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Abstract

A Framework for Managing Models in Nonlinear
Optimization of Computationally Expensive
Functions

by

David B. Serafini

One of the most significant problems in the application of standard optimization
methods to real-world engineering design problems is that the computation of the
objective function often takes so much computer time (sometimes hours) that tra-
ditional optimization techniques are not practical. A solution that has long been
used in this situation has been to approximate the objective function with something
much cheaper to compute, called a “model” (or surrogate), and optimize the model
instead of the actual objective function. This simple approach succeeds some of the
time, but sometimes it fails because there is not sufficient a priori knowledge to build
an adequate model. One way to address this problem is to build the model with
whatever a priori knowledge is available, and during the optimization process sample
the true objective at selected points and use the results to monitor the progress of
the optimization and to adapt the model in the region of interest. We call this ap-
proach “model management”. This thesis will build on the fundamental ideas and
theory of pattern search optimization methods to develop a rigorous methodology

for model management. A general framework for model management algorithms will
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be presented along with a convergence analysis. A software implementation of the
framework, which allows for the reuse of existing modeling and optimization software,
has been developed and results for several test problems will be presented. The model
management methodology and potential applications in aerospace engineering are the

subject of an ongoing collaboration between researchers at Boeing, IBM, Rice and

College of William & Mary.
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Chapter 1

Introduction

There are many applications of optimization in engineering and science where the cost
of computing the objective function values (or derivatives) is so large that standard
optimization methods cannot produce results in reasonable time or at reasonable cost.
Engineering design is probably the primary example of this kind of application but
certainly not the only one. Optimization traditionally has important applications in
process control and has seen increasing use recently in biology and chemistry. Many
of these applications have extremely large computational requirements.

The research described in this thesis was done as part of an ongoing collaboration
between Rice University, Boeing, IBM and the College of William & Mary [6, 7]. As a
result, the emphasis of this thesis will be on engineering design applications, although

the methods are applicable to non-design problems as well.

1.1 Justification of current work

There is growing interest in the use of computational optimization in many disci-
plines because, compared to existing practices, computational optimization can offer
better results, shorter design cycle times, and reduced human effort. Many exam-
ples in engineering design applications have been identified during the course of our
collaboration with Boeing.

The primary motivation for this work is that the rewards of finding better solu-
tions to these optimization problems are very large and justify the efforts required
to develop methods that can produce these solutions. In engineering, better designs

lead to better performance of the product or system being designed. In the highly



competitive environment that many engineering disciplines face, better performance
(or a reduction in cost) are a major advantage. In other areas, where current designs
are often already at the limits of technology, even small improvements in performance
can be the difference between success and failure. In scientific applications, better op-
timization results can lead to better simulations of natural phenomena and a better
understanding of the universe. It should be noted that in many of these applica-
tions the ultimate goal is not necessarily to find the exact optimizer of the objective
function; just finding a better solution can be a satisfactory result.

Shorter design cycle times can improve time-to-market, another major competitive
advantage. Faster turn-around can improve the quality of the design early in the
design process, when time is the limiting factor and many of the features of a design
are “locked in”, meaning they cannot be changed later in the design process without
significant (and often unacceptable) cost and delay. Thus small improvements early
in the design process are magnified later in the process.

Clearly, extremely long solution times negate many of the benefits just described
and thus are a serious impediment to the continued growth in the use of computa-
tional optimization methods in engineering and science applications. In engineering
design, the two main reasons the objective function evaluations are so costly are that
the systems being engineered are very complex (leading to complex simulations) and
the accuracy requirements for the simulations are high. After years of research and
development effort, existing designs already take maximum advantage of the simple,
low-fidelity simulations. Higher fidelity (hence higher cost) simulations and more so-
phisticated solution methods are required to make the major improvements in system
quality and design cycle time that are the goals in current design environments.

The work discussed in this thesis is an attempt to address the inadequacies of ex-

isting optimization methods for this class of applications. The essential feature of our



approach is to replace the expensive functions with ones that are cheaper to evaluate
and use the cheaper functions in the optimization procedure. The contributions of

this work are:
1. a general purpose, abstract framework for methods of this type
2. a convergence analysis for the framework

3. a general purpose software implementation of the framework that supports a
wide variety of methods.

1.2 Background

The basic idea of replacing the objective (or constraint) function in an optimization
problem in order to make the problem easier to solve is an old one. The use of Taylor
series approximations goes back to Raphson, if not all the way to Newton himself.
The use of modeling has a long history in engineering applications of optimization
and a great deal of work has been done in that area. For example, see [2] and [65] for
reviews of the structural and aerospace design fields and see [11], [30], [31], [60], [63],
[67] for details of recent work in this area.

The methods developed in engineering have tended to be very application-specific,
depending on specific characteristics of either the problem or the modeling strategy
or both. The more general work that has been the subject of research in the field
of nonlinear programming has tended to focus strongly on Taylor series models and
gradient-based methods. Much less work on general purpose methods for derivative-
free models has been done (see [32],[50],[53] [59] and [14, 15]).

In engineering applications, the models used can be differentiated into two basic
types: numerical solutions of governing equations of physical systems and functional
approximations of the solutions of the equations constructed without resort to knowl-

edge of the physical system, that is, by using the values of the functions only. For



convenience, we will denote these types as “physical” and “functional” models, re-
spectively. The key distinguishing feature is that the former embodies knowledge of
the physical system, while the latter is purely a mathematical construct. A functional
model only embodies knowledge of the behavior of the function it is approximating
at the points for which function values are given, while the physical model embodies
knowledge of the behavior of the system at all points.

The distinction between these two types of model is not absolute. There are some
models that can be defined arguably as either type. For example, a Taylor series
model is arguably a functional model since differentiation of the governing equations
is a purely mathematical process that can be done without any knowledge of the
system. It is also arguably a physical model since the derivatives of the governing
equations describe the behavior of the same system that the governing equations
describe.

Another difference is that typically some number of evaluations of the actual
function are required to construct a model of the functional type, whereas a physical
model can be used without such a startup cost. Since we are assuming the evaluations
of the actual function are very costly, the cost of constructing a functional model can
be a significant factor in the choice of a modeling strategy for a particular application.

Examples of the governing equation type of modeling are the use of the potential
flow or Euler equations as models of the Navier-Stokes equations. The fidelity of a
physical model can vary depending on something as simple as a grid spacing param-
eter, or as complex as a turbulence model formulation in a Navier-Stokes equation
solver.

Examples of the functional type of model are polynomial interpolation [15, 20, 59],
splines[13], neural nets and other type of curve fits (particularly response surface

models [9][43]), and least-squares models (linear or nonlinear) [45].



Hybrids that have characteristics of both types can be used. For example, one
could take a simplified version of the equations describing a physical system, evaluate
both the simplified and complete equations at a set of points in the design space and
fit a linear least-squares model to the differences. To evaluate the model at some other
point, the values of the simplified equations and the least-squares fit of the difference
are computed and summed. The hybrid model captures some of the behavior of the
full equations at essentially the cost of the simplified equations.

Throughout the rest of this thesis, the term “model” will be used to refer to any
function that is used as an approximation of another function for the purpose of re-
ducing the cost of evaluation or improving the behavior of the function. Although the
discussion will concentrate on modeling the objective function, it applies to modeling
constraint functions as well. The term “model management” will be used to describe
optimization methods that use models as surrogates of the problem functions and
modify the models during the optimization process.

It is assumed that for the applications of interest in this work the derivative infor-
mation necessary to build Taylor series models for use in gradient-based optimization
methods is not available or cannot be computed except at great cost. A frequently-
used approach to overcoming this cost involves replacing the objective function in the
optimization method with a model which is cheaper to evaluate. In addition to the
obvious cost advantage, this approach may have an additional benefit if the surrogate
function is smoother than the actual function, thus making the optimization problem
easier. Another approach is to use an optimization method that does not require
derivative information.

The major disadvantage of simply replacing the objective with a model is that the
solution of the optimization problem using the model is not necessarily the solution to

the original problem. Furthermore, the difference in the two solutions usually is not



known a priori and cannot be determined without significant effort, negating the cost
advantage. The major disadvantage of most derivative-free optimization methods is
that they require many more function evaluations than derivative-based methods.
This motivates our efforts to develop derivative-free optimization methods that use
models to ameliorate the cost of the extra function evaluations.

A wide variety of approaches is used in practice to build models of the functional
type that do not require gradient information. One characteristic shared by many
approaches is that the model is built before doing the optimization and typically
it is not modified until after the optimum of the model has been found, if it is
modified at all. A basic premise of this work is that the model should be modified
during the optimization process and that the strategy for modifying (or replacing) the
model should be driven by values of the actual objective function that are computed
during the process. When and how these modifications are made, especially when
and where the actual objective is evaluated, and how these choices are integrated
into an optimization method, define the “management” part of a model management
method.

The motivation for the present work stems from what we consider to be deficiencies
in current practice in methods for using models in optimization. One deficiency is
the lack of generality in some methods. This arises in methods where some special
characteristics of the application are critical to the success of the method. In the
application domain for which the method is intended, this is usually an advantage
because it can lead to better performance. But it can restrict the usability of the
method in other application domains. One of our goals is to develop a general-purpose
method that facilitates, but does not require, the incorporation of application-specific

knowledge.



Some existing methods exhibit a reliance on the special behavior of derivative-
based models, especially Taylor series models. This leads to general-purpose methods
that work well for problems in many application domains, but which are inappropriate
for the applications we are interested in because the cost of computing derivative
information is too high. A secondary issue that arises in some applications is that
even though the derivative information is computable, it is unreliable enough (noisy,
inaccurate, non-smooth) to hamper the effectiveness of the optimization method.
Thus, another of our goals is to develop a derivative-free method.

Another deficiency from which some methods suffer is a lack of theoretical sup-
port. This occurs more often among methods that use models other than Taylor
series models. We are interested in these models because they are more practical for
the applications we have targeted. We consider it particularly important that the
methodology we propose has a general convergence analysis that can be applied to

realistic algorithms using any type of model.

1.3 An algorithmic framework for model management

For the purposes of this work, how the model is used in the optimization procedure
and how it is determined when the model needs to be modified are more important
than how the model is constructed and evaluated. We want our methodology to be
independent of the type of model used. This gives the methodology greater general-
ity. For a particular application, the choice of modeling strategy will be extremely
important, but that is a decision that should be based on issues such as performance,
available expertise, and the nature of the application, not on the ability of the model
to work within the framework.

We seek to generalize current practice in using models in optimization, address

the deficiencies noted, and provide a capability for designing and expressing model



management algorithms. To do this we develop a framework, called the Model
Management Framework, that expresses an abstract model management algorithm.
To make a practical algorithm within the Framework it is necessary to specify imple-
mentations for certain specific operations that are required in the abstract algorithm
but are not defined a priori. The abstraction of a model that is used in the Framework
requires only evaluation and modification operations. Any modeling technique that
can provide these capabilities can be used with the Framework.

The abstract optimization algorithm used in the Framework is based on a general
form for pattern search methods. This generalized method and the convergence theory
for it was originally developed by Torczon in [72] and refined by Lewis and Torczon
in [47], [48] and [49].

The Model Management Framework also uses ideas (but not theory) from the
trust-region class of quasi-Newton methods [22]. The idea of combining these methods
was introduced by Dennis and Torczon in [21] in a somewhat different form than is
presented here. The pattern search convergence theory is used as the theoretical basis
in both cases.

Pattern search methods are a subclass of direct search methods. Direct search
methods, as their name implies, operate by evaluating the objective function at indi-
vidual points in the problem space. Direct search methods do not explicitly use any
derivative information. There are many different versions of direct search methods
dating back to the early days of numerical nonlinear optimization [10, 37, 55, 66, 69].
The characteristic that distinguishes pattern search methods from other direct search
methods is the use of a pattern of points to define where to evaluate the objective
function. The pattern need not be static; it may vary during the course of the search.

A pattern search method [72] has the basic form:

1. Construct or update a pattern of points around the current iterate.



Search the pattern to find a point in the pattern that reduces the objective
function subject to a requirement that certain points must be evaluated under
certain conditions.

Depending on whether the search found a point with decrease, decide if and
how to change the pattern.

[terate until convergence

The key features of pattern search methods that are important to the current

work are the independence from explicit derivative information, the discreteness of

the pattern, and the existence of a convergence theory. This will be discussed in detail

in Chapter 2.

The algorithm used in the Framework is developed and analyzed as a kind of

pattern search method, but it is also motivated by trust-region methods. A typical

trust region algorithm [22] has the form:

1.

2.

Build (update) a quadratic (Taylor series) model of the objective function.
Optimize the model subject to a bound on the step size (the trust region radius).

Evaluate the objective function at the step-bounded approximate minimizer of
the model.

Compute the ratio of actual reduction in the objective to the predicted model
reduction.

Based on this ratio, decide whether to accept the step and how to change the
trust region radius.

[terate until convergence.

The Model Management Framework we propose modifies this basic methodology

in two ways, based on one key observation. The quadratic model is generalized to

any kind of model of the objective. This model can be of the physical or functional

types described above or a hybrid of the two. The model can even be different in
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different parts of the domain. The consequence of this relaxation of the trust region
methodology is that the convergence theory for trust region methods does not apply.

The second modification of the trust region approach follows from the first: since
the model does not have a predetermined form, the standard trust region quadratic
subproblem is replaced by a more general subproblem. In our approach, the optimi-
zation subproblem is reduced to the subproblem of the pattern search method: find
a step in the pattern that improves the objective function (or some other merit func-
tion). As in the trust region quadratic subproblem, the pattern search subproblem
in the Framework is treated as a “black box”. This means that the algorithm used
to solve the subproblem is not specified by the Framework and does not affect the
Framework in any way except through the results it produces. This generalization of
the subproblem allows a wide variety of methods to be used, and specifically allows,
but does not require, the method to be tailored to the application domain. The key
differences between the pattern search subproblem and the trust region subproblem
are that the former requires the solution to be taken from the discrete points in the
pattern and has weaker conditions on acceptability of trial iterates.

The insight that motivates these generalizations is this: trust-region methods work
well because there is a direct relationship between the accuracy of the Taylor series
model and the trust region radius. Thus the control algorithm in the trust-region
method fulfills two purposes with one variable. The trust region radius controls the
accuracy of the model and limits the amount of decrease required in the optimization
subproblem. The smaller the region, the higher the accuracy of the model and the
less decrease required from the solution to the model subproblem.

The Model Management Framework has to sacrifice this nice feature because it
cannot rely on the model to be more accurate locally. Perforce we must replace it with

some other mechanism to guarantee that the method converges to a solution. The
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Framework inherits the convergence properties from the pattern search methods. The
sufficient decrease condition that governs the trust region subproblem is replaced with
a simple decrease condition on the pattern search subproblem. The discrete nature
of the pattern ultimately provides the guarantee of convergence.

The control algorithm in a model management method is more complex that
that of a trust-region method or a model management method that uses derivative
information (e.g. [1]), which can rely on the local behavior of the Taylor series model.
This is the price we must pay for a derivative-free method.

Using the ideas from trust region methods discussed above and merging them with
the pattern search method we can express the basic form of the Model Management

Framework:

1. Build (update) a model of the objective function.

2. Generate a trial step that decreases the model of the objective and satisfies the
requirements of the pattern search convergence theory, if possible.

3. Evaluate the actual objective function at the trial step.

4. Based on the comparison of the model and actual values, and possibly other
criteria, decide whether to accept or reject the trial step.

5. Iterate until convergence.

In the next chapter we will develop these concepts into a precise, rigorous, general

purpose method for nonlinear optimization for computationally expensive functions.

1.4 A simple example

To demonstrate what we mean by model management we now present a very simple
example. This is not precisely the form that the Framework we propose will take,

but it is sufficient for illustrative purposes.
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Actual function

0.4

Figure 1.1 Plot of example objective function.

Take the scalar function F'(z) of one variable on the bounded interval [-10:10]

defined by:
sin(z — 3+ ¢)
r—3+¢

?

F(z) =

where € is a very small number. Figure 1.1 is a plot of this function. As our class of
models we will use a simple cubic spline (as implemented by the MATLAB* “spline”
function).

The procedure we will follow is:

1. construct the model (spline) using the function values we have computed so far

2. compute the minimizer of the model (spline)

3. evaluate the function at the minimizer

4. accept the minimizer as the new iterate if the function decreased, else keep the
current iterate

*MATLAB Version 4.2c was used for this example. MATLAB is a registered trademark of The
MathWorks, Inc.
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5. repeat 1-4.

We start with two points equally spaced in the bounded interval, namely -15/3
and +15/3. We take the one with the smaller function value as our initial iterate.

Figure 1.2 shows the models that result from following this procedure four times. The

Wk

dashed lines in each plot are the model at that iteration and the symbol indicates

the minimizer of each model. The “0” symbols indicate the points at which the actual

objective function has been evaluated.

1st model 2nd model

-15 -1.5
-10 0 10 -10 0 10
@ (b)
3rd model 4th model

-10 0 10 -10 0
(©) (d)

10

Figure 1.2 Plots of models of F'(z) at each model management iteration.
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In the first iteration (Figure 1.2a), the model is linear and the minimizer is at
the upper bound. The function value at * = 10 is not decreased, so the trial iterate
would be rejected. The model in the second iteration (Figure 1.2b) is quadratic
and its minimizer does produce decrease so it would be accepted. In fact, we get
much more decrease than the model predicted (sometimes you get lucky). The next
two iterations (Figures 1.2c,d) show the essence of the model management approach.
The third model predicts decrease (the model minimum is less than the value at the
current iterate) but is incorrect; the function does not decrease. However, the new
model, the fourth, is much better than the third in the neighborhood of the current
iterate. Note that it is much worse far away, in the region = < 0, but that part of
the space is no longer of interest. The minimizer of the fourth model is very close to
the minimizer of the actual function (2.717 and 3.0, respectively), and the function
values are even closer (-0.987 and -1.0, respectively).

The total work included building the spline model four times, performing four
separate nonlinear minimization operations on the models, and computing the actual
function value six times. Half of the iterations found decrease in the actual objective
function, and the model improved (for our purposes) at every iteration. Though it is
likely we would not do this well on a real problem, we would hope to achieve similar
ratios. The key is that the model improves our chances of finding a trial iterate that
decreases the actual objective each time we evaluate it.

Also note that we found the global minimizer of the function even though we
only used a local minimization method on the model. There is no guarantee this will
always happen on real problems, although the model can increase the likelihood of
this happening if it smooths out some of the local minima.

A two-dimensional problem using a more realistic algorithm is presented in §4.2.1.

Figures 4.1-4.3 present 2D plots similar to Figures 1.1 and 1.2.
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1.5 Zen and the art of model management

In the philosophy espoused by the Model Management Framework there are two
levels of success that an algorithm should aspire to achieve. First, it must work.
That is, it must compute the correct answer to the optimization problem (or at least
as good an approximation to the solution as the user desires). Second, it must work
efficiently. A correct answer is not worth anything if it comes too late to be used.
The problems we are interested in are extremely expensive. Efficiency in practice will
be the yardstick by which we measure the usefulness of algorithms. It is likely that in
practice the accuracy of the solution may be traded off against performance, but there
is a qualitative difference between a method that can compute a less accurate answer
at lower cost but can always produce a more accurate answer at higher cost and a
method that cannot be relied upon to produce a more accurate answer regardless of
the cost.

Another aspect of the Zen of model management is that it is not required for the
model to be an accurate approximation of the objective function. The management
algorithm can be used to make up for inaccuracy in the model, albeit usually at the
cost of additional computation. In fact, good model management algorithms will
be designed with just that requirement in mind. Ideally, the accuracy of the model
should increase as the solution is approached. The mantra of the model management
algorithm designer should be: “do less work when the solution is less accurate.” The
converse has important implications as well. The more accuracy in the solution you
want to get, the more work you have to do to get it.

Another aspect of the accuracy issue relates to local versus global behavior. If the
model captures the global (general) behavior of the objective reasonably well but not
the local (detailed) behavior, it may still do well in finding the basin of the global

optimum of the actual objective. By removing small scale variations in the function,
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the model may allow the search (optimization) method to avoid local minima that it
would find if acting directly on the actual objective, as in the example in §1.4. The
recent work of C. T. Kelley on “implicit filtering” [41] successfully applies this same
idea to the optimization of noisy objective functions using a gradient-based method.

In the common case of non-convex problems, the use of a model frees the algorithm
designer to address the issue of global optimization to an extent not possible with an
expensive objective function. This is not to say that a model management method will
be able to find a global minimum just because the objective is cheap. The exponential
growth in the size of the problem space with dimension precludes truly global methods
in more than a few dimensions for most non-convex objective functions, regardless of
cost. Despite this, it may be possible to design a model management algorithm to be
less sensitive to local minimizers. We cite Kelley [41] and Trosset and Torczon [73]
as examples.

The next chapter addresses the theoretical issues of the definition and conver-
gence analysis of the model management framework. Subsequent chapters deal with
the practical issues of algorithm design and software implementation and present

numerical results of an example implementation on some test problems.
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Chapter 2

Model Management Convergence Theory

2.1 Introduction

The convergence theory for the Model Management Framework depends on the con-
vergence theory for pattern search optimization methods developed by Torczon in
[72] and Lewis and Torczon in [48] for unconstrained problems and in [47] for bound
constrained problems. Section 2.2 reviews and summarizes the results from these
papers that will be used in this thesis. Section 2.3 shows how these results can be ap-
plied specifically to model management. Section 2.4 presents an abstract framework
for model management algorithms that fits the pattern search theory and defines
conditions under which algorithms expressed using this abstraction are provably con-
vergent. Issues of algorithm design and implementation using the Model Management
Framework will be addressed in Chapter 3.

The pattern search theory is appropriate for use with the model management
approach proposed here because both are concerned only with objective function
values, not derivatives. It is possible to construct a model management approach that
uses derivative information. In [1], Alexandrov et al. use the trust region methodology
to derive and prove convergence for such a method. Other derivative-based approaches

to using models are discussed in [30] and [40], although no convergence theory is given.

2.2 Review of pattern search theory

This section summarizes material from §1-2 of [48] for unconstrained problems and

§2-3 of [47] for bound constrained problems. The convergence theorems for uncon-
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strained and bound constrained problems are similar, except that the bound con-
strained case imposes some additional conditions.

We consider here the unconstrained optimization problem:

minimize F(z)

(2.1)
reR”
and the bound constrained optimization problem:
minimize F(z)
(2.2)

z €

where R is the set of real numbers, F' : R” — R is the objective function, z,[,u € R",
and the feasible region is @ = {z € R” | [ <z < u}. In most of the discussion we
will treat both problems at the same time, noting explicitly when the additional
conditions for bound constraints are relevant.

Pattern search methods are characterized by three specific features that distin-
guish them from the majority of optimization methods. Firstly, at each iteration
the next iterate must be selected from a discrete set of points which is determined
by means of a pattern. No other explicit restriction is placed on the magnitude of
|zx4+1 — xk||. Secondly, the derivatives of the objective function F' are not used ex-
plicitly in the method. Only function values are needed. Thirdly, each iterate must
satisfy a simple decrease condition: if xpy1 # xp then F(xpy1) < F(z). No restric-
tion is placed on the magnitude of F(xx41) — F'(xx). That is, there is no explicit
sufficient decrease condition.

In general terms, a pattern is a collection of steps in the problem space. Fach
step can be added to the current iterate to produce a different trial iterate. The
orientation and scaling of the pattern can be adapted as the algorithm proceeds. An

alternate view is to think of the pattern as containing vectors, each of which defines
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a direction and length from the current iterate to a possible trial iterate. The vectors
may be scaled and rotated across iterations, but they are limited to a discrete set at
any given iteration. The important concept is that all possible next iterates can be
computed by combining the current iterate with a step from the pattern.

There are multiple ways to represent a pattern. In [47] and [72] a matrix with the
steps as columns is used. In Section 2.3 we will represent the pattern as a set.

For convenience in defining and discussing pattern search algorithms we introduce
an additional object, the pattern scale factor’ that can vary at each iteration. The
scale factor is a real, scalar multiplier applied to every step in the pattern before it is
used to compute a trial iterate. This provides a convenient mechanism for uniformly
controlling the length of all steps in the pattern. In any discussion where the scale
factor is not explicitly mentioned it should be assumed that a step is taken from the
scaled pattern.

The pattern matrix is denoted in [48] by P, € R™? p > n 4+ 1, where k is the
iteration counter in the pattern search algorithm. The scale factor is denoted by
Ar € R, so the scaled pattern at iteration k£ is ApFPy. Thus the set of possible next
iterates is defined by {zy + ApPre; | ¢ € {1,---,p}}, where ¢; is the unit coordinate
vector of the appropriate dimension. In the bound constrained case the next iterate
is further restricted to the feasible points in this set.

It is intended that Ay approach zero as xj converges. Separating this scaling from
the pattern itself allows the algorithm to converge without requiring modifications to
the pattern. This is convenient for both the theoretical discussion and the software

implementation.

TThis differs from the terminology in [72] and [47], where the equivalent scalar is referred to as the
step length control parameter.
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The theory for pattern search methods for unconstrained problems in [23, 48] is
very general and applies to a variety of existing methods, some very old. Coordinate
search with fixed step lengths [58] and the Hooke and Jeeves method [37] are examples
of pattern searches. Other examples are described in [72]. The popular Nelder-Mead
simplex method [55] is similar to a pattern search, but does not meet all the theoretical
requirements and is not provably convergent in dimensions higher than one [44][51].
The extension for bound constrained problems in [47] adds relatively few additional
restrictions.

The Generalized Pattern Search method (GPS) has the form outlined in Figure 2.1.

Generalized Pattern Search Method (GPS):

0) Given 29 € R™ or zg € Q) (as appropriate), Py € R**? and Ag € R > 0.
1) for k = 0,1,. ..

2) compute a step sp using an exploratory moves algorithm

3) if Feg + sk) < Fag)

4) Tpt1 <= T+ Sp

5) else

6) Thy1 < Tk

7) update P, and Ay (to produce Py and Agiq)

Figure 2.1 Algorithm for the Generalized Pattern Search method (GPS)

The convergence theory specifies rules governing the contents of the pattern, the
outcome of the exploratory moves, and how to modify P, and Aj;. Note that for the
bound constrained problem, the pattern search is a feasible point method. The initial
point xo and all subsequent iterates x; are required to be feasible, as will be seen
later. The bound constrained case has an additional requirement on the contents of
the pattern that is not needed for unconstrained problems (see Hypothesis 1).

