Deflation for Implicitly Restarted
Arnoldi Methods

D.C. Sorensen

CRPC-TR98775
May 1998

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted September 1998; Available as Rice CAAM
TR98-12



DEFLATION FOR IMPLICITLY RESTARTED ARNOLDI METHODS *

D. C. SORENSENT'

Abstract. The implicitly restarted Arnoldi method (IRAM) is an effective technique for com-
puting a selected subset of the eigenvalues and corresponding eigenvectors of a large matrix A.
However, the performance of this method can be improved considerably with the introduction of
appropriate deflation schemes to isolate approximate invariant subspaces associated with converged
Ritz values. These deflation strategies make it possible to compute multiple or clustered eigenvalues
with a single vector implicit restart method.

It is of particular interest to provide schemes that can deflate with user specified relative error
tolerances e p that are considerably greater than working precision e3;. The primary contribution of
this paper is to develop efficient and numerically stable schemes for this purpose. Two forms of defla-
tion are presented. The first, a locking operation, decouples converged Ritz values and the associated
invariant subspace from the active part of the IRAM iteration. The second, a purging operation,
removes unwanted but converged Ritz pairs. Convergence of the IRAM iteration is improved and a
reduction in computational effort is also achieved.

Key words. eigenvalues, deflation, implicit restarting, Krylov projection methods, Arnoldi
method, Lanczos method
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1. Introduction. The implicitly restarted Arnoldi method TRAM is an efficient
procedure for approximating a selected subset of the eigenvalues and corresponding
eigenvectors of a large sparse or structured n x n matrix A. Implicitly restarting [7]
enables the Arnoldi process to compute this selected subset within a pre-determined
and relatively small amount of storage. This is the underlying algorithm in the large
scale eigenvalue package ARPACK [3]. The method may be viewed as a truncation
of the standard implicitly shifted @QR-iteration. Through this connection, the IRAM
shares a number of desirable properties with the @QR-iteration. These include some
well understood deflation rules that are extremely important with respect to con-
vergence and stability. These deflation rules are essential for the @QR-iteration to
efficiently compute multiple or clustered eigenvalues. While these existing QR defla-
tion rules are applicable to IRAM, they are not the most effective schemes possible.
The purpose of this paper is to develop new deflation schemes that are better suited
to implicit restarting.

In the large scale setting, it is highly desirable to provide schemes that can deflate
with user a specified relative error tolerances ep that are considerably greater than
working precision e3r. Without this capability, excessive and unnecessary computa-
tional effort is often required to detect and deflate converged approximate eigenvalues.
The ability to deflate at relaxed tolerances provides an effective way to compute mul-
tiple or clustered eigenvalues with a single-vector implicitly restarted Arnoldi method.
The primary contribution of this paper is to develop efficient and numerically stable
methods for these purposes.

Two forms of deflation are presented. The first, a locking operation, decouples
converged approximate eigenvalues and associated invariant subspaces from the active
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part of the IRAM iteration. The second, a purging operation, removes unwanted but
converged eigenpairs. With the aid of these deflation schemes, convergence of the
TRAM iteration is improved and a reduction in computational effort is also achieved.
These notions and appropriate methods were developed previously in [1, 2]. The new
techniques developed here improve upon those deflation schemes. These new schemes
provide the means to deflate at very relaxed tolerances ¢p. This new capability 1s
achieved through new orthogonal transformations that structure the way deflation
error can influence the remaining Arnoldi process.

This paper has the following organization. The fundamentals of the Arnoldi
method and implicit restarting are briefly reviewed in § 2. We introduce an apparently
new family of orthogonal transformations in § 4 that greatly improve the efficiency and
stability of the deflation schemes we shall develop. Deflating a single converged Ritz
value is examined in § 5. A real-arithmetic scheme for deflating a converged complex
conjugate pair of approximate eigenvalues of a real matrix is presented in § 6. Brief
error analyses of the numerical behavior of the new orthogonal transformations and
of the deflation process in the context of the full IRAM iteration are presented in § 7.
Numerical results and conclusions are presented in § 8.

Bold face capital and lower case letters denote matrices and vectors while lower
case Greek letters denote scalars. The j-th canonical basis vector is denoted by e;.
The Euclidean norm is used exclusively and this is denoted by || - ||.

2. Arnoldi’s Method and Implicit Restarting. The Arnoldi process under-
lies practical schemes for implementing Krylov subspace projection methods for both
eigenvalue problems and linear systems. Technically, the method amounts to nothing
more than reducing a square matrix A to condensed form through an orthogonal sim-
ilarity transformation. Unlike Householder or Given’s method, the Arnoldi reduction
proceeds one column at a time from left to right. After k-steps, one has

AV = VH + fe]

where VIV =1, VTf = 0 and H is a k x k upper Hessenberg matrix. The columns
of V form an ortho-normal basis for the Krylov subspace

K(A,vi) = Span{vy, Avy,-- ~Ak_1v1}.

The matrix A = VHV7 is the orthogonal projection of A onto this space. Ritz
values and vectors are defined by a Galerkin condition: A vector x € Ki(A,vy) is
called a Ritz vector with corresponding Ritz value 6 if the Galerkin condition

(w,Ax —x0) =0, forall we Kr(A,vy)

is satisfied. It is easy to check that x,6 is a Ritz pair if and only if Hy = y# and
x = Vy. The corresponding residual is given by

Ax —xf =fely
indicating that every Ritz residual is in the same direction and that
T
[Ax — 0| = [[f][lex v

Thus the norm of the residual error is available without an additional reference to the
matrix A.
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Algorithm 1: (TIRAM) Implicitly Restarted Arnoldi Method

Input: (A, V, H, f)with AV,,, = V,,H,, +f,el
an m-Step Arnoldi Factorization;
Output: (Vi, H) such that AV = Vka,Vka =1,
and Hy is upper triangular.
1. for £ =1,2,3, ... until convergence
1.1. Compute o(H,,) and select set of p shifts p1, pa, ... 1p
based upon ¢(H,,) or perhaps other information;
1.2. Q =1,
1.3. for j=1,2,...,p,
1.3.1. Factor [Q;, R;] = qr(H,, — p;1);
1.3.2. Hy, « QH,,Q;; Q « QQ;;
end for

1.4. Bx = H,,(k+1,k); o = Q(m,k);
1.5, i« Vi1 B + fon;

1.6. Vi « V,,Q(:,1:k); Hy « Hy(1:k,1:k);

1.7. Beginning with the k-step Arnoldi factorization
AV, = V Hy + frel
apply p additional steps of the Arnoldi process
to obtain a new m-step Arnoldi factorization
AV,, =V, H, +f,el .

end for

Fi1G. 2.1. An Implicitly Restarted Arnoldi Method (IRAM).

