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Abstract

A Large—Scale Trust—Region Approach to the
Regularization of Discrete I11-Posed Problems

by

Marielba Rojas

We consider the problem of computing the solution of large—scale discrete ill-
posed problems when there is noise in the data. These problems arise in important
areas such as seismic inversion, medical imaging and signal processing. We pose the
problem as a quadratically constrained least squares problem and develop a method
for the solution of such problem. Our method does not require factorization of the
coefficient matrix, it has very low storage requirements and handles the high degree
of singularities arising in discrete ill-posed problems. We present numerical results
on test problems and an application of the method to a practical problem with real

data.
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Chapter 1

Introduction

We are interested in the solution of discrete ill-posed problems which are ill-conditioned
problems arising from the discretization of continuous ill-posed problems. For these
problems the ill conditioning is an intrinsic feature that cannot be eliminated by
any reformulation of the problem since it is a consequence of the properties of the
underlying continuous operator.

Inverse problems are a natural source of ill-posed problems. In such problems, we
want to determine the internal structure of a system from the response or behavior
of the system.

An example of this kind of problem arises in oil exploration. In this field before
actual drilling takes place, it is important to determine the composition of the sub-
surface in places where geological data or other information indicates that oil or other
valuable hydrocarbons are likely to be found. The need for this information comes
from the fact that drilling is a very expensive procedure.

The seismic inversion technique tries to determine the composition of the subsur-
face of the earth from the behavior of waves in the subsurface. To obtain data, seismic
waves are generated, typically by an explosion, and their amplitude and direction are
measured by receivers located on the surface.

The objective of the experiment is to recover the distribution of the slowness or
inverse of wave propagation velocity in the subsurface. With this information and
knowing the velocity with which waves travel in different media, experts can predict

the composition of the subsurface.



Other sources of inverse problems are medical imaging and signal processing.
Real applications usually give rise to large—scale discrete ill-posed problems. We are
interested in the numerical treatment of such problems, for which standard methods
fail to compute a good approximation to the solution. Therefore, special techniques
known as regularization methods are needed to treat these problems.

The specific problem we want to solve is that of recovering the solution of the

linear least squares problem

min  ||Az — bl|;

reR"”

where A € IR™*", b € IR™, for m,n large and the right—hand side b is an ezact data

vector such that b € R(A), from the solution of

min  |[Az — b,

reR"”

where b = b+ s, with £ > 0 and s € IR™ a random vector representing noise. Note
that b € R(A) does not necessarily hold.

We pose the regularization problem as a quadratically constrained least squares
problem which is equivalent to a trust-region subproblem. The use of methods for the
trust-region subproblem for regularization is not common and it has been suggested
by only a few authors and no efficient method for large—scale problems has been
presented until now. Most of the suggested techniques do not use the known properties
of the trust-region subproblem.

We develop a method for the solution of large—scale trust—region subproblems and
we apply the method to the regularization of large—scale discrete ill-posed problems.

Our method does not require explicit knowledge of the coefficient matrix, which is used



in matrix—vector product only. The method also has very low storage requirements.
Our method handles the high degree of singularities associated with discrete ill-posed
problems in contrast with other methods for the large—scale trust-region subproblem
that are not suitable for solving the problem in the presence of such singularities.
We will present numerical results that show that our method computes solutions of
large—scale trust-region subproblems at a low computational cost.

This dissertation consists of seven chapters. Chapters will be referenced by number
and sections by the number of the chapter followed by a period and the section
number. Subsections will be preceded by the symbol §. The content of each chapter
is the following:

In Chapter 2 we present preliminary concepts, tools and results for the analysis
of least squares problems.

In Chapter 3 we describe the properties of rank—deficient problems and discrete
ill-posed problems and give an overview of numerical regularization methods for the
solution of such problems.

In Chapter 4 we review the properties of the trust—region subproblem, establish the
connection of this problem with the regularization problem and describe the special
features of the problem in the discrete ill-posed case.

In Chapter 5 we present a method for the large—scale trust-region subproblem,
establish the theoretical bases for the method and present preliminary numerical
results when the method is used for the regularization of discrete ill-posed problems.

In Chapter 6 we present an example where we apply our method for the large—scale
trust-region subproblem to the regularization of an inverse interpolation problem on
real data.

In Chapter 7 we present concluding remarks and future work.



Chapter 2

Preliminaries

The purpose of this chapter is to introduce some notation and review some basic

results for the least squares problem.

2.1 Notation
The following notation will be used throughout this work
e IR will denote the real numbers.

e Unless otherwise specified, || - || will be the /3 norm in IR" defined as
|z|lz = VaTz, for z € IR™ and will also denote the induced matrix norm.

The meaning will be clear from the context.

o diag(p1,2,...,0,) denotes a diagonal matrix whose diagonal elements are

ﬁi, 1= 1,2,...,n.
e T denotes the pseudoinverse of a matrix as defined in [25, Ch. 5].

e ¢; denotes the ith canonical vector in a vector space that will be clear from the

context.

o [, denotes the identity matrix of dimension k. We will drop the subscript when

the dimension is clear from the context.

e Given A € R™*", R(A) and N(A) denote the range and the null space of A,

respectively.



e Following [27, Chapter 9], we will use the notation O(t) to denote the asymptotic

behavior of a real function f(¢). The formula

means that there exists a constant € such that

[F(D)] < Clg(t)].

Observe that when f(¢) = O(1), this means that there exists a constant C' such

that | f(¢)] < C.

2.2 The Least Squares Problem

The Least Squares (LS) problem has been thoroughly studied and is treated in most
numerical linear algebra text books like [25] and [73], and also in specialized sources

like the classic [42] and more recently in [4]. We state the least squares problem as

min ||Az — b
x e R"

where A € R™*", m > n and b € R™.

Well known facts about this problem are:
e There is always a solution.
e The solution with minimum norm is unique.

e Any solution z satisfies the Normal Equations

ATAz = A"h . (2.1)



2.3 Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) of the coefficient matrix is an important
tool for the analysis of the least squares problem. A decomposition A = UXV" is an
SVD of A in short form if

U G IR/m)(n7 V E Rnxn
Uvv=1,, vv'=vV'v =1,
Y =diag(oy,...,00)

where o1 > 09 > -0, > 0 and o;’s are the singular values of A. The columns of U

are the left singular vectors and the columns of V' are the right singular vectors of A.

2.4 Least Squares Solution in terms of the SVD
Replacing A in (2.1) by its SVD yields

r = VvtuTp
" ulb

3

=1

a;
where r is the rank of A.

Note that (2.2) is also the expression for the solution of the linear system Az = b,

when A is a square nonsingular matrix.

2.5 Condition Number and Sensitivity of Least Squares Solution

We define the condition number of the matrix A with respect to the l; norm as

R(A) ==,

o,

where o, is the smallest nonzero singular value of A.



The following result from [25, §5.3.8] provides a way of measuring the sensitivity

of the solution of the least squares problem to changes in the data.