The exploratory moves algorithm referenced in Step 2 of Figure 2.1 can be any

method for selecting one of the steps from the scaled pattern matrix Ay Py. The step
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is used to define the next trial iterate xpy;. The pattern search convergence theory
defines hypotheses on the result of the exploratory moves algorithm but does not
restrict the implementation of the algorithm. In Section 2.3 we will decompose the
exploratory moves into two separate sub-algorithms that we call oracle and poll, and
redefine the hypotheses in terms of them. Any implementation of oracle and poll that
can satisfy these hypotheses may be used as the exploratory moves algorithm in the
GPS method. It is this flexibility that will enable us to build the model management
convergence theory using the pattern search theory.

The Generalized Pattern Search method defined in Figure 2.1 is provably con-
vergent, subject to conditions on Py, A, and the result of the exploratory moves
algorithm. These conditions are presented in [47] and [48] and are restated here in a
slightly different form.

First we repeat some definitions from [48] that we need for the hypotheses. These
definitions are taken from the theory of positive linear dependence [17]. The positive

span of a set of vectors {ay,---,a,} is the cone
{aeR"|a=ca+ - +ca,c >0 Vil

The set {aq,---,a,} is called positively dependent if one of the a;’s is a nonnegative
combination of the others; otherwise the set is positively independent. A positive basis
is a positively independent set whose positive span is R”. A positive basis must con-
tain at least n+1 vectors and may contain no more than 2n vectors. Figure 2.2 shows
two examples of sets of positively independent vectors in R%. The set in Figure 2.2(a)
is not a positive basis, whereas the set in Figure 2.2(b) is. The difference is that no
direction in the negative x5 half-plane can be formed by a positive combination of

the vectors in Figure 2.2(a).



X X

1 1

(a) (b)
Figure 2.2 Examples of (a) positively

independent set and (b) positive basis in R?.

Hypothesis 1 The pattern matrix
P, € R *(gx+1k+1)

and the core matrix

Ck c Rnx(9k+1)’

with gx > n,l; > 0, must satisfy:

P, = [BTyiBL; 0]

O, = [BTyi0]

where B € R"*” is nonsingular. The matrix I'y € G C Z"*9% and I'; is a
positive basis of R". The cardinality of the set G is finite.¥ The number
of columns in the matrix L € Z™*'* need not be finite. We use 0 to

denote a single column of zeros.

+This use of Cx and G differs from that in [47] and [72].

22
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Additionally, in the bound constrained case (2.2), BI'; must be a maximal

positive basis, that is, it must contain 2n orthogonal vectors.
Note that the restriction that gi > n comes from the definition of a positive basis.
Hypothesis 2 The result of the exploratory moves s, must satisfy:

Sk:AkPkei7 1 € {177(9k‘|‘lk‘|‘1)}

where ¢; is the unit coordinate vector.

In the unconstrained case s, must also satisfy:

if min {F(zr + ArCre;)} < F(xy), then F(z, + sp) < F(xg).
ie {17---7gk}

In the bound constrained case x; will be feasible so s must satisfy:
T + s, € 0
to ensure x;4q is also feasible and s must also satisfy:

if min {F(2x+ArCre)) } < F(ag), then F(agptsg) < F(xy).
P gt 1)
T + ACre; € Q)

Hypothesis 3 Let Q be the set of rational numbers and Z the set of
integers, 7 € Q, 7 > 1, {wo,wy, ..., wr,} CZ,we <0, w; >0,0=1,...,L,
and A = {7 ..., 7"t}. Given Ay > 0, 0 = 7*° and A, € A, at each

iteration k the scale factor A must satisfy:

if F(;L'k + Sk) Z F(;L‘k) then Ak+1 = HAk

else Ak-l—l = )\kAk
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In essence, what the hypotheses say is this: the pattern and the scale factor define
a set of points around and including the current iterate. A subset of the steps in
the pattern, when interpreted as vectors based at the current iterate, must contain a
positive basis as defined above. These steps and the zero step form the core pattern
Cr. The positive basis provides the coverage of the space that guarantees that in the
limit, as Ay converges to zero, the core pattern will capture descent in the function
if the current iterate xj is not a stationary point.

The exploratory moves algorithm must choose a step from the pattern which
decreases the objective or is zero, but it must not be zero if any non-zero step in the
core pattern gives simple decrease. The step need not be in the core pattern, and it
need not have as much decrease as the steps in the core pattern, but it must have
some decrease. The consequence of this is important in practice: an algorithm is
allowed to stop searching as soon as a step with simple decrease is found. If no step
with decrease is found and there is no step in the core pattern with decrease, the
scale factor Ay must be reduced by a constant factor # before the next iteration. The
finiteness on the number of unique core patterns guarantees that the maximum size
(in some appropriate norm) of the core patterns is bounded. Without this limitation,
the core pattern could grow as rapidly as the pattern scale factor contracts, leaving
the lengths of the core steps unchanged, which could lead to a failure to converge.

The Model Management Framework discussed later will be defined as an ex-
ploratory moves algorithm where the trial step and perhaps the pattern are deter-
mined using a model of the objective function rather than by necessarily evaluating
the objective at the steps in some fixed pattern.

Notice that the hypotheses fall into two categories: requirements on the param-
eters (Py, Ag, 6 and A;) and requirements on the behavior of the algorithm (i.e. on

the intermediate results, s; and ;). The only part of the method that is specified
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completely is the test to determine if a step is acceptable (GPS steps 3-6); the other
parts of the method are specified only in terms of the results they produce. This
approach of specifying the output without specifying the implementation will be used
later in developing the convergence theory for the Model Management Framework.
Using the new hypotheses we can merge and restate Theorem 2.1 from [48] for
the unconstrained case with Theorem 3.2 from [47] for the bound constrained case.

To state the theorem for the bound constrained case we introduce the following

notation: Lof<l,
pi(t)y=<1t ifl; <t <uy;,
wp i >y
Plz) = lej(ﬂfj)eja
and -

g(z) = P(x = VF(z)) — z, (2.3)
where p;() is the projection of z onto the feasible region  and ¢(z) is a measure of
the closeness of x to a constrained stationary point. Thus x is a stationary point for
problem (2.2) if and only if ¢(z) = 0.

The proof of the convergence theorem is presented in [48] for the unconstrained
case and in [47] for the bound constrained case. The proof is based on technical
lemmas whose proofs are too long to reproduce here. Rather, we state the necessary
supporting results without proof and use them to prove the convergence theorem.

The first lemma guarantees that some portion of the descent direction in the
objective function at any non-stationary point x; can be captured in the core pattern

by reducing the scale factor Ay.

Lemma 2.1 (Proposition 2.3 from [48]) There exists a constant ¢ > 0

and an iteration k of a generalized pattern search (GPS) method such that
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for any n > 0 there is a nonzero core step s € {AyCre;,i € {1,...,(gx +
1)}} that satisfies

=V F(z)"s > ¢ VF(zi) | |1s]

The second lemma guarantees that if there is a descent direction of the objective
function at the current iterate, then the GPS method will eventually find a step with

decrease.

Lemma 2.2 (Proposition 2.15 from [48]) Assume L(z) is compact and
that F' is continuously differentiable on an open neighborhood of L(zg).
Then for any n > 0 there exists § > 0, independent of k, such that if
Ay < § and ||V F(x)|| > n, then the GPS method computes a nonzero

step s that satisfies F/(zy + sp) < F(xg).

The previous two lemmas are used to prove the next two lemmas, which are used
to prove the convergence theorem.

Lemma 2.2 says that if the gradient at xj is nonzero then the scale factor A, will
eventually be small enough that the GPS method will find a step that decreases the
objective. The next lemma says that if this happens the scale factor will not converge

to zero.

Lemma 2.3 (Theorem 2.16 from [48]) Suppose that L(x) is compact,
that f is continuously differentiable on a neighborhood of L(z¢), and that
liminfyeo ||V F(21)]] # 0. Then there exists a constant A, > 0 such that

for all &, A > A,.

The next lemma guarantees that the scale factor in the GPS method is not
bounded away from zero. Recall that we defined the GPS method (Hypothesis 3)

so that Ap must be positive.
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Lemma 2.4 (Theorem 2.18 from [48]) Suppose that L(zg) is compact.
Then

Iiminf A, = 0.
k— o0

We now use these results to prove convergence of the generalized pattern search

method.

Theorem 2.1 Consider a generalized pattern search method of the form
in Figure 2.1 that satisfies Hypotheses 1, 2 and 3. Let ¢(z) be defined as
in Equation 2.3. Assume that the level set L(z¢) is compact and that F
is continuously differentiable on an open neighborhood of L(xg). Let {z}
be the sequence of iterates produced by a pattern search method. Then,

in the unconstrained case,
liminf |V F =
iminf [V F(z)| = 0
and in the bound constrained case,
lim inf = 0.
iminflg(ze)| = 0
Proof  (unconstrained case) The proof is by contradiction.  Suppose that

liminfyseo ||VF(2k)|| # 0. Then Lemma 2.3 says there exists A, > 0 such that

for all &, Ay > A,. But this contradicts Lemma 2.4, and so
h]ggg)lf |V F(z)| = 0.

O

The proof for the bound constrained case follows from similar arguments, with
the additional restriction that the core pattern must be a maximal positive basis to

guarantee that a solution on the boundary will be found. The proof is presented in

[47].
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2.3 Pattern search theory applied to model management

The convergence theory for pattern search methods reviewed in the previous section
relies on two fundamental concepts. The first is that the pattern must contain a set
of steps (the core) which forms a positive basis for R* (a maximal positive basis in
the bound constrained case) and the steps in the core must be exhaustively searched
before the trial step can be set to zero, thus forcing the pattern scale factor Ay to
be reduced. If the current iterate is not a stationary point of the objective, then the
positive basis is guaranteed to define at least one direction of descent from the current
iterate. Asymptotically, as the scale factor shrinks, some step in the scaled core
pattern will capture a nonzero fraction of the steepest descent direction, thus ensuring
the search will find a step with decrease in the objective function (Proposition 2.3 in
[48]). This prevents the method from converging to a point that is not a critical point
by satisfying an analog of a fraction of Cauchy decrease condition without explicitly
computing the gradient. The second concept is that the scale factor may be reduced
only when the trial step is zero, and it must be reduced by a constant rational factor
(see Hypothesis 3). This guarantees that the scale factor does not converge to zero
prematurely. This provides an analog of the Armijo-Goldstein-Wolfe condition. The
proof of Theorem 2.1 relies heavily on these two concepts.

In this section we specialize the pattern search theory in two distinct ways. First
we choose a particular class of patterns with an infinite number of steps. After making
some changes in notation, we restate the hypotheses and the convergence theorem.
Second, we define an approach to designing exploratory moves algorithms tailored
specifically to model management strategies. In the next section we define conditions

on the model management algorithms and prove convergence.
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2.3.1 Patterns for model management

In using the pattern search theory to develop model management algorithms it will
be convenient to make some straightforward changes in notation. These changes are
motivated by the desire to exploit two particular aspects of the theory. First, the ex-
ploratory moves algorithm is not required to evaluate the objective function at all the
steps in the pattern in order to find a step that produces decrease. Hypotheses 1 and
2 define conditions on the result of the exploratory moves, not on the implementa-
tion. Second, the pattern is not restricted to a finite number of steps. The notational
changes will not require any substantive changes to the proof of Theorem 2.1.

We will restate Hypotheses 1 and 2 using the new notation and show that the
convergence theorem (Theorem 2.1) still holds. There is no need to restate Hypothe-
sis 3, which places conditions on the update of the scale factor Ay, as it is unaffected
by these changes.

We define a pattern for use in the Generalized Pattern Search method (Figure 2.1)
by taking a real nonsingular basis matrix B € R™*" multiplied by all possible integer
vectors in Z". We represent this pattern by the set S = {Bz | z € Z"}. This pattern
defines a regular lattice. Note that Hypothesis 1 requires that the size of the pattern
be at least n + 1 (2n in the bound constrained case). We want to make explicit the
fact that the pattern may contain an infinite number of steps, hence our definition of
the set §. The lattice points, when scaled by Ay, define the set of potential trial steps
which, when added to the current iterate z;, generate the potential trial iterates.

In a similar fashion let us define a set Cp which contains the steps in the core
pattern matrix C} defined in Hypothesis 1. By definition, the steps in the core
matrix () are contained in the pattern matrix Py and by construction the steps in
the pattern matrix are contained in the set S, so the set Cj is a strict subset of S.

The definition of positive basis implies that the core pattern must contain between
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n + 1 and 2n nonzero steps. Hypothesis 1 requires that is also contain the zero step.
Note that the steps in the core pattern may change across iterations (subject to the
requirements of Hypothesis 1) but every possible core pattern is contained in S.

We use script letters §,C,G to denote sets that correspond to the matrices in
the pattern search theory denoted by capital Roman and Greek letters. Using this

notation, Hypothesis 1 can be restated as follows:

Hypothesis 4 The set of possible trial steps S and the set of core steps

Cr must satisfy:

S = {Bz|zcZ"}

Ci {Bglge{GrU{0}}}CS

where B € R*"*" is nonsingular, G € G, Gy is a positive basis of R*, G
is a finite set of sets such that G = {G: | Gi is a positive basis of Z",1 =

1,...,q,qg < oo}, and {0} is the set containing the zero vector in R".

It should be reiterated that the set S contains all steps that may be contained in
any possible pattern matrix P because each column of P, is composed of the product
of B and an integer vector (see Hypothesis 1). So, clearly, once a basis B is chosen,
all columns of P are elements of §. By similar arguments, at iteration & of GPS the
set of core steps Cj, can contain the same steps contained in the core matrix Cf.

Using set notation to represent a pattern of infinite size, the hypothesis on the

result of the exploratory moves (Hypothesis 2) can be restated as follows:

Hypothesis 5 An exploratory moves algorithm must satisfy:

sp € ALS.
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In the unconstrained case (2.1) it must satisfy:

if  min  {F(zr+y)} < F(z) then F(ag + si) < F(xg).
y € AyCy

In the bound constrained case (2.2) it also must satisfy feasibility:
T + s, € 0

if min {F(zr 4+ y)} < F(xy) then F(xy + si) < F(xg).
y € AyCy

(zx +y) €Q

Hypothesis 5 differs from Hypothesis 2 only in notation and in the specification
of the fixed infinite set S of potential trial steps rather than the possibly varying
pattern P,. Only one trial step s; is ultimately selected in each iteration of the
pattern search method, and a pattern matrix P can always be defined that contains
Sk, so the behavior of an exploratory moves algorithm under Hypothesis 5 can be
achieved by an exploratory moves algorithm under Hypothesis 2. Similarly, since
any possible Py is contained in & (because S contains all possible trial steps), the
behavior of an exploratory moves algorithm under Hypothesis 2 can be achieved by an
exploratory moves algorithm under Hypothesis 5. Thus, the restated hypotheses are
functionally equivalent to the original pattern search hypotheses and so Theorem 2.1

still applies. We restate it now using the new Hypotheses 4 and 5:

Theorem 2.2 Given a pattern search method whose steps satisfy Hy-
potheses 3, 4 and 5, assume that the level set L(z¢) is compact and that
F' is continuously differentiable on an open neighborhood of L(zg). Let
q(z) be defined as in Equation 2.3. Then, in the unconstrained case, for

the sequence of iterates {zj} produced by such a pattern search method,
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hg_l}glf IV F(z)| =0,
and in the bound constrained case,

liminf ||¢(z)|| = 0.

k— oo

Proof: Hypothesis 4 states that the sets S, Cy and Gy, are equivalent to the matrices P,
[BT}, : 0] and Ty, respectively. With these substitutions, Hypothesis 5 is equivalent
to Hypothesis 2. Hypothesis 3 is unchanged. Thus the hypotheses of Theorem 2.2 are
equivalent to those of Theorem 2.1 and the proofs of Theorem 2.1 and the supporting
lemmas hold without change. O

In [48] a stronger result is derived that achieves limy_,, ||[VF(x)| = 0 rather
than the liminf. One of the additional hypotheses for the stronger result is that the
columns of the pattern matrix P, are bounded in norm. Unfortunately, this condition

can not be met under Hypothesis 4 because the set & is unbounded by definition.

2.3.2 Decomposition of the exploratory moves for model management

Given the definition of the behavior of an exploratory moves algorithm in Hypothe-
sis 5, the algorithm can be decomposed easily into two separate phases. Figure 2.3
presents an outline of an exploratory moves algorithm showing this decomposition.
The first phase searches the set of possible trial steps (not necessarily exhaustively)
and either finds one that produces decrease in the objective function or returns the
zero step. This corresponds to line 1 of Figure 2.3. The second phase is only used
when the first returns the zero step. It corresponds to lines 2-3 of Figure 2.3. It
searches the steps in the core pattern (exhaustively in the worst case) looking for one
that decreases the objective. It may return the zero step only if none of the steps in

the core produce decrease. This guarantees that the second part of Hypothesis 5 is
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satisfied. In fact, the second phase alone is sufficient to satisfy all the requirements of
Hypothesis 5; just evaluating the objective at the core steps is a complete exploratory
moves algorithm. This decomposition will be used later in the development of the

Model Management Framework.

0) Given a current iterate x, an objective function F, and AgzandS as defined in
Hypotheses 3 and 4
1) select a step si from AxS that produces decrease in F or is zero
3) reset s; to a step from the core pattern A;Cy that produces decrease in F',
if there is one
4) return sy

Figure 2.3 Outline of an exploratory moves algorithm

In the rest of this thesis the first phase will be referred to as the “oracle”, and the
second as the “poll”, or (in the context of model management) as “polling truth”.

The term oracle is used in some parts of the statistics and operations research com-
munities to mean a function that produces observations or responses. This harkens
back to the classic Greek mythological meaning of oracle. In our case, the oracle is
asked which pattern point to look at next and responds with a step from the pattern.
The analogy to the mythic oracle is especially appropriate to the model management
context because of the implication that the oracle has knowledge that the questioner
does not have, which in this context will be the knowledge of the model. The oracle
may use any strategy for finding the next step that fits the outline in Figure 2.3.
In fact, the convergence theory requires no knowledge of the model, nor even that
a model exists. The restriction of the trial steps to the discrete grid A;S and the

condition enforced in Steps 2-3 of Figure 2.3 are sufficient to guarantee convergence.
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The term poll is meant to emphasize the idea that the evaluation of the actual
objective function at the core steps is a sampling operation, like taking a poll. The
goal of the poll is to determine if there is any decrease to be found in the pattern at
the current scale factor. We call the actual function “truth” even though it is often
an approximation of the “real” (physical) system being optimized because it provides
the most accurate representation of the real system to which we will have access.

There are three important characteristics of this particular decomposition of ex-
ploratory moves algorithms: the oracle is free to use any method to choose a trial
step from anywhere in the feasible region, as long as it is in the pattern; the poll
cannot search outside the core; if the oracle succeeds in finding a step that decreases
the objective there is no need to poll.

The decomposition of exploratory moves into oracle and poll is formalized in the

following hypotheses and lemma.
Hypothesis 6 The result sy of an oracle algorithm must satisfy:
sy € AyS.
if sy # 0 then F(xg + s3) < F(ag).
In the bound constrained case it must also satisfy feasibility:
rr + sy € Q.
Hypothesis 7 Given sy satisfying Hypothesis 6, the result s; of a poll
algorithm must satisfy:

if s; #0 then s, =s4,
if Sy = 0 then s, € ACs
and

sp=0 or F(xp+ sp) < F(xy),
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subject to, in the unconstrained case,

if  min  {F(zr+y)} < F(x) then sp # 0,
y € AyCh

or, in the bound constrained case,
Ty + s, € 0

and

if min {F(zr+y)} < F(x) then s;, # 0.
y € AyCy

(zx +y) €
Lemma 2.5 Any combination of an oracle algorithm satisfying Hypoth-

esis 6 followed by a poll algorithm satisfying Hypothesis 7 also satisfies

Hypothesis 5.

Proof: In the unconstrained case, Hypothesis 6 guarantees that s; € A;S and Hy-

pothesis 7 guarantees that sy = s, or sp € AyCy or s = 0. Hypothesis 4 guarantees

ARCr C ALS

0 e ALCy,

so it follows that

sp € ALS

and the first condition of Hypothesis 5 is satisfied.

In the case where s; # 0, we have from Hypothesis 6 that

Fag+ s4) < F(ag)
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and from Hypothesis 7 that
Sk = Sy
SO
Faxg+ sk) < Fxy)
and the second condition of Hypothesis 5 is satisfied.

In the case where s, = 0, the simple decrease requirement in Hypothesis 7 is
identical to Hypothesis 5, so again the latter is satisfied.

The bound constrained case follows from similar arguments. O

As stated previously, a poll algorithm by itself satisfies the requirements for an
exploratory moves algorithm, but in combination with an oracle it gains tremendous
flexibility (and, one hopes, efficiency). This flexibility stems from the use of the in-
finite set of potential trial steps and the way the hypotheses are constructed. This
allows any method to be used for the oracle, not just one based on sampling the func-
tion at some predetermined steps in a finite pattern, as is the usual implementation
strategy for pattern search methods. This is discussed in [21]. This is critical in the
development of the Model Management Framework, which will be presented in the
next section.

In practice, the efficiency of the oracle method will likely depend on a variety of
application-specific factors. This is totally independent of the convergence theory and
its requirements. The theory provides guidelines for the development of methods, but
cannot guarantee efficiency.

In contrast to the oracle, the cost of the poll method can be defined precisely. It
has to be at least the cost of one objective function evaluation (in the best case of
finding decrease on the first try) and not more than 2n function evaluations (in the
worst case of not finding decrease in any step in the core pattern). The worst case is

determined by the number of steps in the core, which is limited to 2n by the size of
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the maximal positive basis.® By using a minimal positive basis in the core pattern,
the worst case cost is reduced to n + 1 function evaluations. However a fixed minimal
positive basis may be used only for unconstrained problems. Constrained problems
require at least some use of a larger basis. In practice, the key efficiency issue will
be how often the poll algorithm must be executed. As in the case of the oracle, the

theory provides no assistance in predicting this behavior in practice.

$The pattern search theory does not prohibit core patterns larger than 2n, but there is no theoretical
advantage to using one.
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2.4 The Model Management Framework as an exploratory

moves algorithm

In this section we propose a general-purpose framework for model management algo-
rithms, called the Model Management Framework, and analyze its convergence prop-
erties. The Framework provides an abstraction of an exploratory moves algorithms
that is tailored to the use of models and model management concepts. The analysis
follows that of the Generalized Pattern Search method given in Section 2.3. The
Framework is shown to satisfy the requirements of an exploratory moves algorithm
in GPS.

The Framework defines an exploratory moves algorithm in terms of several sim-
pler sub-algorithms, much as the Generalized Pattern Search method (Figure 2.1) is
defined in terms of the exploratory moves and update algorithms. For convenience,

9

these sub-algorithms are called “component algorithms.” By specifying conditions
on the behavior of the component algorithms, the behavior of the whole Framework
can be analyzed and convergence proven. It is not necessary to specify the precise
implementations of the components in the convergence theory.

First we discuss the use of models and model management strategies in pattern
search methods. Next we extend the decomposition of the exploratory moves al-
gorithm developed in Section 2.3.2 to support the development of algorithms that
use models and model management. We use this decomposition to define the Model
Management Framework and specify rigorously the behavior of the component al-

gorithms and prove convergence of a form of the GPS method that uses the Model

Management Framework.
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2.4.1 Use of models in pattern search methods

The generalized pattern search method GPS in Figure 2.1 can be divided into three
independent parts: the exploratory moves; the decision whether to accept the trial
step si; and the update of P, and Aj. As discussed earlier, the convergence the-
ory defines the computed result s; of the exploratory moves but intentionally leaves
undefined how that computation is carried out. On the other hand, the acceptance
criteria in the second part is defined very precisely. There is no room for interpreta-
tion in steps 3—6 of GPS. The third part allows for some flexibility, but less so in our
specialization of the original hypotheses since extending the pattern to a countably
infinite number of steps eliminates the usefulness of modifying the pattern across
iterations. However, the possibility of modifying either the scale factor or the core
pattern remains.

The theoretical conditions on the result of the exploratory moves do not require
that the objective function be evaluated at any of the steps in the pattern except for
the result step. A straightforward approach then is to use a model of the objective
function as a surrogate objective in searching the pattern steps. Most of the high cost
of the evaluations of the expensive objective function at the steps in the pattern can be
avoided. As in any method that uses models, the difficulty arises in handling the cases
where the model result does not satisfy the theoretical requirements (Hypotheses 4
and 5): either the actual objective is not reduced or the step is not in the pattern.
We will assume for the present that the second case can be rectified easily. Our major
concern is the first case. The simplicity of the conditions allow for a wide variety of
strategies for handling this case.

An advantage of the pattern search approach for problems with expensive func-
tions is that it guarantees that the intermediate solutions behave monotonically: the

method never accepts an intermediate solution that is worse than any previous solu-
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tion. This behavior is extremely desirable when each iteration is very expensive and
any improvement in the solution, however small, is worth keeping.

The decomposition of the exploratory moves into oracle and poll components
was motivated by the cost of evaluating the objective function. This decomposition
separates the exploratory moves into two distinct phases: a potentially cheap phase
(oracle) that may use whatever means are appropriate to try to find a trial step which
produces decrease; and a potentially expensive phase (poll) that is constrained by the
theory to search the core steps (possibly exhaustively).

Recall that Hypothesis 6 requires that if the step computed by the oracle is nonzero
it must reduce the (actual) objective function. If the step is zero the poll must be
executed. So clearly, whatever model management strategy is used in the oracle,
if it fails then the poll will ensure that the exploratory moves conditions are met.
This approach satisfies the hypotheses on the pattern search theory and therefore is
convergent.

To be worthwhile, a model management strategy must also reduce the overall
cost of getting a solution (compared to a more traditional pattern search method
that does not use an explicit model or any additional knowledge of the function). A
perfect model management algorithm would require only one evaluation of the actual
objective function per iteration compared to a typical pattern search method that
evaluates the objective at some or all of the points in the pattern.

The general approach that the Framework is meant to describe is an oracle al-
gorithm that uses a model to search the pattern and has some strategy for dealing
with the case when the actual objective does not decrease. If the strategy fails the
oracle can just return a zero step. Clearly almost any strategy can be made to fit this
paradigm. The efficiency of this approach will depend on how well the model predicts

the decrease in the actual objective function, the effectiveness of the method used in
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searching the pattern, and the effectiveness of the failure-recovery strategy (how well
the model is managed).

