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Abstract

It is common engineering practice to use response
surface approximations as surrogates for an expensive
objective function in engineering design. The ratio-
nale is to reduce the number of detailed, costly analy-
ses required during optimization. In earlier work, we
developed a rigorous and effective scheme for man-
aging the interplay between the use of surrogates in
the optimization and scheduled progress checks with
the expensive analysis so that the process converges
to a solution of the original design problem. In this
paper, we will report our latest numerical tests with
a helicopter rotor design problem which has proved
to be a fruitful laboratory for experimentation. The
results given here support the use of an ANOVA de-
composition on a DACE model to identify the most
important optimization variables in an optimal de-
sign problem.
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Introduction

The use of optimization tools with computer sim-
ulations to drive engineering design underpins MDO.
However, there still are many important problems for
which existing methods are either unreliable ad hoc
procedures or impractical. Legacy simulation codes
that fail on some plausible inputs and run slowly
on the rest are far from the clean, infinitely differ-
entiable functions for which optimization specialists
design and analyze powerful algorithms. A research
collaboration, involving Boeing Applied Research &
Technology and Rice University, has developed meth-
ods that interpose a computationally clean surrogate
function between the optimizer and the simulation, to
provide a reasonably accurate model of the true simu-
lation and a function that the optimizer can evaluate
quickly. The resulting methods have led to new the-
ories and better practical solutions.

We present numerical results here for two versions
of one of the target problems for our collaboration,
the design of a lower vibration helicopter rotor blade.



The two versions are a 31 variable problem and an 11
variable problem. The smaller problem was obtained
from the larger problem by an analysis of variance
decomposition, or ANOVA, [9, 12, 13] performed on a
kriging interpolatory model of the objective function
[15, 6].

The details of the ANOVA decomposition and the
way the 11 variables were determined is covered else-
where by Andrew Booker in this specially organized
section. To us, ANOVA identifies the design param-
eters that have the greatest influence on the quality
of the design. We hope to identify a few key vari-
ables that account for most of the variation in the
objective function, then optimize solely with respect
to those variables at reduced expense. In this paper,
we present a method and use it to generate numerical
results that encourage us in this hope.

In earlier work [4, 3], we have presented and proved
convergence for a flexible framework, the Surrogate
Management Framework for optimizing problems like
this by searching on surrogates rather than the true
objective function. We have presented experimental
results, based on an implementation called MMF by
Serafini. The idea is to use inexpensive surrogate val-
ues to find interim designs where the surrogate pre-
dicts improvement, and then occasionally to compute
the expensive values of the true objective function to
test those predictions.

The analysis ensures convergence independent of
the approximation concepts [2] used to obtain the
surrogates and independent of the accuracy of the
surrogates - although more accurate surrogates cer-
tainly speed up convergence.

Mathematically, the problem we consider here 1s:

f(z) (1)

reB={z]|a<z<b},

minimize

subject to

where f: 1" = RU{oo},a,b € R, and a < b means
that each coordinate satisfies a; < b;.

Problem (1) is an optimization problem with sim-
ple bound constraints. Most problems also include
other types of constraints, and we are studying ways
to handle general constraints. Our helicopter exam-
ples include an additional linear inequality constraint.
We currently use such constraints either to eliminate
one of the variables, or, risking failure in theory, to
assign large function values to infeasible points.

Managing nonlinear constraints, especially equality
constraints, is an issue that we have not settled yet.
We believe that if the surrogate constraints and the
true constraints match in values and derivatives, then
trust region search methods for the surrogate prob-
lems present little analytic difficulty [1]. Although

penalty function techniques place the burden of man-
aging nonlinear constraints on the user, this may
be necessary since more sophisticated approaches re-
quire Lagrange multiplier estimates, which involve
derivatives not available for these problems. There
are many interesting issues in modeling nonlinear
constraints via surrogates, and we will address them
in subsequent work.

We are interested in problems with the following
properties:

1. The number of decision variables, z, 1s reason-
ably small, say n < 100.

2. It is impractical to accurately approximate the
derivatives of f.

3. The routines that evaluate f(z) may fail for some
feasible z at the same cost as if a value had been
obtained.

4. If x violates any of the bound constraints, then
f(z) may not be available.

5. The computation of f(z) is very expensive and
the values obtained have few correct digits.

Although the number of optimization variables is
reasonably small, the total number of variables in the
problem usually is large. Typically, f(z) is expensive
to evaluate because there are large numbers of ancil-
lary or system variables that must be determined for
each choice of z before f(z) can be evaluated. For the
helicopter rotor examples, x specifies a coupled set of
partial differential equations that must be solved in
order to obtain dependent system variables that are
then used to evaluate f(z). The coupling of PDEs
via some iterative method, most often the notoriously
unreliable successive substitution approach, explains
the third property, since the iteration to resolve the
system couplings may run for many iterations and
not converge.