Implicit Restarting is a technique for updating a sequence of k-step Arnoldi fac-
torizations in a way that forces desired eigenvalues to appear in the spectrum of the
leading k& x k Hessenberg matrix Hy. The basic iteration is described in Fig. 2.1. In
that algorithm, the leading k& columns Vi of the Arnoldi basis vectors and the leading
k x k Hessenberg matrix Hy are precisely the same quantities that would appear in
the leading & columns of V and the leading k& x k submatrix of the Hessenberg matrix
H if the same shifts were selected and applied to update the relation AV = VH with
steps of the full implicitly shifted QR iteration.

Deflation is an important concept in the practical implementation of the QR
iteration. However, in this large scale setting, the usual QR deflation techniques
are not always appropriate. There are situations that call for additional deflation
capabilities specific to implicit restarting. In particular, it is highly desirable to have
the ability to deflate at an accuracy level ep with 1 > e¢p > epr where epr is machine
precision. There some important reasons for this. In theory (i.e. in exact arithmetic),
when A has multiple eigenvalues 1t would be impossible for IRAM to compute more
than one instance of this multiplicity. This is because it is a “single vector” rather than
a block method. However, in practice, there is usually little difficulty in computing
multiple eigenvalues because the method deflates itself as convergence takes place
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and round-off usually introduces components in new eigenvector directions in the
subsequent starting vectors. Nevertheless, this can be unreliable and miss a multiple
instance. And, in any case, this approach requires a stringent convergence tolerance to
succeed in finding all of the multiplicities. Tt is far more efficient to deflate (i.e. lock)
an approximate eigenvalue once it has converged to a certain level of accuracy and
then force subsequent Arnoldi vectors to be orthogonal to the converged subspace.
With this capability, additional instances of a multiple eigenvalue can be computed to
the same specified accuracy without the expense of converging them to unnecessarily
high accuracy.

3. Deflation for Implicit Restarting. In the standard implicitly shifted QR
iteration, it is common to associate convergence of eigenvalues with small or zero sub-
diagonal elements of H. Deflation rules are associated with setting small subdiagonal
elements to zero in a numerically stable manner. They are designed to assure that the
computed eigenvalues of the problem that results from setting a small subdiagonal to
zero will be exact eigenvalues of a problem that is an acceptably small perturbation
to the original problem.

In the Arnoldi process, subdiagonal elements 3; of H are norms of residual vectors
|[f;]|. As with a QR iteration, it is possible for some of the leading k subdiagonals
to become small during the course of implicit restarting. However, it is usually the
case that there are converged Ritz values appearing in the spectrum of H long before
small subdiagonal elements appear. This convergence is usually detected through
observation of a small last component in an eigenvector y of H.

It turns out that in the case of a small last component of y, there is an orthogonal
similarity transformation of H that will give an equivalent Arnoldi factorization with
a slightly perturbed H that does indeed have a zero subdiagonal and this is the
basis of our deflation schemes. A technique for doing this was developed in [1, 2],
but this scheme requires the Ritz error estimates ||f||lely| < ||H||ear®/? before the
deflation can take place without unacceptable perturbations to the deflated H. Thus,
while those methods are effective, they can still require considerably more work than
necessary due to the stringent tolerance.

This work introduces a new, but related, technique that does allow for stable
and efficient deflation (or locking) of Ritz values that have converged with a specified
relative accuracy of ep which may be considerably larger than machine precision
epr. This is particularly important when a shift-invert spectral transformation is not
available to accelerate convergence. Typically, in this setting the number of matrix-
vector products will be large and it will be highly desirable to lock converged Ritz
values at low tolerances to avoid the expense of the matrix-vector products that would
be required to achieve accuracy that would allow normal QR type deflation. Also, it is
very important to be able to purge converged but unwanted Ritz values. As Lehoucq
pointed out [1], the forward instability of the QR bulge-chase process discovered by
Parlett and Le [5] will prevent implicit restarting to be used for purging converged
unwanted Ritz values.

4. Some Useful Orthogonal Transformations. In this section we develop
a family of orthogonal transformations that will be useful for implementation of our
deflation schemes. Asin [1, 2] the deflation is related to an eigenvector associated with
a Ritz value that is to be deflated. The following lemma explains how to construct
an orthogonal matrix that can be used to accomplish the deflation.
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LemMa 4.1. Let yT = (m1,m2,...,nk) be a k dimensional vector of unit norm
(Il¥ll = 1) and define ij = (n1,m2,...,15). Let 7; = ||y;|| for 2 < j < n, and define

Yimtii —; Ti-1

q; = Pj where ~; = . P =
’ 0 TTman T

If Q= [qi,qz,...,q,] with q1 =y then Q is orthogonal (QTQ = I) with Qe; =y
and with egQ = [k, Tk_leg_l]‘

Proof. First, observe that qiqu = qZ»Ty'yj if 2 < 7. Thus, 1t is sufficient to show
that q7y = 0 for i = 2,3, ..., k. This follows easily from the definitions of 7; and p;,
since

4y =y iyic1v + nipi

9 -1 Ti—1
=T ( ) + i
Ti—-1T; Ti

=0, for2<:i<n.