An obvious approach for searching the pattern is to apply a nonlinear optimization
method to the model of the objective function. This approach reduces the original
expensive optimization problem to a cheaper optimization problem. The reduced
problem may be simpler as well as cheaper if the optimization method applied to
the model can take advantage of some characteristics of the particular model used.
For example, if the derivatives of the model are easily computed, a gradient-based
optimization method may be used. This approach of reducing a difficult problem to
a simpler one is at the heart of many successful optimization methods. Trust region,
sequential linear programming (SLP) and sequential quadratic programming (SQP)
methods are good examples [22],[29].

A key feature of any practical use of models in pattern search methods will be
how the modifications to the model are handled. We assume that a static model is
not adequate for our purposes. This is based on the argument that it is not cost-
effective to build a model that is of high accuracy everywhere in the problem space.
So unless there is a priori knowledge of where a solution lies, the model would have to
be constructed to be uniformly accurate everywhere. Since it must be fairly accurate
near a solution to get an accurate answer, the a priori accuracy would have to be
high. Inevitably much of the work in building such a model would go to waste because
the accuracy ultimately would be needed only in the part of the space containing a

solution. This is addressed in more detail in [73].

2.4.2 Extending the decomposition of the exploratory moves

The previous section presented some general ideas about the use of models and model

management for exploratory moves algorithms. Section 2.3.2 presented a simple de-
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composition of the exploratory moves algorithm. In this section we use the ideas
of the previous section and extend the decomposition of Section 2.3.2 to explicitly
include the model management concept.

The theoretical conditions on the result of the exploratory moves led to the initial
decomposition of the exploratory moves algorithm into oracle and poll components.
Hypotheses 6 and 7 define this decomposition. The pattern scale factor may be re-
duced (an operation required for convergence) only if there is no step in the core
pattern that decreases the objective function. The simplest way to satisfy this re-
quirement is to evaluate the objective function at every step in the core and compare
the function values. The definition of the poll algorithm follows directly. The defi-
nition of the oracle algorithm follows from the observation that Hypothesis 5 allows
any step from the pattern to be chosen as the next iterate as long as it decreases the
objective.

The conditions on the result of poll are precise enough that there is no benefit
to be gained by decomposing the poll algorithm any further. No practical method
for enforcing the conditions of Hypothesis 7 except evaluating the function at all
the steps in the core pattern has been encountered. There are variations on this
implementation, but they are relatively minor.

Most of the algorithmic flexibility in the exploratory moves (in fact, most of the
algorithmic flexibility in the Generalized Pattern Search method) is in the oracle
algorithm. The goal of the oracle is to find a (feasible) step in the pattern that
reduces the objective function. As discussed in the previous section, it is in this
search process that a model of the objective function can be used as a surrogate for
the objective.

This is also where the model management strategy first comes into play. Simply

substituting the model for the actual objective in the search process is not sufficient
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to guarantee that the result will satisfy the hypotheses. It is necessary to check the
value of the actual objective function at the resulting point to make sure it decreases.
If it does not, there are two options: give up and return the zero step or try again. In
the latter case, the search can be repeated with a different algorithm, or the model can
be changed and the search repeated with the same algorithm, or both the algorithm
and the model can be changed. A “different” search algorithm would be one that
eliminates the previously computed step and returns the next best step in the pattern.
It does not have to be a completely different method.

The oracle algorithm is decomposed into four component algorithms. The first
is the search using the model. To increase flexibility we allow the search to produce
several trial steps rather than just one. The next component evaluates the trial steps
to determine if one produces decrease in the actual objective function. The third
component modifies the model. This definition is necessarily vague because there is
little commonality among the many different types of models that might be used.
Iterating on these three components generates the need for the fourth: a component
to decide when to stop the iteration. Any fixed method for terminating the loop
would not be flexible enough to allow for all possible algorithm choices for the other
components.

It would be possible to eliminate the fourth component by not iterating over the
other three. In this approach, if none of the results computed by the search algorithm
produce decrease in the actual objective the oracle is forced to return the zero step
and the poll algorithm is invoked to satisfy the convergence theory. This is a workable
approach but not ideal with regard to efficiency. The cost of the poll is known to

be large in the worst case. It is desirable to balance the cost of the oracle against

fThis assumes the search algorithm and the model are deterministic: if not, it may be possible
to run the same algorithm with the same model and get a different result. Nothing in the theory
prevents this.
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the cost of the poll. The oracle may be very inexpensive to execute, and it would be
inefficient to have to invoke an expensive poll because an inexpensive search failed
when it might be possible to make a change to the model or search strategy that
would succeed without executing the poll.

It should be noted that the decomposition described here is not the only one that
is possible. However it is believed to be flexible enough to express a wide variety of

search, modeling, and management approaches.

2.4.3 The Model Management Framework definition

The Model Management Framework implements an exploratory moves algorithm as
defined by the pattern search theory. In this section we give a precise definition of
the Framework as a generic algorithm that uses the decomposition of the exploratory
moves given in the previous section. This generic algorithm uses several component
algorithms. Conditions on the results of the components are presented. This approach
to algorithm definition mimics that used for the Generalized Pattern Search method.
In the next section the Framework is shown to satisfy the requirements of the pattern
search convergence theory.

The Model Management Framework Exploratory Moves algorithm (MMFEM) is
presented in Figure 2.4. The component algorithms appear in the special typewriter
font. There are four component algorithms defined in the Framework: SEARCH,
MANAGEMODEL, TERMINATE and POLL. The notation “...” when used with the argu-
ments to a component algorithm indicates that additional arguments to the algo-
rithm are allowed by the definition. This allows for data that is not necessary to the
convergence analysis but is needed in a particular implementation.

The inputs to the Framework algorithm are the current solution (zj and fx), the

objective function (F'), the current model (Mj) and the current pattern data (the
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0 Given l’k,fk:F(l’k),F,Mk,Ak,S,ck

D fr<=fie; s4<=0; <15 My, <= M
2) 1iterate

3 {s:} <= SEARCH(z} + s4,;S,...)

)
)
)
)
) choose s; € {s;} such that F(zy 4+ sy + ;) < f+ or s; =0
5) sy =54t 5 [ &= Flag+s4)
) My, < MANAGEMODEL(M, ,...)
) e+l
) until TERMINATE(], 54, f+, fe,- . ")
) My = My,
0)if (s =0)
11) Sy <:POLL(:xk,Aka,F,...)
12) return s4
Note: the notation

be added.

“...7 signifies that additional arguments to the component may

Figure 2.4 Model Management Framework
Exploratory Moves algorithm (MMFEM)

pattern &, the core pattern Cy and the scale factor Ag). The algorithm returns the
step sy and the model My,,. Line 1 initializes the internal state of the algorithm.
Line 2 starts the loop that ends on line 8. Line 3 executes the search, returning a set
of trial steps {s;} from the pattern. Line 4 selects one of the trial steps that satisfies
a simple decrease condition on the actual objective. If none of the trial steps are
satisfactory, the zero step is selected. Line 5 sums the step from this iteration with
the steps from previous iterations and saves the new objective value as the target
in the simple decrease condition for the next iteration. Line 6 updates the model.
Line 7 increments the iteration counter. Line 8 executes the component algorithm
that determines whether to terminate the loop or execute another iteration. The
iteration continues until the TERMINATE algorithm returns the value True. Lines 10
and 11 execute the poll algorithm when the search loop fails to find a step that

decreases the objective.
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The definitions of the component algorithms are presented below. The next section
extends the convergence analysis for the general pattern search method to include the
Model Management Framework version of the exploratory moves algorithm.

We begin by defining precisely what we mean by model, then by defining the

behavior of the components in the Framework.

Definition 1 Given a function F' : X — ), for arbitrary spaces X and
Y, a function M is a model of F'on X if M : X — Y.

This says that a model M is defined on the same domain and maps into the same
range space as the function it models. Note that this definition says nothing about the
values of the actual and model functions. Model accuracy will have a major impact
on the computational efficiency of the algorithm, but it has no theoretical effect. Also
note that although the definition mentions a single model, it can be applied to the
case of multiple models of the function F' trivially by combining the results of the

multiple models into a single value in Y.

Definition 2 Given an iterate x; and the set of possible trial steps AxS,
then

{s:} = SEARCH(zj + s4+,AxS,...)

must satisfy:

S¢; € {St} C AkS = {1, R |St|}

and for bound constrained problems it must also satisfy:

r+s, €Q Vie{l,..., s}

It is assumed that a practical SEARCH algorithm will make use of the model, even

though the definition specifies no requirement to do so. SEARCH is allowed to return
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multiple candidate steps from the scaled pattern A;S. It is not required that the
candidates produce decrease in the the actual objective I or even the model My,.
Steps 4 and 5 of MMFEM guarantee that the step s; is zero unless decrease in the

actual objective is found.
Definition 3 Given a model M of the objective function F', then
M, = MANAGEMODEL(M, .. .)
is also a model of F.

Note that M, may be the same as M and that no conditions on the behavior
of the model are required by the convergence analysis. The model may be modified

regardless of whether the trial step produces decrease in the actual objective function.

Definition 4 Given an iteration counter j for the loop in Steps 2-8
of Figure 2.4, a trial step sy and current and trial values fx, f+ of the

objective function, then
b = TERMINATE(], 51, [+, [x,- - .)

must satisfy:

b € {True, False}

and

b="True iff (fy <fr OR s =0)

and

d7 < 0o s.t. b=True.

Definition 5 Given an iterate x; and a core pattern AzCy, then

Sy = POLL(CL‘k, Akck, F, .. )
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must satisfy

Sy € ALCh

and

if GHAH% {F(zr+ )} < F(x) then F(xp+s;) < F(ag)
s EYE

else sy =0.

2.5 Convergence Analysis

The requirement that TERMINATE evaluate to T'rue for j < oo guarantees the finite
termination of the loop in Steps 2-8. The component algorithms are implicitly as-
sumed to terminate in finite time. It is not necessarily difficult to make TERMINATE
behave as required, although in practice it will likely require some coordination with
the algorithms used for SEARCH and MANAGEMODEL.

By construction, all the non-zero candidate steps (s; > 0) satisfy the simple
decrease condition on the actual objective. Thus their sum s, also satisfies this
condition. This satisfies Hypothesis 6 on the oracle.

The definition of POLL is precisely the same as Hypothesis 7, so Steps 11 and 12
must satisfy that hypothesis. This leads to the main convergence theorem for the

Model Management Framework.

Theorem 2.3 Let SEARCH, MANAGEMODEL, TERMINATE and POLL satisfy
Definitions 2-5 and assume Hypotheses 3 and 4 are satisfied, that the
level set L(x) is compact and that F' is continuously differentiable on a
neighborhood of L(xg). Let g(z) be defined as in Eqn. 2.3. Then for the
sequence of iterates {z;} produced by a pattern search method that uses

as its exploratory moves any algorithm that fits the Model Management
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Framework,

hgglf”@(@” =0

where ®(z) = VF(z) in the unconstrained case and ®(z) = ¢(z) in the

bound constrained case.

Proof: For convenience, let 2 = R”™ in the unconstrained case. By the definition of

SEARCH, the candidate steps {s;} produced in Step 3 of MMFEM all satisfy
st € {st} CARS and (x + 54 +s4,) €Q, Vie {l,... |8}

By construction, at each iteration j the candidate step s; selected in Step 4 satisfies
if s; # 0 then F(zy 4 sy + s;) < F(xy).

It follows that the accumulation of the candidate steps s computed in Step 5 satisfies

if sy # 0 then F(xp + s4) < F(xg).
Given s1,s9 € ArS, Hypothesis 4 states

81 = ApBzy, 83=ApBzy, 21,29 €Z"

SO

S1 + 89 = AkBZl + AkBZQ = AkB(Zl + Zg) = AkBZg, Z3 € 7"

and it follows from Hypothesis 4 that
s3 = ALBzs € ALS.

Thus the sum of two steps in AxS is also in AxS and so it follows that the accumu-

lation of the candidate steps sy computed in Step 5 satisfies

S4 € AkS
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Therefore s, satisfies Hypothesis 6. By construction, the result of the function
POLL satisfies Hypothesis 7. By Lemma 2.5, Hypotheses 6 and 7 are equivalent to
Hypothesis 5, so MMFEM satisfies the requirements of an exploratory moves algo-

rithm, so Theorem 2.2 applies.O
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Chapter 3

Model Management Algorithm Design

In this chapter we discuss issues in model management algorithm design within the
context of the Model Management Framework. We address each of the algorithmic
components of the Framework individually, and then we define and analyze complete
algorithms. The main concerns in this discussion will be fulfilling the requirements
of the convergence theory and developing efficient implementations for our target
application class. Some of these issues are specific to the Framework; others apply
generally to all types of model management algorithms.

The algorithm design issues are divided into two groups. Since the Model Man-
agement Framework is defined as the exploratory moves for a pattern search method,
issues relating to the design of the pattern search method are addressed first. Design
issues involving the component algorithms for the Model Management Framework
itself are addressed next.

We take a data-oriented view of the issues in pattern search method design. The
discussion will address each of the major data structures present in a pattern search
method: what operations are performed on them; what approaches can be used to per-
form these operations; and what special considerations apply to model management
methods. The pattern search convergence theory described in Chapter 2 determines
many of the operations.

We take a function-oriented view of the design of Framework component algo-
rithms. Algorithm design for each of the SEARCH, MANAGEMODEL, TERMINATE and POLL
component algorithms used in the Framework will be addressed. Most of the algo-

rithmic flexibility in the Framework resides in SEARCH and MANAGEMODEL.
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3.1 Pattern search methods for the Model Management

Framework

Since the Model Management Framework is constructed as an instantiation of the
general pattern search method GPS (Figure 2.1), there are algorithm design issues
related to pattern search methods that arise. These issues are not strongly dependent
on the design of the Framework algorithm components. We address these issues in
terms of the major data structures used in the GPS method.

The GPS method uses only a few important pieces of data. Among these are the
basis B and scale factor A used to generate the pattern, the steps used to generate
the core pattern Cp, and the contraction ratio # used to reduce the pattern scale

factor.

3.1.1 Choice of basis

The sole purpose of the basis in the GPS method is to determine the grid of points
from which the trial steps are taken. The basis specifies the relationship between
adjacent points in the grid, i.e. the relative spacing in each dimension and the angles
between the lines connecting the grid points. The theory requires that the basis be
constant, and that it must span the space (Hypothesis 1).

The issues that arise in choosing a basis can be reduced to: (1) whether the grid
is to be orthogonal or not; (2) whether the spacing in the grid is to be uniform in all
dimensions or allowed to vary across dimensions.

There seems to be no general reason to prefer a skewed (non-orthogonal) grid
over an orthogonal one. The latter is simpler, easier to manipulate and visualize, and
corresponds to the usual method for approximating derivatives by finite differences.

Also, it can be represented using a diagonal matrix. A non-orthogonal grid may be
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preferable if some a priori application-specific knowledge of the function or constraints
is available.

Scaling in the basis can be used to capture problem-dependent scaling by “stretch-
ing” the grid so that the relative grid spacing matches the relative magnitudes of the

problem variables.

3.1.2 Choice of core patterns

The pattern search convergence theory places two requirements on the core patterns
Ci: 1) every core pattern, when multiplied by the basis, must contain a positive basis
for R”; 2) the number of core patterns must be finite (Hypothesis 1). The latter
requirement is necessary because, unlike the basis, the core pattern can be changed
from one iteration of the pattern search method to the next (line 7 of Figure 2.1).
If the set of different core patterns is not finite, an infinite sequence of core patterns
could be constructed that would cancel the convergence provided by shrinking the
scale factor, leading to a non-convergent algorithm. This is not a severe restriction
on algorithm development.

For our purposes, the most important issue in the choice of core pattern (from
a performance standpoint) is the number of steps in the core. Since the pattern
search theory requires that the actual objective function must be evaluated at every
step in the core pattern before the pattern scale factor can be reduced, it is usually
desirable for the core pattern to contain as few steps as possible in order to reduce
the computational cost. Recall that a positive basis for an n-dimensional space can
contain from n+ 1 to 2n vectors, so the cost difference between minimal and maximal
core patterns is almost 50% (assuming constant function evaluation cost). One of the
fundamental premises of the model management approach is that the cost of function

evaluations is very high and dominates the total cost of solving the optimization
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problem. Thus the difference between minimal and maximal patterns can amount to
a significant fraction of the cost of a model management solution.

Another issue in the choice of number of steps in the core pattern is the matter
of sampling effectiveness. A core pattern with more steps provides a better sampling
of the local neighborhood of the current iterate than a smaller one, increasing the
likelihood of finding a step which decreases the objective function. Thus an algorithm
using a larger core pattern may take fewer iterations to achieve a given amount of
decrease in the objective function than an algorithm using a smaller core pattern,
although each iteration may take longer. The size of the core pattern may also affect
the quality of the model if the values of the actual function that are computed at the
core steps are used to update the model in some fashion. The better sampling provided
by a larger core pattern may produce a better model of the local neighborhood, which
may make the algorithm converge in fewer iterations.

In bound constrained problems the pattern search theory requires the use of the
maximal core pattern to ensure a sufficiently rich set of search directions to guarantee
that a solution that lies on a boundary can be found. This extra cost may be avoided
by using the maximal core only when one or more of the core steps would touch
or cross a boundary. When all the core steps are in the interior of the bounded
region the problem can be treated as unconstrained and a minimal core pattern used.
The pattern search convergence theory for linear inequality constrained problems
formalizes this approach [49]. This is also akin to the “active set” strategy used in
many gradient-based optimization algorithms for constrained problems [29] in that
constraints that are not active are ignored until they become active.

The design of the POLL algorithm can have a significant impact on the choice of
the size of the core pattern. In particular, if the function values at the core steps are

computed in parallel, the elapsed time to evaluate all the core steps will be equal to
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the elapsed time of one function evaluation (assuming each evaluation does the same
amount of computation). This reduces the effective cost of using the maximal core
pattern to the same as the cost of the minimal core, and raises to primary importance
issues other than the computational cost of the function evaluations. The design of
POLL algorithms is discussed further in §3.2.4.

Another important issue relating to the core pattern is how to change the steps
in the core from one pattern search iteration to the next. The pattern search theory
does not require that the core pattern be constant. It does require that the set of core
patterns be finite, which translates into a requirement that the norms of the vectors
in the core patterns be bounded across all iterations.

The simplest choice is to select a constant core pattern. The 2n coordinate vectors
(scaled or not) are an obvious choice. This would form a maximal positive basis, as
discussed above.

A more complex approach is to change the core pattern at some or all of the
iterations of the pattern search. One motivation for this approach is to adapt the core
according to the available knowledge of the objective function. The maximal positive
basis is not unique, and different bases sample different parts of the space. This can
be used to advantage by looking at the points where the objective function value is
already known (from previous evaluations) and biasing the core pattern toward the
points with lower objective values, increasing the probability that one of the core
steps will produce decrease. This idea is used in the Multi-Directional Search (MDS)
pattern search method to choose some of the core steps as well as the additional steps

in the pattern outside the core [69],[70].
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3.1.3 Updating the pattern scale factor

The pattern search theory almost completely specifies the behavior of the scale factor
(Hypothesis 3). The model management algorithm designer is left with only a few
decisions. One is the choice of the initial value of the scale factor. The other is the
choice of contraction and expansion factors.

The contraction factor must be a constant rational numberl!!, and the theory spec-
ifies precisely when it must be applied. The traditional value is 1/2. The smaller the
value, the fewer executions of the POLL algorithm must be executed to achieve a given
convergence level. The disadvantage of a smaller contraction factor is the danger of
premature convergence. This can occur when the descent direction is “between” the
directions present in the pattern. The theory guarantees that a descent direction will
be found, if one exists, in the limit as the scale factor goes to zero, but it says nothing
about what will happen along the way. If the pattern does not capture the descent
direction and the current iterate is far from a local minimizer it may require many
more steps to get close to that minimizer because the smaller scale factor will make
the steps shorter. More steps implies more iterations, more function evaluations and
higher computational cost.

The choice of method for expanding the pattern scale, as well as the choice of
expansion factor, sometimes can counteract this undesirable behavior. In general
it can accelerate convergence by allowing long steps to be taken. The convergence
theory does not address scale expansion except indirectly in as much as it defines

when the scale must be contracted (since both cannot be done at the same time).

ITt can be proved that the contraction factor may be allowed to vary across iterations as long as it is
bounded above and below and all the factors used are integer powers of a constant rational number.
The same holds for the expansion factor.



57

The danger of premature expansion exists, but is somewhat less than that of
premature contraction since its effect cannot last long. When the pattern is expanded
and no point with decrease is found, the pattern must be contracted. Thus the
negative effect of expansion is self-limiting. At worst it wastes an iteration (assuming
the contraction and expansion factors are equal). The positive effect of expansion
is that longer steps can continue to be taken as long as the pattern finds decrease.
From this one can argue that perhaps the expansion factor should be a multiple of
the contraction factors, since an occasional few wasted iterations may be worth the
iterations saved by taking longer steps. The truth of this argument certainly will
depend on the problem.

In practical problems, the model management algorithm is often run for relatively
few iterations because of the large computational cost, especially of the POLL algo-
rithm. Thus the choice of contraction and expansion factors may have a large effect
because even a few wasted iterations may be a significant portion of the total solution
cost. Unfortunately, the “right” choices are very problem dependent. It seems that

only experience can lead us to good ones.

3.1.4 Termination criteria

Specifying termination conditions for a pattern search method is somewhat more
complicated than for a gradient-based optimization method because of the lack of
explicit gradient information. In the model management context, good termination
criteria are important because of the high cost of each iteration.

In general, termination conditions for pattern search methods are fairly limited
because there is not much data used in the method.

From the viewpoint of the convergence theory, the obvious termination condition

is a lower limit on the value of the pattern scale factor, since the theory guarantees
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that this value goes to zero in the limit. The length of the step taken at each iteration
(|| Xk4+1 — Xk||) could also be used in a termination condition with similar results, since
it depends on the scale factor.

In practice, other factors can also be considered. The most practical is an up-
per bound on the execution time allowed. A limit on the number of objective or
constraint function evaluations gives a similar behavior, since in most pattern search
methods the time spent outside the function evaluations is relatively small. In par-
allel implementations, the number of iterations may be a preferable measure as it is
less dependent on the load balance.

Between these theoretical and practical extremes are termination conditions based
on other variables. Termination can be based on a target objective function value,
or on some measure of the reduction in objective function value per iteration. For
example, the reduction in objective divided by the step length can be view as an
approximation of a directional derivative and should tend toward zero as the method
converges (called a “simplex gradient” in [8, 42]).

In the model management context, the high cost of the function evaluations biases
the choice of termination conditions. We tend to be more concerned with stopping
when the process is not making much progress. This may occur because the current
iterate is close to an optimizer or because the method is not doing well, probably
because the model is not a sufficiently good predictor.

The quality of the model and the success of the search strategy are the two most
basic measures of the performance of a model management algorithm. Implementa-
tion of conditions based on these measures can be difficult. In trust region methods
the model quality is measured by the ratio of the decrease in the objective predicted

by the model to the decrease actually found. In model management methods, the
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success of the search strategy can be measured by how often the POLL algorithm

(Definition 5) is invoked.

3.2 Component algorithm design

A model management method expressed using the Model Management Framework is
defined by the algorithms used to implement SEARCH, MANAGEMODEL, TERMINATE and
POLL. In practice the implementations of the first three components almost surely will
be interdependent to some degree, though not all of the components will necessarily
depend on all others. In particular, since the actual changes made to the model
do not play an active role in the convergence analysis, MANAGEMODEL may well be
independent. Thus, it is possible for the changes in the model to be transparent to
the SEARCH component algorithm. On the other hand, if the quality of the model is
involved in achieving finite termination of the loop at Steps 2-8 in MMFEM, a strong
interdependence between MANAGEMODEL and TERMINATE can result, as will be seen
in the examples to be discussed. The POLL component is conceptually independent
because only the actual function F' is required, not the model M, but in practice
its behavior also is likely to be influenced by the behavior of the other component
algorithms.

The next four sections (§3.2.1-3.2.4) present some general ideas about methods
for SEARCH, MANAGEMODEL, TERMINATE and POLL, and example implementations that
demonstrate the issues involved in algorithm design for these methods. Section 3.3 will
present specific implementations that are more likely to be useful in practice. Issues
of performance and reuse of existing software will drive the choice of implementation

for real applications.
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3.2.1 SEARCH methods

The convergence analysis does not specify anything about the method used to imple-
ment SEARCH. The only requirement is that the steps computed by SEARCH {s;} must
be taken from A;S. Additional requirements may be added in order to insure finite
termination of the loop in Steps 2-8 of MMFEM as long as they do not interfere with
this requirement.

Possibly the simplest method to implement SEARCH would be the following:
SEARCH(z, AxS)
1) randomly choose a step s € AS
2) return {s}

Although fast, simple and provably correct, this method is not likely to succeed
very often. This is an extremely undesirable property, to say the least. If none of
the steps computed by SEARCH produce decrease in F', then eventually POLL must be
invoked.

This trivial implementation does not use the model and does not measure the
quality of the selected step in any way. An obvious extension of this implementation
would be to select several steps randomly, rather than one, and only return those
steps that have a lower model value than the current iterate.

SEARCH(z4, AS, M)
1) choose g random steps {s;} from A.S, (0 < g <o)
2) select {s:} C {s;}, such that M(zy + s;,) < M(zx) Vi, or set {s;} =0

3) return {s:}

Another implementation approach that uses randomness is to use a genetic or
evolutionary algorithm [52] to select steps. The crossover and mutation operators in

a genetic algorithm can be manipulated to guarantee that the results are taken from
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the grid defined by AxS. The combination of genetic algorithms with pattern search
methods has been investigated previously and discussed in [35] and [36].
Returning to deterministic approaches, a simple implementation of SEARCH that

uses the model to assist in the search for decrease in the actual function is:
SEARCH(7, AxS, M, F)

D {s}<0; m< F(xy)

2)forv e’

)
)
3) i ( M(z + ASi)) <m)
)
)

e

{S} = AkSZ ;oM o<= M(:L‘k + AkSZ)
5) return {s}

where 7 is an index set of finite size. This evaluates the model at a fixed number of
steps in § and returns the minimizer. The choice of which steps to evaluate can be
made a priori or can be determined adaptively each time SEARCH is executed. This
implementation of SEARCH is effectively an oracle algorithm applied to the model
instead of the actual objective function. It can be extended by selecting a finite
number of the best steps and returning them.