Problems with the second and third properties
make quasi-Newton methods difficult to apply. Us-
ing finite difference gradients in practice depends for
success very strongly on finding an effective finite dif-
ference step size. The fact that we may not be able to
compute the function value at the step size selected
compounds this difficulty. Automatic differentiation
technology may one day offer actual derivatives in
place of finite difference approximations, but the inac-
curacy in computing f may still thwart quasi-Newton
methods because they are badly affected by function
inaccuracies [7].

Our last two properties explain why we allow the
value of f(z) to be infinite. In practice, none of our



implementations perform calculations with infinity.
Formally, we assign f(z) = oo either when z is in-
feasible or when the routine to evaluate f(z) does
not return a value. This amounts to assuming that
any choice of decision variables at which the objec-
tive does not evaluate is not optimal. When the op-
timization method generates an infeasible vector z of
decision variables, then we save ourselves the expense
of trying to obtain a value for f(z).

This is one place where optimization algorithms
traditionally distinguish between types of constraints.
It i1s common practice not to evaluate the objective
at points that violate bound constraints, but it is
also common practice to evaluate the objective at
points that violate, for example, nonlinear equality
constraints.

The results here use the MMF software [14], which
can be applied regardless of the smoothness of f.
Even table lookup components can be involved in the
computation of f. For the convergence analysis [14],
we need at least to have a continuous function, and
the existence of a gradient is even better.

Our starting point for this research is the valuable
survey of Barthelemy and Haftka [2], and our idea of
replacing direct optimization, when it is impractical,
with indirect optimization of surrogates constructed
using approximation concepts.

The basic “one-shot” procedure is:

1. Choose a surrogate s for f by some approxima-
tion concept. Common approaches to construct-
ing surrogates include:

e Use simplified physics to obtain a less costly
simulation s; or,

e Evaluate f at selected design sites, z1, z9,
..., &q € B at which f(z;) is finite for each
1 = 1,...,d, and then obtain s by inter-
polating or smoothing the function values
thus obtained.

2. Minimize s on 3 to obtain z,.

3. Compute f(z;) and determine if it improves
upon the best x found to date, which may be
some baseline z or one of the design sites if that
approach 1s used.

The question is what to do if 2 is not good enough
to use as a solution to (1)? A sensible modification
is to use a sequence of models to identify interesting
regions in which to build the expensive models. One
aspect of this approach called “variable complexity
modeling” has been systematically developed at the

Virginia Tech MAD Center [5, 10].

Although the one-shot approach is easily imple-
mented, subject to being able to construct the surro-
gate, difficulties arise when we try to use it repeatedly
as part of an iterative procedure. Previous work [8]
describes a rigorous, but complex, attempt to extend
the surrogate approach to a practical iteration. Here
we use a more general and elegant approach given in
Serafini’s thesis[14, 4].

Whether surrogates arise from simplified physics
models or interpolatory models, they are always mod-
ified, or recalibrated, to interpolate known values of
f. In the first case, the surrogate i1s the simplified
physics model plus a term that interpolates the er-
ror in that model where the true objective function
value 1s known. Likewise, when we use interpolatory
models, we might build an underlying initial approx-
imation using DACE models fitted to data sites from
an experimental design and then calibrate this DACE
model using polynomials. This distinction between
the underlying initial model and the surrogate used
by the framework is important.

Once we have updated the surrogate, we perform a
fairly extensive search on the current surrogate prob-
lem to decide adaptively when and where to obtain
additional values of f to compare to the values pre-
dicted by the current surrogate. We use all values
that we obtain to improve the current approxima-
tion to f, thereby constructing a new surrogate. In
the results given here, all such calibration points are
in surrogate valleys, but we also could include some
points where our adaptive strategy estimates that the
surrogate is least reliable.

In the next section, we give the bare bones of the
Surrogate Management Framework (SMF); more de-
tails are given in [4]. In section 3, we report numerical
results of experiments on the MMF approach applied
to optimal helicopter rotor design for the 11 variable
subspace identified by ANOVA. We consider freezing
the other 20 variables in two ways: we minimize f
on the subspace in the 11 variables that contains the
baseline zg, and on the translation of that subspace
to the best 31 variable point we found. One of our
runs found the best minimizer we currently know for
the helicopter rotor design problem.

Our results make a case that the 11 variable sub-
spaces identified by the ANOVA decomposition pro-
vide a better solution than one is likely to get using
all 31 variables. As in [4], the number of evaluations
of the true objective needed to get a good design is
gratifyingly small. On the other hand, it is clear that
much more work is needed to realize the potential

additional benefits of combining ANOVA with SMF.



The Surrogate Management Framework

The Surrogate Management Framework (SMF) is
a set of strategies for using surrogates in both the
Search and Poll steps of the generalized pattern
search algorithm for bound constraints studied in
[11]. For greater clarity, we have identified a sep-
arate Evaluate/Calibrate step. In what follows,
we assume that we have a family of underlying ap-
proximating functions, an initial surrogate, and an
algorithm to recalibrate the surrogate.