Moreover, qf q; = 1, since

@ G =Yy yio1+p}

o \? 2
—Ni i—1
Ti—1T; Ti
2, 2
_nitT
= 3

7i

=1, for2<i:<n.

and the lemma is proved O

The orthogonal matrix Q constructed as prescribed in Lemma(4.1) may be written
as

(4.1) Q=R +ye!, with Re; =0, RTy =0,
where R is upper triangular. It may also be written as
(4.2) Q=L+yg?, with Le;=0, LTy =¢e; —g,

where L is lower triangular, and g7 = el + efR/n. Moreover, if Sy is the left-
circular-shift operator (i.e., xT'Sy = (£2,&3,..., &k, &) for any xT = (&1,&a,...,&)),
then

(4.3) U = QS;, satisfies Ue, =y, and UTU =1

It is easily seen that U is upper Hessenberg and orthogonal.
An algorithm based upon Lemma 4.1 for computing the orthogonal matrix Q =
Q(y) is is presented in Figure 4.1. A simple indexing modification to Algorithm 4.1
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function [Q] = orthQ(y);

Input: y of dimension k with |ly||=1 and n =e]y.
Output: Q such that Qe; =y, el Q = (y,7el_,),
with Q7Q =1.

L.Q=0; Q1) =y;
2.0 =y(1)* 7 =|y(1)]
3. for j =2 :n,
3.1. c —o+y(j) y0U)
3.2. 7 = /o,
3.4.if (7, #0),
3.4.1. 7 = (y(j)/7)/ "0
3.4.2. Q(1:7-1,7)=—=y(1:5—=1)y;
3.4.3. Q(j,J) = 7/7;
else
344. Q- 1,5)=1;
end _if
3.5. 7, =T,
4. end for;

Fic. 4.1. Computation of a Special Orthogonal Matriz Q

will compute the orthogonal upper Hessenberg matrix U = U(y) with Uey =y. We
express the algorithm in Figure 4.2 with explcit reference to Sy, for convenience and
also to emphasize the connection between the two transformations. In the following
discussion we shall refer to the procedure described in Lemma 4.1 and shown in Fig-
ure 4.1 for computing Q as orthQ(y). We shall refer to the procedure for computing
an upper Hessenberg orthogonal matrix U described in Figure 4.2 as orthU (y).

It is worth noting that while underflow (flush to zero) might occur during the
computation of v at step 3.4, this is not catastrophic. Since the magnitude of each
component of y is bounded by one, if v underflows at step 3.4 then every component
of y(1:j— 1)y must also underflow at step 3.5 regardless of how it is computed.

Finally, it should be noted that, as computed by Algorithm 4.1, Q will have
componentwise relative errors on the order of machine precision e3; with no element
growth. Moreover, extension to complex arithmetic is completely straightforward
(unlike Given’s or Householder transformations).

5. Locking or Purging a Single Eigenvalue. The orthogonal transforma-
tions developed in the previous section will provide stable and efficient transforma-
tions needed to implement locking and purging. The simplest case to consider is the
treatment of a single eigenvalue. When working in complex arithmetic, this will suf-
fice. Handling complex conjugate eigenvalues of a real non-symmetric matrix in real
arithmetic is a bit more complicated and this will be discussed in the next section.
Locking #: The first instance to discuss is the locking of a single converged Ritz
value. Assume that

Hy =y0, |ly||=1,
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function [U] = orthU(y);

Input: y of dimension k with |ly|| =1 and n = ely.
Output: U such that Uey =y, el Q = (rel_,, 1),
with UTU =1 and U upper Hessenberg.

1. Q = orthQ(y);
2. U=QS.; % Left circular shift.
3. end;

Fic. 4.2. Computation of an Orthogonal Hessenberg Matriz U

with ey = n, where |n| < ep||H||. Here, it is understood that ey < ep < 1is a
specified relative accuracy tolerance between ez and 1.

If 6 1s “wanted” then 1t is desirable to lock . However, in order to accomplish this
it will be necessary to arrange a transformation of the current Arnoldi factorization
to one with a small subdiagonal to isolate . This may be accomplish by constructing
a k x k orthogonal matrix Q = Q(y) using the algorithm shown in Figure 4.1

Qer =y and e, Q= (n,7e; ),

with 2 +72 = 1. The following lemma exhibits the form of the matrix Hy = QTHQ.
LEMMA 5.1. Suppose H is upper Hessenberg, Hy = yf, with ||y|| = 1. Let
Q = Q(y), as described in Lemma 4.1. Then Hy = QTHQ is of the form

 hT
H+:[0 ﬁ]

Moreover, if H = HT is symmetric and tridiagonal then h = 0 and H is also sym-
metric and tridiagonal.

Proof. Consider the quantity QTHQ. The substitutions QT = (L + yg?)7,
Q = (R +ye?) from Equations 4.2 and 4.1 and the facts QT Hy = fe; and 1 = yTy
will give

Q"HQ = Q"H(R +ye])
= (LT + gy")HR + e, el
=L7HR + gy"HR + fe e’ .