Theorem 2.1 ([25]) Suppose z,r, , and 7 satisfy
|Az — b]| = min r=b— Az
I(A+dA)z — (b4 db)|| = min r=(b+db)— (A+5A)z
where A and §A are in IR™*" with m > n and 0 # b and b are in IR™. If

N {HMH H5bll} o

AL 1ol ] o
and
sin(0) = Iill £1
[T/
then
[ 2k (A) 2 2
lla] ‘ {cos(e) + tan(6)x(4) } +0(¢") (2.3)
THZHTH < e(1 4 26(A)) min(1,m —n) + O(&*) . (2.4
Proof See [25]. -

The right—hand side in (2.3) is proportional to the condition number of the matrix
in the zero residual case, and to the square of the condition number in the nonzero
residual case. A large condition number implies that the least squares solution will
be unstable, i.e. very sensitive to perturbations in the data A, b. Such problems are

called ill-conditioned problems.



Chapter 3

Numerical Regularization

The term numerical regularization encompasses a set of techniques for the numerical
treatment of ill-conditioned problems, i.e. problems in which the coefficient matrix
has a large condition number.

When we encounter ill-conditioned systems or least squares problems in practice,
the usual recommendation is not to trust any solution obtained with the standard
methods and to try to reformulate the problem in order to eliminate the ill condi-
tioning.

There are cases however, for which the ill conditioning is an intrinsic feature of
the problem. As a consequence, there is no reformulation of the problem that can
eliminate the ill conditioning. This is the case for discrete ill-posed problems. In
this work we are interested in numerical regularization techniques for the solution of
large—scale discrete ill-posed problem:s.

In this chapter we describe the properties of ill-conditioned problems and review
the available methods to treat these problems. In Section 3.1 we describe two classes
of ill-conditioned problems, namely, rank-deficient and discrete ill-posed problems.
In Section 3.2 we give an overview of the area of numerical regularization including
the main approaches to regularization and the concepts of regularized solution and
regularization parameter. In Section 3.3 we described the known criteria for estimat-
ing the regularization parameter. In Section 3.4 we present a summary of the main

regularization methods for large—scale problems.



3.1 Ill-conditioned problems

We follow Hansen’s classification of ill-conditioned problems in rank—deficient and
discrete ill-posed problems [37]. We describe rank-deficient problems in §3.1.1 and

discrete ill-posed problems in §3.1.2.

3.1.1 Rank-Deficient Problems

The main feature of this kind of problems is that there exists a clear gap between the
small and large singular values of the coefficient matrices. Therefore, the determina-
tion of the numerical rank for these matrices is a well-conditioned problem.

Let A be the coefficient matrix for a rank—deficient problem, then we can summa-

rize the properties of the problem as:

e The small singular values of A are well separated from the remaining singular

values.
e The matrix A usually has a small cluster of small singular values.

e The problem of computing the numerical rank of the coefficient matrix is well
conditioned, since the small singular values of the matrix are clearly separated

from the rest.
e There is usually a reformulation that will eliminate the ill conditioning.

In Figure 3.1 we show a typical example of the singular value distribution for a
problem of this type. We can observe in the figure the separation of the small singular

values from the rest.
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Figure 3.1 Distribution of Singular Values for a Rank—Deficient Problem.

3.1.2 Discrete Ill-Posed Problems

In 1923 Hadamard [28] introduced the concept of a well-posed problem as a problem
for which there exists a solution, the solution is unique and the solution depends
continuously on the data. If a problem did not satisfy any of these conditions he
would say that the problem was ill posed, meaning that its formulation was incorrect.
Hadamard believed that these problems would not arise in practice.

Since Hadamard’s work however, ill-posed problems have appeared in practice
mostly in connection with inverse problems in different areas such as seismic inversion,
image processing and signal processing. The computational solution of such problems
requires the discretization of the involved operators and functions and give rise to

discrete ill-posed problems.



11

Let A € R™*" come from the discretization of a continuous operator from an
ill-posed problem. If we use a reasonably good discretization the matrix A will have
properties that are the discrete counterpart of those of the underlying continuous
operator.

We will discuss the properties of interest for a very common class of inverse prob-
lems, namely, Fredholm integral equations of the first kind with a square integrable
kernel. We will follow [37] in this discussion. We can write an equation of this kind

as

‘EhﬁJHMﬁ:g@,OgsgL (3.1)

where K is the kernel, g is the right—hand side and f is the unknown solution.
The main tool for the analysis of equations like (3.1) is the Singular Value Expansion

of the kernel K. Any square integrable kernel K can be written as

[((57 t) = Z Mipi(s)qi(t)v
=1
where p;, ¢; are the singular functions of K and p; are the singular values of K. The

singular functions are orthonormal with respect to the following inner product

1

(6.0) = [ syt
0
A function f is square integrable if || f|| = (f, f)? exists.

Given a singular value expansion of K, a solution of (3.1) can be written as

f(t) — ij; <pi7ig> Qi(t) .

7

In order for a function f to be a square integrable solution of (3.1), it is necessary

and sufficient that g satisfies the following condition [33].
Picard Condition (PC). The right-hand side g in (3.1) satisfies the PC if

o0 ”. 2
Z<%@‘<w,m#ﬂ (3.2)
=1 2
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Suppose now that we use a reasonably good discretization to obtain A € IR™*",
a discrete version of K. Let A = UXV7" be a Singular Value Decomposition of A.

Then we can summarize the properties of this discrete ill-posed problem as follows:

e The matrix A is ill-conditioned.
e The singular values of the matrix A decay gradually to zero.

e If the continuous problem satisfies the Picard Condition, then u/b decay grad-

ually to zero as the index 7 increases.

o If u; and v; are the singular vectors of the matrix A, then u; and v; often have
more sign changes in their components as the singular values o; decrease, i.e.

the high—frequency components correspond to small singular values.
e There is usually no reformulation that can change these features.

In Figure 3.2 we present an example of the singular value distribution for a problem
of this type (problem heat from the Regularization Tools package [36]). We can
observe that there is no clear separation between the small singular values and the
rest.

For the problems considered in this work we will assume that the singular values
of the discrete operator A, are nonzero, although some of them can be very small.

Therefore, A has rank n, and we can write the solution of min||Az — b||, x € IR" in

terms of the SVD of A as

T = Z Z' Vg (3.3)

The norm of the least squares solution (3.3) is given by

] = [Z(b”
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Figure 3.2 Distribution of Singular Values
for a Discrete Ill-Posed Problem.

Therefore, this norm will not be too large as long as | ub |< o; for small o;.
In view of this observation and in connection with discrete ill-posed problems, the

following condition is usually assumed.

Discrete Picard Condition (DPC)

u!b on average decay lo zero faster than o; as the index 7 increases.

Hansen in [34] justified the need for this condition in order for some regularization
methods, such as Tikhonov regularization and Truncated SVD, to be effective.

Varah in [76] observed that even when the DPC does not hold there might still be
a solution in terms of a basis different from the basis of singular vectors. However,

finding such basis is not an easy task.
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The DPC is convenient in the sense that it indicates when it is effective to apply
one of the standard regularization methods.

Note that the DPC is analogous to the Picard Condition for the continuous prob-
lem. For a further discussion of the relationship between the continuous and discrete
operators of ill-posed problems we refer the reader to [33] and [37, Ch. 1].

