyar) = —par D 1ICs(ws-1)l.

j=1

Proof. We have, for some zi € (yo,yx—1) and k=2,..., M,

k-1
1Ck(yo)II* = | Ci (y—1)II” __Q[VCk(yO)Ck(yO)]TZSj

1 k—1 . . ngt1—1 , k—1
- §(j:13j) [VCOr(2k)VCr(2x)" + l; alzk)V Cl(Zk)]JZ:;Sj

15



k-1
1
> 2|V Cx(yo) |Cx ()l _ sl = 5 IV Crwo) I

nep1—1 k-1
+ 0 laCz)lllIVelz) N0 ;i)
l=ny j=1

Taking into account that

k-1 k-1
1Ck (o)l = 1Cx (- )| < l|C(y0) = Ci (=)l < ol D sl < o6 ) I,

j=1 j=1
we have
E—1 E—1
k(o) < o 3 syl + ICilk-)Il < 05 3 syl + Tallse]
Jj=1 j=1
E—1 E—1
< (05 + Dallsnl) 3 Issll < (06 + Padma) S lssll-
j=1 7j=1
Then
105 (yo) I = |Cr (ys—1) I
1 E—1
> —{206(06 + ['26maz) + §[U§ + (g1 — n)osor }O Ll )
7j=1
1 k-l
> —{205(06 + Todmaz) + 5[06 + (nk41 = ni)os 7]} T1Ta0; > 1C; (yi-1)ll
j=1

k1
= —pe-16i Y N1Ci(yi-1)ll-

j=1
Similarly, for some zpr € (yo, ym), we have

Fvo) — flyar) = =V F(zam) (51 + ...+ sm)

M M
> =3y llsill > —oaT1 D 11Cs(y-0)
j=1 7j=1
M
= —pn Y _1ICi(yi-)ll,
7j=1
which concludes the proof. O

4.2. The behavior of the model. The following lemma provides an estimate
for the cumulative predicted reductions.

LEMMA 4.2, Let s1,...,5pm+1 be the substeps generated at the current iterate
xz; = yo, and let p1, ..., pyr be the penalty parameters. Then the partial and the total
predicted reductions satisfy the following estimates:

(4.3) Cpredy > Ta|Cr(y—1)[| min{Ts[|Cy (g 1) ||, o }
k-1
— pr=16 D NIC (gi-1)|l + pe—1Cpredy_y
7j=1
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o
(4.4) pred; > §||PMVf(3/M)||mlﬂ{r6l|PMVf(yM)|| Snr41}
M
— s Y _NIC (wi— )| + par Cpredar,
j=1
where T4, T'5, s are as in Lemma (3.3) and pq, ..., upr are as in Lemma (4.1).

Proof. Consider

Cpredy = ||Cx(%0)||* = ||Cr (¥r—1) + VOF (y—1)sx||> + pr_1Cpreds_1
£ || Cr (1)1

Applying Lemmas (3.3) and (4.1) to the right-hand side yields

Cpredy > Taf|Cg (y-1)|| min{T5||Ck (yx-1)|[, o }
k-1

— pr=10i Y 11Ci (=)l + pr—1Cpredy_1.
j=1

Similarly, for the total predicted reduction we have

pred; = f(yo) — dm(sm41) + pu Cpredar £ fynmr)
> 2 PLY f(yan) | min{Tel| PL Y £ (yar) ||, Sar41 )

M
— uar Y _NICi(yi—1)Il + par Cpreda,
j=1

which concludes the proof. 0

The following lemma provides an upper bound on the difference between the
actual reduction and the predicted reduction. In particular, if {pZ} are bounded, the
estimate indicates that the predicted reduction approximates the actual reduction
with O(]|5;]|%) accuracy.

LEMMA 4.3. There exist positive constants 'z, U's, [y, and vg,k = 1,..., M,
independent of the iterates, such that

M M M

(4 5Nareds pred) < s+ (L] s + 32(LL oo Cotan-lls
: k: :

and

M
(4.6) lared; — pred;| < Tof H )15 1%

Proof. The proof of inequality (4.5) is a straightforward, repeated application
of the mean-value theorem, the Cauchy-Schwartz inequality, Lemma (3.2), and the
problem assumptions. Boundedness of ||s|| and ||Ck||, together with (4.5), yields
inequality (4.6). Detailed proof follows the work of El-Alem [14] and can be found in
[1]. O
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If a particular subiterate yx_; is cumulatively block-feasible, i.e., if ||C;(y;j—1)|| =
0,7=1,...,k =1, orif ||Cx(yk—1)|| = 0, the corresponding penalty parameter pj_1
is not increased. It 1s necessary to show, in addition, that the penalty parameters will
not be increased if the iterates are sufficiently close to cumulative block-feasibility.
Note that because of the autonomous processing of the constraint blocks, one has
to be concerned not only about the overall feasibility, but also about the relative
feasibility of one block with respect to another.