Another type of approach involves using an optimization method to find an ap-
proximate minimizer of the model M.** This is the intuitively obvious approach to
finding decrease in the model function. Since existing implementations of optimiza-
tion methods are abundant, this approach should be relatively easy to implement.
Because the model is relatively cheap to evaluate (compared to the actual objective),
the computation should be fast. The only complication is the requirement that the
steps computed by SEARCH must be taken from A;S. This can be satisfied by either

enforcing it directly in the optimization method or taking the approximate minimizer

**See [73] for an example.
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and “moving” it to a nearby step in AxS (subject to the constraints, if any). A differ-
ent approach to enforcing the requirement directly would be to use a pattern search
method such as the multi-directional search (MDS) algorithm described in [69] and
[70] to optimize the model function, using a pattern consistent with the one defined
by AiS.

Assume that we are given an algorithm OPT that computes an approximation to
a minimizer of the model objective M. Two generic algorithms for a SEARCH method
of this type can be specified, depending on whether or not OPT insures the result is
on the grid.

If OPT always computes steps on the grid the requirements on the result of SEARCH
are satisfied and no further work is needed. An implementation using this OPT is:
SEARCH(x5, AxS, M)

1) {s} < OPT(zx, M, A}S)
2) return {s}.

If OPT does not always compute steps on the grid, the SEARCH implementation must
choose a (feasible) step in AxS that is near the result of the optimization procedure.
Obviously it is desirable that the step selected produce decrease in the model. If
we are given a function NEARBY that computes a subset of steps from A.S that are
“close” to s (and feasible, if the problem is constrained), then we can implement

SEARCH as follows (f denotes the actual function value at the current iterate zy).
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SEARCH(7y, AkS, M, f1)
1) t <= OPT(z4, M)
2)if (Lt € AyS)

3 {s} <1
4

else

5 choose {s} in NEARBY(z, ¢, AxS) that minimizes M (zy + s) or {s} =

)
)
)
)
)
6) return {s}

There are various ways to define the set of nearby steps, but they have no effect
on the convergence or termination analysis as long as the set computed by NEARBY is
finite. A general approach is to solve By = x; 4+ s and round each of the components
of y to an integer value. Each of the n components of y may be rounded up or down,
giving the 2" vertices of the hypercube of grid points surrounding y. The problem of
choosing which of the vertices to use is conceptually straightforward, but in practice is
complicated by the large number of vertices. If the gradient of the model is available,
it can be used to select a subset of the vertices that may be worth looking at. A
simpler approach is to round y to the nearest grid point and look at only the 2n grid
points that are nearest in each of the coordinate directions. A backup strategy may
be necessary in case none of these are acceptable.

Each of the optimization-based approaches can be generalized to return several
possible steps. One way to accomplish this is to perform several optimizations on
the model starting from different initial points. This technique is used in some global
optimization methods. The literature on global optimization [26] [38] [57] is a useful
source of strategies for SEARCH algorithms.

There are two conflicting goals in the design of the SEARCH algorithm. On the

one hand it is desirable to search the local neighborhood of the current iterate as
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well as possible, to get fast local convergence when the current iterate is near the
solution. On the other hand, it is desirable to search outside the local region in
order to identify other basins that might have better solutions. This is especially
important in the model management context because the target applications are
assumed to have multiple local minimizers. The global search problem is equivalent
to the global optimization problem and as such, cannot be solved in general with
reasonable efficiency. However, it is possible to develop heuristics that produce better
solutions in many cases than methods that only search locally. The advantage of the
model management approach is that the small evaluation cost of the model allows
considerable flexibility in the implementation of these heuristics.

The two goals are in conflict in the model management context because infor-
mation about the actual function is a limited resource, and the method ultimately
requires evaluations of the actual function to check the search results. Thus, generat-
ing more local trial steps in SEARCH reduces the number of global trial steps that can
be chosen because the number of actual function evaluations that can be performed
is limited and the actual function must be evaluated at a trial step before it can be
accepted as the next iterate.

A reasonable compromise is to combine local and global search methods in a
SEARCH algorithm and use some kind of merit function that considers both objective
value and distance from the current iterate (and possibly distance from the other trial
steps) to choose which steps to return to the Framework. Choosing a merit function
is not a simple task because the amount of decrease in the objective function is not
likely to have the same scale as the measure of distance. There has been some work

in statistics in response surface modeling and global optimization that has addressed

this issue [39] [54] [61] [73].
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The issue also arises in the modeling strategy itself as a tradeoff between local
and global accuracy. In addition to the constraint of limited information, there is the
difficulty of generating a model that has the appropriate accuracy both locally and
globally. The local accuracy needs to be high, since small changes in the function
are likely to be involved, whereas the global accuracy can be quite low since only the
general trend in the function needs to be captured in order to find descent when the

current iterate is far from a solution.

3.2.2 MANAGEMODEL methods

An important component of any practical model management algorithm is the method
used to manipulate the model as the algorithm progresses. One of the virtues of the
framework described here is that theoretical considerations place no restrictions on
the implementation of the MANAGEMODEL component algorithm.

A note should be made here about model accuracy. In the model management
framework, there are two separate considerations in which the accuracy of the models
plays an important part. In each individual model management iteration, it is de-
sirable that the model accurately predict the location of the minimizer of the actual
function (or @ minimizer, if there is more than one). For a model management method
to be successful, the model’s prediction of the location of the actual minimizer must
improve as more data is added to the model.

The lack of theoretical requirements on the implementation of MANAGEMODEL means
that no assumptions need be made about the accuracy of the model. In the worst
case of an extremely inaccurate model, the Model Management Framework effectively
reduces to a pattern search method applied directly to the actual objective function.
Thus convergence is guaranteed regardless of the accuracy of the model. The model

is used purely as a device designed to accelerate convergence of the pattern search
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by reducing the number of function evaluations needed to find decrease. This does
not mean than all modeling strategies are equivalent. The efficiency of a particular
algorithm will usually depend on how well the model predicts descent for the actual
function at each iteration and how well the model update strategy maintains the
accuracy of the model during the optimization process.

Because MANAGEMODEL is relatively isolated from the rest of the components of the
framework (in the theoretical sense), there is little that can be said about its behavior
in general. The intent of including MANAGEMODEL in the Framework is to allow the
model to be changed as execution progresses. Note that each time SEARCH is executed,
the actual objective function is evaluated at least once. This function value represents
a piece of information that can be used to modify the model. One of the fundamental
motivations of the model management concept is that the potential exists to improve
the model incrementally by reusing the values of the actual objective that must be
computed anyway to satisfy the convergence theory.

One particular approach to MANAGEMODEL is expressed in a method developed at
Boeing called “Balanced Local-Global Search” (BLGS)[6]. The basic idea of BLGS is
to modify the model by incorporating multiple function values into the model all at
once, essentially rebuilding the model with a larger amount of data. This approach
incrementally improves the model, but does it with a fairly large granularity. The
data points to be added to the model are chosen to fulfill one of two different goals:
to improve the accuracy of the model in areas of the space that have been identified
as being of interest (local); to add data to the model in areas that have not been
sampled (global). As the name implies, the point is to balance these two goals given
a limited number of function evaluations. The cost of function evaluations is too high

to use this approach in every iteration of the Model Management Framework so some
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mechanism is needed to determine when it is appropriate to rebuild the model. This
mechanism will depend on the type of model used.

An alternative approach to balancing the local and global accuracy of a single
model is to maintain different models for different parts of the solution space or for
different length scales. For example, one model could be constructed over the entire
space and a second model could be constructed on a small region around the current
iterate. If a low-fidelity physical model is available, it could be used as the global
model and an interpolatory model could be used for the local model. This approach
allows the modeling strategy to be tailored for specific applications and available
modeling capabilities.

A different situation arises if the model is (or depends on) a variable-fidelity ap-
proximation of a governing equation. In this case, the management strategy may
simply reduce to increasing the accuracy of the approximation (and presumably in-
creasing its cost) as the optimization process progresses and the optimal solution is
approached. A common example of this kind of model is a numerical solution of a
differential equation that relies on a discrete grid, with the grid spacing as the means
of controlling the fidelity. The SEARCH strategy should adjust to this variation so that

the cost of executing SEARCH does not grow to be unreasonably large.

3.2.3 TERMINATE methods

In general, the implementation of the TERMINATE component algorithm tends to be
the most dependent on the implementations of the other components. This is be-
cause there is little data in the algorithm to use in the termination decision that
is not affected by the implementations of the other components. Only very simple
termination strategies can hope to be completely general. A couple are presented

here.
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TERMINATE())
0) Given Jpar < 00

3

else

4

return False

)
)
2)  return T'rue
)
)

TERMINATE(7, s;)
1 lf S]‘ = 0
2

return T'rue

3

else

4

)
)
)
) return False

The first simply checks the iteration count and terminates the loop when a partic-
ular number of iterations has been completed. The second terminates whenever the
SEARCH component has failed to find decrease in the objective. Note that the second
version does not use the iteration counter j but it is left in the function interface to
be consistent with Definition 4.

It can be shown that both of these implementations satisfy the theoretical re-
quirements of Definition 4. Step 4 of the MMFEM algorithm guarantees that any
non-zero step must give decrease in the actual objective function, so the first part of
the definition is always satisfied. Thus the necessary theoretical behavior effectively
reduces to the finiteness requirement (TERMINATE evaluates to True for some j < o0).
This requirement is obviously satisfied in the first implementation above.

The second implementation also has the finite termination property, but it comes
about for a more subtle reason. By construction, TERMINATE returns 7'rue when the

step s; 1s zero, so if TERMINATE is executed with a non-zero step only a finite number of
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times, the resulting Framework algorithm must have the desired termination property.

The following lemma explains why the number of nonzero steps is always finite.

Lemma 3.1 Given a current iterate x; that satisfies F/(zx) < F(x0), let

{si} = {si|si € AkS, F(xr+s) < F(xg)}. Then |[{s;}| < 0.

Proof: By assumption the level set of F(z¢) is bounded. Hypothesis 2 guarantees
that the sequence of iterates x;, produces a monotonically non-increasing sequence of
objective function values. Thus F(x;) < F(xq), VEk, so the level set of F'(x) < F(x0)
must be bounded. Hypothesis 3 guarantees Ay > 0 so the number of elements of
{zy + ArS} inside the level set must be finite, so the number of elements s € AxS

that also satisfy F\(zy + s) < F(xx) must be finite.O

Lemma 3.2 The number of iterations of Steps 2-8 of MMFEM in which

the trial step s; is nonzero is finite.

Proof: Steps 4 and 5 of MMFEM guarantee that f, at iteration j must be less than at
the previous iteration if s; # 0. Therefore f; is monotonically decreasing in iterations
when s; # 0. By Lemma 3.1, the number of unique steps in the pattern that decrease
the actual objective function is finite so the number of unique function values is finite.
It follows from the monotonicity that fy can take on each value in only one iteration
in which s; # 0 so the number of iterations in which s; # 0 must be finite.O

Lemma 3.2 guarantees that s; = 0 for some 7 < oo, and so this instantiation of
TERMINATE satisfies Definition 4.

In general, the guarantee of finite termination required by Definition 4 will be
an important consideration in designing model management algorithms using the
Framework. Metaphorically speaking, it is the glue that can be used to bind together

strategies for SEARCH with update strategies for MANAGEMODEL. The issue of how to
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design model management algorithms to guarantee finite termination is important

also because it impacts when and how often the POLL algorithm is executed.

3.2.4 POLL methods

In the Model Management Framework, the POLL function is the tactic of last resort
to satisfy the hypotheses on the results of an exploratory moves algorithm. It does
not rely on the results of the other component algorithms because it necessarily
satisfies the hypotheses. The essential idea of the Model Management Framework
approach is that the other components are included to achieve satisfactory efficiency
in practice, not to achieve necessary behavior in theory. As happens repeatedly in
the model management paradigm, the theoretically necessary functionality can be
achieved quite simply, but efficiency usually requires adding complexity.

A straightforward implementation of POLL is
POLL(2%, AxCy, F)
1) for s € AyCy
2) if ( F(xg+s) < F(xg) ) then return s

3) return 0

This implementation evaluates the objective at the steps in the core one at a
time and terminates at the first step that produces decrease in the objective. A more
complicated approach uses the model to determine the order in which the steps in the
core pattern should be evaluated. This is intended to reduce the number of function
evaluations by evaluating the steps that are most likely to produce decrease first. An

implementation using this idea is:
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POLL(74, AyCr, F, M)

1) S < steps in ApCy, sorted by ascending value of M
2) for s € S

3) if ( F(xr+s) < F(xg) ) then return s
)

4

return 0

Like the simpler version, this version terminates at the first step in the core that
produces decrease. It is independent of the other component algorithms in the frame-
work. It uses the model M but does not modify it in any way that could affect the
implementation of any of the other components. The behavior of the model (in par-
ticular, how well it captures descent away from z) will determine the efficiency with
which this version of POLL executes, but not its correctness.

Since POLL must evaluate the actual objective function, it is possible to implement
it to modify the model to incorporate the new objective values into the model as they
are computed. Such an implementation would depend on the modeling method used,
and would thus be interdependent with the other functions that use or modify the
model, particularly MANAGEMODEL. An example will be presented in a later section.

In the worst case, any poll algorithm will be required to evaluate the actual ob-
jective function at all steps in the core, an operation we assume is expensive. It is
possible to compute all the function values independently, since the order of eval-
uation is irrelevant. So by using a parallel computer with a sufficient number of
processors the worst case cost can be effectively reduced to one function evaluation
in elapsed (wall clock) time by evaluating the objective at all steps in the core simul-
taneously and selecting one that produces decrease. Obviously, such a difference in
performance can have a profound impact on the design of algorithms for this and the

other component algorithms.
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3.3 Two complete model management algorithms

The next sections describe two complete model management algorithm implemen-
tations using the Framework. We analyze the behavior of each method to show it
conforms to the convergence theory given in Chapter 2. These algorithms are in-
tended to serve as examples of what can be done within the Model Management
Framework and as foundations for the development of algorithms better suited to

practical applications.

3.3.1 Pattern search-based algorithm

This algorithm is a straightforward application of the general pattern search idea to
the SEARCH algorithm. The advantages are that it is simple to analyze and implement,
and does not require the model to interpolate exactly. It assumes the model is cheap
to evaluate and takes advantage of this assumption by performing many evaluations
of the model. The other framework component algorithms are kept simple.

The method used for SEARCH samples the model objective at the steps in a pattern
centered on the current iterate. The steps s; in this pattern are generated using the

same formula as in the GPS method:
SZ':A]CB/:Z', iE {1,,|£|}

where A, and B are the scale factor and basis matrix at iteration k£ of the Model
Management Framework, £ is a finite set of vectors in Z”. For simplicity we make
the set £ constant and specify it as a parameter to the SEARCH algorithm. A more
complex approach would be to adapt £ during the optimization process.

Each step in the pattern that produces decrease in the model is added to a list.
After all the steps are evaluated, the list is sorted by model value and the n, steps with

the lowest values are returned as the result of SEARCH. The value of n; is specified as a
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parameter to SEARCH. It determines the maximum number of trial steps that SEARCH
may return, and thus determines the maximum number of actual function evaluations
that will be executed by the Framework on the trial steps. If the model accurately
captures the trend information in the actual function, the trial steps with the lowest
model values are the most likely to produce decrease in the actual objective function.
It should be obvious that the choice of £ and n, will have a significant impact on
the performance of the algorithm in practice. The pattern £ determines how well the
space is sampled and n; determines the worst case cost of evaluating the trial steps.

The SEARCH algorithm can be summarized as follows:

SEARCH(l’k,fk, My, A, B; L, ns)

0)

1) foriinl,---,|L|

2) m < My(zr + ApBL;)

3) if (m < fi) add AyBL; to S
4) end for

5) sort S by increasing model value

6) return {S;|i = 1,---, min(n,, |S|)}

The intent of this algorithm design is to have £ be very large. This is to allow the
pattern to sample a large part of the design space in the hope of finding improvement
in the model outside the local region of the current iterate. Ideally the steps in £
should sample the local region more densely than the non-local region, since there
is a greater likelihood that decrease will be found near the current iterate. We can
accept the large number of model evaluations because we assume the model is very

cheap to evaluate. Also, we hope that the additional cost is more than compensated

for by the increased chances of finding a better solution far away from the current
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iterate, or finding the best local solution in one SEARCH execution rather than several,
thus reducing the number of actual evaluations that must be performed.

This approach is motivated by the observation that many problems to which the
model management approach is targeted are complex pieces of software and tend to
be noisy, non-smooth, sometimes discontinuous, and generally lacking in the proper-
ties associated with well-behaved optimization problems. This poor behavior is often
a property of the software implementation of the function, not of its mathematical
formulation, so it only rarely is addressed in theoretical nonlinear programming dis-
cussions (see [12] for one such treatment). The fact that all computer calculations
are, to varying degree, discrete, rears its ugly head often in these applications.

The algorithm for MANAGEMODEL requires the capability for the new information
(points and function values) to be integrated into the model at a reasonable cost. It
is not required that the new model interpolate the new values, but it is necessary
for the efficient operation of this algorithm that the model be relatively close to the
actual function in the neighborhood of the new points. Typically the model would
be modified in such a way as to improve the accuracy of the model at (and probably
in some neighborhood of) the point where the actual function was evaluated. There
is no theoretical requirement that this goal be accomplished, nor is it the only goal
one might have in modifying a model. We call this procedure CALIBRATE because the
typical use is to adjust the model to make it agree with the new information obtained

about the actual objective.
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Using this function, the algorithm for MANAGEMODEL can be expressed as follows:
MANAGEMODEL (24, M, S, f)
1) for i = 1,"',|c§|
2)  CALIBRATE(M,z;+ Si, f;)
3

end for

4

)
)
)
) return M
where S denotes the set of trial steps at which the actual function has been evaluated
and f denotes the corresponding set of function values.

The TERMINATE algorithm is simple. It returns T'rue if none of the current trial

steps produced decrease in the actual objective.

TERMINATE(z, M, F, s,)

If the trial step s; computed by the SEARCH/MANAGEMODEL/TERMINATE loop in
MMFEM is zero, the POLL algorithm will be invoked. Steps 4 and 5 of MMFEM and
the definition of TERMINATE guarantee that POLL cannot be invoked if the loop termi-
nates on any iteration except the first, since the step sy will have to be nonzero in any
iteration after the first. It follows that POLL will only be invoked when SEARCH has
failed twice in a row, once in the last iteration of the previous execution of MMFEM
and again in the first iteration of the current execution. This is a reasonable compro-
mise between the need to invoke POLL to ensure convergence and the desire to avoid
invoking POLL because it is potentially so expensive. If two successive executions of

SEARCH fail to find a point with decrease then either the current iteration is close to
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the solution and reducing the pattern scaling is the appropriate thing to do, or the
solution is still not close but the model’s predictions are so poor that sampling the ac-
tual function directly is probably the only way to make progress. This exemplifies one
of the key features of the model management convergence theory: the POLL algorithm
alone guarantees that the hypotheses of the pattern search theory are satisfied.

The algorithm used to implement POLL takes advantage of the model to try to
reduce the number of actual function evaluations that must be performed. The steps
in the core pattern are ranked in order according to their model value and the steps are
evaluated in this order. The new values are added to the model using the CALIBRATE
function defined for the MANAGEMODEL algorithm.

POLL(24, AwCy, F, M)
1) S < elements of ALCp sorted by value of M(zy +¢), ¢ € ArCy
2) forse S

3 < Flzp+ 3)

[

if (f < F(xy)) return s, M
6

end for

)
)
)
4)  CALIBRATE(M,zy + s, f)
)
)
)

7) return 0, M

In the case where at least one of the steps in the core produces decrease, it is
reasonable to believe that this step is more likely to have a lower model value, and
will be found sooner by considering the model values than it would be by choosing a
fixed or random order to evaluate the steps. In the case where none of the steps in
the core produce decrease, the order of evaluation is irrelevant and the work done to
order the steps is wasted. But since it is assumed the model is cheap to evaluate and
n is such that the cost of the sort is small, it follows that the cost of this work is not

significant.
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An obvious variant of this POLL algorithm removes unsuccessful steps from S as
they are evaluated and sorts the remaining steps with the new model. This increases
the cost of the algorithm in the worst case, but if the model evaluation cost is small
compared to that of function evaluation the increase may not be significant. The
benefit is it may require fewer actual function evaluations in the average case, which
should result in a significant reduction in the total cost (assuming actual function
evaluations are expensive).

To prove the method is convergent it is necessary to show that each component
behaves according to the definitions in §2.4.3. The following corollary to Theorem 2.3

serves this purpose.

Corollary 3.1 The algorithms for SEARCH, MANAGEMODEL, TERMINATE

and POLL defined above satisfy Hypotheses 3-5.

Proof  The definition of SEARCH (Definition 2) requires each step that is returned
must be from the current scaled pattern. Each step s; used in the SEARCH algorithm

given above satisfies this by construction:
s; € ALBL = s; = Ap Bl for some [ € L,
le LCZ"= BlecS=s;¢A,S.

The MANAGEMODEL algorithm returns a model, so its behavior satisfies Definition 3
trivially.

Definition 4 requires the TERMINATE algorithm to return either True or False and
to return T'rue for some finite value of the iteration counter j. The algorithm satisfies
the first by construction. To satisfy the second it suffices to show that the trial step is

nonzero for only finitely many values of 5. Let the trial step at iteration 7 be denoted

by s;. By construction we have that

s; = 0 = TERMINATE = T'rue.
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It follows from the definition of the Framework (line 4 of Figure 2.4) that

s5; 0= f; < fici = fi < Jo,

and it follows that the objective value is unique in each iteration in which s; # 0.
Hypotheses 3 and 4 guarantee that all the steps in the pattern are distinct, so there
must be a finite number of pattern steps within the level set of the initial objective
value L(xg). Thus there can be only a finite number of steps that decrease the
objective and so there can be only a finite number of iterations in which the step is
nonzero. Thus TERMINATE must return 7'rue in a finite number of iterations, satisfying
Definition 4.

Definition 5 requires the POLL algorithm to return a step from the core pattern
ACy that either decreases the objective function or is zero. Line 1 of POLL defines
the set S as containing only steps from ApCi, and the rest of the algorithm only
considers steps from S so the first part of the definition is satisfied by construction.
Line 5 allows the step s to be returned as the result only if the objective function
decreases. If the condition in line 5 is not satisfied by any step in 3’, line 7 returns a
result of zero. Thus the second part of Definition 5 is also satisfied.

Thus all the component algorithms satisfy the definitions from the Model Manage-
ment Framework, so this model management algorithm satisfies Hypothesis 5 on the

exploratory moves, and the resulting pattern search algorithm satisfies Theorem 2.3.

O

3.3.2 Trust region-based algorithm

Section 3.2.1 discussed the use of optimization methods to implement the SEARCH
algorithm. In this section the concepts of a class of optimization methods — trust

region methods — are used to design a complete model management algorithm. In
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particular, two of the principal ideas of trust regions methods are used. These ideas
were discussed in a slightly different form in [21]. Note that the model management
algorithm, being gradient-free, does not retain the strong theoretical properties of
quasi-Newton trust region methods.

The first idea from trust region methods that we use is to reduce the original
optimization problem to a simpler optimization subproblem on a model of the original
objective function. The second idea is to solve the optimization subproblem on a
bounded region (called the trust region) and reduce the size of this region when the
accuracy of the model is seen to be poor, as determined by the amount of decrease
predicted by the model compared to the amount of decrease found in the actual
function.

In trust region methods the model is usually a quadratic Taylor series expansion
of the objective function around the current iterate. The property of a Taylor series
model that is most important in the trust region context is that the errors in the value
and gradient of the model decrease closer to the current iterate. Thus the model can
be relied upon eventually to produce a good approximation of a direction of descent
of the actual function as the trust region radius is decreased.

Many types of models that would be considered for use in a model management
method do not have this behavior. Thus the trust region approach must be relaxed for
use in the model management context. In this section we present a model management
algorithm in which the model is required only to be continuous and to interpolate
the actual function at the current iterate. Because of continuity, this guarantees
that for some value of the trust region radius the integrated error in the value of
the model over the region will decrease if the radius is decreased. This requirement,
combined with the method for managing the trust region radius, is used to guarantee

finite termination of the subproblem algorithm. The rest of the model management
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algorithm guarantees that if the subproblem is solved in finite time then the whole
method will converge. Note that this does not guarantee that the gradient of the
model will approach the gradient of the actual function. Thus it cannot be assumed
that a descent direction for the model will be a descent direction for the actual
function. The algorithm accounts for this possibility by executing POLL when the trial
steps computed using the model all fail to produce decrease in the actual function.

Although interpolation at the current iterate does not guarantee that the model
will predict decrease successfully in the actual function, as a heuristic it will succeed
some of the time if the model is reasonably accurate. We hope that the model will
capture at least some of the descent in the actual function much of the time.

It is possible to construct an interpolatory model from a non-interpolatory one
by fitting the error between the model and the actual function with an interpolatory
approximation and using the non-interpolatory model of the objective plus the inter-
polatory model of the error. This is a useful technique when the non-interpolatory
model is a reduced-fidelity solution of a set of governing equations or some other
approximation that cannot be made to fit a specific set of data. The error model has
specific behavior requirements that are easier to satisfy than the requirements for a
general model. The accuracy needs to be highest near the current point. Further
away, the accuracy need not be as high.

Using only the assumption that the model interpolates the actual function value
at the current iterate, it is possible to use the trust region idea to define a subclass of
model management algorithms that satisfy Theorem 2.3. To achieve this, the defini-
tions of the SEARCH and MANAGEMODEL algorithms are modified to include additional
conditions, and a particular implementation of TERMINATE is specified. The strategy
for invoking POLL handles the case where the model consistently fails to produce a

good solution to the optimization subproblem.
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A precise specification of the algorithm in terms of the Model Management Frame-
work components follows.

Let p represent the trust region radius. Assume that p is initialized at Step 1 of
the Model Management Framework (Figure 2.4) so that it satisfies Ay < p < oo. This
initial condition guarantees that there will be at least one step from A.S that is inside

the trust region. We want the behavior of the algorithm to satisfy Definitions 2-3.