As we mentioned in Chapter 1, we are interested in recovering z,, the solution of

min  |[Az —b|| (3.4)
r € R"
from z,, the solution of
min  ||[Az — b|| (3.5)
r € R"

where b = b + es, with ¢ > 0 and s € IR™ a random vector representing noise. In

other words, we would like to solve problem (3.4) but instead of the exact right—hand

side b, we have a perturbed right-hand side b, and therefore the problem that we have

is (3.5). The goal is to recover as much information as possible about z, from z..
The solution . of (3.5) is given by

" ul'b

n T
=Y 4 Y Ty

=1 T =1 i

Thus, z, consists of two terms, the first one is the actual solution of the unper-
turbed problem (3.4) and the second one is the contribution from the noise.

The difficulty in finding =z, from z, stems from the contribution from the noise. If

-

s is a vector of uncorrelated noise, u; s will be constant for all ¢, causing the ratios u;b
T Ty

to blow up. Figure 3.3 illustrates the behavior of u;b and u;b In Figure 3.4 we show

that in this case, z, can differ considerably from z,. In this particular example the

relative error in the solution for noisy data with respect to the solution for exact data
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is 565.28. We can also observe in Figure 3.4 how z, is dominated by high—frequency

components. The example in Figures 3.3 and 3.4 is problem deriv2, (m = n = 50)

from [36].

coefficients of right singular vectors

10

10

10

10

10

10

Coefficients of right singular vectors in LS solution. Problem: deriv2,n=50

T T

* exact data
0 noisy data

T

T

T

T

Figure 3.3 Coefficients of Right Singular Vectors in
Least Squares solution, for exact and noisy data.

o (@] o Ei
o
o OO
o o
F O o E!
* o
o
o
*O
LO * A
* ]
*
*x .
***********
HAK A KKK KK KA * XK K A A KKK
1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

In the previous analysis we considered errors (noise) only in the right—hand side.

In this work we will assume that the errors in the coefficient matrix, due for example

to discretization or finite precision representation, are small in comparison with errors

in the right-hand side. To take into account errors in both the coefficient matrix and

the right—hand side, we should pose the problem as a Total Least Squares problem

(see [75]), which is considerably more difficult and will not be treated in this work.

The Total Least Squares problem has been used in connection with regularization in

[17].
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Regularization is a technique that was originally devised for continuous ill-posed

problems [74]. When the technique is extended to the discrete context it gives rise to

numerical reqularization methods. We limit our presentation to the latter case.

Numerical regularization methods seek to approximate the unknown solution of an

ill-conditioned problem with exact data, by the solution of a related well-conditioned

problem with perturbed data. The formulation of the well-conditioned problem in-

cludes information about the desired solution.

The additional information is usually expressed as a constraint on the solution of

the least squares problem. Such constraint is of the form

[Lz]] < A

(3.6)
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where L is typically the identity or a discretized derivative operator. In the latter
case, the constraint is used to control the smoothness of the approximate solution.
When I = I, the constraint controls the size of the solution.

In the following we assume that I = I, whenever we use a constraint of the form
(3.6). If the problem is given in general form (L # I) it is possible to transform it to
the standard form (L = I) by means of the algorithms given in [14] and [37], or by a
change of variable in case L is invertible.

Lin and Moré [45] have recently proposed a method that can be applied to quadrat-
ically constrained least squares problems, where the constraint is of the form (3.6).
They assumed that if L # [ then L is invertible and they can apply a change of
variables. They regard L as a scaling matrix that they compute so that it clusters
the eigenvalues of L=' A" AL. This feature prevents the use of this method for discrete
ill-posed problems since the strategy might change the spectrum of A” A in undesir-
able ways. We will return to this topic in §3.4.3 when we discuss preconditioning in
the context of discrete ill-posed problems.

To justify the use of (3.6), we must assume that the exact solution is smooth or
that it is expected to have small norm. Regularization is also known as smoothing
because it tries to damp nonsmooth components in the approximate solution. Note
that as we discussed in §3.1.2, for discrete ill-posed problems, nonsmooth or high—
frequency components usually correspond to small singular values of the coefficient
matrix. Therefore, those components are magnified by the noise as we can observe in
Figure 3.4.

We can also regard the regularization problem as a multi—objective optimization
problem where we try to balance the accuracy of the approximate solution and the

effect of the noise on the solution. This approach is taken in [40].
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Every regularization method uses a parameter to control the effect that the noise in
the data has on the approximate solution. This parameter is called the regularization
parameter and its nature is different for each method. For example, in methods based
on constrained minimization problems the parameter will be the Lagrange multiplier;
in Tikhonov regularization it will be the penalty parameter; and in some iterative
methods the number of iterations will play the role of the regularization parameter.

A complete regularization method has two aspects: the computation of the reg-
ularized solution and the computation of the regularization parameter. Some regu-
larization methods are based on a priori estimate of the parameter followed by the
computation of a regularized solution, others use a posteriori estimate of the param-
eter based on several approximate solutions. Yet another approach is a hybrid one,
where the solution and the optimal regularization parameter are determined at the
same time. The method of Bjorck, Grimme and Van Dooren [6] is the only one in
this class. We discuss this method in §3.4.4.

In the rest of this section we summarize the main regularization techniques for
both rank—deficient and discrete ill-posed problems. In Section 3.4 we concentrate
on methods for the large—scale case. We present methods that are suitable for ill-
conditioned linear systems and least squares problems. The nonlinear least squares
case is treated in [77] and [16], for example.

For a more detailed description of the methods, we refer the reader to [37], [31]
and [15] and the references therein. Early surveys of regularization methods appeared
n [14], [5] and [76]. A common framework for the study of numerical regularization

methods is proposed in [37] and [38], and more recently in [58].
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3.2.1 Methods for Rank—Deficient Problems

As we mentioned before, the coefficient matrix of a rank-deficient problem has a
singular value spectrum such that the smallest singular values are clearly separated
from the rest. This feature makes it possible to determine the numerical rank of the
maftrix.

The numerical e-rank r.(A) of a matrix A € IR™*" is the number of columns that
are numerically linearly dependent with respect to an error level ¢, and it is defined
as

r-(A)= min rank(A+F).

lIEI<e
In terms of the singular values of A we have the following relationship:
Or.(4) > € > Or (ay+1 -

If r.(A) is ill-determined, i.e. if it is too sensitive to perturbations on ¢ and on
the singular values, then it is better to use regularization methods for problems with
no gap in the singular spectrum.

The problem in consideration is

min  ||[Az — b||
reR”
where b contains noise.

The most common regularization strategy for rank—deficient problems consists of

two steps

1. Replace the matrix A by a matrix of rank k& = r.(A), i.e. ignore the small

singular values of A. The usual choice for this rank—& matrix is

k
T
Ak = Zuiaivi .
=1
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Ay 1s the closest rank—k matrix to A in the [, norm and in the Frobenius norm

(see [25, Ch. 2, Theorem 2.5.2]).

2. Compute the approximate solution by

k T7,
xk:Zuib

=1 oy

Uy

which is known as the truncated SVD solution. This regularization strategy is

known as truncated SVD.

