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Abstract: The definition of pattern search methods for solving nonlinear un-
constrained optimization problems is generalized here to include integer vari-
ables. The notion of local optimality in mixed integer programming is defined
through a user-specified set of neighboring points. We present a generalized pat-
tern search algorithm that provides an accumulation point that satisfies some
necessary conditions for local optimality. This point is the limit of a subsequence
of unsuccessful iterates whose corresponding mesh size parameters converge to
zero. We present a stronger, more expensive, version of the algorithm that guar-
antees additional necessary optimality conditions. A small example illustrates
the differences between the two versions of the algorithm.
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1 Introduction

Torczon [11] presented a general definition of an abstract pattern search method. The objec-
tive of the method is to minimize a continuously differentiable function f : R® — R without
any knowledge of its derivative. Torczon [11] shows that the method includes algorithms such
as coordinale search with fixed step sizes, evolulionary operation using factorial design [2],
the original pattern search algorithm [7], and the multidirectional search algorithm [6]. An
achievement of [11] is to develop general convergence results for the entire class of the meth-
ods. A survey of derivative free methods for unconstrained optimization can be found in
Conn, Scheinberg and Toint [4].

The main result of [11] is that under mild assumptions, the sequence of iterates (zy) of
R™ generated by any pattern search method satisfies

lin inf [V /()| = 0, 1)
k— o0

without ever computing or explicitly approximating derivatives. At each iteration, the func-
tion is evaluated at trial points on a discrete mesh surrounding the current iterate in search
of one yielding decrease in the objective function value. Lewis and Torczon [9] use posi-
tive basis theory to strengthen the result by roughly cutting in half the worst case number
of trial points at each iterations without affecting the convergence result. Lewis and Tor-
czon [8] [10] extend pattern search algorithms and the convergence theory to bound and
linearly constrained minimization.

The main objective of the present paper is to further generalize the problem to be solved
because many engineering optimization problems contain both continuous and discrete vari-

ables.

We consider the problem of minimizing the function f : @ — R, where the domain
is partitioned into continuous and discrete variables = R™ x Z”d, and n°¢ and n? are
the dimensions of the corresponding spaces. The function f is assumed to be continuously
differentiable when the variables in Z™" are fixed. We present a general pattern search method
that reduces to that of Torczon [11] when the dimension n? is fixed to zero. The iterates
generated by the method are partitioned into continuous and discrete variables z; = (2%, z),
where ¢ € R™ and z¢ € 7.

A second objective of the paper is to slightly generalize the part of the algorithm that
deals with the continuous variables and to revise and shorten the arguments developed in [11]
and in [9]. We first show how to obtain an accumulation point Z of the sequence of iterates
that satisfies first-order optimality conditions with respect to the continuous variables. These
conditions reduce to (1) when there are no discrete variables. We also guarantee that the
same limit point & satisfies some local optimality conditions with respect to the discrete
variables. The notion of local optimality is defined through the user-specified set of neighbors
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N(z) C Q described in Section 2. We also present a second version of the algorithm that
guarantees stronger results.

The paper is structured as follows. In the next section, we present a definition of local
optimality for mixed integer programming, and introduce the relaxed optimality conditions
guaranteed by our algorithm. Then in Section 3, we formally describe a general framework
for mixed integer pattern search algorithms. In Section 4, we show the existence of a subse-
quence of iterates converging to an accumulation point that satisfies the relaxed optimality
conditions. The key in obtaining this accumulation point lies in considering the unsuccessful
iterations, i.e., the iterations where no trial point yielding decrease in the objective function
were obtained. A stronger version of the algorithm is also presented. It requires more func-
tion evaluations per iteration but guarantees an additional necessary optimality condition.
The difference between the two versions of the algorithm is illustrated on a small example
in the last subsection.

2 Local optimality for mixed integer variables

In the absence of integer variables, the definition of local optimality is straightforward: z is
a local minimizer of the function f if there exists an € > 0 such that f(z) < f(y) for all y in
a ball B(e, ) of radius € around z.

When the optimization problem contains only discrete variables, a definition of local
optimality might be: f(#) < f(y) for all y in N'(Z), where V' (Z) is a finite set of neighbors
around the discrete variable z. It determines the quality of the solution that one desires
from the algorithm, thus defining the notion of “local optimality” one wishes to achieve with
respect to the discrete variables. For example, the set N (Z) might be equal to {y € 7" :
ly — 2|1 < 1}. We assume that N (&) contains .

Figure 1 illustrates three types of sets of neighbors by displaying the points of N (%)
(except #) as circled dots. Under each figure is the formal definition of the set N'(#). The
first one defines the set of neighbors as the points whose distance from xj, is within one using
the one-norm. The second allows a distance of two with the infinity norm. The third one
uses a weighted norm. The definition of a neighborhood is flexible enough so that any finite
set of integer points can be used to define V.

The set of neighbors need not be represented through the translation of A (0) as above.
For example the Quadratic Assignment Problem in which n facilities must be assigned to
n locations: each assignment may be represented using one of the n! permutations of the
vector (1,2,...,n). The set of neighbors of a given assignment z could be for example all
permutations that differ from z in at most two locations. Consider the instance with three
facilities. It may be modeled with three discrete variables (z? € Z?). Not all the points of the
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Figure 1: Examples of sets of neighbors N (%) of .

integer lattice Z* represent feasible assignments, only the permutations of (1,2, 3) are. Also,
the ordering is not the classical one associated with a distance: with the set of neighbors
N(1,2,3) ={(1,2,3),(1,3,2),(3,2,1),(2,1,3)} the assignment (3,2,1) is nearer to (1,2,3)
than (3,1,2) is.