Hypothesis 8 Given an iterate xj, the set of possible trial steps AxS,
and Ap < p < oo. Let

d = min||s]|.
seS

Then

{s4,} = SEARCH(z, AxS,p, M, ...)

must satisfy:

st € AyS and |[sy,|| < pd, Vi,

and for bound constrained problems must also satisfy:
T+ sq, €80, Vi
Hypothesis 9 Given a model M of the objective function F,
M, = MANAGEMODEL(M, F,z, 54, . ..)
must be a model of F' and must satisfy

My(zp + 54) = Far + s4).

Given component algorithms with this behavior, TERMINATE is implemented as

follows:
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TERMINATE(S, 54, p, Ag)
1)if (s =0)

2 p<=p/2
Nif(p<Ay)
4

return T'rue

5

else

)
)
)
)
)
)

6

return False.

In this context, the SEARCH function serves one of the purposes that solving the
optimization subproblem serves in the trust region context: to produce a trial step
in the trust region at which the actual function is likely to decrease. Note that
Hypothesis 8 does not require finding a minimizer of the model or even producing
decrease in the model. All it does is restrict the steps from which SEARCH may choose
to those within the trust region. No restrictions are placed on the method used to
choose these steps.

The trust region constraint can be applied to any of the approaches to SEARCH
described in §3.2.1. Since the trust region defines a bounded domain, it also makes it
possible to implement SEARCH using some of the wide variety of sampling methods that
have been developed in the statistics community that require a bounded region [56]
[74]. Once a representative sampling of points from the trust region has been defined,
the model values at the points can be used to select trial steps. These alternatives to
optimizing the model may be preferable if the model is highly nonlinear (many local
minima) or has other characteristics that make for difficult optimization problems.

The simplest approach to using sampling in SEARCH is to evaluate the model at all
points in the sample and select the point(s) with the lowest value(s). Depending on

the choice of sampling method it might be necessary to modify the point(s) to satisfy
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the requirement that the results from SEARCH be from the set AyS (Definition 2).
Other approaches might use different selection criteria besides lowest model value.
For example, if the values of the actual function will be used to modify the model, it
may be preferable to select points where the reliability of the model is most in doubt
[75]. The two criteria are combined in an approach known in statistics as “expected
improvement” [54, 61].

The MANAGEMODEL definition for this algorithm fulfills the interpolation require-
ment. The model must interpolate the actual function only at the latest trial iterate
xk + s4. Note that this is not necessary in a rigorous sense. The only behavior that
is rigorously necessary is the finite termination of the loop in Steps 2-8 of MMFEM,
which follows from Definition 4 of TERMINATE. However, without the interpolation
property the analogy with the trust region method breaks down, and it is unlikely
that the algorithm would be efficient in practice. It is the guarantee of interpolation
and the local accuracy that it implies that supports the argument that reducing the
trust region radius increases the likelihood of finding decrease in the actual function.
Without additional knowledge of the model we cannot guarantee the model solution
will improve. However, we still can guarantee the method will converge because the
POLL algorithm is executed if no decrease in the actual objective is found.

The interpolation property and the use of the trust region radius allow us to
satisfy the finite termination condition from Definition 4. Given this we can prove

convergence by appealing to Theorem 2.3.

Theorem 3.1 Assume Hypotheses 3, 4, 8 and 9, Definition 5, and the
conditions on F' from Theorem 2.3 are all satisfied. Let g(z) be defined
as in Equation 2.3. Then any Model Management Framework algorithm
using the implementation of TERMINATE given above produces a sequence

of iterates {z;} that satisfies, in the unconstrained case,
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h}{r_l}(l)glf IVF(z)]| =0

and in the bound constrained case,

lim inf f[g(zx)[| = 0.
Proof.
e Hypothesis 8 satisfies Definition 2

— The only difference between Hypothesis 8 and Definition 2 is the addi-
tional restriction based on the trust region radius, so any step that satisfies

Hypothesis 8 satisfies Definition 2.
e Hypothesis 9 satisfies Definition 3
— The conditions in Hypothesis 9 are identical to Definition 3.
e The implementation of TERMINATE satisfies Definition 4
— It is assumed that the level set of F'(x¢) is compact and F' is continuous.

By construction F(xy) < F(xq) so the level set of F'(x)) must be bounded.

— By Hypothesis 4, the set § forms a regular grid of points with spacing
Ar > 0, so the number of points zp + s for s € AxS that lie within the

bounded level set F'(xy) is finite.

— Thus the number of points zj + s for s € S that satisfy F(zr+s) < F(xg)

must be finite

— At Step 4 in MMFEM, s; is nonzero only if it produces decrease in F'. Since

there are only a finite number of points which satisfy this requirement,
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there must be an iteration 5 = n for which s; does not produce decrease

and thus is zero.

— Therefore, the number of times TERMINATE is evaluated with s; # 0 is

finite.

— By definition A; > 0 and p < oo so the number of times TERMINATE is

evaluated with s; = 0 before it returns T'rue is finite.

Therefore, Definitions 2-5 are satisfied and Theorem 2.3 holds.O

Both of these algorithms are presented as examples of what can be done with
the Model Management Framework. The key point is the straightforward way the
theoretical requirements impact the algorithm. This greatly simplifies the task of
designing extensions to the algorithms that improve their behavior while maintaining

the convergence property.
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Chapter 4

Numerical Results

In this chapter, results are presented for three test problems. The Model Management
Framework is used with the component algorithms described in §3.3.1. These tests
are intended primarily to demonstrate the effectiveness of the Model Management
Framework and the various issues that arise in using the Framework in practice.
The results are not intended to demonstrate the best possible performance on these
particular test problems. The component algorithms used, particularly the algorithm
for MANAGEMODEL, are simpler than would be used for a “real” problem and probably
do not perform as well as is possible. The simple algorithm design was chosen because
it is easier to implement and understand. Despite this caveat, the performance on
these test problems is quite respectable.

The first test problem is a simple two-dimensional problem drawn from the statis-
tics literature on design of computer experiments. The objective function is trivial to
compute. Results are compared for two types of interpolatory models using different
values for some of the parameters present in the model management algorithm. This
test was chosen because of its simplicity and the ability to visualize the results.

The second test problem is another simple objective function, but in six dimen-
sions. This problem is drawn from the global optimization literature. The objective
function is more complex than in the first test case, but still costs almost nothing to
compute. This test is simple enough that a large number of test runs could be per-
formed, but complex enough to capture some of the characteristics of the much more

difficult optimization applications that are the real targets of this methodology. As in
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the first test, the different test runs correspond to different settings of the algorithm
control parameters with the objective function and initial point held constant.

The third test problem is drawn from a practical application in engineering de-
sign provided by our collaborators at Boeing. This test is presented because it is
indicative of the type of application the Model Management Framework is intended
to target. Because of the much higher cost of solving this problem, only a few runs
were performed.

It must be noted that very little detailed information about the objective function
or the models used is presented; certainly not enough to replicate the results. Some
of the data and software used in this test was developed at The Boeing Company
and is of some commercial importance. We respect Boeing’s proprietary interests in
this software and data and have chosen not to reveal details that might lessen any
competitive advantage related thereto. We think this lack of detail does not detract
from the value of this problem as an example of the general issues involved in the

design and use of model management methods.

4.1 MMF algorithm implementation details

The MMF component algorithms described in §3.3.1 have several control parameters
that must be chosen in order to execute the algorithm. These parameters specify
details of initialization, execution and termination of various parts of the model man-
agement algorithm and the pattern search method that encompasses it.

The basis matrix used for all three problems is the identity matrix. The corre-
sponding set of basis vectors contains the positive unit coordinate vectors. The core
pattern used corresponds to the maximal positive basis. The corresponding set of core
steps contains the positive and negative unit coordinate vectors. This core pattern

was chosen for two reasons: all three problems include bounds on the variables, so
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the use of the maximal positive basis is a simple means of satisfying the theoretical
requirement for bound constrained problems. In real applications more consideration
likely will be given to the choice of core patterns, as the choice can have a significant
impact on the efficiency of the method.

The approach implemented for setting and adjusting the pattern scale factor Ay
uses three control parameters to specify the initial value of Ay, the ratio by which
Ay is contracted whenever the POLL operation fails, and the value of Ay at which
the Framework terminates. (Other termination criteria will be discussed later.)
Additionally, the Model Management Framework implements several methods for
expanding the scale factor after a successful step, and the choice of method is speci-
fied via another control parameter. All four of these control parameters are varied in
some or all of the test problems.

Other aspects of the algorithm that can be varied are the type of model and the
initial model. Two methods were used to generate the models. One method involves
fitting a variable-order multivariate polynomial to the given data [19] as implemented
by Grandine [34]. The number of terms in the polynomial and its order increases
with the number of data points to fit. The more data given, the more terms in the
polynomial and the higher the order of the polynomial. The other method uses a
best linear unbiased predictor (BLUP) model as discussed in [74] and implemented
in the DACEPAC software by Booker [4]. We will henceforth refer to these models
as polynomial and DACE models, respectively. The software for both models is
implemented to the same interface specification, so the models can be substituted
for each other without changes to the model management software. It is likely that
existing implementations of other models could be substituted without significant

coding effort.
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A DACE model M of a function F' has the general form:
M(x) = B+ r(2) Ry (F(xa) = B1),

where r(z) is the vector of values of the correlation function of x with all the data
points used to build the model, Ry is the matrix of values of the correlation function of
all the data points with each other, x4 is the set of data points at which the model has
been fit, F'(x4) is the vector of objective function values at x4, B is a scalar constant
related to the mean value of F'(z4) and 1 is a vector composed of all Is..

In the DACE models, the correlation function is defined as
plaw) = [ ol
7=1
Thus the entries of the correlation vector r(z) are defined by

ri(z) = p(z, z4,),

and the elements of the matrix R, is defined by

Ry(1,7) = p(xq;, 4,).

This matrix is symmetric positive definite with unit diagonals. The scalar B is defined
by
B3=01"R;"1) 1T R F(xy).

To construct an initial DACE or polynomial model, the objective function must
be evaluated at a set of points before starting the model management process. The
cost of these evaluations and the cost of constructing the models is an overhead cost.
For both types of models the major cost of construction (aside from the function
evaluations) is that of computing the coefficients in the model. In the polynomial

model this requires a singular value decomposition of a matrix of order the number
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of terms in the polynomial. In the DACE model the coefficients § are computed
by solving an optimization problem with the coefficients as the unknowns. Thus,
the DACE models are generally more expensive to construct than the polynomial
models. In practice the DACE models tend to be less expensive to evaluate than the
polynomial models. The computational cost was not an issue in the choice of models
to use in the test problems.

There are other uses to which the model(s) can be put, so it may be possible
to reuse the model and/or the function data outside of the Model Management
Framework. Some of these uses in an engineering design context are discussed in
[6, 7].

It should be reemphasized that the Model Management Framework is not limited
to the two types of models used in the test problems, nor is it limited to interpolating

models. See [2, 65] for other choices.

4.2 Test function #1

This function was used by Welch, et al. in [74]. Tt is defined on R?, with two

minimizers in the interval [0 : 5]%. The function is defined by:
F(z) = (30 + zysin(xq))(4 + e7™).

The primary purpose of this test was algorithm and code validation. It is not represen-
tative of the behavior of the models and algorithms on realistic problems. Figure 4.1
is a contour plot of the actual objective function showing the global minimizer (*)
and the points used to construct the initial models (&). The contours are labeled
with the associated function values.

Six data points were used to construct the initial DACE and polynomial models.

An orthogonal array-based Latin hypercube sample [68] computed using Owen’s oa
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Test problem #1 —— Actual Function

5r A
* Minimizer
| @ Model Site

Figure 4.1 Contours of actual objective function for test problem #1.

software (available from STATLIB (http://1ib/stat/cmu.edu/designs)) was used
to select these points. The same points were used to construct both initial models.
This may not seem like many points but it is indicative of the density of sampling
that one can afford to do in higher dimensions on the expensive problems in which
we are interested.

Figure 4.2 contains plots similar to Figure 4.1 for the initial DACE and polynomial
models. The plots show clearly that both models capture the qualitative behavior of
the actual function fairly well, although the polynomial model captures the location
of the basin more accurately.

The actual function is non-convex, with local minimizers near the upper left and
upper right corners of the bounded domain. Considering the small number of points
used to construct the models, both models effectively serve the purpose of identifying
a direction of descent in the actual function from most points in the domain. The

major exception is that the DACE model mis-predicts the shape of the basin of the
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global minimizer in the upper right corner. This isn’t necessarily indicative of the

general behavior of polynomial and DACE models on other problems.

The starting point used for the optimization was X = (2%, %) This point was
also used as one of the points in the initial models. The other five initial points are:

(3.88,4.11), (4.364, 1.558), (2.485, 2.536), (0.699, 1.385)and(1.066,4.059). Different ini-

tial points would produce different models.

Initial DACE model 120 Initial polynomial model
X Minimizer * 5 e Minimizer 430
GBModrgl épites > oe ite hili
115
4 D ¢ 1 ]100
Ll 0]120

Figure 4.2 Contours of initial DACE and
polynomial models for test problem #1.

Results are presented from two sets of test runs. In the first set, the model manage-
ment algorithm is run once with each type of model and with the algorithm parameters
set to default values. These two runs will be used for visualization purposes. In the
second set of runs the algorithm parameters are varied across runs. These runs will
be used to correlate the behavior of the Framework with the variations in algorithm

parameters.
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4.2.1 Visualization test

Figure 4.3 presents contour plots of the two sets of models at intermediate steps in
the optimization. Each row of plots shows how the models change after the model is
adjusted to fit the values computed during the iteration noted. The path taken by
the optimization is also shown. These plots show how the models adapt to the actual
function as they are updated with function values computed during the optimization
process. Three plots for each type of model are presented, corresponding to the
state of the computation at the completion of the 1st, 3rd and 5th iterations of the

Model Management Framework. The path taken by the solution is shown by the lines

b 2

marked with “x” symbols. Each “x” indicates an accepted intermediate step. Recall
that the method only accepts steps when the value of the actual objective function
decreases. The number of steps taken and the number of actual function evaluations
performed in each iteration are not the same for the two runs. Also, some iterations
did not produce nonzero steps. Thus the number of steps marked on the plots are
different for the two runs. The global minimizer is marked by the “x” symbol near
the upper right corner. As before, the “G” symbols mark the points used to construct
the initial models.

The two types of models react differently even though both start from the same
initial point and take the same first step. The solution using the polynomial model
takes two steps in the first iteration compared to just one for the DACE model (top
row of Figure 4.3), and stays one step ahead for the rest of the iterations.

Here we see the effect the quality of the model can have on the performance of
the method. Both models take the same first step (to = (42,21)). The initial
pattern scale factor was 1, so this step corresponds to moving two pattern points in

each direction. The run with the DACE model stops here because the initial model

predicts the minimizer is close by (see Figure 4.2) and the method cannot find another
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step (in the pattern) that decreases the model value. The run with the polynomial
model takes another step (to 2 = (42,43)) because the initial model captures the
shape of the actual function better in that particular part of the domain (compare
Figure 4.2 with Figure 4.1).

After the first iteration, the DACE model (on the left) still mis-predicts the lo-
cation of the minimizer and the general shape of the basin of the minimizer. The
polynomial model captures the shape of the basin much better.

In this iteration and the iterations that follow, the polynomial models change more
than the DACE models. The only significant change in the DACE models is the basin
of the global minimizer moves closer to the shape of the basin of the minimizer of
the actual function. The polynomial models change significantly in the part of the
domain away from the global minimizer. This exemplifies one of the fundamental
differences between the DACE and polynomial models: the DACE models change
locally in response to new data whereas the polynomial models change globally. One
can easily imagine problems that reward either property.

The next two rows of Figure 4.3 show the steps accepted in the solutions and the
models that result after 3 and 5 MMF iterations. In both cases the solution with the
polynomial models is closer to the global minimizer of the actual function.

Although the solution using the polynomial models has a better solution after the
5th iteration, it took more function evaluations than the solution with the DACE
models (15 vs. 9) because it selected trial steps that did not decrease the actual func-
tion more often than the solution with the DACE models. Running the Framework
with the DACE models to the same number of function evaluations (15) took 8 iter-
ations (instead of 5) and produced the same solution as the polynomial model. This
shows that the polynomial model gets close to the solution in fewer iterations than

the DACE model, most likely because initially it has a better approximation of the
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location of the basin of the solution. However, this more rapid approach to the solu-
tion leaves the polynomial model with less accuracy and thus it uses more function
evaluations than the DACE model because it errs in predicting decrease.

Although this is a simple example, it demonstrates that success on a model man-
agement problem does not depend only on the initial accuracy of the model. It should
be stressed that no general conclusions can be drawn about the behavior of these types

of models from this particular problem.

4.2.2 Parameter variation test

The second set of tests investigates the effect the various parameters in the model
management algorithm have on performance. Six algorithmic parameters were varied

during these tests. These parameters are described below.

Model Type The two different model types (DACE, polynomial) used in the pre-

vious test were also used for this test.

Initial Pattern Scale Factor The pattern scale factor A, determines the spacing
between the steps in the pattern. Trial iterates are chosen from the pattern.
A larger scale factor allows longer steps to be taken. A smaller scale factor
implies a denser sampling of the problem space. Since the algorithm converges
by reducing the scale factor, a smaller initial scale factor risks premature con-
vergence and a larger initial scale factor takes longer to converge. Four initial

scale factor values were used: 1, 1/2, 1/4 and 1/8.

Final Pattern Scale Factor The program terminates when the pattern scale factor
Ay, reaches this value. Three values were tested: 1/16, 1/64 and 1/256. The

Framework algorithm reduces the scale factor when a POLL fails.



97

Pattern Scale Contraction Ratio The pattern search convergence theory described
in Chapter 2 requires that the pattern scale factor be reduced by a constant
whenever it is reduced. The contraction ratio defines this constant. A smaller
contraction ratio reduces the pattern scale factor more quickly, and generally
leads to smaller steps being taken. Ideally, a smaller ratio would cause the
method to converge more quickly, but it may also cause premature conver-

gence, requiring more iterations. Three contraction ratio values were used: 1/2,

1/4 and 1/8.

Pattern Update Method The Model Management Framework supports several
methods for updating the pattern scale factor in iterations of the pattern search
that are successful in finding decrease in the objective function (line 7 of method

GPS in Figure 2.1). Five different methods were tested:
1. the pattern is never expanded

2. the pattern is expanded by 1/pattern_scale_contraction_ratio

3. same as 2 except a contraction that follows an expansion is taken with-
out invoking POLL. This reduces the cost without affecting the theoretical

behavior.tt

4. same as 2 except the pattern is not expanded when the step with decrease

was found by POLL. This prevents unwarranted expansion of the pattern.

5. same as 3 except the pattern is not expanded when the step with decrease

was found by POLL.

1 An expansion/contraction pair can only occur a finite number of times before a solo contraction
or expansion happens, so as far as the convergence theory is concerned the paired expansion and
contractions cancel out and are equivalent to a successful step taken at a constant scale factor.
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Function Evaluation Limit This limits the number of times the actual objective
function can be evaluated on the steps computed by SEARCH. In other words,
it limits the size of the set of trial steps returned by SEARCH. This limits the
cost of evaluating the steps to determine if one is acceptable. In the model
management algorithm used in the tests, this value also affects when POLL will

be invoked. Three limit values were tested: 1, 2, and 4 (i.e. 1,n and 2n).

Model Interpolation Error In the DACE model only, a small amount of error in
the interpolation of the model to the actual function values can be introduced
to improve the condition number of the correlation matrix used to compute
the model values. Increasing this error tolerance tends to lower the condition
number of the correlation matrix associated with a given set of sample points,

reducing the likelihood that the matrix will become singular.

The SEARCH algorithm uses the interpolation property to guarantee that a step
that is rejected once is never selected again. Without it, the model may continue
to predict decrease at a point even after the actual function value has been
computed. If this happens and the point is selected again as a trial step by
SEARCH, the Framework will reject the step again. Either another step will be
accepted or POLL will be invoked. Thus, relaxing the interpolation requirement
improves the conditioning of the DACE model at the risk of an increase in

computational cost.

The Model Interpolation Error is also known as “measurement error” in the

literature on response surface models [25, 54]. Three error values were tested:

0, 107% and 1073,

A total of 2160 runs were performed for this problem. Over all the runs, only

6 different results were computed. This is not surprising: the basin of the global
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minimizer is narrow and the number of grid points “near” the global minimizer is
small (near in pattern spacing), both because the problem is only 2D (at most 9
grid points within one “unit” of pattern distance) and because the solution is on the
boundary (eliminating 3 or 4 grid points, depending on pattern spacing). The small
number of unique results is a positive outcome in that it shows the algorithm always
reaches nearly the same answer regardless of the algorithm parameter settings.

In the discussion that follows, three measures of performance will be considered:
the accuracy of the final objective function value; the number of function evaluations;
and the number of executions of the POLL routine. The first two are the primary mea-
sures. The third indirectly measures how effectively the model is being used. If POLL
is invoked frequently, the model is not helping very much. Also, in higher dimensional
problems, POLL is likely to be the most expensive operation in the algorithm.

Table 4.1 summarizes the results of the test runs. The column labeled “Occurrences

of Sol'n” contains the number of runs that produced each solution.

Sol'n | ||X — X.|| f—f« Occurrences X
of Sol'n
(1) |4.352 x107* | 5.695 x 10~* 418 ( 4.916667, 4.997396 )
(2) ]1.098 x 1072 | 1.903 x 10~* 721 (4.916667, 4.989583 )
(3) | 2.627 x 1072 | 4.604 x 10~ 1 ( 4.916667, 4.973958 )
(4) | 4.181 x 1073 | 7.347 x 107 780 ( 4.916667, 4.958333 )
(5) | 1.667 x 1072 | 3.090 x 10~2 180 (4.916667, 4.833333 )
(6) | 2.976 x 1072 | 6.427 x 10~ 60 ( 4.666667, 4.833333 )
Total 2160

Global solution: f, = 100.01182; X, = (4.91318,5.0) |

Table 4.1 Results of 2D visualization test runs.

As would be expected, the accuracy of the final objective values correlates well

with the choice of the final pattern scale factor parameter.

Table 4.2 shows the
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number of occurrences of each of the 6 different solutions for each of the 3 values of
the final pattern scale factor parameter. Reducing this value generally leads to better

solutions.

Occurrences of Sol'n
Sol'n f — f. || Final Scale Factor | Total
1/16 ‘ 1/64 ‘ 1/256

(1) [5695x10*] 0 | 0 | 418 | 418
(2) [1.903x1073| 0 | 420 | 301 || 721
(3) [4.604x103| 0 | 0 1 1
(4) | 7.347 x 1073 || 480 | 300 | 0 780
(5) |3.090x 1072 | 180 | 0 0 180
(6) |6.427x 1071 | 60 | 0 0 60
Total 720 | 720 | 720 | 2160

Table 4.2 Results of 2D visualization test
for different termination criteria.

Variations in the model have no effect on the results. The polynomial model and
the three DACE models that were tested have essentially identical occurrences of
each of the five solutions that occur more than once. (The only variation is the single
occurrence of solution (3).) The performance varies across models (in terms of number
of function evaluations), but the same solutions are produced. This strengthens the
observation that the algorithm responds very predictably to the final pattern size
termination condition.

We look next at performance in terms of number of actual function evaluations.
This measure is used because it is assumed that the cost of actual function evaluations
dominates the cost of the other parts of the algorithm, including searching for trial
steps using the model. Though this is not the case for this test problem because
the actual function is trivial, it is assumed to be true in the problems for which this

method was designed.
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Although the many runs produced only 6 different solutions, they took many
different paths, and this is reflected in the number of function evaluations used by each
run. Table 4.3 summarizes this data. For each solution, the minimum, maximum and
median number of function evaluations used in the runs that produced that solution
are given. The results are separated into the type of model used. Recall that solution

(3) occurred only once. The solution numbers are the same as in Table 4.2.

Number of Function Evaluations

Sol’n Polynomial DACE error 0 DACE error 107° || DACE error 1073

Min ‘ Max ‘ Med || Min ‘ Max ‘ Med || Min ‘ Max ‘ Med || Min ‘ Max ‘ Med

15 55 32 21 50 32 23 50 32 33 | 100 | 46
11 45 25 18 44 24 19 44 25 26 | 100 | 39
0 0 0 0 0 0 0 0 100 | 100 | 100
35 18 14 37 18 15 37 18 19 78 27
22 16 14 31 15 14 31 15 16 42 22
16 12 11 20 11 11 20 11 13 28 13

0~ 1 O

Table 4.3 Results of 2D visualization test for different models.

There are several trends that are clearly represented in this data. The less accurate
solutions took fewer function evaluations. The interpolating polynomial and the
interpolating DACE model (error 0) have very similar behavior. The polynomial
model performs slightly better for low accuracy solutions and sometimes performs
better at high accuracy (as exhibited by the lower minimum number of evaluations
for solutions (1) and (2) and nearly equal median and maximum). The contour
plots of the actual function and the initial models (Figures 4.1 and 4.2) show that
the polynomial model captures the behavior of the basin of the global minimizer
(X=4.91,5.00) more accurately than the DACE models (the effect of the interpolation
error is too small to be seen so the same plot applies to all three DACE models). This

advantage will be particularly significant for the less accurate solutions, since the
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algorithm will be able to get into the neighborhood of the minimizer with less work
using the polynomial model. In the more accurate solutions the model management
process has sufficient information (i.e. function values) to adapt both models to the
shape of the basin of the minimizer, thus explaining the similarity in performance in
those cases.

Table 4.4 shows the results of varying the initial pattern scale factor parameter.
The table contains the number of occurrences of each unique solution for the four

values of the parameter that were tested.

Occurrences of Sol’n
Sol’n f—f Initial Scale Factor || Total
1 ‘ 1/2 ‘ 1/4 ‘ 1/8
(1) |5.695x10~* || 60 | 178 | 60 | 120 || 418
(2) | 1.903 x 1072 || 180 | 121 | 240 | 180 || 721
(3) | 4.604 x 1072 0 1 0 0 1
(4) | 7.347 x 1072 || 240 | 180 | 120 | 240 || 780
(5)

(6)

3.090 x 1072 || 60 0 |120| O 180
6.427 x 10 | 0 | 60 | 0 0 60

Table 4.4 Results of 2D visualization test for different initial conditions.