LEMMA 4.4, Let wi < ... < wpy be positive constants defined recursively as

o €ol O€ol . Tgrol
< d
wM_mm{%mM,SﬂM {25max M—|—1}} an
r r
wip—1 < min{%, 44/:k min{ S;k 7 1}} fork=2 ... M.

IF PRV F a1+ 32520 1G5 (=)l > vt and 232, 11C5(yj-1)I| < wardi, then
o .
(4.7)  pred; > ZHPJT\}Vf(yM)Hmm{F6I|PJq\}Vf(yM)||75M+1} + pu Cpreduy

for any par > 0, and par is not increased in Algorithm (3.1).
If 25 GG (wi— )| > wiedi for some 2 < k < M and 521 [|Ci(yj-1)I| < we—16;,
then

r .
(4.8)  Cpredy > | Ce(ys—1)|| min{Ts||Cr (1) |, 4} + pr—1Cpredi—,

for any pp_1 > 0, and pg_1 is not increased in Algorithm (3.1).
Proof. Note that wy < ws < ... < wpr by construction.
By Lemma (4.2),

o .
pred; > Z|PirY f(yan) || min{ e[| iV f(yar )|, Onr 41}

M

— i D _NICi(yi=1)Il + par Cpredayy.
j:l

If || PLVF )|l + 05 10 (-l > erar and 3200 (1G5 (yj—1)ll < wardi, then
||PJTMVf(yM)|| > €1 —ward; > L, where the last inequality follows from the defini-

tion of wys. Taking into account that g1 > M+1’ we have

o .
pred; > |\ PirY f(yan) | min{Te|| iV f(yar )|, 641}

o€to1ds min{ | Y 1 Y — pngwnsd
— BMWMO;
8 Wmas M +1 !
+ pymCpredas.
06101(5 Teetor 1
Because wyr < Sriar min{ W M_|_1},
O€toi0i . Lgeral

Gi>1
s mindgg M+1} HMEM
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and (4.7) holds. Hence, pps is not increased in Algorithm (3.1).
To account for p1,...,par—1 Lemma (4.2) gives us for 2 < k£ < M,

k—1
Cpredy, > Tal|Cr (ys—1) || min{Ts||Ci (ye -1, 6} —px—16; Y [|C;(yj—1) [ +p5-1Cpredi 1.

=1

15250 IG5 (i)l > widi and S50 1IC (wi-1)ll < wemadi, then [|Ci(yi—n)l| >

(wi — Wk _10; > “’7“52, because w1 < “F. Taking into account that dx > Mé—_’H, we
have
ry . .
Cpredy, 2 —~[|C (g -1) || min{Ts | Ce (- 1)1}, e }
Tuwgd? . Tswy 1 29
2 _ _ _ 6
+ 1 min{ 5 ’M—}-l} Wr—1HE—10;
+ pr—1Cpredy_1.
Because wi_1 < 42“:”_’1 min{ F””Q“”‘ , M1+1 1
[ 4wy d? Tswr 1 <
d — Wg_1ptg—16; >0
i e w16 > 0,
and inequality (4.8) holds. Therefore, py_1 is not increased in Algorithm (3.1). O

The following lemma provides a lower bound on the predicted reduction if the
iterate is sufficiently close to feasibility.

M M
Lemma 4.5, Let ||PyV f(ya) 143255, 1105 (wi-1)ll > €eor and 3757 115 (y5-1)|| <
wprdi, with wyr defined in Lemma (4.4). Then there exists a positive constant Ty that
depends on €, but not on ppr or i, such that

(4.9) pred; > a1 0;.

If Y5 11C (=)l > wids and Y5211C(yi—1)ll < wi—1d; for some 2 < k < M,
where wi_1 is defined in Lemma (4.4), then there exists a positive constant 1, _1, that
depends on €, but not on pr or i, such that

(4.10) Cpred; > Tk_lgl?.