For mixed integer programming, the definition of local optimality must take into account
variations of both the continuous and discrete variables. We propose the following definition:
a solution # = (2¢,2¢) € R™ x 77" is said to be a local minimizer of f if there exists an
€ > () such that

J(@) < f(z) forany ze ) (Bley) xy?)
yeEN (Z)
(where N (%) is a finite set of points defined by the user as above). We require a notion of
continuity concerning the set of neighbors: if (x;) is a sequence that converges to & then
N (z) converges to N(&), i.e., for any € > 0 and § € N (&), there exists an yz € N () such
that yx € B(e,y).

This definition guarantees that there are no better solutions than # in any of the balls
in the continuous space) around the points in the user-defined set of neighbors.
p p g

Observe that when there are no discrete variables, or else no continuous ones, this defi-
nition reduces to the appropriate one presented above.

The pattern search algorithm for continuous variables only presented in [11] does not nec-
essarily converge to a local minimizer of the function (see Audet [1] for illustrative examples).
It guarantees convergence to a relaxation of this optimality condition, namely condition (1).
Our algorithm relaxes the local optimality condition for mixed integer programming. The
limit point & produced by it is such that

Vef(d) = 0 (2)

(where V¢ f(z) € R™ denotes the gradient of f with respect to the continuous variables x°
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while keeping the discrete ones z¢ fixed) and for any ¢ in the set of neighbors N ()

(&) < f(@). (3)

In the cases where f(§) < f(2) + £ (for a specified £ > 0) then there exists a point 2 whose
discrete components 27 are identical to ¢ that satisfies f(2) < f(2) < f(¢) and

VI = 0 (W
Furthermore, in the cases where f(2) = f(y) and § # Z then

@) = (). (5)

for an infinite number of intermediate points 4 between § and Z (we show in Section 4.2
how to construct these intermediate points). Moreover, we present a stronger version of the
algorithm that guarantees that

VI(A) = 0 (6)

whenever f(z) = f(9).

3 Pattern search methods

The underlying structure of a pattern search algorithm is as follows. It is an iterative method
that generates a sequence of feasible iterates whose objective function value is non-increasing.
At any given iteration, the objective function is evaluated at a finite number of points on a
mesh in order to find one that yields a decrease in the objective function value.

Any iteration k of a pattern search method is initiated with the incumbent solution xy,
i.e., the currently best found solution, as well as with an enumerable subset M} of the
domain Q = R™ x Z™". Construction of the mesh M} is formally described in Section 3.1.
The objective pursued during each iteration is to obtain a solution on a subset of the current
mesh whose function value is strictly less than the incumbent value.

Exploration of the mesh is conducted in one or two phases. First, a finite search, free of
any other rules imposed by the algorithm, is performed anywhere on the mesh. Any strategy
can be used, as long as it searches finitely many points (including none). If the first search
does not succeed in improving the incumbent, the second phase is called. A potentially
exhaustive (but always finite) search in small neighborhoods around z; and around the
points in its set of neighbors intersected with the mesh is performed. The set of points
visited by this second search is referred to as the poll set. Rules for constructing the poll
set are detailed in Section 3.2. The first phase (called the Search step) provides flexibility to
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the method and determines in practice the global quality of the solution. The second phase
(called the Poll step) follows stricter rules and guarantees theoretical convergence.

If a solution having an objective function value less than the incumbent is found in either
phase, then the iteration is declared successful. The incumbent solution is then updated,
and the next iterate is initiated with a (possibly) coarser mesh around the newly found
incumbent solution.

Otherwise, the iteration is declared unsuccessful. The next iteration is initiated at the
same incumbent solution, but with a finer mesh on the continuous variables, and a set of
neighbors closer to the incumbent solution. A key property of the mesh exploration is that
if an iteration is unsuccessful, then the current objective function value is less than or equal
to the objective function values evaluated at all points in the poll set.

In order to properly present the pattern search algorithm, we first detail in the following
subsections the construction of the mesh and the poll set.

3.1 The mesh

At any given iteration k, the current mesh My, is a discrete set of points in  from which the
algorithm selects the next iterate. The coarseness or fineness of the mesh is dictated by the
strictly positive mesh size parameter A € Ry. Both the mesh and mesh size parameter are
updated at every iteration.

The mesh is the direct product of the finite union of lattices in R** with the integer space
77", The presentation of the lattices differs from that of Torczon [11], but the sets produced
are equivalent. Consider the basis matriz 3 € R***" and for { varying from 1 to a finite
number /,,,.., consider the generating matrices C; € Z°°*"" then define the pattern matrices
P, € R to be the products 8C,. The continuous variables are chosen from one of the
translated (by zf) integer lattices

LiA) = {o5 + AxPiz 2 € 27},

for £ =1,2,... ,0,,,,. The continuous part z{, of the current iterate belongs to each of the
Loz lattices regardless of the value of the parameter Ag. The basis matrix 3 is constant
over all iterations. However in practice, the generating matrices Cy (and thus F;) that define
the lattices can be determined as the algorithm unfolds, as long as only a finite number of
them is generated.

Each of these lattices is enumerable, and the minimum distance between two distinct
points is proportional to the mesh size parameter A;. When an iteration is successful, the
continuous part of the next iterate is chosen in any of these lattices, and thus belongs to
their union M(Ay) = Uﬁ:‘{x Li(Ag), the discrete part is chosen in the integer lattice Vias
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At iteration k, the current mesh is defined to be the direct product
My = M(Ay) x 7.

The mesh is completely defined by the current iterate x; and the mesh size parameter Ay.
Whether the iteration is successful or not, the next iterate x4 is selected in the mesh M;.