Depending on the size of the problem, the SVD might be expensive to compute.
An alternative approach in practice is to compute rank-revealing decompositions like
the QR decomposition with column pivoting ([25, Ch. 5]). In this case the matrix we
use to replace A in step 1 above is still close to A, although there are no results that
characterize it as the closest one in some norm.

Even when less expensive decompositions than the SVD are used, the truncated
SVD method is intended for small to medium-scale problems only.

Although the truncated SVD method does not use additional information about
the desired solution, the method is still regarded as a regularization method because

it stabilizes (regularizes) the solution, making it less sensitive to changes in the data.

3.2.2 Methods for Discrete Il1-Posed Problems

As we discussed before, posing a regularization problem involves the design of a new
problem that includes some information about the desired solution. We present next
the discrete version of Hansen’s [37] most common regularization problems.

Let A€ R™ ", bcIR™,

The first problem is of the form

min ||Az — BH (3.7)
sit. xz €S
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where S C IR".

The second approach consists of solving the following quadratically constrained

least squares problem

min |[Az — BH (3.8)

s.t.  ||La|l<a

where A > 0.

Another possible problem is

min ||z|] (3.9)
Ss.t.  ||Az—b||<B

where (3 is an estimate of the noise level in the data.
The last of the approaches is the most common regularization method, namely

Tikhonov regularization where we solve the problem

min ||Az — 17)||2 + N[ L. (3.10)
Alternative formulations for the Tikhonov regularization problem are

(ATA4+ N1 = A"b

i.e. find a zero for the gradient of the objective function in (3.10), and the damped

least squares problem

o
o

x € IR"

We will show in Chapter 4 that problem (3.8) is equivalent to a trust-region

subproblem and we will use this regularization approach. Sorensen [69] and Gay
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[20] derived a charaterization of the global solutions of this problem. Gander in [19]
discussed the theoretical aspects of problems (3.8) and (3.9) in the ill-conditioned
context.

We classify the regularization problems according to their sizes in small to medium—
scale problems and large—scale problems. In this work we are interested in large—scale
problems.

The solution of small to medium-scale discrete ill-posed problems can be obtained
by means of direct methods since in this case it is affordable to compute factorizations
of the matrices involved. Therefore we can use any direct method that solves one of
the problems (3.7), (3.8), (3.9) or (3.10). One of the direct methods that we can used
for solving problem (3.8) is the one presented by Moré and Sorensen [55]. Other direct
methods for quadratically constrained problems are also discussed in Golub and Van
Loan [25, Ch. 12]. For general direct regularization methods see for example [37] and
the references therein.

The solution of large—scale discrete ill-posed problems requires iterative techniques
both because of storage limitations and because the coefficient matrices are usually
not available explicitly. In this case, we can use any iterative method that solves
one of the problems (3.7), (3.8), (3.9) or (3.10). We summarize the main methods
for the regularization of large—scale discrete ill-posed problems in Section 3.4. For
other methods see [37] and the references therein. Before describing the methods, we
review the main approaches for computing the regularization parameter in the next

section.

3.3 Computation of the Regularization Parameter

Let us recall the multi—objective purpose of regularization, i.e. minimize the residual

norm while minimizing the effect of perturbations in the data. Based on this observa-
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tion we can identify two kinds of errors in any regularized solution: the regularization
error introduced when minimizing the effect of perturbations in the data which usu-
ally causes the loss of meaningful information, and the perturbation error which is the
error in the solution of the problem with perturbed data with respect to the solution
of the problem with exact data. Regularization techniques try to balance these two
kinds of error usually by means of a parameter known as the regularization parameter
whose computation is also challenging.

There are two kinds of criteria for choosing the regularization parameter. Criteria
in the first class assume some knowledge of the noise level in the data. The only
criterion in this class is the Discrepancy Principle. The second class of criteria try
to estimate the parameter assuming no knowledge of the noise level, but require
several approximate solutions in order to estimate the regularization parameter. The
Generalized Cross—Validation criterion and the L—curve criterion belong to the latter

class.

3.3.1 Discrepancy Principle Criterion

When we know a bound for 3, the noise level in the data, we can use this bound to
implicitly compute a regularization parameter as the point where ||Az —b|| < 3. The
idea behind this criterion is that we cannot expect more accuracy in the approximate
solution than the one present in the data. This criterion is attributed to Morozov

[56].

3.3.2 Generalized Cross—Validation Criterion

This criterion was presented in [24] and discussed also in [79]. The idea of using cross—
validation to compute the regularization parameter is the following. If we exclude a

data point b; and compute a regularized solution z,.,; based on the reduced data
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vector, then if we use z,.,, to compute an estimate of b; we want this estimate to be
good. While in ordinary cross—validation the ordering of the data counts, generalized
cross—validation is invariant to orthogonal transformations of the data vector.

The regularization parameter is chosen as the minimizer of the Generalized Cross—

Validation (GCV) function

|AZ;e; — b’
[trace(] — AA#(X))]?

GOV()) =

where A#()) is the matrix that maps the data vector b onto the regularized solution
Zreg.

There are several difficulties associated with the GCV criterion. One is that some-
times the minimum of the function is difficult to compute numerically. The second
one is that sometimes GCV cannot distinguish between the signal and correlated
noise. A third problem is that the matrix A#(\) may not be available explicitly or
may be difficult to compute, depending on the method we are using to compute the
regularized solution. An example of this is the Conjugate Gradient Method on the

Normal Equations (see 3.4.2).

3.3.3 L-—curve Criterion

This criterion is based on the trade—off curve between the two goals of regularization:
minimizing the residual norm while keeping the solution norm from being too large.
The L—curve is a logarithmic plot of the solution norm versus the residual norm for
each value of the regularization parameter. The name comes from the fact that this
curve is L-shaped.

The optimal regularization parameter gives a solution that lies around the “cor-

ner” of the curve. Figure 3.5 shows the L—curve (and its corner) for problem heat
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from [36]. In this example, the curve is based on the values of the regularization

parameter in Tikhonov regularization.
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Figure 3.5 The L—curve for Tikhonov Regularization.

The use of this curve to estimate the regularization parameter has been studied in
[35] and [38]. The idea is to interpolate the curve in order to estimate the “corner”.
The L—curve criterion performs better than the GCV criterion when the noise in the
data is correlated and comparably well for white noise. The advantage of the L—curve
criterion over the GCV in the presence of correlated noise seems to come from the
fact that the L—curve criterion uses information on both the residual norm and the
solution norm, while the GCV criterion uses information on the residual norm only
(see [38]).

A major drawback of the criterion is the need for several points on the curve to

build the interpolant since the computation of such points may be expensive. Hanke
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[30] and Vogel [78] point out other disadvantages of using this criterion to estimate

the regularization parameter.

3.4 Regularization of Large—Scale Discrete I1l-Posed Problems

In this section we review the following methods for the regularization of large—scale
discrete ill-posed problems: Landweber iteration in §3.4.1, Conjugate Gradient on the
normal equations (CGLS) in §3.4.2, the method of Bjorck, Grimme and Van Dooren
[6] in §3.4.4, the method of Golub and von Matt in §3.4.5 [26] and the method of
Calvetti, Reichel and Zhang [8], [9] in §3.4.6. In §3.4.3 we discuss the preconditioning
issue in the context of discrete ill-posed problems.