Since both LT and R. are upper triangular, it follows that LT HR. is upper Hessenberg
with the first row and the first column each being zero due to Le; = Re; = 0. Also,
gyTHR is a rank-one matrix with zero first column. Therefore H is of the form

6 b7
H+:[o ﬁ]

as claimed with (0,h7) = yTHR.
This result could have easily been arrived at through the facts that Qe; =y
and QTQ = I, but this proof exposes the additional structure that H is an upper
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Hessenberg matrix plus a rank one matrix. Moreover, if H = H” is symmetric and
tridiagonal, then yTHR = fy”R = 0, and this implies

LTHR = QTHQ — e e’

is symmetric. Since, LTHR. is both symmetric and Hessenberg, it must be tridiagonal,
and this concludes the proof. O

This proof shows that the deflation will be complete if H is symmetric and tridi-
agnonal. However, the deflated matrix will not be in Hessenberg form when it is
nonsymmetric. More work will have to be done in this case to return the matrix to
Hessenberg form using orthogonal similarity transformations. Of course, we do not
wish to destroy the structure of the last row of QQ in this process. One convenient way
to accomplish this is to apply a succession of orthogonal transformations of the form

~ 1 0 0
U;=|0 U; o0
0 0 I

so that H} « ﬁJTHﬁJ is constructed as in Figure 4.2 to introduce zeros in positions
2:5—1ofrow j+1forj =k—1k—2,...,3. The Matlab style code shown in
Figure 5.1 gives the simplest explanation of how this deflation proceeds. Of course,
the orthogonal matrix is updated in the same way to give Q + QU;, j=k—1k—
2,...,3. On completion, the & — th row of Q remains undisturbed from the original
construction.

At step j in Fig. 5.1, The procedure orthU(z) produces an upper Hessenberg
U; as described in equation 4.3 such that e]T = zTUj. The end result of these
transformations is

Av) =vi6+1n, where vle =0

hT
! ) +frel .

AV, = (v1,Vy) ( H,

where [v1, V3] =VQ.
This means that subsequent implicit restarting takes place as if

AV, =V H, +frel |

with all the subsequent orthogonal matrices and column deletions associated with
implicit restarting applied to h? and never disturbing the relation Av, = v0 + f1.
Now, if Q represents a (k—1) x (k—1) orthogonal matrix associated with an implicit
restart than

hiQ

QTH2Q ) =+ freg_lQ.

AV,Q = (v1,V2Q) (

In subsequent Arnoldi steps, v; participates in the orthogonalization so that the
selective orthogonalization recommended by Parlett and Scott [6, 4] is accomplished
automatically.
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function [V, H,f] = defN(V,H,f y,0);
Input: (V,H,y, ) with H upper Hessenberg, Hy = y#, ||y|]| = 1,

Output: (V,H,f) such that
V« VQ, H+« QHQ f+ fQ(k k)
with Q(:, 1) =y, QTQ = LH(1,1) = 6, H(2 : k,1) = 0.

1. Q = orthQ(y);

2. H « Q'HQ;

. forj=Fk:—1:4,
3.1.z=H(j2:5-1);
3.2. z =7'/||z||;
3.3. U = orthU(z);

34. H(;,2:j—1)=H(;,2:j- 1)U;
35.H2:j—1,:)=UH((2:j-1,);
36. Q(:1,2:j—-1)=Q(,2:5-1U;
3.7. 17, =T;
end;
4.V £ VQ:

5. f £ Q(k, k);

Fi1G. 5.1. Nonsymmetric Locking

Purging §: If § is “unwanted” then we may wish to remove # from the spectrum of
the projected matrix H. However, the implicit restart strategy using exact shifts will
sometimes fail to purge a converged unwanted Ritz value [2]. A mechanism called
purging was developed in [2] to remove converged unwanted Ritz values from H in
a manner that preserves an Arnoldi relation. As with locking, this mechanism was
based upon using right eigenvectors.

However, there is an alternative based upon deflating with a left eigenvector that
has some attractive properties. The purging process is quite analogous to the locking
process just described. Let y be a left eigenvector of H corresponding to 8 | i.e.

yTH =0y”.
Then use orthU to construct a k x k orthogonal matrix U such that
U=QS;, with yYU=¢e¢}, and /U= 0,---,0,7,m,),

where n = el'y and 72 + n? = 1. Then
5 5 H h
A(V,vy) = (V,vg) < 0 0 ) +f(rel_,, ),
where [\A/', vi] = VU. Now, simply delete the last column on both sides to get
AV = VH + fTeg_l.

It 1s easily seen that H is upper Hessenberg due to the following lemma.
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LEMMA 5.2. Suppose H is upper Hessenberg, y' H = 0yT, with |ly|| = 1. Let
U= QS , where Q = Q(y) as described in Lemma 4.1. Then

H, =U'HU

1s upper Hessenberg with egH+ = Heg.

Proof. The proof is much like the proof of Lemma 5.1. Since Hy = SfQTHQSL,
let us first consider the quantity QTHQ. The substitutions Q7 = (L + yg”)7,
Q = (R +ye?l) from Equations 4.2 and 4.1, and the facts 0 =y’ R and 1 = y'y will
give

Q'HQ = (L" +gy")HQ
=L"HQ +gy"HQ
= LTHR + L"Hye{ + fge? .
Since both LT and R. are upper triangular, it follows that L” HR. is upper Hessenberg

with the first row and the first column each being zero due to Le; = Re; = 0.
Therefore

Terg_| ¢ 0
QHQ—[h H]

where [ }01 ] = LTHy. Now, use the properties if the left-circular-shift operator Sy,

h
9 )

to see that

o o

H, = UTHU = s7Q"HQS, = [
with H upper Hessenberg. This concludes the proof. O

Observe that there i1s no requirement that y be an accurate left eigenvector for H.
However, it will be necessary for the residual y? HQ = el to meet a componentwise
accuracy condition that we shall discuss in § 7. Moreover, there is no need for 5 to be
small, but when 1t is not small, the implicit restart mechanism with exact shifts will
suffice to purge #. Finally, this procedure is valid in complex arithmetic with minor
notational modifications.

6. Locking or Purging a Complex Conjugate Pair. When working with
real nonsymmetric matrices, it is desirable to compute in real arithmetic and this
requires the ability to work with complex conjugate pairs of eigenvalues as a unit.
This theme is standard for the double implicit shift both in implicit QR and in implicit
restarting [7].

Suppose H(x + iy) = (x + iy)(0 + ip) with xTx + yTy = 1 and |le] (x,y)| =
€ < 7. Then (x £ 4y) are eigenvectors corresponding to the complex conjugate pair of
eigenvalues # &+ ¢p and we may express the relationship in real arithmetic as

ey = o) ().