The results for solution (6) are the most easily explained. All 60 runs correspond
to the same combination of parameters: initial scale factor = 1/2, final scale factor
= 1/16 and contraction ratio = 1/8. This combination of settings guarantees the
program will terminate after the 2nd contraction occurs because the first contraction
reduces the scale factor from the initial value to the final value. This pattern repeats
for all the other cases. There are 36 different combinations of (initial scale factor,
final scale factor, contraction ratio) giving rise to 2—9 contractions. There are 60 test

runs for each combination. Variations in model type, initial model size and pattern
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update method account for the 60 runs. All 60 runs for a given combination produce
the same solution.

Figure 4.4 shows the different solutions plotted against the number of function
evaluations for all the test runs. Each model is plotted separately for each solution.
The plot shows that the polynomial models (o symbols) tend to perform better than
any of the DACE models. Among the DACE models, the performance of the interpo-
lating models (+ symbols) and the non-interpolating models with the smaller error
(* symbols) are nearly identical, while the models with the larger error (x symbols)
perform worse in many cases.

Figure 4.5 shows the same plot as Figure 4.4 except the results are separated by
the pattern update method used in the run. The performance of methods 1, 3 and
5 is very similar and is somewhat better than the performance of methods 2 and 4.
Update methods 2 and 4 share the common characteristic that once the pattern scale
factor is increased, POLL must be executed in order to reduce it. The other update
methods do not have this characteristic. Method 1 never increases the scale factor,
and methods 3 and 5 allow the scale factor to be reduced without executing POLL
only if the reduction cancels a previous increase.

If the pattern is expanded too much, SEARCH may fail to find acceptable trial steps,
which causes POLL to be invoked. This is one potential source of the extra function
evaluations. Another possibility is that the larger pattern scale factors encourage
SEARCH to select trial steps that are further from the current iterate, where presumably
the model is more likely to predict decrease incorrectly. In either case, the source of
the poor performance is the pattern scale factor being increased too much.

The motivation for update method 3 is to avoid the POLL cost associated with

decreasing the pattern scale factor after an increase due to a successful trial step.
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Figure 4.4 Function evaluation counts for all models and solutions for test
problem #1. Solution accuracy decreases with increasing solution number.
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Figure 4.5 Function evaluation counts for all pattern
update methods and solutions for test problem #1.
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Update method 5 tries to avoid some of the SEARCH failures associated with larger
pattern scale factors by not expanding the pattern scale factor after a successful POLL.

A further modification to the pattern update method would be to use the trust
region-inspired approach and only expand the pattern scale factor when the ratio of
the decrease in the objective function predicted by the model and the actual decrease
is high. However, since this does not guarantee the accuracy of the model, this

heuristic is not guaranteed to produce better results.

4.3 Test function # 2

The second test problem is taken from the global optimization literature [24], where
it is known as the Hartman function. It is a six-dimensional problem with four local
minima. The global minimizer is unique.

The algorithm parameters that were varied for this test include all those used in
Test #1 except the final pattern scale factor which was kept constant. For these test
runs termination also depends on a limit on the number of actual objective function
evaluations. In addition to the algorithm parameters from Test #1, the number of
data points used to construct the initial models were also varied.

Three initial models of each type were constructed, using 16, 32 and 64 data points.
As in Test #1, orthogonal array-based Latin hypercube samples were used to select
the data points. In each case, the DACE and polynomial models were constructed
from the same set of data points.

Several values for each algorithm parameter were selected and the Framework was
run for all possible combinations of these values. A limit of 100 function evaluations
was set for each run. This was deemed high enough to separate successful parameter

settings from unsuccessful ones.
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The purpose of running tests for all the parameter values was to see which ones
would perform well and to understand the reasons for the performance, both good
and bad. Real applications of model management will be too expensive to run several
solutions just to find a good set of algorithm parameters. Ideally, we would like to be
able to justify a particular set a priori. More realistically, we would like to be able to
make informed choices for the parameter values.

The parameter values used in the tests are given below. The meanings of the

parameters are given in §4.2.2.

e Model Types: Interpolating polynomial; DACE with InterpError = 0, 107°,
1073,

e Model Size: 16, 32, 64.

e Initial Scale Factor: 1/2, 1/4, 1/8.

e Final Scale Factor: 1/16, 1/64, 1/256.

e Scale Factor Contraction Ratio: 1/2, 1/4, 1/8.

e Function Evaluation Limit: 1, 3, 6, 12 (i.e. 1, n/2, n, 2n).
e Pattern Update Method: 1, 2, 3,4, 5

Every combination of parameter values was tested. A total of 6480 test runs were
performed.

The problem domain is bounded by [0 : 1]°. The starting point for all the runs
was the midpoint of the domain: X = (3,1,1,1,1 1)

The 6D Hartman problem is non-convex with four local minimizers. Therefore the

first measure of performance to investigate is which runs found the global minimizer.

Figure 4.6 plots the /5 norm distance of each solution from the global minimizer for
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all the test runs. The error in the final objective function value increases along the
horizontal axis.

The three models are built from three independent sets of points. Fach is an
orthogonal array-based Latin hypercube sample. The larger sets do not necessarily
contain the points of the smaller sets. Fach is designed to cover the space as uniformly
as possible with the given number of points.

At least two distinct groups of results are evident in this plot. The solutions with
values of || X — X*|| < 0.5 are all close to the global minimizer. The solutions with
|| X — X*|| > 1.0 are closer to one of the other three local minimizers. Figure 4.7 plots
the same results with the normalized error in the final objective (|f — f*|/|f *|) on
the vertical axis. This clearly shows the clustering of results.

Of the 6480 runs, 3385 (52%) are in the cluster close to the global minimizer. This
is good performance considering this method has no algorithmic features specifically
designed to solve the global optimization problem. The behavior arises as a side-effect
of the use of a pattern search method in the SEARCH strategy (see §3.3.1).

Removing from consideration the results in the basin of the global minimizer
and computing the distance of the remaining results from the second best minimizer
produces the data plotted in Figure 4.8. Referring back to Figure 4.6, it seems fair to
conclude that essentially all of the solutions that are not close to the global minimizer
are close to the second best local minimizer. Figure 4.9 plots the relative difference
in the objective function from the second local minimum value for these solutions. It
shows that most are within 10% of the minimum value. The other solutions typically
terminated because the limit on the number of function evaluations was reached.

These results show that the algorithm works correctly over a wide range of input

parameter settings. The efficiency of the algorithm (measured in number of function
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evaluations) varies a great deal, but even the runs that were inefficient came fairly

close to one of the local minimizers.

A very small number of runs failed. These failures were all due to the inability to

compute a new model that fits all the data values. There were 31 runs (0.5%) that

terminated without producing a result. All used interpolatory models (6 runs used

polynomial models and 25 used DACE models with zero interpolation error). The

software that constructs the models (both polynomial and DACE) can fail if the data

it 1s trying to fit is too ill-conditioned. This ill-conditioning can arise when some data

points are much closer together than others. Also, the DACE software is sensitive

to co-linearity in the data points. Unfortunately, these situations both tend to arise
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Figure 4.7 Plot of distance from the global minimizer versus the relative
error in the final objective value for each solution for test problem 2.

in MMF runs. The grid spacing decreases as the algorithm progresses so the data
points tend to get closer together. Also, the data points are taken from a regular grid,
increasing the odds that points will be co-linear. It follows that this is likely to be
a recurring problem in MMF methods. Considerable effort was expended on making
the model fitting software (both DACE and polynomial) as robust as possible. More
experimentation is needed to determine whether the low failure rate (0.5%) seen in
this test is indicative of realistic applications.

Of the 6449 successful runs, 2257 (35%) terminated in less than the maximum
of 100 objective function evaluations. This suggests that termination criteria are an

important consideration in the Model Management Framework, as they are in most
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Figure 4.8 Distance from the second minimizer for each solution for test
problem 2. Solutions are sorted by increasing objective value.

optimization methods. This is not surprising since the performance of pattern search
methods in general is sensitive to termination criteria because they converge linearly
once they are in the neighborhood of a solution.

Terminating on the number of function evaluations is a somewhat arbitrary way to
separate the solutions. Since we are interested in which parameter settings produced
the most efficient results, any method of filtering the more efficient solutions from the
less efficient would be valid. In particular, the number of MMF iterations is another
reasonable criterion, especially in an implementation of MMF on a parallel computer
where the effective cost of the function evaluations will vary depending on the number

of processors used.
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MMF/Hartman 6D Test: relative error in objective for solutions near 2nd minimizer
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Figure 4.9 Relative difference in objective function value for solutions of
test problem 2 that are near the second (best non-global) minimizer.

In the rest of this discussion only those runs that passed the evaluation limit
criterion will be considered.

The runs that terminated in less than 100 function evaluations were distributed
fairly evenly across the four types of model (interpolating polynomial models, inter-
polating DACE models and DACE models with 107¢ and 102 interpolation error).
The interpolating DACE models appear more often (29%) than the polynomial mod-
els (18%), while the non-interpolating DACE models did about equally well (27% and
25% respectively). This data does not provide compelling evidence of the superiority

of either of the models.
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Two-thirds (69%) of the runs had objective function values within 10% of the
global minimum, and 18% were within 2%. We will call these the “best” runs, since
not only did the algorithm produce a good approximation of the global solution, it
also terminated in a reasonable amount of time.

Not surprisingly, the models built with 64 initial data points produced most (66%)
of the best results. Furthermore, these models produced almost half of all runs that
met the 100 function evaluation criterion although they only account for one third
of the runs. This indicates that this algorithm will be more likely to converge and
produce a better answer when a better initial model is used.

The surprise is that the 16 point initial models produced more of the best results
than the 32 point models (20% vs. 14%). This gap widens if you account for the
extra 16 function evaluations required to build the 32 point model by selecting only
the runs with the 32 point model that terminated within 84 function evaluations. The
32 point model runs that meet this more stringent standard account for less than 11%
of the best results. In other words, based on total function evaluations, the 16 point
models get a best result almost twice as often as the 32 point models.

Applying this more stringent standard to the 64 point model results changes the
picture completely: only 2.4% of the best runs use 64 point models and converge
within 52 evaluations (the 100 evaluation limit minus the extra 48 evaluations used
in building the model).

These results suggest that it is more effective to use function evaluations inside
the model management algorithm than to use them to produce a better initial model.
Results in the “real-world” test case discussed in the next section also exhibit this
behavior. Although we cannot draw any general conclusions from just two test cases,

this is suggestive enough to warrant future research.
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The caveat to this observation is that the number of function evaluations is not
always an accurate measure of cost. The function evaluations used to construct a
model may not all cost the same (e.g., if they can be computed in parallel) or may
be required for other reasons (e.g., to validate the model or to identify important
variables). Fach application must use an appropriate measure of cost to decide what

initial model is best.

4.4 Helicopter rotor blade design problem
4.4.1 Problem description

This problem comes from the Helicopters division of The Boeing Company [28]. The
problem is to optimize the performance of a helicopter rotor blade while minimizing
vibration. This is a multidisciplinary problem involving structures, fluid dynamics
and propulsion disciplines. This problem is of significant interest to Boeing and has
been investigated as part of the Boeing-IBM-Rice collaboration.

This problem is a good test for the Model Management Framework because it is
typical of large scale multidisciplinary engineering design problems. It has a moder-
ate number of variables (31); large enough to present significant challenges but not
so large as to make testing impractical. The computational expense of the objec-
tive evaluation can be varied without qualitatively changing the characteristics of
the problem, allowing some level of control over the resources required to solve the
problem and allowing relatively cheap experiments (hours rather than days of com-
puter time) to be performed. The accuracy of the objective function (with respect to
the “real” rotor blade performance) increases with the computational expense. The

computer model of the objective function is non-convex, has many local minima, is
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not defined everywhere (i.e. does not compute results for all inputs), and may not be
smooth everywhere it is defined.

The objective function is computed using a program developed at Boeing called
Tech01 [62]. This program has features common to many large-scale engineering
analysis codes. It is a complex program, integrating code from several disciplines
developed over many years by multiple programmers. The program is fragile, and it
will not converge for some sets of inputs, including inputs that are feasible with respect
to the explicit constraints given for the problem as well as inputs that are relatively
close to inputs for which the program does converge. The output of the program is
not smooth with respect to the inputs. The program source is proprietary to Boeing
(only object code was available for testing), so the problem has been integrated into
the Model Management Framework without changing any of the Tech01 code. All
these characteristics are shared with many other computer programs used in the type
of applications which the Model Management Framework targets.

The Tech01 program can take from several minutes to several hours to evaluate a
single objective function value, depending on the level of fidelity selected. The tests
reported here used a low level of fidelity, resulting in run times of several minutes per
evaluation. The designs computed are less realistic as a result, but the computational
cost of testing is greatly reduced.

The variant of the test problem on which we report has 31 independent variables
that specify various design parameters at a set of positions along the span of the rotor
blade, such as mass, stiffness and center of gravity. The problem has bounds on all the
variables and a single linear inequality constraint on the sum of the mass variables.
The Model Management Framework implements the bound constraints by rejecting
any point that does not satisfy the constraint. The convergence theory guarantees

convergence in this case. The same approach is used to satisfy the linear inequality
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constraints. The convergence theory as presented does not apply to this case.¥* The
constraint was included in the problem to see if the method would succeed in practice.

The computational cost of enforcing the linear constraint is negligible.

4.4.2 Details of the model management algorithm

The pattern search-based component algorithms described in §3.3.1 were used with
the Model Management Framework for this problem. The pattern used in SEARCH
contained approximately 30,000 points. The SEARCH algorithm from §3.3.1 evaluates
the model at every feasible point in the pattern. For this problem, in any particular
execution of SEARCH as many as 5000 of the points were feasible* and as many as 2000
produced decrease in the model, although this latter number decreased rapidly as the
algorithm progressed; the number of points that produced decrease in the model value
was typically a few hundred or less. A large pattern was used because the models are
very cheap to evaluate and the Tech01 program is known to produce function values
with many local minima so extensive sampling of the model was considered necessary
to produce better trial steps.

This reflects an important issue in SEARCH algorithm design: compared to the cost
of evaluating the actual function just about everything else that can be done in the
algorithm is cheap. This gives tremendous flexibility in designing algorithms, up to
and including using “brute force” approaches that would be impractical if applied
directly to the actual function.

The initial model of the objective function was constructed at Boeing by Andrew

Booker using his DACEPAC software package [3, 4]. Fifty-nine function evaluations

H A recent extension to the underlying pattern search convergence theory [49] could be used to prove
convergence in the presence of linear inequality constraints.

*The scaling of the initial pattern put most of the pattern points outside the bounds.
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were used for the initial model. This represents the number of successful evaluations
of the Tech01 code. An additional 97 unsuccessful evaluations were performed for
which the code did not converge. We do not include these evaluations in the cost
of building the model because we want the cost to reflect the amount of data used
to build the model. Furthermore, the author’s experience with many engineering
analysis codes suggests this is an unusually high failure rate for such codes and does
not reflect the general case. Also, it might be possible to reduce this failure rate
by tuning the parameters that control the TechO1 code or by running the code for
more iterations. On the down side, this might increase the run time of each function
evaluation. This tradeoff was not investigated. The parameters used were as specified
by the Boeing engineers.

The 59 data points in the initial model is a relatively small number for a problem
of this dimension. Consequently, the model captures very little of the behavior of
the actual objective function. This represents a difficult environment for any model
management algorithm, and so it is an appropriate test case.

Four MMF results are presented. These represent different settings of the limit on
the number of trial steps returned by SEARCH. This limit determines how many times
the actual function will be evaluated before the Framework chooses to set the trial
step to zero. This limit trades off the cost of function evaluations against the ability
of the model to predict decrease. The better the model at predicting decrease, the
fewer the number of trial steps that should need to be evaluated to find one which
decreases the actual objective. The lower the limit, the more likely the algorithm is

to execute POLL, with its potentially high cost.
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4.4.3 Other methods

Several other approaches were used to solve this problem. The results are presented
for comparison. One approach applied a pattern search method directly to the actual
objective function. Another used a model management method with polynomial
models. Another approach used an iterative statistical sampling technique to choose
points at which to evaluate the actual objective, taking the lowest value computed as
the result. In a fourth approach the sampling results were used to construct models
to which an optimization procedure was applied. Another approach applied a genetic
algorithm directly to the actual objective function. Each method is described briefly
below.

The same starting point was used for all methods for which a starting point is
meaningful. The same initial model was used for all the model-based methods. The

initial point and initial model were provided by Boeing.

Pattern search method

The pattern search method used is the Parallel Direct Search method of Dennis and
Torczon [23] as implemented for unconstrained problems in the PDS program by
Torczon [71]. PDS has been modified by Serafini to support constraints and the
standard Message Passing Interface (MPI) parallel communications library [64]. This
modified version was applied directly to the actual objective function. No model was
used.

Two different starting points were used. One was the same starting point used for
the other methods and the second was the point with the lowest objective value from
the 59 points used to construct the model. These two cases are called “PDS1” and
“PDS2”, respectively. The second case is of interest because it helps characterize the

behavior of PDS on this problem. Since PDS is based on a similar theory to the model
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management theory, this characterization may prove enlightening. Several tests with
different sized patterns were conducted for each starting point and the most efficient
runs are presented. The PDS1 run used a 96 point pattern. The PDS2 run used a 64
point pattern. In both cases, larger (more costly) patterns were tested but did not

improve the results.

BLGS method

The BLGS method [6] mentioned in §3.2.2 was also used on this problem. The same
59 point DACE model used in the MMF results was used as the initial model. Three
model refinements were performed, using 50 function evaluations each time. Paul
Frank at Boeing developed the BLGS software and generated the results presented

here.

Genetic algorithm method

A solution using a parallel genetic algorithm was also performed. The PGAPack
software [46] was used for this solution. The result presented used a steady-state
reproductive strategy with a population size of 200 and a replacement rate of 10% of

the population per iteration. These parameters were recommended by David Levine,

the author of PGAPack.

DFO method

A new derivative-free optimization method developed by Conn, Mints and Toint [14]
was also applied to this problem. The method, called DFO, is a form of model
management algorithm. The model is a quadratic polynomial approximation. The
model is constructed incrementally from the actual function values produced by the

search. The search strategy solves a trust-region optimization subproblem with the
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model to find a trial iterate. The model management strategy works to maintain a
good basis for the polynomial. The results presented here are due to Katya Mints at
IBM.

Like the Model Management Framework, DFO is a new method still being de-
veloped. Results are presented for two variations of the DFO implementation. One
scales the variables in the optimization problem and the other does not. The variable
values in this problem span 10 orders of magnitude so scaling seems like a good idea.

However, the results for the version without scaling are the better of the two.

Sampling method

This method is a straw man. It is not intended to represent the behavior of a realistic
method. The approach is simply to construct a set of points in the space (a sample),
evaluate the actual objective function at each point in the set and keep the point with
the best objective value. Repeat with larger samples until the result stops improving.
Note that no model is used. Note also that the samples were generated independently
and no attempt was made to adapt the larger samples to the results from the smaller
samples.

Results for four iterations of this method are presented. The samples in the
iterations contained 59, 201, 381 and 684 points. All the samples were selected from
orthogonal array-based Latin hypercube samples of the Bose type [56]. The 59 point
sample is the same as was used to build the initial models for the Model Management

Framework runs.

Manual model optimization method

A very simple approach to doing model management “by hand” was tested. Like

the sampling approach, this approach is also a straw man. The points and objective
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values from the three smallest samples from the sampling method were used to build
DACE models. A global optimization method was applied to each model and the
actual objective function was evaluated at each solution. In essence this is very
similar to the sampling method except the model is used to find trial points that may
have a better value of the actual objective than any point in the sample. The only
management of the model is that at each iteration a new model is built from a larger
amount of data.

Only the cost of the actual objective evaluations done at the sample points is
measured and reported. The computational costs of constructing and optimizing the
models are not counted. The results are labeled “ModelOpt” in the table below. All
three sets of sample points and all three models were provided by Andrew Booker at

Boeing.

4.4.4 Parallel computing issues

All the approaches used are amenable to parallel computations to a greater or lesser
degree. There is parallelism available in the Model Management Framework in the
function evaluations at the trial steps returned by SEARCH and in the evaluation at
the core steps in POLL. Given the assumption that function evaluations are much
more expensive than anything else, it should be possible to utilize at least as many
processors as there are variables in the problem. However, the implementation of the
Framework used in the results reported here is sequential.

PDS and PGAPack are very similar in their use of parallelism. The function
evaluations in each iteration can be executed in parallel in both methods. There is
a small sequential component at the end of each iteration that, by Amdahl’s law,

limits the potential speedup. In practice, both methods can scale to large number of
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processors by increasing the size of the pattern in PDS or the size of the population
in PGAPack.

The sampling approach also has good parallel speedup because all the evaluations
are completely independent of each other and there is no other work to do except
choose the minimum of all the samples. The ModelOpt approach performs the same
work as the sampling approach, but then performs a global optimization to construct
each model and another global optimization to find the minimizer of each model.
Both of these tasks can be parallelized efficiently.

The implementation of DFO used for the results presented here is sequential. No
parallel algorithm for DFO exists at the time of this writing, but because of the
non-deterministic nature of the algorithm, it could be advantageous to run the code
several times on the same problem and take the best result. These runs are totally
independent and can be executed in parallel efficiently. The effective cost of the whole
solution then would be the cost of the most expensive run.

There are two measures of parallel efficiency that are relevant to this discussion.
One is how much time it takes to compute a solution for a given problem with a
given algorithm, as the number of processors is changed. The other is how much
time it takes to compute a solution and how good that solution is, as the number of
processors and the algorithm are changed together.

In the first case, for relatively small numbers of processors (less than the number
of variables), all the methods will have similar efficiency. It is for larger numbers of
processors that the differences between the methods become significant. The sampling
and model optimization methods are the best in this case, since the number of function
evaluations increases as the algorithm progresses so any number of processors can be

utilized if the algorithm is run for long enough. The other methods all have limits on
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the amount of concurrency they possess and thus on the number of parallel processors
they can use efficiently.

In the second case, where the algorithm can depend on the amount of parallelism
available, the comparison is different. All of the methods can be tailored to take
advantage of a particular number of processors, however large. The methods differ in
the efficiency with which they utilize the processors.

As in the first case, the sampling and model optimization methods can be scaled
with the number of processors very efficiently. The simplest approach is to start with
a sample size that is the same as the number of processors and make the size of each
successive sample an integral multiple of the number of processors.

The PDS and PGAPack algorithms can also be tailored to fit any given number of
processors by increasing the pattern and population sizes, respectively. PGAPack also
has another parameter that can be modified to tailor the algorithm. This parameter,
the replacement ratio, is the percentage of the population replaced at each iteration. It
also affects how many function values are computed concurrently and thus how much
parallelism can be utilized. A discussion of the tradeoff between these parameters is
beyond the scope of this discussion. For details, see the PGAPack documentation [46]
and the literature on genetic algorithms (e.g. [33, 18, 52]). The parameter settings
used for the results presented here were suggested by David Levine, the author of
PGAPack.

Clearly, the issues involved in parallel performance evaluation are complex. The
results presented in the next section use the number of function evaluations as the
performance metric, as if each code was run serially. This is not necessarily indica-
tive of how the different programs would perform in a realistic parallel computing
environment. Any comparisons made between the different methods based on these

results must take this into account.
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4.4.5 Results

Figure 4.10 plots the objective function value versus number of function evaluations
for each of the methods. The lower plot expands the low end of the horizontal axis.
Only the symbols in the plots represent actual data. The connecting lines are included
only to make the plot more readable.

Table 4.5 below summarizes the data in the plots. The count of function eval-
uations and the corresponding objective function value are given for each method,
except DFO, including some intermediate results. For the ModelOpt method the
model values at the model optimizers are also given to show the accuracy of the
model.

Table 4.6 summarizes the results for DFO. The DFO algorithm has a random
step so no two executions of the program will give exactly the same result in the
same number of function evaluations. We present the results from several (10) runs
of DFO' for two versions of the algorithm; one in which the independent variables
are automatically scaled, and one in which they are not scaled. The independent
variables in this problem have values that span 10 orders of magnitude. All the other
methods scale the variables, either manually or automatically.

It should be noted that the global minimum for this function is unknown.

4.4.6 Analysis of results

The baseline solution was provided by Boeing and represents a physically reasonable
rotor blade design. It is not arbitrary. It is intended to be indicative of the quality

of starting point that would usually be encountered in practice.

1t should be noted that the PGAPack results are also non-deterministic, but because of the expense
of a single solution, multiple runs with these parameters were not performed.



objective
- = =
N N (o)}

'_\
o
c

24 ‘ \ .
T +  MMF, limit = infty

18]

*  MMF, limit =10

o MMF, limit=3

X  MMF, limit=1

- PDS1, start = baseline

-— PDS2, start = model opt

& Sampling

—-. GA, pop:200 replace 10%

S DFO w/ scaling

U_ _DFO w/out scaling
BLGS™ ~ ~ ~ T

8 ! ! ! ! !
0 1000 2000 3000 4000 5000 6000

24 <

22}

objective
= = = N
IS D [e0) o

[EEN
N

10t

Function evaluations

Expanded X axis

0 100 200 300 400 500 600
Function evaluations

Figure 4.10 Convergence history for all
methods on Tech01 31 variable problem.

125



H Method H evals ‘ obj ‘ model obj H

Baseline 1 23.93
PDS1 1500 | 12.80
5465 | 11.68
PDS2 863 | 16.60
3044 | 15.82
MMF/1 294 | 11.72
MMF/3 237 | 11.15
MMF/10 382 | 14.36
MMF /oo 572 | 12.88
Sampling 59 18.88
260 | 17.19
641 | 15.15
1321 | 18.59

ModelOpt 59 20.54 15.89

260 | 24.50 8.855

641 | 14.87 8.633
PGAPack | 221 | 18.081
471 | 17.011
907 | 15.646
3229 | 14.368

BLGS 59 | 26.899 16.271

109 ook 9.678

159 | 18.338 11.279

Table 4.5 Results for all methods (except DFO) on the 31 variable
TECHO1 problem. (Note: “***” indicates the actual objective function did

not converge.)
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H Method H evals‘ obj

DFO 208 | 13.815
(Scaled) 257 | 14.732
231 | 14.852

547 | 12.034

688 | 11.513

382 | 10.674

318 | 13.013

195 | 12.905

372 | 11.797

449 | 11.307

DFO 161 | 12.021
(Unscaled) || 218 | 11.329
268 | 10.920

232 9.799

207 | 11.285

241 | 13.865

177 ] 10.645

233 | 12.147

386 | 10.561

528 9.443

Table 4.6 Results for DFO on the 31 variable TECHO1 problem.
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Performance results for the PDS program are listed for two cases in Table 4.5.
The run labeled “PDS1” starts from the Baseline point. Run “PDS2” starts from the
point in the 59 point sample with the best objective value.