Proof. Tf || PV f (ysn)l| + 724 11C5(95-1)|1 > eoor and 3235, 1G5 (1) 1| < wrdi
then by Lemma (4.4),

o .
pred; > ZIIPf\}Vf(yM)II min{Ts||P5;V £ (yar)l, dar41} + par Cpredas

> %Ilpﬁvf(yM)llmin{F6||Pf7\}Vf(yM)ll,5M+1}

Tector oerordi . Teeror 1
5 O}z —— min{F,

O€tol

>
- 8

}E TMSZ'.

min{

Similarly, if Z?:l [1C;(yj=1)|| > wrd; and Z?;ll [1C;(yj=1)]] < wy_10; for some 2 <
k < M, then by Lemma (4.4),

1 .
Cpredy > §F4||Ck(yk—1)|| min{Ts||Cx(yk—1)||, 0 } + pr—1Cpredr_,
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1 .
2 5 Tal|Cr(ye—1) || min{Ls[|C (- 1)1l 0 }
Cawgd? . Tswr 1 -
: = Tp_10;
2 =g i g E e
which completes the proof. o

4.3. Behavior of the penalty parameters. The penalty parameter sequences
are shown to be nondecreasing, which, together with their boundedness from above,
will allow us to conclude that the penalty parameters tend to a limit and, moreover,
stay constant after a finite number of outer iterations. The following lemma establishes
a relation between the trust-region radii and the penalty parameters.

LEMMA 4.6. For each k =1,..., M, there exists a constant Oy, independent of
t, such that if py is increased at some iteration 7, then

(411) Pk (Sk S ®k~

Proof. Suppose par is increased; that is,

A

_ 2 [¢M(5M+1) - f(yo)]
Cpredas

+ 3, with 8 € (0,1).

M

Then for some z1, 22 € (Yo, Yyar4+1), we have

|Al = [én(sar41) — f(yo) £ f(ynr41)]
< g llsw) T = V2 G0lsaen | + 195 G)llwarsr — ol

1 . .
< 5(03 + 04)Ts|[5i]” + o2]|5i|| and

(4.12) pu Cpredar < 2055 + (03 + 04)T3||5:]|> +8Cpredas .

B

Observe that because pps is increased, the algorithm does not terminate at z;; i.e.,
M . M

1PV F (sl + 32521 1G5 (yi -1l > €tor. Lemma (4.4) applies and 3757, [|C5(y; -1 >

wird;. Now, either Y217 (|G (g5 -1)]| < war—1di or 32307 [Cy(yi-1)|| > war—1s.

ZJM:Il [[C;(y-1)|| < wyr—10;. Applying Lemma (4.4) to the left hand

side of inequality (4.12) yields

BI04l Cva (yaa—) | min{Dsl|Cvs (yar 1) 630} + pas -1 Cpredas—i]

< B+ B[ICx (wo)lI* = ICar (yar—1) + VO (yar—1)sar||* + par—1Cpredar_1]

or, because p; > 1,7 =1,..., M,

(4.13) p.TMUllCM(yM—l)Hmin{Fslch(yM—l)HﬁM}
< B+ B [ICwm (wo)lI* = ICx (yar—1) + VCiys (yar—1)sm||*]

D
+prp—1(8 —1)Cpredyr—1 < B+ 3D,
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where the last inequality is due to g — 1 < 0.
Now for some 23,24 € (Yamr—1,ynm),

DI < [[1Ca (wo)I* = [1Ca (war) 1P+ ICar (war)II* = 1Ca (yar—1) + VCRy (yar—1)sn |||
M

< 2|V (z3) [l Car (z3) 1Y _ I

j=1

Z c1(z4) V cr(za)]sm|

l=nn

+ |5TM[VCM(3/M—1)VCM(3/M—1) - _VCM(Z4)VCM 24 —

N | =

1 .
+-(m—nm,+ 1)0507]F3||5i||2~

R 3
< 2050603|[8:] + [5‘73 B)

Substituting expressions for B and D into inequality (4.13) yields

=5 Lall vt (1) | min{Ts{|Car (yar 1)1, s}

. 3 .

< 2(o2 + Bos06T3)||8:| + Ts{os + o4 + ﬂ[;ﬁ + E(m —ny + Dosor)]}|5])2
3 1 .