As shown in [1, 2], it may not be possible to lock this pair using a set of orthogonal
vectors. Here, we present a scheme that will lock the pair using orthogonal transfor-
mations if possible. If it is not possible to lock the pair, the scheme will attempt to
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lock one of the two while splitting the conjugate pair safely into two real eigenvalues.
In some cases, no locking with an orthogonal matrix will be possible.
To develop this, let

(x,y)2(611,<12)<p01 pi)(z —70)

be the singular value decomposition (SVD) of (x,y) with p1 > ps denoting the singular

values of (x,y). The columns of the orthogonal matrix T ) are the right
— v

singular vectors and the columns of (qi, qs) are the left singular vectors. Note

o
e aspr.aspll = e eov) (7,7 ) lI=lleF eyl = e < o

An important quantity for the analysis is p = ;’—f, the reciprocal of cond{(x,y)}. It is
easily checked that

s )=(510)

1t follows that

SIS
N

(6.1) H(qi,q2) = (q1,92) ( —up

with
€1 €3

eg((h,(h) = (eg(hﬁg(h) = (p—l, Py .

Here, (1, ¢2) = el (xy — yo,x0 +y7), so €7 + €5 = ¢2.
Now, % < p1 < 1 follows readily from the facts p? + p2 = trace{(x,y)T (x,y)} =
xTx +yTy =1 and p; > ps. Also,from (6.1), we have the relations
Ha = quf —qzup , Haqz = q1% + a2t
Using orthogonality of q; and q2 gives
I

@ Ha=—pp . aiHay =

to see that |£| < |/HJ|, and hence that

(6.2) lul < [Hllp and |up| < |[H||p*.
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Locking a congugate pair 6 +iu : If 4 ip is “wanted” then we may wish to lock
6 + 1. This is accomplished with a block version of the single eigenvalue case but
there may be some complications.

To begin the deflation, the short form of the SVD of (x,y) must be computed.
A well known efficient way to do this is to compute the QR-factorization of (x,y)
followed by a computation of the SVD of the 2 x 2 upper triangular R-matrix. In any
case, Equation 6.1 will hold. Now, use orth(@ twice to construct

i) Qi = Qaq1)=Ri+aqel,
(6.3) @ G = Rig, )
i) Q2 = Q(a2) = Ra+ qrel +ejel,
iv) Q = QiQ:=RiR:+qiel + qqel.

In this construction, Rae; = 0 for j = 1,2 and it is easily seen that q; = Qi1QTqy =
RiR7q> = Riqs.
This construction will provide a Q@ such that

Q = (q1q2|W) where (x,¥) = (q1q2|W) < g ) uT

is a full SVD of (x,y) with

UT:<Py _0>andS:<p1 0).
oy 0 p2

Note that el Q = (£, 22 rel). Since 0 < pa < p1, the conjugate pair may be safely
locked if el qa| < ep. Now,

D H g L
THQ = ! ith D:( , )
QHQ 0 Hy, | —pp 0

and

EN EN D H €1 € .

A(Vy, V)= (V,V) ) (= 2 rel ) with Vi =V(qi,qo).
0 H; p1 P2

To complete the locking process, construct Us such that eg_1U2 = eg_l, and Hs; =

Ugﬁng is upper Hessenberg and put

H, =H,U,
V, = VU,.

Then
€1 €9
-, _)

AV, =V D +f(
PL P2

bl

where VIf =0, and
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Again, this means that implicit restarting takes place as if
AV, = V,H, + el ,

with all subsequent orthogonal transformations and column deletions applied to H;
never disturbing the relation

€1 €2

P1 ’ P2 .

In subsequent Arnoldi steps, V1 must continue to participate in the orthogonalization
to prevent the introduction of spurious Ritz values.

In some cases it may be appropriate to lock just one eigenvalue, and to split the
conjugate pair into two real eigenvalues. A conservative approach shall be adopted
here to only allow perturbations relative to ear. Suppose p < \/ear, then |up| <
||H||ear and

AV, = V,D + f(

Avi =vif+g with vIg=0

where g = —voup + f;—ll with vi = Vq; and vo = Vq3, We then construct an
orthogonal matrix Q(q;) such that Q = R + q;ef. Note

: 2 2
el/R=rel_, with 72=1—¢2

2

2 _ &
p1

where ¢ =
eigenvalue.
Purging a congugate pair 0 + iy :

If the conjugate pair is “unwanted” but converged then it may be necessary to
purge the pair § & ¢ directly, since the implicit restart strategy may fail to do this
[2].

Suppose (x? +iyTVH = (0 +ip)(x? +iyT). Then YTH = DY?, with Y = (x,y)
and D = < o —n ) .

[T
Purging is much easier. Simply compute a QR-factorization (x,y) = QR with

Now proceed as in the locking step described above for a single

(q1,q2) = Q Now compute U = QS? with Q constructed as in Equation 6.3 above.
With essentially the same process as the single vector case, we have

UTHU = ( I(—)I I]—Ijl ) where D =R 'DR,

and

- - H H
A(V,Vk) = (V,Vk) ( 0 ]51 ) —|— f(Teg_%El,Ez)

Now, simply delete the last two columns on both sides to get
AV =VH + fnel .

and then construct Uy such that eg_2U2 = eg_Q and H «+ UgﬁUz is upper Hessen-

berg. Finally, replace V \A/'U2.

Observe that there is no requirement that VY be a “good” set of left eigenvectors
for A or even that it is an accurate eigenvector matrix. All we require is that the
norm

||YTH—DYT|| is small
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7. Error Analysis. This section will give a brief error analysis indicating the
important features of the locking and purging schemes. We shall first analyze the
numerical stability of the transformations for locking and purging. Then we give an
analysis of the effect of locking on the accuracy of the computed eigenvalues of the
original problem.