We recall that the problem we want to solve is that of recovering the solution
of min||Az — b||, * € IR” from the solution of min|[Az — b||, = € R", where

AeR™" beR™ and b = b+ ¢s.

3.4.1 Landweber Iteration

This is an iterative method for solving the normal equations, in which the iterates

are computed as
Tpp = v +wAT(b— Azy) k=0,1,2,...

where w is a parameter. This method is not used in practice in its original form
since it is not very efficient. A modification has been proposed in [29] to accelerate

convergence.
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3.4.2 The method of Conjugate Gradient on the Normal Equations

This approach consists of applying the Conjugate Gradient method to the normal

equations

ATAz = A") .

An implementation of this method should avoid forming the matrix A”A since
doing so may introduce large rounding errors (see [25, example 5.3.2 on p.225]).
The resulting method is known as Conjugate Gradient on the Normal Equations
(CGNR, CGLS). The method has been used successfully to solve some ill-conditioned
least squares problems with noisy data due to an intrinsic regularization effect of the
iteration.

To give an insight into this regularization effect, we first observe that the Conjugate
Gradient method generates iterates in a Krylov subspace. In particular, for the CGLS

method the iterates z; belong to the Krylov subspace Ki(A”A, ATb) defined as
Ki(ATA, ATb) = {ATb, (ATA)A™b, ... (AT A1 AT}
Note that at each iteration, x, is the solution of the following minimization problem

min || Az — BH )

S.l.  zeK,(ATA,ATH)

Therefore by using the CGLS method we are solving a regularization problem of the
form (3.7).

For some problems, K (AT A, ATb) approximates the subspace spanned by the right
singular vectors v; associated with the k largest singular values and therefore, z, has
components only in the direction of singular vectors associated with large singular

values. As k increases however, singular vectors associated with small singular values
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enter in the approximation. This causes that contributions from the noise appear in
the iterates which start to diverge from that point on. This behavior is known as

semiconvergence and we illustrate it in Figure 3.6.

CGLS semiconvergence for problem heat, m=n=50
l T T T T
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optimal rel. error: 0.1071
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Figure 3.6 Semiconvergence behavior of the Conjugate Gradient Method
on the Normal Equation (CGLS) on Discrete Ill-Posed Problems.

The semiconvergence behavior makes it necessary to stop the iteration before
the effect of the noise appears. The number of iterations & plays the role of the
regularization parameter in this case. The method is very sensitive to the value of
k at which we stop, since at any particular iteration there is no warranty that all
the singular vectors of interest have already converged when the iterates start to
diverge, nor is there any warranty that only the singular vectors of interest have been
computed. Two options for estimating k that were mentioned in [37] are the L—curve

criterion and the Monte Carlo Cross—Validation procedure from [21]. As we discussed
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before, the method of Bjorck, Grimme and van Dooren [6] uses a Generalized Cross—
Validation approach to estimate k.

In some cases, like for some problems arising in medical imaging (see [57], for
example), it is known that all the singular vectors of interest converge first, so these
problems are less sensitive to the choice of the maximum number of iterations k.
The difficulty in those applications comes from the fact that the number of large
singular values is large, requiring the design of efficient preconditioners to accelerate
convergence.

The CGLS method is suitable for large—scale problems since it uses A and A" only
in matrix—vector products, it requires very little storage: five vectors, and it has fast
convergence. The major disadvantage is the semiconvergence behavior that makes it

necessary to have an accurate estimate of when to stop the iteration.

3.4.3 Preconditioned CGLS

The issue of preconditioning in connection with ill-conditioned problems is very del-
icate. The usual goal of preconditioning is to improve the condition of the coefficient
matrix by either clustering its eigenvalues or making them close to one. In the ill-
conditioned case however, it is not desirable to change the whole spectrum of the
maftrix.

If we precondition all the eigenvalues of A" A (and therefore, the singular values of
A) we would be computing iterates that contain contributions from the noise, since
the preconditioner has probably mixed the small and large parts of the spectrum.
Thus, in the ill-conditioned case we should precondition only the large part of the

spectrum and leave the small part untouched. This fact has been observed before in

[31], [37, Ch. 5], [32] and [57].
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In general, it is not possible to distinguish a priori between the large and small
parts of the spectrum of a matrix. This makes preconditioning for ill-conditioned
problems a very difficult area and the object of current research.

For problems where we can identify large and small parts of the spectrum, it has
been possible to build efficient preconditioners as the ones reported in [12] and [57].
These problems are characterized by having a highly structured coefficient matrix
(Toeplitz matrix) for which circulant preconditioners have proved to be successful.

Multilevel preconditioners for more general problems have been proposed in [41].

3.4.4 The method of Bjorck, Grimme and van Dooren

This method uses the normal equations approach for the solution of the least squares
problems. The computation is based on the Lanczos Bidiagonalization process and
on the regularization of the approximate solution in a Krylov subspace.

The method uses an Implicitly Restarted Lanczos Bidiagonalization process to
compute a sequence of approximations to the left and right singular vectors of A.
The implicit restart technique from [70] is adapted to the Lanczos Bidiagonalization
process [59] and zero shifts are used to filter out small singular values.

In this method, full reorthogonalization of the Lanczos vectors is necessary at
every step of the Lanczos process. The reorthogonalization makes it possible to
use the Generalized Cross—Validation (GCV) function to estimate the regularization
parameter k (in this case, the size of the factorization) when the noise level in the
data is unknown.

The approximate solution computed by this method is a Truncated Singular Value
Decomposition (TSVD) solution in a Krylov subspace of dimension k. This method

can be used for the regularization of large—scale problems since it uses A and A" only
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in matrix—vector products. The method is efficient when the minimum of the GCV
function occurs at small values of k.

However, the method has several drawbacks. The first one is that it is necessary
to store the two matrices Uy, and Vj, with £ unknown a priori. The second one is that
the minimum of the GCV function can occur at a large value of k, as in the example
in Figure 3.7 corresponding to problem heat from [36]. The bidiagonalization of the
matrix becomes very expensive in this case, in both storage and computation. For
this method, the increase in computational cost is higher than it would usually be,
due to the reorthogonalization step. A third difficulty is that, as we discussed in
§3.3.2, the GCV criterion for computing the regularization parameter is not reliable

in certain cases.
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3.4.5 The method of Golub and von Matt

This method, presented in [26], poses the regularization problem as the following

quadratically equality constrained least squares problem
min  ||Az — b||
st |lz|l=A

where b is a vector of noisy data.
The method relies upon the Lanczos Bidiagonalization [59] of the matrix A and
the Cholesky factorization of small matrices, to compute a sequence of function pairs

(Lg(A), Uk(X)) that bound the secular function
F(A) = (ATD)[(A"A + XI)T]*(A"D) .

A zero—finding procedure is then applied to Li(A) and Ug(A) to compute a new
estimate for A, the Lagrange multiplier associated with the minimization problem.