In the case where the Search step in the current mesh is unsuccessful, a second exploration
phase must be conducted by the algorithm in the poll set. The Poll step verifies if the
incumbent solution is a local minimizer on a current set of neighbors to be defined in the
next subsection.

3.2 The poll set

Polling occurs when the search step was unable to obtain a point on the current mesh that
decreased the incumbent value. Polling is conducted in up to three stages (not necessarily
in this order):

- polling with respect to the continuous variables

- polling on the current set of neighbors

- extended polling (in the case where the function value evaluated at a point in the set of
neighbors is close to the incumbent value).

Polling with respect to the continuous variables requires the use of positive bases on R™.
A positive basis is a set of non-zero vectors in R"®" whose non-negative linear combinations
span R™", but no proper subset does so. Each positive bases contain at least n°41 and at most
2n° vectors. These are referred to as minimal and maximal positive bases. The following
key property of positive bases is used in this document (see Davis [5] for characterization of
positive bases). For any non-zero vector @ in R™ and positive basis B on R™, there exists
a vector b of the basis B such that

a'b < 0. (7)

Let B be a finite set of positive bases on R such that every column b of any positive
basis of B is of the form P,z for some z € 7™ and 1 < ¢ < {,,,.. The P,’s are the same
matrices used to construct the lattices L, in Section 3.1. The set B is fixed throughout all
iterations. The polling points of this first step are obtained by scaling a basis B of B by the
mesh size parameter as follows: at iteration k, define N¢(x), the mesh neighborhood of the
continuous variables around x, to be

Ne(z) = {z+Ay(b,0) :be By(e)} (8)

for some positive basis Bi(x) € B that depends on both the iteration number k& and the point
z. This definition ensures that the mesh neighborhood N ¢(zy) is a subset of the current mesh



May 3, 1999 7

M. Moreover, N¢(x) is constructed using a single positive basis chosen from a finite set,
and thus there are only a finite number of such neighborhoods to choose from.

The motivation for introducing positive bases for the continuous variables is that if the
gradient V°f of the function f with respect to the continuous variables is non-zero, then at
least one of the basis vectors defines a descent direction. The original work of Torczon [11]
uses a maximal positive basis. It was latter generalized in Lewis and Torczon [9] to any
positive basis, thus reducing the minimum number of points in the polling set from 2n° to

n® 4+ 1.

The second stage of the polling step depends on the set of neighbors N defined by the
user. In order to allow varying the definition of the set of neighbors for a finite number of
iterations, we define the current set of neighbors Ny, = {y}, vz, ... ,yff} C My, where 1 is a
finite integer to be such that N} differs from N (x;) at most at a finite number of iterations
k. This flexibility allows finitely many redefinitions of NV} to adjust the cost of a Poll step
(see Section 3.3). For example, if the user defines N through the infinity norm (as in the
second example of Figure 1), it might be worthwhile in the first few iterations to define Ny
through the one-norm (as in the first example of Figure 1). Then, once a solution satisfying
the one-norm is obtained, the set of neighbors N} may be changed by using the infinity

norim.

If none of the above-mentioned polling points (i.e., those in N°(z;) and in N}) yield
decrease in the objective function value, an extended polling step might be required before
declaring the iteration unsuccessful. Let £ > 0 be a given function value tolerance (usually
provided by the user). An extended poll must be conducted around each point of the set of
neighbors NV} of z;, at which the function value is within £ of f(zx). Intuitively,  represents
a tolerance which is such that if a discrete neighbor y in A} provides such a near function
value, then slightly changing the continuous components of yi by extended polling may

produce a new best solution.

More precisely, consider any point yi in the set of neighbors Aj. In the case where
F(yh) > flxr) + € or f(yh) < f(z) for all 2z in N¢(yL), set ji = 0: this means that the poll
step need not be extended. In all other cases, set y?o =yt and for j = 1,2,... iteratively
choose yfw in the mesh neighborhood ./\/c(y?j_l) in such a way that f(y}”) < f(y?j_l) until it
is no longer possible. The last point (whose index is denoted j = j;) satisfies f(y;wé) < f(z)

for all z in ./\/C(y;C i ). Define z} to be the endpoint yz i of the extended poll step.
W Yk
With this construction, the function values f(y) = f(yio), F(¥i,),--- ,f(yjC ].i) = f(z})
1 1 Ik

are monotonically decreasing. Only at the last point z is the function required to be
evaluated at every point of its mesh neighborhood N¢(z%). Observe that j. may be 0, in
which case yi. = zi. This happens either when f(y.) > f(x1) + € or f(yi) < f(2) for all z in
N¢(yt). The index ji are all finite since for given k and 1, all points yfm belong to the mesh
Mj, intersected with the compact level set L(zg).



May 3, 1999 8

e N () = {r, yh, vi}

o S(ae) < F(yh) < fe) +€ < J(9h)

X ={f,9,h} U {zr,yl,y2} U {2z} U {a,b, ¢}

Figure 2: Construction of the current mesh neighborhood X,f.

The set of all polling points at iteration & is denoted le and may be written explicitly

as
- Z':'1,2,...,Z.k, i:'1727"'7ik7
Xio= No(a) | Ml vk s S0 <T@ +¢ 0 U q20 J) ST +6 0,
j=1,2,...,ji €Ny, ;1)

or as the equivalent set
Xlg = NC(J?k) U N U {y;@j =12, 7.]]1} U Nc(y;c,j}i)v
1=1,2,...,ik,

Flu) <o)+
where the points y? ; are determined by the procedure detailed above.