<{2(o2 + Bos06l's) + T's[os + 04 + ﬂ(§0g + i(m —nyp + 1)0507)0maz } 05

E
M 2 M-1 ~
Because i [|Cj(yj—1)ll > wardi and 32,1 [[C(yj—1)|| < war—1di,

|Co(yar—1)|| > (wnr —wM_l)Si >0, (since wpr > wpry1).
Hence

- 1
'O_TMF4(wM—wM_1)5fmin{F5(wM—wM_l), } < Eé;.

Denotmg E/ {j‘(wM —war— 1)min{F5(wM —wapr-1), % } by O, yields pMSZ- <

MZ NG (-l > war—1di. Again consider: 33157 (|G (y;-1)]|
War—20; andz ||C (yi=1)|| > war—29;.

M Z ||C yi—1)l] < wam- 46;. Applying Lemma (3.5) once to the
left hand side of mequahty (4.12) results in

INA

PMPM—1C

5 predyr—y < B+ BllICu (y0)lI* = |Cx (yar—1) + VCir (yar—1)sn|’]

+ Bpam—1Cpredar_1,

and because p; > 1 for all j,
M 2
TCpredM_l < B+ Dé; + Bpar—1Cpredar—1.

And now, following an argument analogous to that of Case 1 leads to pMSZ- < Op,.

m Z ||C yi—1)l| > wm- 50;. And again we consider two cases.
YL (w0l < WM—35Z leads to pyd; < Oy, while 725 (1)l >
(.JM_352' splits into two other cases.
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M 2
2i=1 1G5 (yi—1) || > wmdi

M-1
2=1 G (g-1) || € war-1d

ZM:? 1Cs (yi—1) || > war—19;
pmdi < Ony !

= ] M-2 .
<. Z]:l?HCJ (y]—l)H >WM_2(SZ'

M-3 5
STUNC (yi-1) || € war—3d; - 5
j=1 11Cs (A] i< S HNC (yi-1) || > whr—sd;

pmdi < Oy,
IC1 (o) || < wid IC (yo) || > widi
pmoi < Oy, prd; < Oy,

Fi1G. 4.1. Flow chart for the proof of Lemma (4.6).

The branching argument—illustrated in Figure 4.1-—continues to obtain upper
bounds on pprd; until we reach the branch on ||Ci(yo)||. For ||C1(yo)|| < widi, the

reasoning is analogous to that of the previous branches, resulting in pard; < Opr,,_, -

Finally, for Cy(yo) > w1;, the application of Lemma (3.5) to inequality (4.12) yields

PPz PM Cpred; < B+ pCpredys

oM
= B+ llICx (o) I = ICar (yar-1) + VCT (ynr—1)sr||*]
M-1 M-1

+ 8> (T p)lICk(wo)II” = lICx(ys—1) + VO (ge—1) il ).

k=1 j=k

Taking into account p; > 1 for all j and applying Lemma (3.3) to the left hand side,
we obtain

%MIIQ(%)II min{['5][C1(yo)l[, 1}

M
<B+8Y [ICk()|I* = |Ck(ye—1) + VO (y—1)sxI*]-
k=1
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Because ||C1(yo)|| > wlgi, we have

PM 2 . I 7

Q—MF4(.U152' HllIl{F5(.d15i, M——f-l}
M

< B+ 8 [ICko)|I* = 1Ck (ye—1)"sill* £ [|Ci (ye—1)II*]
k=1

. 3 1 .
< B+ AMTs[2a505][5il| + (508 + 5ors0m) i)

or, replacing B with its value,

p 1
p_TMlewlé? min{stl, M——}-l}

3, 1 )
< {205+ fMosocT3 + T's[os+ 0a + [D’M(§U§ + §M0507)](M+ 1) 6mas 105,

which yields pard; < Oy, with

@M — {2(0’2 + ﬂMO’50’6F3) —|— F3[O’3 + 04 + [)’M(%O’g —|— %0'50'7)]}5,”(”‘
M %min{F5w1, ﬁ}

Now setting Oy = max{Ous,,...,On,, }, we have

For pg,k = 1,..., M — 1, the proof is analogous but it starts at a lower “branch” of
the argument illustrated in Figure 4.1. o

The following lemma shows that the trust-region radius is bounded below and
the penalty parameter is bounded above at an iterate where the algorithm does not
terminate and any penalty parameter is increased. The two results are shown pairwise
for p; before they can be proven for p; and the subsequent penalty parameters.