The results from the PDS runs will be discussed in more depth than the other
methods because the MMF is based on many of the same ideas as PDS. Thus,
the behavior of PDS provides insight into the behavior of the Model Management
Framework.

For each PDS run, two different numbers of function evaluations are listed in the
table. The lower number is at an intermediate stage of the computation and the
higher is for the final result. The two stages are shown because the performance of
PDS (in terms of decrease in the objective function value per iteration evaluation)
changes (dramatically, in run PDS2) at a certain point in each run, as can be seen in
Figure 4.10. Each performance curve has a “knee” where the slope decreases signif-
icantly. This is indicative of the performance of PDS on many problems. The knee
occurs because PDS uses a fixed pattern size throughout the computation. Before the
knee, PDS makes rapid progress toward a solution in nearly all iterations, indicating
the pattern is finding decrease most of the time. After the knee, PDS makes very slow
progress because some iterations find no decrease and most of the successful iterations
find very small amounts of decrease. In this second stage PDS has found a basin of
a local minimizer and must shrink the pattern to converge to that minimizer. This
is where the linear asymptotic convergence rate of pattern search methods dominates
their performance. Note that the MMF results show similar behavior.

The results presented are the best results obtained by running PDS with differ-
ent size patterns for each case. There is a performance tradeoff with pattern size.
Typically, larger patterns move to the basin of the solution more quickly so the per-

formance before the knee in the curve is better, but they converge to the solution
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more slowly (i.e. take more iterations for the same relative decrease in the objective)
so the performance after the knee is worse. Typically, the smaller patterns tend to
behave in the opposite manner. Actual behavior is problem dependent.

This behavior comes about because larger patterns have more points further away
from the current iterate. As the process converges, the likelihood that any of these
points will have have a lower function than a point close to the current iterate de-
creases. Thus the computer time expended to evaluate these points is mostly wasted.
Of course this behavior is very problem-dependent; on average, the larger pattern
will make more progress toward the solution in each iteration than a smaller pattern,
but at higher cost. In essence this is a tradeoff of marginal cost (the extra function
evaluations of a larger pattern) against marginal gain (the likelihood that one of these
evaluations will produce a better function value). If the marginal cost is small (as
it might be in a parallel computing environment) than any marginal gain may be
worthwhile.

Determining how to balance this tradeoff would not be too difficult except for the
additional consideration that larger patterns are capable of finding better solutions
for non-convex functions because they do more extensive searching. Also, as can be
clearly seen by comparing the PDS1 and PDS2 results, the starting point can have a
significant impact on the quality of the final solution. The PDS2 run improves quickly
at first then progresses more slowly. This is indicative of finding a basin (by following
a large gradient) and then converging to the minimizer of that basin (by wandering
around in the bottom of the basin). The PDS1 run is slower in the first stage but
ultimately finds a basin with a lower minimizer. The simplest explanation for this
behavior (although difficult to verify) is that the PDS2 run stays in the same basin in
which it starts (or a nearby one) and so spends relatively little time “traveling” before

it starts contracting the pattern scale factor and converging to the local minimizer.
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The PDSI run, because it starts at a point with a higher function value, spends more
time traveling before it settles in a basin and starts converging.

The performance of either run likely could be improved by changing the pattern to
reduce its size once the search has chosen a basin and started contracting the pattern
scale factor. The advantage of this approach is that fewer function evaluations would
be used in the second stage of the run. The disadvantage is that it is difficult to
determine when it is appropriate to make this change; the knee in the performance
curve usually is not as clear as in the two cases presented here, The payoff can be
significant: the PDS]1 result used a 96 point pattern for the whole run and reducing the
pattern to 64 points at the knee could have saved as many as 1200-1500 evaluations.

Performance of pattern search (and, to an extent, model management) methods is
very dependent on the choice of pattern and other starting conditions so some other
pattern search method may perform better than PDS on this problem. However,
in general PDS performs well on this problem, and we consider these results a fair
representation of the performance of parallel pattern search methods.

The Sampling results require some additional explanation. The sample sets in
each iteration were independently generated and do not contain the smaller samples
as subsets. The value listed in the table is the number of evaluations including those
in the smaller sample sets. This represents the cost of iteratively evaluating the
samples until a termination condition is reached. The cost of choosing the sample is
assumed to be negligible. Figure 4.10 plots the total number of evaluations for each
sample set and all its predecessors. The best function value from the largest sample
is actually worse that the value from the next smaller sample. Table 4.5 shows this.
Figure 4.10 shows the better value.

These results are presented for completeness. They are not intended to repre-

sent how one would actually use the sampling idea in an optimization algorithm.
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Sequential evaluation of independent sample sets is clearly not a very good method
for this problem. The last (and most costly) sample does not improve the result and
the best result achieved by the method is significantly worse than the result obtained
by the model management methods.

The ModelOpt results are not plotted. They are presented in the Table only to
show the ineffectiveness of the simple, but often used, approach of using a model as a
surrogate of the actual objective function without some kind of management strategy.
The results for the smaller models show a definite failure to approximate accurately
the basin of a minimizer of the actual function. The optimizer of the largest model is
the only one that manages to produce real decrease from its starting point, and even
then only slightly. The key feature to observe in these results is that the values at
the model optimizers do not agree well with the true function values at those points
in any of the cases. Even if the model has correctly identified a basin of the actual
function, it has not helped much in finding the minimizer in that basin. These results
also argue strongly for the use of model management strategies.

The MMF results show the effect of varying one of the parameters in the man-
agement algorithm, the “function evaluation limit” defined in §4.2. This parameter
determines the maximum number of times the Framework will evaluate the actual
function on steps returned by SEARCH in a single iteration of Steps 2-8 in Figure 2.4.
In other words, this is the maximum size of the set of trial steps that SEARCH may
produce. The curves plotted in Figure 4.10 indicate that as the current iterate ap-
proaches the optimizer, the cost of performing the extra function evaluations becomes
a burden rather than a benefit. This is very similar to how the performance of pat-
tern search methods varies with the size of the pattern. More function evaluations
(like larger patterns) are beneficial early in the search because they sample the space

more effectively and allow longer steps. Later in the search, accuracy is more impor-
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tant than coverage, and using fewer function evaluations (smaller patterns) is more
efficient.

In the model management context there is the added issue that it is important
to improve the accuracy of the model, especially when it fails to correctly predict
decrease in the actual function. So a larger set of trial steps will tend to improve
the predictive capability of the models (up to a point), though no guarantee of im-
provement can be made. As in the case of parallel pattern search methods, it is a
tradeoff of marginal gain and marginal cost. If the extra function evaluations can be
performed cheaply (e.g. computed in parallel), than they may be worth doing even
if they produce only a little gain.

The down side is that as the number of data points increases, it may become more
difficult to construct a new model. For example, the DACE models discussed here
tend to become ill-conditioned if the data points get too close together or too close
to co-linear. Both are more likely to occur as the number of data points in the model
increases.

The PDS and PGAPack results are more similar to each other than to any of
the other results. The relatively slow convergence of both methods is clearly demon-
strated. PGAPack performs better than PDS in the early parts of the runs, but in
the PDS1 run, PDS does a better job of continuing to find additional decrease in the
objective. The PDS2 run starts at a lower objective value, presumably closer to a
local minimizer of the model. The convergence history shows that it converges very
consistently, but to a point that does not have a particularly good value, presumably
in the same basin as the initial point or in a nearby one.

The performance of BLLGS on this problem is not necessarily indicative of its
performance in general. The initial 59 point model is smaller than Paul Frank, the

author of BLGS, would normally recommend [27]. He would prefer to build the initial
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model for this problem using around 200 function values. Also, the BLGS method is
concerned with the problem of global optimization more than the model management
algorithm used for these tests. Thus the model management algorithm can tolerate
less accuracy from the initial model than can BL.GS on this problem, since BL.GS will
be more likely to find points where the model over-predicts the decrease in the actual
objective function.

The DFO runs show a large degree of variability due to the non-deterministic
nature of the algorithm. The results for the version of the algorithm without scaling
are noticeably better than the results for the version with scaling. This issue is
discussed further in [5].

The four MMF runs and the various DFO runs perform similarly, and much better
than the other methods that were tested. The common characteristic of all the
methods is that they do not require the gradient of the actual objective function. DFO
implicitly forms an approximation of the gradient, but it gets it from the polynomial
model essentially for free. The pattern search and genetic algorithm results are both
from good implementations of the respective methods, and both methods were used
with reasonable parameter settings. The author has been the primary developer of
PDS for the last three years and the parameter settings used for the PGAPack result
were recommended by the developer of that package. The BLGS result may not
be a fair representation of that method’s performance in general: it might perform
better with a better initial model, but any improvement in performance that might be
gained must come at the cost of more function evaluations. The other two methods
are straw men and their performance is neither impressive nor surprising.

This problem has many of the characteristics of the class of applications for which
the Model Management Framework is intended to be used. The results clearly indicate

that even with the simplistic search and management strategies that were used, the
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Model Management Framework is a viable and competitive method for solving this
complex, expensive, engineering design problem. The success on this problem suggests

that the Framework approach may work well for similar applications.
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Chapter 5

Discussion

5.1 Software design and implementation

This section describes the software implementation of the Model Management Frame-
work.

The theory describes the Framework as a form of pattern search method, and de-
fines four model management component algorithms that are required by the Frame-
work’s exploratory moves algorithm. The architecture of the software implementation
inherits this decomposition and extends it. The component algorithms are encapsu-
lated in separate routines with specifications based on the definitions of the component
algorithms’ behavior (Definitions 2-5). The design of the Framework software uses
these routines in a manner which allows details of the model management strategy
to be changed without changing any of the Framework software (or any of the appli-
cation software that uses the Framework). The software is implemented in Fortran
because this is the predominant language for large scale numerical computing in en-
gineering and the sciences. The Fortran90 version of the language is used in order to
take advantage of the capabilities for data structures, dynamic memory management
and function overloading that this version provides.

Figure 5.1 presents a graphical representation of the software architecture. The
four layers in the graph each represent separate pieces of software. The arrows point

from the caller to the callee routines.
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Figure 5.1 Architecture of the Model Management Framework software

The highest layer is the application program. This is the software that uses the
Model Management Framework to solve a nonlinear optimization problem. Engineer-
ing design software is the canonical example of such an application.

The next layer is the software that implements the Framework itself. Nearly all
the functionality of this layer is encapsulated in one procedure, called MMFPS. This is

the procedure that the application program would invoke to solve the optimization
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problem. The interface to this procedure is similar to other optimization routines but
involves more information than usual because of the use of models.

In addition to the MMFPS procedure, the Framework layer also provides various
procedures that simplify the task of setting up the data that needs to be input to
MMFPS. The Framework gets these utility procedures from the lowest layer in the
architecture hierarchy (labeled “MMF Tools” in Figure 5.1). These procedures do
not depend on the implementation of the Framework, although the Framework may
depend on their implementations. Some of the tools have standardized interfaces
to allow different implementations to be used transparently. The Framework layer
provides these procedures to the application layer rather than having the application
layer access them directly to guarantee that the Framework and application software
use consistent versions of these tools.

In addition to the Tools procedures the Framework layer uses the procedures that
implement the model management component algorithms. These reside in the next
lower layer. The design of the interfaces between the Framework and the model man-
agement procedures hides the implementations of the model management procedures
from the Framework, allowing different management strategies to be implemented
without changes to the Framework itself. The only routines in the component layer
are SEARCH, MANAGEMDL, TERMINATE and POLL. These routines correspond to the com-
ponent algorithms described in Chapters 2 and 3. The components layer provides
no other functionality. The routines in the component layer are not accessed by the
application layer directly. All application-specific aspects of a model management
algorithm implementation can be restricted to the components layer. No changes to
any other part of the software except possibly the Tools (Models and Optimization,

for example).



138

5.2 Discussion of numerical results

The model management algorithm used to produce the results presented in Chapter 4
is not what one would use for a real application. It is presented here only to show the
viability of the Model Management Framework as a mechanism for the development
and implementation of algorithms for real problems. Even so, the performance of
the algorithm is reasonably good. In this section we try to explain the performance

results and suggest ways to improve the example algorithm.

The primary observation we can draw from the results of the TECHO1 problem is
that using a single model of the entire domain is not an adequate approach. As the
optimization process progresses, the distances between the trial iterates decrease and
the difficulty of fitting the model to all the points increases. The TECHO1 results for
both the DACE and polynomial models show the usefulness of the model degrading
as the optimization progresses. The symptoms are the decreasing frequency of finding
decrease in the actual function at the candidate steps returned by SEARCH and the
increasing frequency of executing POLL. The condition number of the correlation ma-
trix in the DACE models and the number of terms in the polynomial models provide
quantitative measures of the difficulty of fitting the models to the data. Both num-
bers increase dramatically: the condition number exceeds 100 million; the number of
polynomial terms exceeds 1000.

We assume that an effective model update strategy must capture the behavior
of the actual function at the trial iterates as they are generated by the optimization
process in order to effectively capture the behavior of the function near the iterates
where the search will likely look for the next iterate. The approach used in the test
results accomplishes this by forcing the model to interpolate (approximately, in some

cases) the actual function values. In general this will not work very well. We assume
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that the actual functions of interest are inherently more complex in their behavior
than the models are. Attempting to force a model to interpolate both the large-scale
global behavior as well as the small-scale local behavior is probably too much to
ask of any function approximation based modeling strategy. Thus, the difficulties
encountered in the TECHO1 problem will probably occur frequently with this model
management implementation.

One potential approach to avoiding these difficulties is to use a separate model
defined on a small neighborhood around the current iterate. This alleviates the
difficulty of capturing both the large and small scale variations in the actual function
with the same model. It adds some complexity to the model update strategy because
the points used to construct the local model may need to be modified as the trial
iterate moves. Additionally, the size of the region on which the model is defined may
also need to be modified as the optimization converges. The latter is not as significant
an issue because we assume the Model Management Framework will only be used to
get the first few digits of accuracy in the solution, so more than a few changes in
scale are unlikely. The use of a hierarchy of models defined on regions of different
sizes and intended to capture behavior on different scales might be preferred in some
cases. The drawback is that managing these models will be more difficult.

Another potential approach is to relax the requirement for interpolation at the trial
iterates. In the DACE models this can be accomplished by perturbing the values on
the diagonal of the correlation matrix by a small amount [16]. The condition number
of the matrix can be improved significantly with a perturbation as small as 1075,

Another similar approach is to address the rank deficiency of the correlation matrix
directly and regularize the matrix and solve it as a least squares problem. This gives
up the interpolation behavior of the standard DACE model, but avoids the worst of

the ill-conditioning.
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5.3 Solving constrained problems

The analysis of the Model Management Framework we have presented does not ad-
dress problems with constraints other than bounds on the variables. This shortcoming
is inherited from the convergence theory for pattern search methods, which applies
only to unconstrained and bound constrained problems. This does not mean that the
Framework cannot be used to solve other types of constrained problems, but some
extra effort will be required to design and implement an algorithm and to make sure
the result is a good solution to the problem.

An extension to the pattern search theory that defines conditions under which
the method will converge for linear constraints has been developed by Lewis and
Torczon [49]. Tt is very likely that such an extension will be directly applicable
to the Model Management Framework theory. So in the future the case of linear
constraints will be handled by the Framework. This assumes the cost of evaluating
the constraints (a matrix-vector multiply) and implementing the strategy required by
the convergence theory are acceptable. If not, the approaches suggested for handling
expensive nonlinear inequality constraints may be applicable. Convergence of pattern
search methods for nonlinear inequality constraints remains an open question.

The simplest approach to handling constraints in the Model Management Frame-
work is to evaluate the constraints directly and enforce feasibility the same way the
Framework does for bound constraints. This can work well for inequality constraints
that are cheap to evaluate. Equality constraints and expensive inequality constraints
require other approaches. However, even if the inequality constraints are cheap this
approach has several pitfalls. Extra care must be taken to analyze solutions that are
near a constraint boundary because the theory does not guarantee convergence in

this case. It is possible that the search might fail to find a descent direction away
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from the current iterate even though one is present in the function. This can happen
when the descent direction is along the constraint boundary.

One approach for the case where the inequality constraints are too expensive to
evaluate at every trial step is to construct a model of the constraint function. There
are two basic alternatives in this approach: model the outputs of the constraint
function (using a vector-valued model or multiple scalar-valued models) or model
the feasibility directly (using a boolean-valued model). The latter probably will be
simpler if there are many constraints, although the behavior that the model will need
to capture may be very complex.

Since there will be no guarantee in general that the model will predict feasibility
correctly it will be necessary to add an extra step to the Framework to check fea-
sibility using the actual constraint function whenever the actual objective function
is evaluated. This will present additional opportunities for model management algo-
rithms. The accuracy of the constraint model(s) may vary differently than that of
the objective model during the computation so the models will have to be managed
separately. In some applications it may be advantageous to use different management
strategies for the different models.

Most problems with linear equality constraints can be solved by using the con-
straints to eliminate variables or by projecting onto the constraint manifold. In most
cases the cost of solving the linear equations will be small compared to the cost of
objective function evaluation. If the system is too large to solve, it may be possible

to use a model of the constraints.

5.4 Parallel algorithm design

Another important issue is how parallelism affects the choice of algorithms and al-

gorithm parameters. As mentioned above, both PDS and PGAPack have algorithm
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parameters (pattern and population size) that can be used to increase the amount
of available concurrency in response to an increase in the number of available pro-
cessors. The key point is that this may also change the solutions that the methods
produce. In the cases of PDS and PGAPack, a larger pattern or population will
usually (though not always) produce a better result in a fixed number of iterations
(but not function evaluations) or the same result in fewer iterations. The Model
Management Framework also has this behavior.

The number of available processors can have a significant effect on the choice of
model management algorithm. In particular, the size of the set of trial steps generated
by the SEARCH component can be increased at little or no effective cost as the number
of available processors increases, since all the trial steps can be evaluated concurrently.
In principle, there is no limit to the number of processors that can be used effectively
in this manner. In practice, there is likely to be a point of diminishing returns where
the SEARCH algorithm cannot produce enough good trial steps. One way of increasing
the amount of concurrency is to select some trial steps because they improve the
model, regardless of their function values.

In a similar manner, different algorithms for POLL can be considered depending on
the available parallel resources. Here there is a limit on the available concurrency even
in theory, since the size of a positive basis is at most 2n points (n being the number
of variables). There is also an interplay between the SEARCH and POLL algorithms
that is affected by parallelism and that is the choice of the condition that determines
when SEARCH gives up and POLL is invoked. The worst case cost of POLL is fixed in
terms of number of function evaluations but the worst case cost of SEARCH can be
tailored to some extent. When the effective (worst case) cost of POLL is high because
the number of available processors is low, then the SEARCH algorithm can be designed

to try harder before giving up. When the effective cost of POLL is low because enough
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processors are available, it may be advantageous to design the SEARCH algorithm so

that it gives up easily.
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Chapter 6

Conclusions

The use of models in optimization and the ideas of model management have been
around for a long time. The sequential linear programming (SLP) and sequential
quadratic programming (SQP) methodologies are model management strategies. The
quasi-Newton globalization strategies rely on the ability to control the accuracy of
the quadratic Taylor series model and to solve an optimization subproblem using the
model. Methods that take advantage of the special characteristics of Taylor series
models have dominated numerical optimization. Methods that use other models have
seen limited use, mostly in engineering optimization.

To use these models in our Framework we must provide a convergence theory to
replace the theories for Taylor series-based methods that depend so heavily on the
accuracy property of the Taylor series models. The theory we use was developed
for pattern search methods. It relies on the discrete nature of the pattern and the
positive basis requirement on the core pattern instead of on a bound on the accuracy
of the model. This thesis has shown how models can be used with the pattern search
method and what algorithmic behavior is required to guarantee convergence.

Interest in non-Taylor series based optimization methods has grown in recent times
for two main reasons. The cost of the functions that arise in some applications is too
high for traditional methods and the cost or difficulty of constructing useful Taylor
series models is too large. The usual solution to the first problem is to get a faster
computer. This works in some applications. In others, the complexity of the problems
is increasing faster than computer capabilities. One of the forces pushing the use of

optimization is the need to solve the problems more quickly, with less (human) effort.



145

Shorter engineering design cycles is an example: engineering managers want better
solutions in less time than ever before. The requirements of global competitiveness
make it a necessity to improve both product and process.

Two factors holding back growth in the use of model management methods in
optimization have been a lack of generality and a lack of rigor. Model management for
Taylor series models is very well developed, but relies heavily on the special accuracy
characteristics of these models. Additionally, the nonlinear programming community
often focuses on methods with fast asymptotic convergence rates. This is at odds with
the needs of many of these expensive applications where the accuracy required from
the solution is often only a few significant digits. This requirement plays to one of the
strengths of the model management approach in that the transient and asymptotic
convergence rates are the same. This makes the model management approach less
well suited to problems requiring highly accurate solutions, but that is unavoidable.
Fast local convergence (super-linear or quadratic) can only be expected from methods
that use gradient and Hessian information.

In some sense, the optimization field is suffering from its own success. As the use
of optimization grows, and there are more and more successful applications of optimi-
zation to real world problems, it is inevitable that there will be demand for solutions
to more and more difficult problems. A typical example is the use of higher fidelity
simulation software in computing the objective and constraint functions. In aerody-
namics, the problem has progressed from solving the potential flow equations, to the
Euler equations, to the Navier-Stokes equations. Each step has cost several orders
of magnitude more than the previous, and has been coupled with an increase in the
complexity of the design problem: from 2D airfoils to clean 3D wings to full configu-

rations with engines and control surfaces. Inevitably, the software that computes the
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solutions gets more complex as the problems get more difficult, and complex software
usually has more complicated behavior, making for harder optimization problems.

The model management approach addresses both problems. The use of models
can reduce the number of expensive function evaluations that are required to reach a
solution of a given accuracy. And they can reduce the difficulty of the optimization
problem by filtering out the “bad” behavior of the complex analysis software.

The work presented here addresses several of the issues involved in using model
management methods on real world problems. The Framework provides an abstrac-
tion of a general model management algorithm. This abstraction is not tied to any
particular method of modeling the actual function(s) or searching the design space.
It provides fairly detailed guidelines for designing methods that are convergent, but
it is also flexible. It allows the algorithm to take advantage of any special knowledge
of the application or modeling technique that may be available.

The cost of this flexibility is that it leaves much of the burden of achieving effi-
ciency in practice up to the algorithm designer. This is an unavoidable situation. No
general-purpose method can be efficient on all problems, especially without even gra-
dient information about the functions. We contend that the Framework accomplishes
much of the work of developing a correct algorithm, freeing the algorithm designer to
focus solely on the performance issue.

The correctness of the Framework and of the algorithms developed using it de-
pends on the convergence theory for pattern search methods. The Framework builds
on this theory by explicitly separating the hypotheses on the exploratory moves algo-
rithm into two distinct parts: searching for trial steps and polling the core pattern.
This distinction allows a model to be used in selecting trial steps instead of the usual
pattern search strategy of evaluating the objective function at the points in the pat-

tern. The Framework does not limit how the model is used in the search. Polling
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the core ensures the theoretical requirements for convergence are fulfilled. This sep-
aration allows the strategies used to improve the performance of the method to be
unconstrained by the convergence requirements.

The numerical test results presented support the argument that algorithms can
be developed using the Framework that will be useful for real world problems of
significant cost and complexity. The simple test cases provide some insight into the
behavior of one, albeit simple, model management algorithm using the Framework.
The helicopter design problem shows that a problem with the characteristics of many
“real world” problems can be solved without major (and costly) changes to either the
engineering analysis code.

These results do not prove that any specific model management algorithm, wheth-
er implemented using the Framework or not, will be efficient for any particular appli-
cation, but they do provide a baseline for the development of more useful algorithms

and a performance benchmark for more efficient algorithms.
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Chapter 7

Future Work

There are two fronts for future research. One involves using the Framework to develop
fast algorithms for practical applications. The other involves improvements to the

Framework itself.

7.1 Model management algorithm design

There remains much work to be done in algorithm development. The algorithm that
produced the results presented here does not take full advantage of the capabilities
of the modeling software it uses. The use of other modeling approaches should also
be investigated.

There are several important issues that need to be addressed in the area of using
the Framework to develop algorithms. The first is how to overcome the problem of
degrading model quality as the actual function values from trial iterates are incor-
porated into the model. In the DACE and polynomial models this degradation in
quality is due to the clustering of the iterates as the optimization process converges
as well as to the tendency for the iteration steps to be linearly dependent. Specific
approaches to alleviate this problem should be investigated.

A general idea with much potential is to use one model defined on the whole
domain and a second model defined only on a close neighborhood of the current
iterate. This raises several algorithm design issues including how to choose which
data points to add to which model, how and when to change the domain of the local

model, what modeling strategy to use for each model.
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Another idea that should be investigated is the use of a noninterpolatory model
that is not sensitive to spacing of data points. This raises issues in algorithm design
for SEARCH, since the behavior of the model in the region close to the current iterate
will have different characteristics from an interpolating model.

A general problem in using the Framework is what to do when the SEARCH strategy
fails. The algorithms investigated so far fall back immediately on the POLL algorithm.
Because the cost of polling can be high, it is desirable to avoid this whenever possible.
It may be useful to choose points not suggested by SEARCH and evaluate the actual
objective function at them in hopes of finding decrease or improving the model. A
general purpose speculation strategy is to extrapolate along the path taken by the
several most recent trial iterates and evaluate there. This simple idea raises several
issues: how many trial iterates to use; how to define the path (e.g., use a curve fit
of some kind); how far to project. The Hooke and Jeeves pattern search method [37]
exemplifies this idea.

This idea may have particular benefit when applied to bound constrained prob-
lems. The strictly feasible nature of the MMF approach makes it difficult to accurately
model a region near a boundary when only the points produced by SEARCH are used
to update the model. If the model does not predict decrease close to the boundary, no
points will be chosen there, so if the model is wrong it will not be corrected without
executing POLL. An algorithm to speculatively evaluate points on the boundary (or
beyond it, if the objective function and model are both known to work outside the
bounds) could have a significant impact on performance in this case.