Figure 2 illustrates an instance in which there are two continuous variables and one
discrete variable. The set of neighbors of the iterate z; is assumed to be N = N (z) =
{zk,y},yi}. Therefore, zy is a local minimizer of the function f if f(zy) is less than or equal
to the function value evaluated at all points in balls around zy, y} and yi. The letters a to
[ in the figure represent mesh neighborhoods of the continuous variables:

Nc(yli) = {d7 e? Zi}’ NC(Zi) = {a7 b7 c}7 Nc(xk) = {f7 g7 h} and Nc(yz) = {Z.7.j7 k7 l}'
In this example, since f(zx) < f(yp) < f(zr) + € < f(y}) the poll set le contains points in
N¢(zy) and N°(y}) (among others). Assuming that f(z}) < f(yz) but f(a) > f(z3), f(b) >
f(=}) and f(c) > f(z}) leads to the poll set X = {f,g,h} U {ze, y},y2} U {z}} U {a,b,c}.
Using the above notation, we can now present the generalized mixed integer pattern

search algorithm.
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3.3 The generalized mixed integer pattern search algorithm

Our presentation of the pattern search algorithm is closer to that of Booker et al. [3] than to
that of Torczon [11]. Consider the given the initial mesh My C Q with mesh size parameter
Ag and initial point zg of My. Also, let £ > 0 be the objective function change tolerance used
to trigger extended polling in the construction of the poll set. Recall that if f(yz) < f(zr)+¢
for some y;, in the set of neighbors A} then the polling step must be extended around y;.

Throughout the document, the following assumptions are made:
(A1) The level set L(xzg) = {z € Q: f(x) < f(xo)} is compact.
(A2) f is continuously differentiable over a neighborhood of L(zg) when variables in
7" are fixed, i.e., for any z? € 7 the function f,a : R™ — R where z¢ s f(z¢, z9)
is continuously differentiable over a neighborhood of {z¢: (z¢,z%) € L(x¢)}.

At any iteration k > 0, the general rules for choosing x4y in the current mesh Mj and
obtaining the next mesh size parameter Ay are as follows.

Algorithm GMIPS: GENERAL MIXED-INTEGER PATTERN SEARCH

1. Search step (in current mesh). Employ some finite strategy to obtain an x4 € M
satisfying f(zr+1) < f(zx). If such an x4y is found, declare the Search step (as well as the
iteration) successful, then expand the mesh at Step 3.

2. Poll step. This step is reached only if the Search step is unsuccessful. If f(z;) < f(z) for
every x in the poll set X,f, then declare the Poll step (as well as the iteration) unsuccessful
and shrink the mesh at Step 4. Otherwise, choose zy1 € X;f to be a point such that
f(zr41) < f(zr), declare the Poll step (as well as the iteration) successful, and expand the
mesh at Step 3.

3. Mesh expansion (at successful iterations). Let Ay = T Ay (for T > 1 defined
below). Increase k, and initiate the next iteration at Step 1.

4. Mesh reduction (at unsuccessful iterations). Set z;41 to z; and let Apyy = 77 Ay,
(for 0 < 7™ < 1 defined below). Increase k, and initiate the next iteration at Step 1. .

In the Search and Poll steps, the number of candidate points among which the next
iterate can be chosen is finite, since it must belong to the intersection of the enumerable
current mesh and the compact set L(zg).

The parameters in the two last steps are the rational number 7 > 1 and the integers
(whose absolute values are bounded above by m,.; > 0) mj > 0 and m; < —1. In [11],
the mesh reduction parameter m, was fixed for all £ > 0. This restriction is relaxed here
without affecting the convergence results. We plan to exploit this flexibility in subsequent
work to increase the convergence speed.

The conditions on these parameters imply the simple decrease property used throughout
the document: Iteration k is successful if and only if f(zx+1) < f(zk), if and only if Agyq >
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Ay and, if and only if 2341 # x;. Another important implication of the parameters’ definition
is that if the iteration & is unsuccessful, then f(zx) < f(z) for all z € X,f and thus f(zy) <
f(2) for all z € N¢(z;) and whenever f(y.) < f(x) + € for some yi € N, then f(z1) < f(2)
for all z € N¢(z}) for all s = 1,2,... ,i;. Moreover, Az, is obtained by multiplying Ay by
a finite positive or negative integer power of 7. Therefore, for any & > 0, we can write

Ak = AOTTk, (9)

for some r; belonging to Z.

Notice that the cost of the Poll step is expected to depend not only on £, but also on the
definition of the set of neighbors A/. Thus, the user can pay more function evaluations for a
stronger local integer solution by defining A to be a larger neighborhood.

4 Proof of convergence

This section contains the convergence proof for the general mixed integer pattern search
algorithm. We start by studying the behavior of the mesh size parameter Ay. The first
important result is that liminf;_ ., Ax = 0. Therefore, there is a subsequence of mesh size
parameters that converges to zero. It follows that there is an infinite number of unsuccessful
iterations.

Second, we analyze a converging subsequence of unsuccessful iterates whose mesh size
parameters converge to zero. We show that any accumulation point of the subsequence
satisfies the optimality conditions (2)-(5). By focusing on unsuccessful iterations, the result
for the continuous variables is shown using a much shorter proof than in [11].

We also present a stronger version of the algorithm that yields a stronger result, i.e.,
the optimality condition (6). Finally, a small example illustrates in the last subsection the
differences between the two versions of the algorithm.

4.1 Boundedness of the mesh size parameters

We prove here that there is a subsequence of mesh size parameters A that converges to zero.
In order to do so, we first show that these parameters are bounded above by a constant,

independent of the iteration number .
Lemma 4.1 There exists a positive integer ryp such that Ay < Agm"UB for any k > 0.