LEMMA 4.7. Assume that the algorithm does not terminate at an iterate z; and
that any of the penalty parameters are increased. Then

1. there exists a positive constant § such that

(4.14) 6 >6 and

2. fork=1,..., M, {pz} converges to a limit pj,. Moreover, there exist positive
integers i, k=1,..., M, such that pz =p; foralli >, ;
3. finally, the merit function P is bounded on €.

Proof. The general idea is to use the two upper bounds from Lemma (4.3) and
the lower bound on the predicted reduction from Lemma (3.5) to obtain an upper
bound on the ratio of the difference of the reductions to the predicted reduction in
terms of the step norm.

Let 5; = sﬁ + ...+ 5§w+1 be the total trial step generated form z; and let s_ be
the last acceptable step. Let the steps between s_ and §; be numbered

8—78i118i21"~78iL18iL+1 = S;.

The current trial step §; can be either acceptable or unacceptable.
Let us first assume that pj is increased. Without loss of generality, we can assume
9 . ! i .
that 3 5_, [|Cj(yj_1)ll > wa2d;. By Lemma (4.4), ||C1(y5)|| > wid;.
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If there are no unacceptable steps between s_ and §;, then the method of updating
the trust-region radius ensures that

(4.15) i > max{d_,6min} > Gmin.

Thus, let us assume that the set of rejected steps between s_ and s; is nonempty.
Now, either ||Cy(y})|| > w1d;, foralll =1,...,L + 1 or only for some.
Suppose, first, that ||Cy (y})|| > wid;, forall{=1,..., L+ 1. By Lemma (4.3),

M
|ared;, — pred;,| < To(TT 231151117
j=1

By Lemmas (3.5) and (3.3), we have

predilzzM HP (1C1 (o) II* = 1C1 () + VCi(wo) T 51 I1”

> o H )T4l|C: (o) min{Ts||Cy (o), 61

Because ||Cy(yh)|| > wlgil and 52-1 < (M+1) ()"i'l,

M
1 » . I
pred;, > o5 (]111 Py )Tamin{Tswy, M—H}5iz~
Therefore, because |5, < &,
|ared;, — pred;,| 2M T3, ||
pred;, = T4)|C1(¥})]| min{Tsw, ﬁ}

Because all the steps between §_ and §; are rejected ds < m where 71 € (0,1) is

’ pred
defined in Algorithm 3.2 or 1 —

ared

-+ > 1 — 1. Hence

d;, — pred;
lared;, — pre l|>1_771
pred;,
and
2Ty 5|
L4|Cy (o) | min{Tswr, 5757}

> 1 — M,

which yields

||§ || S (1 — 771)F4 min{stl, ﬁ}
nih = 2A4F9

NCy(wi)l, t=1,...,L.

We have 52 =4;

iz41 > 1|8, ||, where ay is the trust-region radius reduction factor in

the case of a trial step rejection. Because ||Cy(yh)]| > wlgil, it follows that

U,—?h)F4nﬁn{F5w1,Eﬁrf}
2MTq

(4.16) 8 > aillsi, || > w1 d;

1.
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But because Sil is the first step after a successful step,

b;, = max{d_, dmin} > Omin.

Therefore

R Widmina1 (1 —n1)Tamin{T5wy, M1+1}
62. > = F10~
Z 2MT,

Now suppose that ||Cy(y)|| > ngil holds only for some of the rejected total steps
l=1,...,L+1.

Let J be the largest index such that ||Cy ()] < w15i1~ Because after each step is
rejected, the trust-region radius is decreased the following situation holds:

IC1(ya)llSwds,  [IC1(yp)lI>wads,

S—asilasiza'"1Sijasij+1a~~~aSiLaSiL+1 = Si;

rejected

i.e., once Cy(yh) > wlgij, then ||C1 (v)|| > wlgil holds for alll=J +1,..., L+ 1.
The case §;,,, = §; is included in the previous case. Therefore we see that

d; > aa|si, |-

If §;,,, # 5;, then the hypothesis for inequality (4.16) holds, and using inequality
(4.16), we have

5' > (1 — 7]1)(.010[1F4 min{stl, ﬁ} .
1 7 'ZMFQ ||SZJ+1||

because ||C1(yo)]|| > (-0152'1 foralll=J+1,..., L+ 1. Letting

(1 — 7]1)(.010[1F4 min{Fg,wl, ﬁ}
2MF9 bl 1}1

Fll = Hlln{

we have
d; > Tl I

Now, keeping the same notation for the actual and predicted reductions as in the
previous case, we have by Lemma (4.3)