Among the advantages of this method are that it uses A and A" only in matrix—
vector products, and that the approximate solution x can be computed in an inex-
pensive way after the optimal A has been found, since a partial bidiagonalization of
A 1s available at that point.

We point out two main disadvantages associated with the method. The first one
is that it is necessary to store the two matrices Uy and Vj, where k is not known a
priori.

The second one is that the method works under the assumption that A < ||Afh||.
This assumption is not enough in the regularization context since it might still produce
a solution with large norm. Instead, in order to use the method for regularization
purposes we must ensure that A is such that A < ||Atb|| < ||A%b||, where b is the
exact data vector. This requires knowledge on the norm of the unknown solution Afh

of the unperturbed unconstrained problem.
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3.4.6 The method of Calvetti, Reichel and Zhang

This method was presented in [8] and [9]. The method considers the problem of solving
large ill-conditioned systems of equations. The method is based on expressing the

regularized solution z,, which depends on the regularization parameter A, as
Ty = QQA(A)ATB,

where ¢ (A) is a polynomial in A that can be regarded as a filter function. The idea
is to select an appropriate ¢, to obtain a regularized solution.

The filter function is chosen by expanding known filter functions, like the Tikhonov
filter function, in a basis of orthogonal polynomials and computing terms in the
expansion until a prescribed accuracy is achieved.

The regularization parameter A is computed in a very elegant way, by solving the

following nonlinear equation in A
[Azy —b]]* — 3% =0,

where (3 is the noise level in the data. The solution of the nonlinear equation is
obtained by a combination of the Bisection method and Newton’s method or the
Secant method.

This method is suitable for the solution of large—scale problems since the coefficient
matrix and its transpose are used only in matrix—vector products. The method has
been applied successfully to the regularization of discrete ill-posed problems from
image reconstruction. Applications to more general unstructured problems have not
been reported. The method requires knowledge of the noise level in the data and also

of an interval that contains the eigenvalues of the matrix A.
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Chapter 4

Regularization and the Trust—Region Subproblem

As we saw in the previous chapter, there are several possible approaches to regular-
ization. Our approach uses a quadratically constrained least squares problem. In this
chapter we describe this problem and show that it is equivalent to the Trust—Region
Subproblem (TRS). We study the theoretical and computational aspects of the TRS
and review the existent methods for the solution of this problem.

We present our regularization approach in Section 4.1. We study the TRS in
Section 4.2. In Section 4.3 we study the TRS in the special case of discrete ill-posed

problems. In Section 4.4 we review the methods for the TRS.

4.1 Trust—Region Subproblem Approach to Regularization

We pose the regularization problem as the following quadratically constrained least

squares problem
min 1| Az — b (4.1)
st |lell<a
where A € R™", b € IR™, A € IR, A > 0. The right hand side b satisfies b = b+ es,
where b € IR™ is the exact, unknown data vector and s € IR™ is a random vector
representing noise.
We observe now that the solutions of (4.1) are the same as those of the following
problem
min le"He 4+ g"x (4.2)

sk, lzll<a
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with H = ATA and g = —A"b.

Problem (4.2) is a particular case of a problem known in optimization as the
Trust—Region Subproblem, which arises in the context of globalization strategies for
locally convergent methods, such as Newton’s method.

We compute the solution to the regularization problem (4.1) by solving the TRS
(4.2). We are interested in the special case of large—scale ill-conditioned TRS arising
from the discretization of ill-posed problems.

We recall from §3.1.2 that for discrete ill-posed problems:

o AcIR™", with m,n large,

e the condition number k2(A) is large, i.e. A is ill-conditioned, and
e A has a large cluster of small singular values.

Therefore, the matrix H = A" A will be large, ill-conditioned and will have a large
cluster of small eigenvalues. Observe that matrices of the form H — Al will also be
large and ill-conditioned. Observe also that we should avoid forming A" A since this
is expensive in terms of both storage and computation, and it may introduce large
rounding errors (see [25, example 5.3.2 on p.225]).

Another issue that we must take into account when using (4.2) for regularization
purposes, is that a difficult case associated with the TRS is very common for discrete
ill-posed problems. We show this in Section 4.3.

The connection between problems (4.1) and (4.2) and the fact that most of the
theoretical and computational aspects of the TRS are known, make this approach to
regularization a very attractive one.

The use of methods for the TRS in the regularization context was suggested by

Sorensen [71] and Rendl and Wolkowicz [66]. In [48] Martinez and Santos present
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a trust-region strategy which they apply to a regularization problem as an exam-
ple. That particular strategy is not suitable for large—scale problems. Chan et al.
[10] present a method for the TRS for the special case of ill-conditioned quadrati-
cally constrained least squares problems. The method works under the assumption
A < ||ATb|| and requires the solution of a sequence of systems of equations that will
be large and ill-conditioned in the discrete ill-posed case.

It is interesting to note that there are very few references to methods for the
TRS in the regularization literature and that methods proposed in that context for
quadratically constrained least squares problems do not take into account all the

properties of the TRS. We study these properties in the next section.

4.2 The Trust—Region Subproblem

As we mentioned before, Trust—Region Subproblems arise in optimization in the con-
text of globalization strategies for locally convergent methods.

Locally convergent methods combined with such a globalization strategy are called
Trust—Region Methods. In these methods we minimize a quadratic model of the
objective function in a region where we ‘trust’ the model, i.e. a region where the
quadratic model closely resembles the objective function. We adjust this trust region
iteratively in a way that guarantees convergence to a solution. Trust-region methods
require solving a sequence of Trust—Region Subproblems.

The origin of Trust-Region Methods is found in the works of Levenberg [44] and
Marquardt [47]. Moré [54] gives an excellent survey of Trust—Region Methods which
includes a review of methods for the TRS. In this section we study theoretical and
computational aspects of the TRS and in Section 4.4 we review the methods available

for solving this problem.
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We define the Trust—Region Subproblem as

min () (4.3)
st |zl<a
where () = ta"He + g'z, He R, H=H"; g€ R"; A€ R, A > 0.

An immediate observation is that there always exists a solution for this problem
since we are minimizing a continuous functional on a compact set. Furthermore,
the high degree of structure of the problem makes it possible to characterize its
global solutions. This remarkable result was obtained independently by Gay [20] and
Sorensen [69] and we present it in Lemma 4.1, where we follow [71] in the use of a

nonstandard nonpositive multiplier.

Lemma 4.1 ([69]) A feasible vector . is a solution of (4.3) with corre-

sponding Lagrange multiplier A, if and only if x, and A, satisfy

(i) (H— A1)z, = —yg.
(i1) H — X1 is positive semidefinite.
(i) \. < 0.

(iv) (||| = A) =0

Proof In the first part of the proof we show that (i)—(iv) are necessary conditions
for {z., Ax} to be an optimal pair for (4.3).

Observe that if {z., A} is an optimal pair for problem (4.3), then (i), (iii) and
(iv) hold since these are the Karush—-Kuhn—Tucker necessary conditions (see [46, Ch.
10], for example) for a solution of (4.3). Therefore, it only remains to show that
H — X1 is positive semidefinite. We divide the analysis in two cases.