Proof: Let A be a mesh size parameter large enough so that the union of lattices M(A)

intersects the compact level set {z°: x € L(xzo)} only at the translation parameter zj, i.e.,
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for any 1 < ¢ < {,,,, and nonzero z € 7™, if z is in L(zo) then the solution =+ APz
does not belong to the projection of L(zg) on the continuous variables space. Therefore, if
at iteration k the mesh size parameter Aj is greater than or equal to A then

My N L(zg) C {zp} x 7M.

Moreover, only a finite number of iterations will follow before the mesh size parameter
drops below A. Indeed, the continuous part of all these iterates will necessarily be equal to
z§, and the discrete part of these iterates can only take a finite number of values because
L(zo) is compact. Let d,,q, be the total number of distinct values that the discrete variables
may take in the compact set L(xg). Therefore, there will be no more than d,,,, successful
iterations before the mesh size parameter goes below A.

Recall that the expansion mesh size control parameter is bounded above by 77me . Let
rir be a large enough integer so that Agr"v8 > A(77maz)dmes Tt follows that the mesh size
parameter at any iteration will never exceed Agq7"V5. .

We now study the convergence behavior of the mesh size parameter. The proof of this
result is essentially identical to that of Torczon [11].

Theorem 4.2 The mesh size parameters satisfy llicm inf Ap = 0.
——o00

Proof: Suppose by contradiction that there exists a negative integer rpp such that 0 <
Agr™tB < Ay for all & > 0. Equation (9) states that for every k > 0 there is 7, € 7Z such
that Ay = 7"#*Ay. Combining this with Lemma 4.1 implies that for any & > 0, r; takes its
value among the integers of the bounded interval [r;g, rug]. Therefore, r, and Ay can only
take a finite number of values for all & > 0.

For any k, the continuous part of the next iterate xj_, belongs to a lattice P, where
1 <l < 44z, therefore it can be written xf + APy, z;, for some z;, € 7™°. By substituting
Ay = Agr™ and P, = 3C,,, it follows that for any integer N

N-1 N-1 . N-1

c c _ c r _ c rL—r ryg—r

Ty = x5+ g APz = x5+ Af g T Cy 2z, = x5+ TUBAO/B g pETIEBGTUBTIR (Y, 2y
k=1 k=1 q k=1

where p and ¢ are relatively prime integers satisfying 7 = é—j.

Since for any k the term p™*~"tB¢" VBT, () 2} appearing in this last sum is an integer, it
follows that the continuous part of all iterates lies on the translated integer lattice generated

by zg and the columns of %Aoﬁ. Moreover, the discrete part of all iterates also lies on

the integer lattice 7.

Therefore, since all iterates belong to the compact set L(zg), it follows that there is only
a finite number of different iterates, and thus one of them must be visited infinitely many
times. Simple decrease ensures that the mesh size parameters converge to zero, which is a
contradiction. .
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4.2 The main results

Torczon [11] shows that condition (1) holds, i.e., there exists an accumulation point Z of the
sequence of iterates such that V°f(z) = 0. Through a shorter proof, we show a stronger
result. We show the existence of an accumulation point z of the sequence of unsuccessful
iterates that satisfies (2) and is a local optimizer with respect to the set of neighbors N ()
in the sense of conditions (3), (4) and (5). Recall that iteration & is unsuccessful if and only
if 211 = x1, which is equivalent to Ay < Ag. Thus, the number of unsuccessful iterations
is infinite since lim infy_, ., A = 0.

Consider the indices of the unsuccessful iterations whose corresponding mesh size pa-
rameters go to zero. For any accumulation point of such a sequence, there is an iterate
arbitrarily close to it for which no polling point of the set le yields descent. The following
proposition details properties of an accumulation point z of the sequence of unsuccessful it-

erations whose mesh size parameters converge to 0. The notation y' = (y'°, y'?) is employed
\d

[

to partition the variable y' into its continuous (y*)¢ and discrete (y')? components.

Proposition 4.3 There is a point & € L(xg) and a subset of indices of unsuccessful iterates
K C{k: xpy1 = 1} such that

lim A, =0, limz, =% and Np=N(z;)Vk € K.
keK keK

Moreover, if {§',4% ... ,9'} denotes the i neighbors in the set N'(&), then for each i €
{1,2,... 3} there exists a 2* = (2, §*?) such that

limyi =4 and limzi =3
keKyk y rek k ’

where the 2. are the endpoints of the extended poll steps.

Proof: Theorem 4.2 guarantees that liminf;_, .., Ar = 0, thus there is an infinite subset of
indices of unsuccessful iterations K' C {k : 241 = 21} = {k : Agy1 < Ag} such that the
subsequence (Ay)reks converges to zero.

Since all iterates zj lie in the compact set L(zg), we can extract an infinite subset
K" C K’ such that the subsequence (zy)gex» converges. Let & in L(zg) be the limit point
of such a subsequence.

Moreover, since N differs from N (z)) at most at a finite number of iterates, we may
assume without any loss of generality that ¢ = ¢ for all z, € K".

Let §° € N (%) be an accumulation point of the sequence y, € N}, and let 2° be an
accumulation point of the sequence z§ of endpoints of the extended poll step initiated at
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yi. Recall that the endpoint z{ is equal to y¢ in the case that the extended poll step is not

required.

Choose K C K" to be such that %H}l yi = ' and %H}l zi =% foreachi € {1,2,...,i}. u
ex ex

Torczon [11] observes that setting the mesh size increase parameter m,, ., to zero (in the
mesh expansion step of the GPS algorithm) ensures that lims_., Ay = 0. The same holds
for our GMIPS algorithm. It follows that in this case, all the convergence results below
hold for every accumulation point of the sequence of unsuccessful iterates.