M M M

lared;, — pred;, | < Tall5i,|1* + Ts (T p)l13a P + D (T pi)vallCr(ws- )50 117
j=1 k=1 j=k

By Lemmas (3.5) and (4.5),

p2...PM : p2...pPM 2
pred;, > QMi_lered;’ > V=1 7105,

And because p; > 1 for all j, we have
lared;, — pred;,| <

pred;,
oM — . . M R R
2M 17153, 112 4 Tepall5a 1?4+ 2ims vll5a 12 11Cr (ys— 1) Il + prvall3s, [111C1 (o) ]
45,
< 2M=UT7 + o5(M — Dvg + Tspa||3a, | + prval|C1 (yo) I} ][54, 112

7165,
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But ||C (y0)]] < w1di, and ||5;,]| < &;,. Hence

|ared;, — pred;, | < 2M-1[r, + os(M — Vv, + ngl&l + p1V1w15i1]||§il||2

prediz Tl()il
By Lemma (4.6), plgil < ©;1. Therefore,

|ared;, — pred;, | < 2M-1[r, + os(M — 1) v, + 01 + O1v1w1]|5:, )

prediz - Tl(sil
< 2M—1[F7 =+ O'5(M — 1)I/k +I's®; + @11/1(.01] ||§ ||
= n il
F12
Because §;, 1s rejected,
2M-1T

1- < ——-—|54, |-
(1=m) < ——Js

Therefore,
i (I=n)m
(4.17) 15idll > Sar=p
and so
5, > Tull—m)n
= ooM-1my,
Defining
_ . Fi(l—m)n
51 = mln{éminarloaw )
we have

SZ' Z 511

which proves the first part of the lemma for £ = 1.

For the second part of the lemma for & = 1, considering that {p}} forms a
nondecreasing sequence, it remains to be shown that it is bounded above. If pi is
increased, then by Lemma (4.6) and the first part of the present lemma, we have

PRy
(Si 51

Hence {p}} is a bounded, nondecreasing sequence, and therefore
lim p} = p} < co.
11— 00

By Lemma (3.5), if p! is increased, it is increased by at least # > 0. Therefore,
because {p}} converges to a finite number, the number of increases has to be finite;

ie., pl = pll”1 for some index i,, and all i > 7,,. Hence both results of the lemma are
established for pj.
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To prove the result for the case k = 2, we assume that p} is increased and show
that 52 1s bounded from below.

The argument for p} is nearly identical to that for pi. We assume that there are
some rejected steps between between s_ and 5;, for otherwise §,,;, provides the lower
bound on the trust-region radius. Again, two cases are considered. If ||Ca(yi)| >
(wa —wl)gil foralll=1,...,L+ 1, we use

pred;, > mi'_leCpre(b
to arrive at the estimate
lared;, — pred;,| 2MTgp1 ][54 ||
pred;, = T4||Co(y$)|| min{ s (we — w1), ﬁ}
However, we proved that p; < p7, so
|ared;, — pred;, | 2MTgp3 156
- - Siylls
pred;, = Ty)|Ca(yy) ]| min{Ts (we — w1), ﬁ} "

and the rest of the argument is identical to that of the case k = 1.

If ||Co(y)|| > (wa — wl)gil only for some of I = 1,...,L + 1, p1 < p¥ is used
again to remove the dependence of the estimates on the penalty parameters, and the
argument proceeds identically to the case k = 1 to yield

8; > d9.
Again, if ps is increased, we have
. 0O )
ph<—< =
0 42

K3

and we obtain that p, — p3 and the existence of an index i,, such that
ph = p;” for all + > 1,,.
Continuing this procedure, for pi we have the estimate

lared;, — pred;,| 2%Top1 ... pr_1
pred;, = Ta|Cr (yg—1) || min{Ts (wi — wr—1), 3757}

[EAE

But at this point, pq, ..., pr—1 have been shown to be bounded by p7, ..., pj_,, respec-
tively, thus eliminating the dependence of the estimates on the penalty parameters.
The rest of the argument proceeds identically as in the case & = 1 to show that 5
is bounded, and this result is then used to show that the sequence {pi} is bounded
from above by pf. Setting § =min{d1,..., s} completes the proof for the first and
second parts of the lemma.

Finally, the boundedness of the merit function P follows directly from the problem
assumptions and the boundedness of the penalty parameters. o
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4.4. Boundedness of the trust-region radius. We have shown that the total
trust-region radius 5; is bounded away from zero if any of the penalty parameters are
increased. We shall now show that §; is always bounded away from zero. The trust-
region updating strategy ensures that J; is bounded from above.