Case 1: =, # 0.
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Since x. solves (4.3) it also solves

min  ¥(x) .

sk |zl =l

Therefore, ¥ () > ¥ (x.), Yo € IR” such that ||z| = ||z.]], i.e.

1 1
§$TH.T +q'z > 51’:[—[@ + g z,. (4.4)
Now, by (i) we have
gz = —z(H—-XMI)x and
g re = —z(H— M)z,

Substituting these expressions in (4.4) and after some algebraic manipulation, we

obtain
1 T A* T T
5(1} —z) (H = AT)(x —20) > ?(:r: r—x,x,) =0.

Observe that for any vector v in IR™ such that v [ z. it is possible to compute z
such that ||z|| = ||z.]| and v = (x — x.) /v, for v # 0. Therefore, v"(H — A\, I)v > 0.
If v € IR™ is such that v L z,, it is possible to construct a sequence of vectors {v;}
such that v; £ z. with v; - v. And since v; £ z. we have that ’U]T(H —A1)v; >0
and we must have v"(H — A.I)v > 0. Therefore, H — A [ is positive semidefinite.
Case 2: z, = 0.
Then, (i) implies that g = 0 and . solves
min  lz"Hzx .
st |lell<a

Therefore x"Hx > 0,Vx € IR", i.e. H is positive semidefinite and since A\, < 0 is a

necessary condition, then H — A, [ is positive semidefinite.
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In the second part of the proof we show that (i)—(iv) are sufficient conditions for
{z«, A} to be an optimal pair for (4.3).

We will show that if {z., A} satisfies conditions (i)—(iv) then
(1) If A, =0 and ||z.|| < A then z, solves (4.3).
(2) If A\ <0 and ||z.]| = A then z, solves (4.3).
Observe that (i) implies that
zo(H — A1)z + g z, =0,
and since H — A, [ is positive semidefinite then Vz € IR",

(z — )" (H=XMI)(z—z,) > 0

= a2 (H— XDz + g x.

and some manipulation yields

Therefore, if A, = 0 then ¢(z) > ¥(z.), Yz € IR” and if in addition ||z.|| < A then z.
solves (4.3). If A, <0 and ||z.|| = A then since any x € IR", x # 0 can be normalized
such that ||z|]| = A, we have that ¢ (z) > 9 (z.) and therefore, x,. solves (4.3) with
the constraint binding at ..

This completes the proof. (]

A solution of (4.3) lies either in the interior or on the boundary of the feasible
set (trust region), i.e. the set {z| ||z|| < A}. The TRS has no solutions on the
boundary if and only if H is positive definite and ||H'g|| < A (see [69]). In this case,

zr, = —H™'g with corresponding Lagrange multiplier A, = 0.
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If the conditions for an interior solution are not satisfied, the solutions to problem
(4.3) will be on the boundary of the feasible set. The cases when H is positive
semidefinite and singular, or indefinite require special attention since in such cases
the solution may not be unique. This situation is known as the hard case ([54], [55])
and we will discuss it in detail in §4.2.2. In §4.2.1 we will study the secular equation,
which is an important tool for both the analysis and the design of methods for the
TRS.

Before we proceed we need to introduce some notation which we will use in the

rest of this section and also in the next chapter.

(1) We will denote the eigenvalues of H by &;,1 =1,...,n with §; < <--- < 4,.

(i7) Let k < n be the number of distinct eigenvalues of H, then S; will denote the

eigenspace corresponding to §;, 1 = 1,...,k i.e. S ={q|Hq= d:q}.

(1)) H = QDQ" will denote an eigendecomposition of H, i.e. QQ" = Q"Q = [ and
D= diag(51, 52, ey (Sn)

(iv) v = q] g, i.e.v; will be the component of g in the direction of the ith eigenvector
of H.

4.2.1 The Secular Equation

To introduce the secular equation let us first define the function ¢(\) and its derivative

¢'(A) as follows

N = gN(H - A)g=3
P(A) il )'g 255

dN) = gIH-A)Tg=> ——;
; (0 = A)?
Observe that if g # 0, both ¢()) and ¢'(A) are rational functions for which the

eigenvalues of H are first and second order poles, respectively. Figures 4.1 and 4.2
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illustrate the typical behavior of ¢(A) and ¢'(A). In these examples, n = 3 and the

eigenvalues of H are —2, 0, 2.

Secular function phi(lambda)
T T T T

T T T

201
151 .
101 ]
5t ]
-5 ]
-10f ]
-151 ]
-20+ ]

—25 I I I I I I I
-4 -3 -2 -1 0
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phi(lambda)
o
T

[
N
w
IN

Figure 4.1 Secular Function ¢(A). Eigenvalues of Hessian: —2,0, 2.

Computing boundary solutions for the TRS is closely related to finding the small-

est value of )\ that satisfies
() = A% (4.5)

To see this, suppose that either g is not orthogonal to &; or if ¢ is orthogonal
to Sy then A < ||(H — 6,1)tg||. Then the smallest A that satisfies (4.5) is such that
A < 6;. For such A we have that H — Al is positive semidefinite and if we define
v = —(H — X)Tg then ¢'(\) = ||z||> = A% If in addition A < 0, then Lemma 4.1
implies that such z is a boundary solution for the TRS. If A > 0 then H is positive

definite, || H'g|| < A and there is a unique interior solution for the TRS.
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Derivative of phi(lambda)
T T T T T

derivative of phi(lambda)

-5 I I I I I I I

lambda

Figure 4.2 Secular Function ¢/()). Eigenvalues of Hessian: —2,0, 2.

A key observation about ¢(A) and ¢/()A) is that they are both strictly increasing

in (—oo,d;) if ¢ is not orthogonal to &;. If g is orthogonal to S; for 1 = 1,2,...,/¢

RS

1 < ¢ < n then ¢(A) and ¢'(A) are strictly increasing in (—oo, dz41).

Since Lemma 4.1 establishes that H — X[ must be positive semidefinite at a solution
of the TRS, we are interested in the unique solution of (4.5) in (—o0,d;) if ¢ is not
orthogonal to Sy, or in (—o0,d4] if ¢ is orthogonal to S;. Note that this solution
corresponds to the smallest A at which the line A* intersects ¢'()).

A solution of (4.5) in (—o0,d;) or in (—o0, d1] will always exist as long as v, # 0,
orv;,=0,1=1,2....0for 1 </ <mn,and A < |[(H — §,1)Tg||. In the latter case,
the smallest A that satisfies (4.5) lies in (—o0, d;]. Note that v, = 0 if and only if g is

orthogonal to S;.
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Up to this point we have assumed that either 43 # 0 or vy = 0 and A < ||(H —
511)g||. The case v, = 0 for a general value of A is of special interest since it might
give rise to the so—called hard case, which we present in §4.2.2.

Equations like (4.5) are known as secular equations and functions like ¢(A), ¢'(N)
are sometimes called secular functions. The term seems to come from celestial me-
chanics (see [1]).

Secular equations appear in many contexts such as in the solution of certain
eigenvalue problems, see for example [1], [3], [23], [7], [49], [51], [50] and [52]. These
works are concerned with computing all the solutions of a secular equation and they
usually assume that 7, #0, ¢+ = 1,2,...,n, therefore excluding the possibility of the
hard case. This fact prevents the use of such methods for solving the general TRS.