For the rest of this subsection, we assume that & and K satisfy the conditions of Propo-
sition 4.3. The main results can now be proved. We first show that Z is a local optimal
solution with respect to the set of neighbors N (2).

Theorem 4.4 The accumulation point & satisfies f(2) < f(§') for all §* € N ().

Proof: Suppose by contradiction that there is a §* € () such that f(2) > f(g°).

Continuity of the function f with respect to the continuous variables guarantees the
existence of an € > 0 such that if z belongs to the ball B(e, 7') centered at §' of radius ¢ then

f(z) < f(2).

Proposition 4.3 guarantees that the subsequences (z1)rex and (yi)rer respectively con-
verge to & and . We required in Section 2 that the set A'(z;) converges for k € K to
N (%) in the sense that if & € K is large enough, then there exists a y. € A(x;) such that
vi € Ble, ).

Therefore, there exists an iteration & € K such that yi belongs to A N B(e,§') and
satisfies f(y}) < f(2) < f(zx). It follows that the iteration is successful, contradicting the
fact that & belongs to K C {k : 2411 = a2} .

In the case where the inequality in Theorem 4.4 is strict, i.e., f(#) < f(§'), then the
notion of local optimality for mixed integer programming presented in Section 2 is verified:
there exists a ¢ > 0 such that f(2) < f(z) for any 2 in a ball of radius ¢ around §*. This
follows from the continuity of the function f.

Next, we study the gradient of the function f with respect to the continuous variables at
the accumulation point z. The proof of Theorem 4.5 for the continuous case is much shorter
than the original one of Torczon [11].

Theorem 4.5 The accumulation point & satisfies V°f(&) = 0.

Proof: Equation (8) and the mean value theorem imply that any unsuccessful iteration &
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satisfies
zr) < min z) = min z
f( k) - ZENC(;L‘k) f( ) ZE{I‘k+Ak(b,O)t:bEBk(l‘k)} f( )

= min )f(xk + Ak(bv O)t)

= min f(:xk) —|— Akvcf(l‘k —|— Oé(hkAk(b, O)t)tb

= f(:ljk) + Ak 5 Hll(n ch(.’lik + OzchAk(b, O)t)tb

€By ()

for some as ), € [0,1] that depends on b and k. Therefore
0 < min ch(:xk + OzbJﬂAk(b, O)t)tb

Taking the limit for & € K yields 0 < 1bnl]£1 Vef(2)'b (by Proposition 4.3) for at least one
€

positive basis B of the finite set B since the function f is assumed to be continuously
differentiable. The positive basis property (7) guarantees that V°f(z) = 0. .

Audet [1] shows through a small example containing only continuous variables that this
result cannot be strengthened to limy_, [|[V°f(z1)|| = 0 since there may be an accumulation
point whose gradient is non-zero. It is also shown there that no second-order optimality
conditions can be guaranteed, which is not surprising for an algorithm that uses only function
values.

The following result shows that the gradient norm at the end points of the extended poll
converges to zero for kK € K. The proof is similar to that of Theorem 4.5.

Theorem 4.6 The accumulation point & and any §' € N(&) satisfying f(§') < f(2)+€& are
such that Vef(2') = 0 where 2° is any limit point of the extended poll endpoints.

Proof: The result is shown in Theorem 4.5 for ' = 2. Let ¢« € {1,2,...,i} be such that
§' # 2 and f(§') < f(2) + & Then by the extended polling algorithm of Section 3.2, any
unsuccessful iteration k satisfying f(yi) < f(xx) + € is such that
1) < min z) = min z
flz) < ZeNc(Z;)f( ) ze{z;wk(b,o)t:beBk(Z;)}f( )
= min 24+ A b,0)!
min [+ 200
= min_ f(z) + AeVf(2 4 af  Ax(b,0)")b
beBk(z;) 7

= S+ e min, V(L + ol A0.0))D

k(zk
for some O‘é,k € [0,1] that depends on 7, b and k. Therefore
0 < min V°f(zL + oz;kAk(b,O)t)tb.

beBy(z})
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Taking the limit for £ € K yields 0 < Ibn%l Vef(2)'b (by Proposition 4.3) for at least one
€

positive basis B of the finite set B since the function f is assumed to be continuously
differentiable. The positive basis property (7) guarantees that V¢ f(2%) = 0. .

The next result shows that the function is constant at an infinite number of intermediate
points between §* and 2* whenever f(§') = f(£).

Proposition 4.7 The accumulation point & and any §' € N(2) satisfying f(§') = f(2), are
such that any accumulation point 4° of the sequence of extended poll points (y}”) satisfies
f(3) = f(2). Moreover, if §* # %', then there are infinitely many of these accumulation
points.

Proof: Let ¢ in N(Z) be such that f(j') = f(#). Let 4 be an accumulation point of the
sequence of extended poll points (y}”)

Since f(#) < f(y?j_l_l) < f(y}”) for j=0,1,...,7i — 1 and since (f(y?o))kek, converges

to f(#), then f(2) = [(3").

To show the second part of the result, we first let d = ||§* — 2'|| be the non-zero distance

between §j* and 2'. Second, for any p in |0, d[, we define the set

}/P = {yi,j Dok S [(7 ] € {0717 7.7129 - 1}7 Hy;c,] _ng S p, |‘y2,j+1 - gz >pH}

Since yi, — ¢ and y}i i 2%, it follows that the set Y, contains infinitely many points for
s WJ . . .

any p in ]0,1[. Any accumulation point 4} of Y, satisfies |7, — §'|| = p since Ay converges

to 0 (in K') and y?]—_l_l = y}'w‘ + A'kb}'m'for some vector b'ﬁw of the basis Bk(y?]-) of the finite

set B. Therefore, if p # g then 4 # 4; and the result follows. .