THEOREM 4.8. If the algorithm does not terminate at an iteration i, there exists
a constant &, > 0, independent of the iterates, such that

(4.18) d; >, fordlli.

Proof. The proof follows along the lines of Lemma (4.7), but we do not have to
consider separate cases based on which penalty parameter is increased.

If there are no rejected steps between s_ and $;, or if ||Cy(y)|| > (-0151', for all
rejected steps [ = 1,..., L + 1, the reasoning is identical to that of Lemma (4.7). If

|C1(¥h)]| > wlgil only for some of I = 1,..., L+ 1, letting J be the largest index such
that ||Cy(y8)|| < widy, for all i = 4y, ..., i;, we have

(4.19) 8 > Tal|3i, ]
By Lemma (4.3), |ared;, — pred;,| < Fg(Hjle pi)llsi]|?. By Lemma (4.5), Cpreds >
7'152'1, and thus by Lemma (3.5),

M M

H’:Z 7 H’:Q I3 N
pred;, > (21\}_1 p)Cpreds > (yé—_lpj) ‘1163, .

Therefore, because §;, is rejected,

Jareds, = predi,| _ 2%~ Topf lsn > _ 2¥~ Topllsa

(1-m)<

prediz Tléil 1

Hence

. (1—m)n
[I8:,1] > T
9P

Then by inequality (4.19), we have

2 1-— r
5 > ( 771)1'1 11.
- Lopl

Letting 8. = min{%,&mm}, we have §; > (5;, which concludes the proof.
O

4.5. The algorithm is well-defined. The following theorem guarantees that
the algorithm is well-defined, i.e., that after a finite number of iterations an acceptable
total trial step §; with % > m will be found.

THEOREM 4.9. Unless the current iterate z; satisfies the termination criterion
of the algorithm, an acceptable step s; from x; will be found after a finite number of
trials.

Proof. Tt suffices to consider two cases.
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If ||C1 (yo)|| > wlgi, we have by Lemmas (3.5) and (3.3)

M M
1 . d;
predi > 537 H )Cpredi > 5 =57 (T £5)T4llCh (yo) || min{T's]|C1 (yo) I, M—+1}
j=1 7j=1
il 1
> i [[ )T4)|C1 (yo)|| min{ 5wy, M—H}Ji'
By Lemma (4.3), the last inequality gives us
|ared; — pred;] < 2MTy||54]|2 < 2MT, ;.
predi - F4||Cl(y0)||min{F5w1, ﬁ}d F4||Cl(y0)||m1n{r5w17 M+1}
The last line indicates that ;:Zg — 1‘ approaches 0 as 6; becomes smaller. Therefore
the criterion
ared;
> 0,1
pred; 2me(0.1)

will be satisfied after a finite number of iterations.

If ||C1 (yo)|| < wlgi, by Lemmas (3.5) and (4.5)

M

1
pred; > H YCpreds > ZM——l(
: k

PE)T10;.
2

M=

Hence

lared; — pred;] < 2M=1Tgp167  2M=1Tgpt 5
pred; - 7'1& 1 '

Again the ratio goes to 0 with decreasing b;, so the acceptance criterion will be satisfied
after finitely many trials. O

4.6. Global convergence. We now show that the sequence of iterates generated
by Algorithm 3.3 has a subsequence convergent to a stationary point of the equality
constrained minimization problem.

TurEOREM 4.10. If [|[PLV f(vi,)| + Zjle ||Cj(y§-_1)|| > €40 for all i and some
€tor > 0, then

M
(4.20) Jim D 1G5 (55 1) | = 0.
7j=1

Proof. The proof by contradiction is analogous to that in [13].

Suppose the result does not hold, that is, that there exists an infinite sequence
of indic.es {i} Sl.lCh that 2?4:1 ||C'j(y;»._1)|! > 6 for some 6§ > O.and for all. i€ {i}.
In particular, without loss of generality, it suffices to make this assumption about
[|C1(y)]|- Analogous reasoning will apply to the rest of the constraint blocks.
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By Lemmas (4.7), (3.5), and (3.3), for each ¢4 > max{i,,,..., {5},

HM pil

=147 )
pred;, > JQTJC’predlf

I1;%, o} i i iy i

= =G OIP = I i) + VT ()51
HM:1 P; i . ; 5,

> ].ZT]U”Q(%I)Hmlﬂ{F5||Cl(yol)||7 M——i—l}
Hjle Pj . o _

Z QTF46 mln{Fgﬁ, M—H} = F13 > 0

Because due to Theorem (4.9) we need to consider only accepted steps, we have

(4.21) Pi, — Pi41 = ared;, > mpred;, > mil13 > 0.