Stability of QTHQ: Since the orthogonal transformations developed in Section 4 are
clearly stable (i.e. componentwise relatively accurate representation of the transfor-
mation one would obtain in exact arithmetic), there is no question that the similarity
transformation Q7 HQ numerically preserves the eigenvalues of H. However, there is
a serious question about how well these transformations perform numerically in pre-
serving tridiagonal or Hessenberg form during locking and/or purging. For simplicity,
we shall restrict our discussion of this question to real § for both the symmetric and
nonsymmetric case. There is no essential change to extend this to a complex 6§ in
complex arithmetic.

It is necessary to show that when H is symmetric and Hy = y#, then Hy =
QTHQ is symmetric and numerically tridiagonal, and when H is Hessenberg and
yI'H = 0yT | then Hy = UTHU is numerically upper Hessenberg. (i.e. that the
entries below the subdiagonal are all tiny relative to ||H]||).

It will suffice to discuss the case of purging in the nonsymmetric upper Hessenberg
case. The proof that H is returned to tridiagonal form in the symmetric case will
follow from symmetry if we show it is numerically upper Hessenberg. In both cases a
left eigenvector y with norm 1, determines the transformation Q developed in Section
4. In the symmetric case, the proof given in Lemma 5.1 that Q7 HQ is tridiagonal
relied upon the term gy” HR. vanishing in the expression

Q"HQ = L"HR + gy"HR + fe e’ .

Also, in the nonsymmetric purging case, in the proof that Hessenberg form is preserved
in Lemma 5.2 relied upon gy? HQ = fige! in the expression

Q"HQ =L"HQ + gy HQ
However, on closer examination, we see that
ef Q=e{L+(efy)g’ =mg’,
where 77 is the first component of y. Therefore,

1
7.1 gl = 177
@) lell = 1

so there may be numerical difficulty when the first component of y is small. To be
specific, yTH = fyT and thus y"HR. = 0 in exact arithmetic. However, in finite
precision, the computed fl(y? H) = #yT +e”. The error e will be on the order of €5
relative to ||HJ|, but

1
T T T
lgy” HR|| = [[g]|- lle" R|| = —|le" R[],
||
so this term may be quite large. Tt may be as large as order O(1) if 71 = O(enr).
This is of serious concern and has been observed in practice. Therefore, we give an
analysis and offer a remedy to this dilemma.



IRAM DEFLATION SCHEMES 15

The remedy is to introduce a step-by-step acceptable rescaling of the vector y to
simultaneously force the conditions

QTy — ey, and yTHQ = Qe?

to hold with sufficient accuracy in finite precision. To accomplish this, we shall devise
a scheme to achieve

yTqu =0, for >1

numerically and then prove that this scheme is sufficient to establish qZ-Tqu =0
numerically, relative to |H|| for j < i— 1.

We begin by examining the inner product yTqu. We define (j]T = ('yjij_l, Pi),
and note that the zero/non-zero structure of H and q; gives

y Ha; =y H;q; + piBinjs,

where H; = H(1: j,1:j), §; = H(j,j+1) . Through the remainder of this discussion,
we shall treat the quantity ijHj q; as a computed term and assume that fl(yTqu)
is the floating point result of computing ijHj q; first and then adding p; 8;n;4+1 to it.
In the analysis, we shall not attempt to represent the round-off error associated with
each floating point operation. It is the accuracy of the addition of these two terms
that determines the success (or failure) of the computation.

If the computed quantity fl(y” Hgq;) is not zero then we may adjust it to become
zero by scaling the vector y; by a number ¢ and the component 5;41 by a number .
Thus, prior to the computation of q;41, we have y; < y;¢ and n;41 < n;41%. Cer-
tainly, ||y]|| should not be altered with this scaling. The following system of equations
will determine ¢ and ¢ according to these conditions:

(730)* + (j19)* = T/
y; H;q;¢ + piBinj41¢ = 0.

Let ¢ = pjﬂjnj+1/(y]»THj€1j). A little algebraic manipulation gives the following
alternative expressions for ¢ and 1. Either use

p=d——DL =gy,
(rjo)? + 77]2'+1

or

=+ Ti41 , = —¢/o.
CEE v VY

Observe that none of the previously computed q; 2 < ¢ < j will be changed due to
this procedure. After step j, the vector y; is simply rescaled in subsequent steps, and
the the formulas defining q;, 2 <7 < j are invariant with respect to scaling of y;.
Also, note that one of the two formulas given above for computing ¢ and ¢ will be
well defined even when one of the quantities p; 3;7;41 =0 or ijHj(ij =0.

It remains to show that fl(q]T_HHqi) is small. We shall demonstrate that

|fl(qJT+1Hqi)| < 2-||Hq;llesr for 1<i<j.
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To establish this, we first show that the effect of re-scaling is to provide a new vector
y such that

[fl(y"Hay)| < 2 ||Haj|| 74160
To see this, first note that prior to the scaling,

Iy Hya;] < |[H;qlllly;]l < [[Hajl|7,

and that
Lo Bins1| < [Hag||[n;41]-
Thus
lyi H;q;6| < ||[Hq;|7¢|
S—
= [|Hq,| L
V(73)2+ (njp1/0)?
< [[Haqj||7j+1,
and

lpi Bin+1¢| < |[Hagl||n;+1l[4]
= gy |
(rj0)* +ni 4,

< |[Haqj||7j41.

Now, using standard results on floating point addition, we see that

|FUy] H;q;6 + piBimjwat)| < 2-maz(ly] H;q; 6|, |piBinjr19])em
<2 |[Haqjl[7j1€m-

Thus, if each previous q; is constructed as above for 7 = 2,3, ..., j, we have that the
vector y in place at the j-th step will satisfy
(7.2) [fl(y"Hai)| < 2 |[Hail|mip1em

for 1 < i< j. Now, for i < j,

. ~ ~ —7541
(7.3) AUl Ha)| = [y Hids| = yTHid (—*) ]
TiTj+1

Thus, for i < 7,

. N
|Fi(afs 1 Hai)l < 2 (Hasl|ig1c) ( 2 )
TiTi41

Ti ;
=2~||Hqi||( fl) (—'"7“')%
75 Ti+1

<2-|[Haq;|lenm,
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since 0 < T’+1 <1,and 0 < l””ll <1.