4.3 Stronger results

Theorem 4.6 may be strengthened under the following (more expensive) version of extended
polling.
STRONG EXTENDED POLLING STEP:
Y4 €arg min  f(y) for 1=1,2,... dpand j=0,1,... 5 — 1.
yeN<(y; ;)

This requires performing a complete extended poll step, i.e., y};7j+1 is chosen only after
evaluating the function value at all points of the continuous mesh neighborhood around y? i
(and retaining the one that yields the smallest value).

The following result bounds the decrease in the objective function value under precise
conditions.
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Proposition 4.8 [f the accumulation point & and the point §° € N(&) were oblained un-
der the Strong FExtended Polling Step, then for any n > 0, there exist 6 > 0 indepen-
dent of the ileration number k, such that all iterates for which A, < &, yi° = §* and

min ch(yij)tb > _—77, for some 7 € {0,1,..., 51 — 1} also satisfy
bEBL(v}, ;) ’ 3

. nl‘yk] yk]—l—l”
vy > . ’
f(r;) f@MH)—4mwﬂW‘beB€B}

Proof: For any iteration k such that yi° = §° define bZ to be a basis vector of the set

arg be;ﬂ(l;l )V f(ykj) b. The Strong Extended Polling Step, combined with the mean value
E\Yg 3

theorem guarantee that

f(y;;,j+1) < f(yfc,j + Akb?]’) = f(yk]) + ARV f(wy, ) ke (10)

for some wj, ; = y; ; + o ;AR ; where aj ; belongs to the interval [0,1].

Consider the sets parameterized by some scalar n > 0

Y:{yij. Vf( ) ]Zg}CL(l’o)

and

W:{w;]. —Ve ()" ,”_Z}

We assume that Y # () otherwise the result would be trivial. Theorem 4.6 guarantees
that W # () since the subsequence of gradients (ch(wjC i )) converges to the limit of
I

. . keK
(Vef(2}.))ger Which is simply Vef(2') = 0.

Since the function f is assumed continuously differentiable with respect to the contin-

uous variables over a neighborhood of L(zg), the distance dist(Y, W) between these two
dist(Y, W)

disjoint sets is strictly positive. Let § = Smax([P[ e BEE]

be a strictly positive finite number
independent of k.

Moreover, if yfm belongs to the set Y and if Ay < § then the point wfm does not belong
: 7 7 ; dist(Y, W ¢ i i ..
to W (smce |wy ; — viill < Axllby ]l < %) and thus —V°f(wj ;)'b; ; > . Combining
this with equation (10) yields

i i nAy i n"yij —yinH
. < )= — = ) — ? !
i) < J (W) 4 (ki) 4max{||b]| : b € B € B}

which concludes the proof. .

The following result strengthens Theorem 4.6 by showing that the gradient norm is zero
at the accumulation points 4° of Proposition 4.7.
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Theorem 4.9 If the accumulation point & and the point j* € N (&) were obtained under the
Strong Extended Polling Step, and if f(§') = f(&) then V°f(3') = 0 for each accumulation
point 4* of the sequence (y}‘”)

Proof: Suppose by contradiction that there exists an accumulation point 4* of the sequence

(ym) that satisfies ||V°f(3")]| # 0. Set

—n = %12[)3( rbré%lv f( )b < 0. (11)

Let 4 be the positive parameter derived from Proposition 4.8 that depends only on 1 < 0.

Continuous differentiability of f over the compact set L(zo) allows us to define € > 0 to
be such that if v and v in Q satisfy ||u — v|| < € then

: c tp : c £ ﬂ
rbré%lv f(u)'d rbré%lv flv)b < 3 (12)

for every basis B of the finite set B.

Consider a subsequence (yfw(k)) (where j(k) € {1,2,...5i} is increasing) that converges
to 4° when k € K goes to infinity (recall that ||V°f(3')|| # 0). Let N be an integer such
that for any £ > N in K

t - —n
e gV Ohs)t < T and VD 2

Equation (11) and Theorem 4.6 which states that V¢f(2') = 0 guarantee the existence of V.

For £ > N in K, define the index {(k) = min {ﬁ > j(k): min ch(yéj)tb > __77} .

bEB (v} ,) ' 3

Therefore, Proposition 4.8 guarantees that f(y}”) —f(y?HI) > JHyfm —y};7j+1]\ when j < {

for o = 4max{”b|”|:beBeB}. Writing out the telescopic sum leads to
£(k)-1
f(y;c,j(k)) - f(y;c,é(k)) = Z yk g+1))
i=i(k)
£(k)-1
> 0 1955 — Vel > ollYi i) — Yl
i=i(k)

| Let k Z' N in K be such ‘that f(ygj(k)) — f(y27é(k)) < e (by Proposition 4.7). Therefore,
Hyﬁw-(k) — y}cx(k)H < e. Equation (12) holds for u = Yg.i(k): U = Yp oy and B = Bk(y;c,(f(k))' It
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follows that

_2"’] . . .
—_ > min  V°f(yl )b
3 bEBL(YL 4(1) (W)

= min VS (Yhw)'b+ ( min V[ (yj )b~ _ min ‘VCf(yEX(m)tb)

bEBL(Y} 11y PEBK(Y} (1)) bEBL(v}, o1
-n - —2n
> 4=
3 3 3’
which is a contradiction. "

In the next subsection, we illustrate the importance of the Strong Extended Extended
Poll step on this last result through a small example. Without it, the algorithm produces a
single accumulation point Z for which there is a § in N (&) that satisfies V°f(g) # 0.