This inequality leads to a contradiction if i; — 0o, because P is bounded below. o
THreorEM 4.11. Given any criterion ¢, > 0, the algorithm will terminate be-
cause

M
P35V £ na )|+ D 1G5 (w7 -1)1] < eot.

7j=1

Proof. 1f the algorithm does not terminate and we assume that a subsequence
of {||PL,V f(yar)||} converges to zero, then Theorem (4.10) produces a contradiction.
Therefore, let us assume that ||PL V f(ya)|| > v for some positive constant v. By
Theorem (4.10), Z]M:1 [|C;(yj—1)|| = 0 and the sequence {Sl} is bounded below by

():*. Hence there exists an index I > i,,, such that for all ¢ > T,
M
D NG (-l < wards < wardi.
j=1

Thus, Lemma (4.5) and Theorem (4.8) yield an infinite sequence of steps with the
actual decrease in P of at least 7717'm5;, which contradicts the boundedness of P.
O

By assumption, the norms of the substeps are bounded from above by constant
multiples of the norms of the constraint blocks. Therefore, as the norm of each block
goes to zero, so does the norm of the substep, and the asymptotic convergence is at
a single point.

5. Global convergence for Variant II. Global convergence analysis for Vari-
ant II is a simplified version of that for Variant I, because the merit function contains
only one penalty parameter. In particular, there is no need to make a distinction
between feasibility and the relative feasibility among the constraint blocks as it is
done in Lemma (4.4). One no longer needs to consider the branches on the cumu-
lative behavior of the constraint blocks. In fact, the global convergence analysis of
Dennis et al. [13] is almost directly applicable to Variant II. Because the norms of
the substeps are bounded by the norms of the constraint blocks, again, asymptotic
convergence occurs at a single point.
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6. Concluding remarks. We have presented a class of multilevel algorithms
for solving the equality constrained optimization problem together with a global con-
vergence analysis. The algorithms are applicable to solving nonlinear equations as
well.

The main practical appeal of the multilevel algorithms is that they allow the user
to partition the constraint system according to the needs of the application and to
process the blocks of constraints autonomously. In addition, the trial steps are only
required to obey mild conditions, satisfied by many methods for solving the quadratic
subproblems. In fact, the substeps comprised by the trial step can be obtained by
different methods within a single solution procedure, as long as the substeps satisfy
the required conditions of boundedness and sufficient decrease.

The proposed algorithms are expected to be of use in applications that exhibit
natural block structure. The design of complex engineering systems is characterized
by such a structure. While the multilevel class can take advantage of natural or
induced separability to process the subproblems concurrently, it provides a way to
solve fully or densely coupled problems sequentially, but with a degree of autonomy.

Given the problem assumptions, a well-defined partition of the constraint system
exists, although pivoting may be required to obtain it. If the application does not
suggest a natural partition, an advantageous partitioning may be obtained following
the simple rules applicable to the local Brown-Brent methods for nonlinear equations.
Because the last subproblems of the sequence will have the smallest dimension, the
most computationally intensive block should be placed last, while the linear, or most
linear, block should be placed first. On the other hand, because the first block of
constraints will be satisfied more quickly and directly, the most important block of
information should be placed first.

Current development in multilevel methods is proceeding along several directions,
including extensions to general multilevel optimization with arbitrary objectives and
applications to multicriteria optimization. In addition, in the preliminary implemen-
tation, the inequality constraints have been handled with the help of squared slack
variables. However, other promising directions are under investigation.

To date, the class has been tested on small nonlinear equations and equality con-
strained problems [27] with promising results. The codes are now being tested on
increasingly realistic problems of interest to engineering design applications. In par-
ticular, the approximation model management capability has been incorporated into
MAESTRO [3] and is undergoing computational testing. Among the implementation
issues considered are various strategies for evaluating the step and for updating the
individual trust-region radii.

7. Acknowledgments. The authors wish to thank R.M. Lewis of ICASE for
pointing out the expense of using orthogonal steps and for encouraging the use of
reduced-basis steps.
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