Since a rlght elgenvector 1s also a left eigenvector in the symmetric case, this
argument suffices for that case as well.

Analysis of IRA with Locking: We analyze the case of a single vector. The
generalization to more than one vector is straightforward. After locking, we have

A(vy,V =(v1,V ! + (felfre
( 1 2) ( 1, 2) 0 H2 ( 6| m 1)1
Wlth vlf_—O and sz_O

An implicit restart step will take the form

h’Q T
AVZQ = (vl,VZQ) ( QTHQQ ) +fTemQ1

followed by truncation to a k-step factorization

. /i .
AVZ = (VLVQ) < ﬁ ) —}-feg

This is then built out to an m-step factorization using a standard Arnoldi process
with all basis vectors, including vy, participating. Repeated implicit restarting will
usually yield convergence of an eigenvalue in Hy and then we will have

- - 9, h7
A(vi,Vy) = (v1,V3) < 01 H ) (fe | fem 1)
2

Now, suppose there is a converged Ritz value 62 € O'(I:IQ). Then we compute an
approximate eigenvector x3 = Vyy where y = (n,y? ) with

(5 w)(3)=(7)
. = 0.
0 H- Yy y
Assuming ||y|| = 1, we have
Axy — x50, =feny —I—fe%_ly
so that
||AX2 — X262|| S 26[)

if |If]llen,_1¥| < ep.

Since the orthogonality condition vi TV, = 0 has been enforced, it is easily seen
that the deflated Arnoldi factorization is exact for a slightly perturbed problem. This
1s demonstrated by the observation that

. nT N
(A —fevl)(v,Vy) = (Vl,Va) 6p h + fel’
0 H,
In the symmetric case, we may either account for h or discard it. Hy = VgAVQ is
tridiagonal in any case, and a similar argument accounting for symmetry will give

(A — V1 (ngl)T — (ngl)V?)Vg = V?ﬁQ + %efn_l.

Thus, if h is discarded we will have computed eigenvalues of a perturbed problem and
the computed eigenvectors will be orthogonal to full working precision epr. On the
other hand, if h is kept, then eigenvectors will have to be re-orthogonalized at the
end of the computation.
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3.6314e-01 0 0 0 0
4.2585e+00 1.3738e-01 0 0 0
1.3738e-01 3.4903e+00 4.2605e-11 0 0
0 4.2605e-11 1.7126e+00 2.7572e+00 0
0 0 2.7572e+00 6.4175e+00 3.1738e-01
0 0 0 3.1738e-01 3.9050e+00
0 0 0 0 3.3433e+00

Fic. 8.1. A submatriz of the tridiagonal matriz H.

8. Computational Results and Conclusions. In this section we give exam-
ples to illustrate the error analysis of the previous section. First we give an example to
illustrate the the numerical stability of the transformations for locking and purging.
This will show the need for the rescaling technique. Then we illustrate the effective-
ness of the locking and purging in the full IRAM iteration on some examples with
multiple eigenvalues.

Numerical performance of the locking and purging transformations: The
first example will illustrate deflation on a symmetric tridiagonal matrix that leads to
an extreme case of small leading components in y. The matrix H is a 50 x50 symmetric
tridiagonal matrix resulting from 50 steps of Lanczos on an order 100 matrix A that
was derived from the central difference discretization of the 2-dimensional Laplacian
on the unit square [0, 1] x [0, 1] with zero Dirichlet boundary conditions. The starting
vector vy was set to the vector of all ones and then normalized to have unit length.

In this test, the six smallest eigenvalues of H were locked. We show the details of
locking the second smallest eigenvalue after the first locking has already been done.
As we shall see, this presents a very severe test problem. The matrix H has a small
element on the subdiagonal (and superdiagonal) after the leading block of order 15.
This is illustrated in Figure 8.1.

After the first deflation, the leading 15 components of the second eigenvector to
be locked are quite small (all are nearly epr in magnitude). This is illustrated in
Figure 8.2.

In Table 8.3 we show a graph of the absolute values of the weights +;, the com-
ponents of QT Hy and their products. We see that even in this extremely severe case,
the products are at the level of €3;. This indicates that the size of gy” HQ is at the
level of roundoff epr||H|| as predicted by the analysis of the previous section.

In Table 8 we show the locked values that appear on the diagonal of the matrix H
after locking the lowest six eigenvalues. These appear in the first column. The second
and third columns show the lowest six eigenvalues of Hy = H(1 : 15,1 : 15) and of
H,; = H(16 : 50, 16 : 50) respectively. We see that two of the locked values came from
the leading block and the remaining ones came from the trailing block. Also, note
that both instances of the multiple eigenvalue 7.7129¢ — 01 were locked successfully.

The norm of the residual after deflation was

IIHQ — QH|| = 1.7¢ — 14,

where Q is the product of the six orthogonal matrices used to deflate the six lowest
eigenvalues of H and H = QTHQ. The leading 6 x 6 block of H is diagonal and the
remainder tridiagonal after these locking steps.
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50

Locked Values | Values from H;

Values from H,

1.6203e-01 1.6203e-01 3.9851e-01

3.9851e-01 7.7129e-01 6.3499e-01

6.3499e-01 1.3806e+00 7.7129e-01

7.7129e-01 1.7964e+00 1.0078e+00

7.7129e-01 2.4056e+4-00 1.2502e+00

1.0078e+00 2.9118e+400 1.4867e+00
TABLE 8.1

Locked Eigenvalues of H
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| TR AM-iteration on Lyggs |

p =5, k=28 p=12
M-V M-V Ritz Vals Ritz Vals
€D Products Found Locked Purged
1073 661 599 13 3
103 888 756 13 3
1077 1084 1036 12 2
10=° 1487 1404 11 1
| ||Laoss Vs — VsRasl|| & €p |
TABLE 8.2

Convergence history for Convection Diffusion

Locking and purging in IRAM: The deflation strategy adopted here is consider-
ably more conservative than the one proposed in [2]. However, the performance is
comparable at the same level of accuracy. We demonstrate here that very low toler-
ances can be specified without missing multiple or clustered eigenvalues. We also give
an indication of the computational savings resulting from this ability.