Let My denote a rectangular mesh along the coordi-
nate direction on B={z | a < z < b} , and suppose
that zg € My has been given. We use the notation
My/2 to mean the refinement of Mj that inserts a
new point between each pair of points in My adja-
cent along the coordinate directions.

SMF': Given sg, an initial surrogate of f on B, and
xog € My, let Xog C My contain zg and the 2n points
adjacent to xg for which the differences between those
points and zg are multiples of the coordinate vec-
tors for N*. As the algorithm generates zr € My,
let Xy C My be defined in the same way. For
k=0,1,..., do:

1. Search: Use any method to choose a trial set
Ty C My. If Ty, # 0 is chosen, then it is required
to contain at least one point at which f(z) is not
known. If T}, = (§, then go to Poll.

2. Evaluate/Calibrate: Evaluate f on elements
in T until either it is found that zx minimizes f
on Ty or until i1 € T is identified for which
F(xg41) < f(zg). If such an x4 is found, then
declare the Search successful. Recalibrate sg
with the new values of f computed at points in
Tk.

3. If Search was successful, then set sg11 = sg,
My41 = My, and increment k;
else return to Search with the recalibrated s,
but without incrementing k.

4. Poll:
If z; minimizes f(z) for x € X}, then declare
the Poll unsuccessful, set zxy1 = zg, and set
M1 = My /2;
else declare the Poll successful, set zx41 to a
point in Xy at which f(zx4+1) < f(2x), and set
Mk+1 = Mk.
Recalibrate sp with the new values of f com-
puted at points in Xg. Set sg41 = si.
Increment k.

Our framework exploits the convergence analysis
for general pattern search methods given by Lewis
and Torczon [11] in a novel way that allows great
flexibility in the heuristics one can employ. Serafini
presents the details of the convergence analysis in this
thesis [14], but for completeness, we state the theorem
here.

Theorem If f is continuously differentiable on the
feasible region B, then some limit point of the se-
quence {zy } produced by SMF for bound-constrained
minimization is a stationary point for problem (1).

Experimental Results
In this section, we present some results on optimiz-
ing f(z) in the 11 variables that are the most impor-
tant, according to the ANOVA that Andrew Booker
presents in this section. The results can be summa-
rized as follows:

e Minimizing in the 11 variables identified by
ANOVA leads to quick, efficient reduction of the
objective for several different DACE models as
initial surrogate.

o Setting the values of the 20 variables not iden-
tified by ANOVA to match corresponding val-
ues from the best known solution to the 31 vari-
able problem makes the restriction to 11 vari-
ables particularly effective.

e Starting the 11 variable problem from a solu-
tion to the 31 variable problem offers supris-
ing improvement, because resetting the surro-
gate makes search work better.

And last but not least:

e It is better to be lucky than good.

The graphs below show objective function decline
as a function of the number of function evaluations,
for several different numerical experiments. In the
first, the plot labeled “Good model” shows rapid ini-
tial decrease for ten evaluations or so, and then flat-
tens out; this profile is typical. The “Good mod-
el” is one constructed according to DACE modelling
techniques from a collection of 40 data sites. The
plot “Better model” is based on an improvement of
the initial DACE model, as Andrew Booker identified
an outlier among the initial trials and removed it to
achieve a smoother model in 39 data sites. As the
chart shows, the “Better model” produces a better
result.



The second graph shows, in part, the effect of start-
ing points on the success of the search. The plots
labeled “bad start” and “good start” differ only in
that the latter starts with the design suggested by a
full 31 variable run of MMF, where the former starts
with the common starting point for all these calcu-
lations. Tt is noteworthy that, starting from a 31
variable optimum, the 11 variable method can still
find improvement. We believe that this happens be-
cause the surrogates, after MMF compels them to
interpolate dozens of points that are not chosen to
improve the condition of the surrogate, become ill-
conditioned and unreliable. The fresh start offered in
the “good start” solution allows progress where none
was apparent in the 31 variable problem.

The last of our conclusions, whose universal truth
is undisputed, is supported by the third plot, “Luck-
y”. That plot, which shows the progress of the best
solution we found, and the best solution we have seen
reported, was the result of the sort of mistake that
is easily made in running a set of experiments like
these. We built a model on the 11 variable subspace
containing the best 31-variable solution. However, in
the MMF run, we inadvertently restricted the objec-
tive function to the 11 variable subspace containing
the 31-variable baseline point.

The run is interesting however, and we view it as
showing how robust MMF is with respect to the fi-
delity of the model. Notice that in the graph, this
run initially improves the objective more slowly than
any of the other runs — all of which use consistent
models. The lucky part is that this seems to have
lead us into a fertile part of design space, by which
time the model has been recalibrated numerous times
using truth values computed in the correct subspace.
The effect of the initial erroneous model is damped
out as the iterations proceed.
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