The MMF, like all pattern search methods, suffers from a sensitivity to problem
scaling. Since there is no gradient information, the scaling must be applied explicitly.
A poor choice of scaling can have a large negative impact on the performance of a

pattern search method, in the worst case reducing it to nothing more than a sequence
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of line searches in the coordinate directions. Ideally, the scaling should dynamically
adapt to the function during the execution of the program. This issue should be dealt
with at the level of the component algorithms since it affects performance but not
convergence. A suite of tools for computing and modifying scaling data would be
very useful to algorithm designers and implementers.

Another open issue in both model management algorithm design and pattern
search algorithm design is the effect the choice of core pattern has on performance.
We assume in general that a smaller (fewer points) core pattern is preferable because
it costs less to evaluate in the worst case. However, this is balanced by the bet-
ter sampling achieved by a core pattern with more points. This balance should be

investigated.

7.2 MMF extensions

The Model Management Framework implementation should be extended to allow for
modeling the constraints. One approach is to add models for each constraint and
manage them individually, using the same techniques used to manage the model of
the objective function. This has the disadvantage of increasing complexity. Another
approach is to treat all the constraints with a single model and define a norm to use in
computing actual vs. predicted ratios. The usual issues of constrained optimization
arise: feasible vs. infeasible methods, choosing Lagrange multiplier, identifying active
sets, etc. An additional concern is maintaining efficiency of the method when the
solution is near a constraint and the constraint model is not very accurate.

The implementation should also be extended to allow parallel calculation of the
function values needed to check the trial steps produced by SEARCH and to poll the
core pattern. There are a few algorithm design issues related to this but they are

relatively minor. This is mostly a performance issue.
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Another extension of major interest in engineering design is the multi-objective
optimization problem. This raises some of the same issues for model management
as in the constraint modeling problem just described, compounded by the relative
immaturity of multi-objective optimization methods in general.

There are several possible extensions to the model management convergence the-
ory that are of interest. Torczon and Lewis are extending the underlying pattern
search convergence theory to linear constraints and this extension should be incorpo-
rated into the model management theory and implementation. The pattern search
theory can likely be extended to allow the scale factor contraction ratio to vary across
iterations (currently it must be constant). The most likely conjecture is that the ratio
need only be an integer power of some minimum ratio. It is possible that a stronger
conjecture can be proven allowing the ratio to take on other values. Allowing the ratio
to vary would allow for faster convergence than is currently possible. A extremely
useful extension to the theory would be to relax the requirement that all the trial
iterates be taken from the lattice, but this currently does not appear possible without
adding an explicit sufficient decrease condition. Model management algorithm design
would be greatly simplified if any point with decrease could be chosen.

Another useful extension to the Framework would be a mechanism to invoke the
DFO algorithm when the current iterate is in the basin of the minimizer (because the
DFO algorithm has faster asymptotic convergence). Ideally, the mechanism would
allow a “warm start” of DFO using function values computed during the model man-
agement process. This requires an extension to the DFO algorithm. This should
improve the performance of DFO by allowing a better initial model to be constructed
than in the current algorithm. It will also eliminate the randomness currently present

in the choice of the first step.
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The combination of the rapid initial decrease possible with the Model Management
Framework combined with the fast local convergence of the DFO algorithm could

provide a potent tool for applications where high solution accuracy is required.
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Appendix A

Model Management Framework Programmer’s
Guide

This document describes the Model Management Framework (MMF) soft-
ware v2.0, including the data structures and subroutines used within the
framework. This information should be useful to programmers using the
framework in an application program and implementing algorithms for
the framework. It may also be useful to anyone trying to understand
the framework methodology itself. Additional details can be found in my
thesis, especially the theory chapter.

A.1 Introduction

A computer program that uses the model management framework (MMF) can be
divided hierarchically into three levels: the top level application code, the mid-level
framework code, and the low level algorithm-specific code. Figure 1 shows a diagram
of this hierarchy.

The fundamental concept of the framework is that the middle level code is rela-
tively fixed, as in an ordinary subroutine library, but the low level code is changed
in order to implement different model managment algorithms. The interfaces to the
low level code stay the same, but the implementations change. The goal is to allow
for algorithms to change without modification to the mid-level framework code or the

top level application code.

A.1.1 Top level: Application

The application is any program that needs to use the MMF. There is one primary

interface between the application and the framework. That interface is the MMFPS
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subroutine. From the application’s point of veiw, the framework is like any other
optimization subroutine — it takes as input an objective function and an initial point
and tries to return a point with a lower objective function value. The unusual feature
of the framework compared to most optimization software is that in addition to the
routine to evaluate the objective function it also takes a routine to evaluate a model
of the objective. (It also takes a constraint routine and a model of it, but we will
ignore that for the moment.)

In addition to the usual optimization data, the MMFPS subroutine requires some
data related to various control parameters in MMF. The framework provides data
structures to encapsulate and communicate this data and subroutines to manipulate

the structures easily.

A.1.2 Middle level: Framework

The framework code is implemented as a collection of Fortran90 modules. The
MMFModule module is exported to the application. It defines the MMFPS subroutine and
the data structures used in the interface between the framework and the application.
It also defines support routines that manipulate these data structures.

The framework implements a fairly general type of pattern search optimization
method. The method is decomposed into a small set of algorithmic steps that are
further decomposed into a set of specific routines with precisely defined interfaces
and behavior. The behavior specifications come from the convergence theory. The
interface specifications allow the low-level algorithm details to be modified without

changing the framework code.
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A.1.3 Low level: Algorithm and Tools

The framework provides the outline of an optimization method. The low level software
fills in the details. There are four subroutines that define a model management
algorithm in the framework. The subroutines are contained in the MMFSubrsModule
module. One routine (SEARCH) is used to search for a new point that improves on
the current point. The second (MANAGEMDL) implements the strategy for updating the
model(s). The third (TERMINATE) decides when to stop searching. The fourth (POLL)
implements a fallback strategy for when the search fails. This fallback strategy is
required by the theory in order to guarantee convergence. These four subroutines are
defined in a module called MMFSubrsModule.

There are other low-level subroutines used in the framework. These provide basic
functionality that is necessary for many model management algorithms, like model
manipulation, solution to optimization subproblems, function evaluation, etc. In
general these routines are “black boxes” in relation to the framework code, although
in some cases the implementations may impact the low level model management
algorithm routines (e.g. the implementation of the modeling routines may affect the

MANAGEMDL algorithm routine).

A.2 Exception Handling

All procedures in the Model Management Framework have an argument for exception
identification information. Fortran90 procedures in the top and middle layers use a
variable of type Status_t which is defined in MMFTypesModule. Lower level F90
procedures and F77 procedures use a scalar integer variable. The %error component

of Status_t has the same meaning as the integer variable used in the other procedures.
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By convention, values of the %error variable have the meanings shown below.

= 0 indicates the procedure succeeded
< 0 indicates an unrecoverable exception (error) occurred

> 0 indicates a recoverable exception (warning) occurred

An unrecoverable exception should only be returned when the output values of the
procedure cannot be computed. A recoverable exception is returned when the output
values are computed but execution of the procedure did not proceed normally. The
value returned should identify the nature of the exception as precisely as possible in
order to allow the calling procedure to take appropriate action.

The Status_t type has two other components besides %error; %errnum and
herrmsg. The ferrnum component is an integer variable and the }errmsg component
is a character string. The value of errnum is used to provide additional information
about the exception condition. For example, if the }%error value indicates an 1/0 er-
ror occurred, the %errnum value could be the IOSTAT value from the 1/O operation.
The %errmsg should be a message describing the exception that is suitable for a user
to read. It should indicate what the problem was and where it occurred.

This is not necessarily the best possible mechanism for exception handling, but it

is better than none.

A.3 Descriptions of Module Contents
A.3.1 Module MMFModule

This module implements the application interface to the MMF. This is the only module
that the application should have to access (via the F90 USE statement). The module
provides the MMFPS subroutine, the data types used in the arguments to MMFPS, and

subroutines to manipulate the data types.
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The arguments to MMFPS can be separated into several groups.

Three of the arguments represent the data in the optimization problem. Two of the
arguments are the input initial solution and the output final solution. It is assumed
that the application code evaluates the objective and constraint functions at the initial
point and ensures it is feasible. MMFPS ensures the final solution is feasible. The third
argument in this group is a data type that contains all the constraint information:
upper and lower bounds, coefficients of the linear constraints, right-hand sides of
the equality constraints, etc. The constraint variable is initialized by the application
and its contents are not modified by the MMF. A subroutine is provided to read the
constraint data from a file. (The format for this and other MMF files is documented
in Section 4.)

Four of the arguments are the subroutines to evaluate the objective and constraint
functions and their models. A model can be omitted by passing the same subroutine
for the model as for the function itself. This should only be done when the actual
function is inexpensive to compute and deterministic. (In MMF v2.0, the objective
model cannot be omitted.) The interfaces to these subroutines are specified in the
MMF Interface Specifications v1.6.

Three of the arguments are control variables for various aspects of the model
management algorithm. One defines the stopping criteria for the iterative pattern
search method used in MMFPS. Another defines various control parameters for the
pattern search. The third defines which functions have their values cached. (Caching
is a win if the function is expensive to compute, but can be more costly if the function

take only a few CPU seconds.)
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A.3.2 Module MMFSubrsModule

This module contains four subroutines: SEARCH, MANAGEMDL, TERMINATE, and POLL.
The behavior of these routines is described in the MMF theory discussion. The
MMFModule module USEs this module. These four subroutines determine the details

of the model management algorithm that gets executed by the framework.

SEARCH Select one or more points in the pattern that are candidates for the next

approximate solution.
MANAGEMDL Update the models in whatever manner is appropriate.
TERMINATE Decide whether to call SEARCH again or stop iterating and call POLL.

POLL If no improvement in the objective function was found by calling SEARCH, eval-
uate the objective at points in the core pattern until one with improvement is

found.

Subroutine SEARCH

This subroutine returns a set of trial solutions which may produce decrease in the
actual objective. The only requirement is that the points in the trial solutions be
on the current grid. The trial solutions are returned in an array of MMFSoln t. The
array is dynamic and may have zero elements.

The interface for SEARCH is:

call SEARCH( OriginalSoln,CurrentSoln,Pattern,Constraints,FcnCache,

0BJ, CON, 0BJMDL, CONMDL, trial_solns, eval counts, status )

where the arguments to SEARCH are:
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OriginalSoln (type: MMFSoln_t, intent: in) The solution at the start of the current
exploratory moves (before iteration 1). This is the solution the exploratory

moves must improve on. It is not strictly necessary for SEARCH.

CurrentSoln (type: MMFSoln_t, intent: in) The current solution in the exploratory
moves. This is the solution that this iteration is attempting to improve on.

During iteration 1, CurrentSoln .EQ. OriginalSoln.

Pattern (type: Pattern_t, intent: in) The definition of the current pattern. This
contains the definition of the current grid in the Pattern’basis and Pattern-

%scale variables.

Constraints (type: Constraint_t, intent: in) The constraint data (bounds, coef-
ficients, etc.) needed by MMFEVAL in order to determine feasibility of a point.

This structure is opaque (none of the components should be accessed directly).

FcnCache (type: FenCache t, intent: in) The cache data for the “truth” functions

(0BJ and CON) needed by MMFEVAL. This structure is opaque.

0BJ,0BJMDL (type: subroutine) Subroutines to evaluate the objective function. 0BJ
evaluates the actual function. OBJMDL evaluates the corresponding model(s).
Both must conform to the interface specification for objective function evalua-

tion routines defined in the MMF Interface Specification v1.6 document.

CON,CONMDL (type: subroutine) Subroutines to evaluate the nonlinear inequal-
ity constraint function. CON evaluates the actual function. CONMDL evaluates
the corresponding model(s). Both must conform to the interface specifica-
tion for constraint function evaluation routines defined in the MMF' Interface
Specification vl.6 document. If there is no model of the constraint function,

CONMDL may be the same as CON. If there are no nonlinear inequality constraints,
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the subroutine CONDUMMY can be used as the actual argument for both CON and

CONMDL.

trial_solns (type: pointer to MMFSoln t(:), intent: inout) On entry, this pointer
is associated with an array of solutions (possibly zero-size). On exit, each
solution in the array must correspond to a point on the grid. The array may
be returned with zero size. If the size of the array is changed, SEARCH must
deallocate the pointer before allocating new array space. SEARCH must not be
implemented to rely on the continued existence of the array space associated
with trial _solns after SEARCH exits. The pointer must not be returned in the

undefined or null states.

eval _counts (type: integer(2), intent: out) On exit, returns the number of calls
to the 0BJ and CON subroutines in the first and second elements of the array

(respectively).

status (type: Status_t, intent: out) On exit, contains exception information. See

Section A.2 for details.

Subroutine MANAGEMDL

The primary purpose of this subroutine is to modify the model to adapt to the most
recent results. There is no theoretical requirement that the model be modified in
any particular way. The subroutine is allowed to modify the new solution, but if
it does the new solution must fulfill the same theoretical requirements as the result
of the POLL routine: namely that the solution must correspond to a step from the
pattern at the current pattern scale factor Pattern¥scale, must be feasible, and
must decrease the actual object function. The new solution need not be in the array

of trial solutions.
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The interface for MANAGEMDL is:

call MANAGEMDL( OriginalSoln,CurrentSoln,Pattern,Constraints, FcnCache,
0BJ, CON, OBJMDL, CONMDL, TrialSolns,NumTrialSolnsEval,

new_soln, eval counts, status )

where the arguments to MANAGEMDL are:

OriginalSoln (type: MMFSoln_t, intent: in) The solution at the start of the current
exploratory moves (before iteration 1). This is the solution the exploratory

moves must improve on.

CurrentSoln (type: MMFSoln_t, intent: in) The current solution in the exploratory
moves. This is the solution that this iteration is attempting to improve on.

During iteration 1, CurrentSoln .EQ. OriginalSoln.

Pattern (type: Pattern_t, intent: in) The definition of the current pattern. This
contains the definition of the current grid in the Pattern’basis and Pattern-

%scale variables.

Constraints (type: Constraint._t, intent: in) The constraint data (bounds, coeffi-
cients, etc.) needed by MMFEVAL in order to determine feasibility of a point. This

structure is opaque (i.e. none of the components should be accessed directly).

FcnCache (type: FenCache t, intent: in) The cache data for the “truth” functions

(0BJ and CON) needed by MMFEVAL. This structure is opaque.

0BJ,0BJMDL (type: subroutine) Subroutines to evaluate the objective function. 0BJ
evaluates the actual function. OBJMDL evaluates the corresponding model(s).
Both must conform to the interface specification for objective function evalua-

tion routines defined in the MMF Interface Specification v1.6 document.
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CON,CONMDL (type: subroutine) Subroutines to evaluate the nonlinear inequal-
ity constraint function. CON evaluates the actual function. CONMDL evaluates
the corresponding model(s). Both must conform to the interface specifica-
tion for constraint function evaluation routines defined in the MMF' Interface
Specification vl.6 document. If there is no model of the constraint function,
CONMDL may be the same as CON. If there are no nonlinear inequality constraints,
the subroutine CONDUMMY can be used as the actual argument for both CON and

CONMDL.

TrialSolns (type: MMFSoln t(:),intent: in) Array of solutions (possibly zero-size)

returned by SEARCH.

NumTrialSolnsEval (type: integer, intent: in) The number of elements of Trial-
Solns for which the actual functions have been evaluated. NumTrialSolnsEval
.LE. SIZE(TrialSolns). The elements of TrialSolns are evaluated in order

starting with the first element.

new_soln (type: MMFSoln_t, intent: inout) On entry, contains the current best
solution. If different from CurrentSoln then new_soln .EQ. TrialSolns (Num-
TrialSolnsEval). If not, no decrease was found in the current MMFEM iteration.
On exit, new_soln may be different if the returned value satisfies all the condi-

tions on the result of POLL().

eval _counts (type: integer(2), intent: out) On exit, returns the number of calls
to the OBJ and CON subroutines in the first and second elements of the array

(respectively). Should be explicitly set to zero if no calls are executed.

status (type: Status_t, intent: out) On exit, contains exception information. See

Section A.2 for details.
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Subroutine TERMINATE

The sole purpose of this subroutine is to decide when to stop the loop in MMFEM
that calls SEARCH and MANAGEMDL. The implementation of TERMINATE is not allowed
to modify the current solution. The implementation must guarantee that the value
.TRUE. is returned for some finite value of the iteration counter NIters.
The interface for TERMINATE is:
call TERMINATE( Niters,OriginalSoln,PreviousSoln,CurrentSoln,
Pattern, FcnCache,
0OBJ, CON, OBJMDL, CONMDL, TrialSolns,NumTrialSolnsEval,
tc,status )

where the arguments to TERMINATE are:
NIters (type: integer, intent: in) The number of MMFEM iterations executed so far.

OriginalSoln (type: MMFSoln_t, intent: in) The solution at the start of the current
exploratory moves (before iteration 1). This is the solution the exploratory

moves must improve on.

PreviousSoln (type: MMFSoln_t, intent: in) The solution from the previous MMFEM
iteration. This is the solution that this iteration is attempting to improve on.

During iteration 1, PreviousSoln .EQ. OriginalSoln.

CurrentSoln (type: MMFSoln_t, intent: in) The solution in the current MMFEM iter-
ation. If the iteration failed to find a step with decrease, this will be the same

point as PreviousSoln.

Pattern (type: Pattern_t, intent: in) The definition of the current pattern. This
contains the definition of the current grid in the Pattern’basis and Pattern-

%scale variables.
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Constraints (type: Constraint_t, intent: in) The constraint data (bounds, coeffi-
cients, etc.) needed by MMFEVAL in order to determine feasibility of a point. This

structure is opaque (i.e. none of the components should be accessed directly).

FcnCache (type: FenCache t, intent: in) The cache data for the “truth” functions

(0BJ and CON) needed by MMFEVAL. This structure is opaque.

0BJ,0BJMDL (type: subroutine) Subroutines to evaluate the objective function. 0BJ
evaluates the actual function. OBJMDL evaluates the corresponding model(s).
Both must conform to the interface specification for objective function evalua-

tion routines defined in the MMF Interface Specification v1.6 document.

CON,CONMDL (type: subroutine) Subroutines to evaluate the nonlinear inequal-
ity constraint function. CON evaluates the actual function. CONMDL evaluates
the corresponding model(s). Both must conform to the interface specifica-
tion for constraint function evaluation routines defined in the MMF' Interface
Specification vl.6 document. If there is no model of the constraint function,
CONMDL may be the same as CON. If there are no nonlinear inequality constraints,
the subroutine CONDUMMY can be used as the actual argument for both CON and

CONMDL.

TrialSolns (type: MMFSoln t(:),intent: in) Array of solutions (possibly zero-size)

returned by SEARCH.

NumTrialSolnsEval (type: integer, intent: in) The number of elements of Trial-
Solns for which the actual functions have been evaluated by MMFEM. NumTrial-
SolnsEval .LE. SIZE(TrialSolns). The elements of TrialSolns are evalu-

ated in order starting with the first element.
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tc (type: TermCond._t, intent: inout) The termination conditions data. The only
components of this structure that may be modified safely are the function eval-

uation counts (tc)nobjevals and tcknconevals).

status (type: Status_t, intent: out) On exit, contains exception information. See

Section A.2 for details.

Subroutine POLL

This subroutine is only called when the SEARCH/MANAGEMDL loop in MMFEM fails to find
a new solution which decreases the actual objective function. The convergence theory
requires that the actual objective function must be evaluated at all the steps in the
core pattern before this routine is allowed to return with a zero step (i.e. return with
a new solution the same as the old solution). If a point corresponding to a step in
the core pattern is found that decreases the objective, it can be returned without
evaluating the objective at the rest of the points. Only points corresponding to steps
in the core pattern may be returned as the new solution.

The core pattern is represented as a 2D array of integer values. Each column
represents steps in each dimension away from the current iterate. The formula to

compute the points corresponding to the core steps is:

z., = 01dSoln%zx + Pattern%scale * Pattern%basis * Pattern%core(:, i).

The interface for POLL is:

call POLL( 01dSoln,Pattern,Constraints,FcnCache,
0BJ, CON, 0BJMDL, CONMDL,

new_soln, tc,status )

where the arguments to POLL are:
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01dSoln (type: MMFSoln_t, intent: in) The current best solution. This is the value

that was input to MMFEM. It is the solution that POLL needs to improve.

Pattern (type: Pattern_t, intent: in) The definition of the current pattern.
This contains the definition of the current grid in the Pattern)basis and

Patternscale variables.

Constraints (type: Constraint_t, intent: in) The constraint data (bounds, coeffi-
cients, etc.) needed by MMFEVAL in order to determine feasibility of a point. This

structure is opaque (i.e. none of the components should be accessed directly).

0BJ,0BJMDL (type: subroutine) Subroutines to evaluate the objective function. 0BJ
evaluates the actual function. OBJMDL evaluates the corresponding model(s).
Both must conform to the interface specification for objective function evalua-

tion routines defined in the MMF Interface Specification v1.6 document.

CON,CONMDL (type: subroutine) Subroutines to evaluate the nonlinear inequal-
ity constraint function. CON evaluates the actual function. CONMDL evaluates
the corresponding model(s). Both must conform to the interface specifica-
tion for constraint function evaluation routines defined in the MMF' Interface
Specification vl.6 document. If there is no model of the constraint function,
CONMDL may be the same as CON. If there are no nonlinear inequality constraints,
the subroutine CONDUMMY can be used as the actual argument for both CON and

CONMDL.

new_soln (type: MMFSoln_t, intent: inout) On entry, must be INITIALIZEd. The
input values are irrelevant. On exit, new_soln must either be the same as
01dSoln or must produce decrease in the objective function 0BJ and must be

feasible and must be from the current core pattern (Patternicore). If any
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of the points in the core pattern produce decrease, then new_soln must also

produce decrease.

eval_counts (type: integer(2), intent: out) On exit, returns the number of calls
to the OBJ and CON subroutines in the first and second elements of the array

(respectively). Should be explicitly set to zero if no calls are executed.

status (type: Status_t, intent: out) On exit, contains exception information. See

Section A.2 for details.

A.3.3 Module ConstraintModule

This module defines the Contraint _t data type and the INITIALIZE, RELEASE, READ,
WRITE and CHECKCON generic subroutines. A set of F77 routines are defined in the
same file that all operate on a shared constraint variable stored in the module. For
most applications only one set of constraint data is needed so this should suffice.
Constraint handling in the MMF is straightforward. All solutions must be feasible,
so the only important operation that uses the constraint data is checking for feasibility.
To do this may require evaluating the nonlinear inequality constraint function if the
bound and linear inequality constraints are satisfied. The CHECKCON routine (or the
CHECKCONSTR F77 routine) determines the feasibility of a given solution. The MMFEVAL
routine defined in MMFTypesModule calls CHECKCON as part of evaluating the solution

at a point.

A.3.4 Module MMFTypesModule

This module defines most of the defined types that are specific to the MMF, and

subroutines to manipulate them. The types are:
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MMFSoln_t An approximate solution to the optimization problem. The MMFEVAL rou-

tine is used to set the components in this structure.

hfeasible (logical) . T RUF. when the point %x is feasible. .FFALSE. otherwise.

%isconeval (logical) . T'RUE. when the nonlinear constraint function has been

evaluated since the type was initialized. .FFALSE. otherwise.

hisobjeval (logical) .T'RUE. when the objective function has been evaluated

since the type was initialized. .FFALSFE. otherwise.
%x (real, pointer[:]) contains the coordinates of the solution point.

hcon (real, pointer[:]) when %isconevalis .T RUF., contains the values of the

nonlinear constraint function at %x. Otherwise undefined.

hobj (real) when %isobjeval is .T'RUFE., contains the value of the objective

function at %x. Otherwise undefined.

Pattern_t Data for the pattern used in the pattern search method in MMFPS.
TermCond_t Termination condition data for MMFPS.
FcnCache t Function cache identifiers for the objective and constraint functions.

Status_t Describes the exception, if any, that occurred during the execution of a

procedure.

The module implements several generic routines for some or all of the types. These

are:
INITIALIZE Set initial values in a data structure, allocating array space if necessary.

RELEASE Unset values in a data structure, deallocating array space.
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READ Initialize a data structure by reading values from a file.
PRINT Write the values in a data structure in human-readable (pretty-printed) form.
WRITE Write the values in a data structure into a file that is acceptable to READ.

The module also defines the MMFEVAL subroutine, which evaluates the objective
and constraint functions at a given point and determines feasibility. It also handles
the function caches. MMFEVAL can be used with the actual functions or the models

thereof.

A.3.5 Module MMFModelModule

This module implements the standardized interfaces to the objective and constraint
model manipulation routines. Since the interfaces are defined at the Fortran77 level,
the actual code for these routines is not part of the module. This enables the routines
to be called by Fortran77 code that can’t USE the module. The module also contains
the FO90 INTERFACE definitions for the F77 routines.

Two instantiations of this module are provided with the MMF. One implements
polynomial models using the spline library written by Thomas Grandine. The other
implements the DACE models described by Welch et al. in [74] and developed by
Andrew Booker. In both cases, not all the functionality of the underlying software
libraries is available through the module routines. Only the functionality needed by
the MMF is implemented. Specifically, routines to initialize, evaluate, and calibrate
a model with scalar or vector values are provided. Both versions of the module
implement the same subroutine interfaces. In fact, the code in the two versions is
almost identical, as each relies on a lower level module that provides a structure that
encapsulates the information in the model and generic routines to manipulate the

structure. The routines in MMFModelModule simply instantiate separate models for
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the objective and constraint functions and hide the data structures behind subroutine
calls that match the MMF interface specifications.

The subroutines provided by MMFModelModule are:
EVALOBJMDL Evaluate the model of the objective function.
EVALCONMDL Evaluate the model of the constraint function.
CALOBJMDL Calibrate the model of the objective function at a single point.
CALCONMDL Calibrate the model of the constraint function at a single point.
SETOBJMDLFILE Specify the name of the file that defines the objective function model.

SETCONMDLFILE Specify the name of the file that defines the constraint function

model.

Each model is initialized the first time it is used by reading the model data from
an external file. It is possible to initialize the model directly using the underlying
F90 code, but no F77 interface to this functionality is provided. The SET*MDLFILE
routines allow the names of the input files to be set before the first use of the model.

¢

The default file names are ¢ ‘objective.mdl’’ and ‘‘constraint.mdl’’.
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