Our deflation scheme is to do the following:

1. Lock a single Ritz value each time one converges until & values have been
locked.

2. Continue to iterate and lock each newly converged Ritz value that is a “better”
value than the existing ones. Follow each locking operation with a purge
operation to delete the least wanted but locked Ritz value.

3. Continue Step 2 until the next Ritz value to converge is not a “better” value.
Replace the k 4 1-st basis vector with a randomly generated one and orthog-
onalize this against the previous ones and then build a new Arnoldi factor-
ization. Repeat Step 2.

4. When Step 3 has been executed two consecutive times with no replacement
of existing locked Ritz values the iteration is halted.

We shall give results of this scheme on several eigenvalue problems arising from
a discrete form of the convection—diffusion operator,

—Au(z,y) + pus (2, 9) + uy(z,y)) = Au(z,y),

on the unit square [0, 1] x [0, 1] with zero Dirichlet boundary conditions. We use a
standard five-point scheme with centered finite differences to obtain a matrix L,z of
order n? where h = 1/(n + 1) is the cell size. The eigenvalues of L,z are

Aij = 24/ 1 — 7 cos( Z_:_rl)—i—Z\/l — 7y cos( j—:l)’
n

n

for 1 <i,j < n where v = ph/2. Of course, when p = 0 this is a discrete form of the
Laplacian operator.

The results reported in Table 8.2 are for Laggs with p = 5 with £k = 8 and p = 12
in the TRAM iteration. This required storage for 21 Arnoldi vectors (including the
residual vector). We made runs with ep = 10731075, 10=7,107°. All computations
were performed on a Sun SparcStation 20 Model 61 with 64 megabytes of RAM using
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MATLAB Version 5.1.0.421 '. Machine precision in this system is e3; ~ 10716, In all
cases, the two single eigenvalues and the three pairs of eigenvalues with multiplicity
two were computed. These are the smallest 8 eigenvalues of Lyggs. We made runs
with various other values of p including p = 0 with comparable performance. When
p = 0 the problem is symmetric and we used a symmetric version of the code for
locking. To purge, we just needed to delete unwanted but converged values. In all
cases, |[VIVg — Is|| &~ epr with ||LagesVs — VsRsl|| &~ ep as desired. The column
labeled “M-V Products” indicates the total number of matrix-vector products required
for the computation. The column labeled “ M-V Found” indicates the number of
matrix-vector products required to lock all of the wanted eigenvalues. The remaining
matrix-vector products were required to verify that these were all of the wanted values.
This verification consisted of finding that subsequent convergence produced “worse”
Ritz values than the ones which were already locked. The columns labeled “Ritz
Vals Locked” and “Ritz Vals Purged” show the total number of locking and purging
operations required. It is interesting to note that fewer locking and purging operations
were required at the stricter tolerances. This is due to the self locking tendency of
TRAM as convergence take place. The multiple instances were already present in the
projected matrix by the time the initial locking took place. Hence, there were fewer
instances of purging converged but unwanted Ritz values.

We also ran the case n = 625, p = 25, £ = 6 and found all of the smallest
eigenvalues with 372 matrix-vector products and completed the verification with a
total of 480 matrix-vector products, This is comparable to the performance for the
same problem reported in [2]. This new technique does not seem to improve upon the
number of matrix-vector products required to lock the wanted vectors at comparable
accuracy levels over the methods in [2]. However, it is possible to specify far more
relaxed tolerances with the methods presented here.

The new deflation schemes developed here are more efficient than those of [2] but
that is only of mild interest in this context. Usually, k£ + p is quite small with respect
to n and computations on the projected matrix H are inconsequential when compared
to operations involving A or V. However, the methods presented are very tidy. The
purging operation using left eigenvectors seems quite a bit more attractive than the
one presented in [2]. Surely, the most important feature of these new methods is the
way in which the deflation error is structured. It 1s this that allows us to achieve the
goal of deflating at relaxed tolerances.
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Dr. Chao Yang for reading the manuscript and making several useful suggestions.

REFERENCES

[1] R. B. Lehoucq. Analysis and Implementation of an Implicitly Restarted Iteration. PhD thesis,
Rice University, Houston, Texas, May 1995. Also available as Technical Report TR95-13,
Dept. of Computational and Applied Mathematics.

[2] R. B. Lehoucq and D. C. Sorensen. Deflation techniques for an implicitly restarted Arnoldi
iteration. STAM J. Matriz Analysis and Applications, 17(4):789-821, October 1996.

[3] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide: Solution of Large-
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. STAM Publications,
Phildelphia, PA, 1998.

[4] B. N. Parlett. The Symmetric Eigenvalue Problem. Prentice-Hall, Englewood Cliffs, N.J., 1980.

IMatlab is a registered trademark of the MathWorks, Inc., 24 Prime Park Way, Natick, MA
01760, USA, tel. 508-647-7000, fax 508-647-7001, info@mathworks.com, http://www.mathworks.com.



22 D. C. SORENSEN

[5] B.N. Parlett and J. Le. Forward instability of tridiagonal QR. STAM Journal on Matriz Analysis
and Applications, 14(1):279-316, 1993.

[6] B.N. Parlett and D. Scott. The Lanczos algorithm with selective orthogonalization. Mathematics
of Computation, 33:217-238, 1979.

[7] D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi method. STAM J.
Matriz Analysis and Applications, 13(1):357-385, January 1992.