4.4 Example

Consider the following example in which there are two continuous variable and a single binary
one. In order to ease the notation, the continuous variables z¢ are written ¢ = (u,v). The
objective function is

F(@) = F(u,0,2%) = glu, 0)(1 = %) + h(u,v)a".
where

u?v + u(l —v) if (u+v)2<2

_ 2 2 —
g(u,v) = v’ +v° and h(u,v) = { u?v +u(l —v) + (u? + v* — 2)? otherwise.

The function A is partitioned as above to ensure that the level sets of f are bounded. It can
be easily checked that both functions ¢ and A are continuously differentiable.

The pattern search algorithm does not have a Search step. There is only a poll and an
extended poll step. The objective function value parameter ¢ that triggers the extended poll
step is fixed at 1. The current mesh neighborhood at iteration & is defined to be

Ne(z) ={z + Ax(0,1,0), =+ Ar(0,—1,0), = + Ax(5,0,0), =+ Ap(—7,0,0)}
for any = = (u,v,z?) except for * = (2A;,1 — Ay, 1) in which case it is
NC(‘I) = {T + Ak(ov _170)7 z+ Ak(57 170)7 r+ Ak(_77 170)}

The set of neighbors of z = (u,v,z?) is N(z) = {(u,v,1 — %), (u,v,2%)}. An iteration is
declared successful and stops as soon as the incumbent is improved. When an iteration is
unsuccessful, the mesh size parameter is divided by 2 otherwise it stays the same.
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The algorithm is initiated at zo = (1,0,0) with Ag = % and with incumbent value
f(a:o) = 1. The poH step evaluates the function at the pomts of N°(zo) : f(1,%,0) =
16, (1,5,0) = 16, (2,0,0) = 2, f(52,0,0) = 2. This iteration is successful.

Iteration 1 is initiated at z; = (52,0,0) with Ag = § and f(zy) = &. The poH step

16
evaluates the function at three of the points of N°(z1) : f(52,1,0) = 13, f(F,55,0) =
16, ( 0,0) = . This iteration is successful.

Iteration 2 is initiated at z; = (1,0,0) with Ag = 1 and f(z;) = . The poll step
evaluates the function at the points of N¢(zy) : f(3,1 0) =2, f(3,5,0) = 2, f(%,0,0) =

204 20 40

%, (_75, 0,0) = %. Before declaring this iteration unsuccessful, polling must be conducted

on the set of neighbors M (z3) : f(3,0,1) = 1. This value is within £ of f(z3) and so extended
polling must be conducted around this last point ys0 (the superscript ¢ is dropped to ease
the notation) The extended poll step finds yo1 = (%, 1, 1) in N¢(ya0) with f(yz1) = 16, then

2747
y2,2—(§727 ) in NV(ya,1) with f(y21): and y23—(§747 ) in N¢(ya2) with f(y21) = %-

It does not succeed in improving this last value in N(ya3) @ f(3,1,1) = 22, (Z, L) =

%, ( 45, 1L,1) = 2. Therefore, iteration 2 is unsuccessful and iteration 3 starts at the same
point z, = (2,0,0) with Ag = é and f(z3) = i,

Table 1 show that the algorithm generates cycles composed of two successful iterations,

followed by an unsuccessful one. The three iterations detailed above, i.e., the first cycle,

appear in the table by letting a = i. [teration 3 initiates a new cycle with a = é.

Ay T {L'k—I—Ak(O,l,D) xk—l—Ak(O,—l,O) J?k—I-Ak(5,0,0) Jik+Ak(—7,0,0)
a | (4a,0,0) (4a,a,0) (4a,—a,0) (9a,0,0) (—3a,0,0)
16a? 17a? 17a? 81la? 9a?
a |(—3a,0,0) (—3a,a,0) (—=3a,—a,0) (—2a,0,0) (—10a,0,0)
9a? 10a? 10a? 4a? 100a?
a | (2a,0,0) (2a,a,0) (2a,—a,0) (7a,0,0) (—5a,0,0)
4a* 5a* 5a* 494> 25a*
extended Yk = Yk,0 Yk,1 Y2 .- k= Yrji
poll: (2a,0,1) (2a,a,1) (2a,2a,1) (2a,1 —a,1)
2a 2a(1 —a(l —2a)) 2a(1 —2a(1 —2a))  2a*(3 — 2a))
Zk—I-Ak(O,—l,O) Zk—I-Ak(—7,1,0) Zk—I-Ak(5,1,0)
Ne(zi): | (24,1 —2a,1) (7a,1,1) (=5a,1,1)
2a*(4 — 4a?) 4942 25a*

Table 1: In three iterations, the algorithm goes from z; = 4a, Ay = a to xp13 = 2a, Apys = 3

Figure 3 displays the iterates of the extended poll step from y;, to zx. The circles represent
the points y;; for 7 = 0,1,...5:. All these points are on the same line as the function
decreases linearly when the variable u is fixed to 2a. At the last point z, the current mesh
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Figure 3: Extended poll from y; = (2a,0,1) to zx = (24,1 — a, 1)

neighborhood is evaluated using a different positive basis. The set N¢(z;) is represented by
the three circled crosses.

As k goes to infinity, the set of points points {yx; : j =0,1,..., 7%} converges to the line
segment from § = (0,0,1) to 2 = (0,1, 1) which is represented by the thick line on Figure 3.
The objective function value is equal to 0 there. The gradient norm is non-zero at y but
decreases to zero at Z.

In order to ensure that the gradient norm is zero at all points of AN (%), the stronger

algorithm must be used. By doing this, the extended poll step at iteration 2 would discover

the point y21 = (52,0,1) of N°(yz0) whose function value is Z>. This iteration would be

successful, and the iterates would eventually converge to the global minimizer of f.
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