The use of the secular equation (4.5) in connection with the TRS or related prob-
lems such as quadratically equality constrained least squares problems, can be traced
back to [18]. Other works include [23], [22], [64],[65], [39], [53], [69] and [55].

Let us continue now with the study of the TRS, specifically with a special case:

the hard case.

4.2.2 The Hard Case

The hard case refers to a special situation in which the boundary solution of problem
(4.3) is not unique. The hard case can only occur when H is positive semidefinite
and singular, or indefinite, when g is orthogonal to the eigenspace associated with the
smallest eigenvalue of H (and possible to the eigenspaces associated with the next
eigenvalues), and when A > ||(H — 6,1)g||. The precise statement is contained in

the following result from [69].

Lemma 4.2 ([69]) Assume that g is orthogonal to &; and let
p=—(H—61ITg. 16 <0 and |[p|] < A, then the solutions of (4.3)
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consist of the set {z|z = p+ 2,2z € &1, ||z|| = A} with Lagrange multiplier
)\* — (Sl.

Proof We will show first that given p as above and a vector v € & with ||u|| =1,
if ¥ = p+ 7u with 7 such that |7| = A* — ||p||?, then ||z|]| = A. In order to prove this,
we need to show first that p is orthogonal to S.
Note that
plu=—g"(H — 1) 1. (4.6)
Now, since ¢ L N(H — §;1I), this implies that ¢ € R(H — &,1) and since
(H — 6, I)(H — §,;1)" is an orthogonal projection onto R(H — §;1), we have
(H—81)(H—6§1)g=g. (4.7)
Substituting (4.7) into (4.6), we obtain
pru = —g"(H — &) (H - 81)(H —61)u
= —¢"(H—-6D"H = 8§ H —61)u
= 0.
Therefore, p is orthogonal to Sy and ||p + 7ul|> = ||p||* + |7|||v||*>. This implies that in
order to have ||z|| = A, with = p + 7u, 7 must satisfy |7| = A” — |[p]*.
Let 7 be such that |7| = A*—||p||*>. Let z = 7u and = p+2z. To prove that {z,d;}
is an optimal pair for problem (4.3) in the hard case, we need to show that {z,d;}
satisfies conditions (i)-(iv) of Lemma 4.1. Observe that {z,d;} satisfies conditions
(i), (i1i) and (iv), since 7 is the smallest eigenvalue of H, d; < 0 by hypothesis, and
|z|| = A. Therefore, it only remains to show that the pair {z,d;} satisfies condition
(i), i.e. we must show that (H — 6;/)z = —g. To see this, observe
(H—061)x = (H=461)(p+2)

= —(H-=81(H-56D"g+ (H—61)z.
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By (4.7) we now have
(H—681)z=—g+(H—51)z
and since z € N(H — §,1) we conclude
(H - 6.1z = —g,

which completes the proof. (]

Observe that Lemma 4.2 still holds if g L. S;, 0 =1,2,...,f with 1 </ < n.

In Figure 4.3 we illustrate the situation in terms of the contours of ¢(x) and the
trust region in the positive semidefinite singular case for n = 2. In this case we have
infinite solutions along the contour for which the quadratic has the same minimum
value (dashed line in Figure 4.3).

For the indefinite case, we first show the easy case in Figure 4.4 where the trust—
region radius is small enough so the the trust-region subproblem has a unique bound-
ary solution. If the radius is larger than ||(H — &,1)7g||, there will be two solutions
in the direction of negative curvature. As Lemma 4.2 establishes these solutions are
obtained adding a suitable multiple of an eigenvector corresponding to the smallest
eigenvalue of H, to the vector p = —(H — &,1)Tg. We illustrate this in Figure 4.5.

In Figure 4.6 we show the function ¢’()) for the same example of Figure 4.2 for
the case when g is orthogonal to S;. In this figure it is clear that since v; = 0 in the
hard case, d§; is no longer a pole of ¢(A) or ¢'(X).

We saw in Lemma 4.2 that the hard case can only occur when ¢ L &;. In practice,
g exactly orthogonal to & will rarely occur. The most common situation is that ¢
is numerically orthogonal to Sy, specially for discrete ill-posed problems, as we will
show in Section 4.3.

We will refer to the situation when g is orthogonal or nearly orthogonal to S as

a potential hard case and near or numerical potential hard case, respectively. We use
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Hard case. Positive Semidefinite Hessian. n = 2

up up

Figure 4.3 The Hard Case for a Positive
Semidefinite and Singular Hessian.

the word potential in this case since even when ¢ is orthogonal or nearly orthogonal
to S the hard case or near hard case will only occur if in addition A > ||(H — §,1)Tg.

In a near potential hard case we find that although 4; is a pole of the secular
functions, the coefficient 7, is very small. As a consequence, the functions become
very steep close to this pole as we can see in Figure 4.7. This poses problems to
the numerical computation of the smallest solution of (4.5). General methods for
the TRS based on the secular equation must take into account this difficulty. Other

methods will also encounter problems in the hard case.
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Easy case. Indefinite Hessian. n = 2

e

c

up

S ———

Figure 4.4 The Easy Case for an Indefinite Hessian.

4.3 The Discrete IlI-Posed Trust—Region Subproblem

In this section we show that the main feature of the TRS in the discrete ill-posed
case is the occurrence of hard cases or potential hard cases.

When we encounter the hard case in optimization problems it is usually in its
basic or single form, i.e. ¢ L S; only. We show in this section that not only can
we expect potential hard cases to be the most common cases for discrete ill-posed

problems, but they will also occur in a multiple form, ie. g L &1 = 1,2,...,4,

1 <V <n,for g#0.
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Hard case. Indefinite Hessian. n = 2

-~

down

Figure 4.5 The Hard Case for an Indefinite Hessian.

In Figure 4.8 we show ¢'()) for a problem of dimension n = 7, where a multiple
potential hard case arises with £ = 4. We can observe in the graph that in this case
the smallest 4 eigenvalues of H (—2,0,2,3) are not poles of ¢'()).

In Figure 4.9 we show a near potential hard case in its multiple instance, where
we can observe the steepness of the functions near the poles.

We will show next that for discrete ill-posed problems we can expect g to be
orthogonal or nearly orthogonal to §;,¢ = 1,2,...,¢ for 1 < ¢ < n. The value 7 is
usually of the order of 20% to 90% of the problem dimension. Therefore, multiple
potential hard cases or near multiple potential hard cases are likely to arise in this

context.
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Derivative of phi(lambda) in a potential hard case
40 T T T

derivative of phi(lambda)
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Figure 4.6 The Secular Function ¢/(A) in a Potential Hard Case.

Let A€ IR™", H= A"A and g = —A"b, where ¢ > 0, b = b+ s with b,s € R™.
The vector s is a random vector representing noise. Let A = UXV” be a Singular

Value Decomposition of A. Then

H = VY*V" and

g = —VIU™b

= —V diag(or,...,00-1,0,) U"b.

Notice that o; = \/d,_i1+1, since we number the eigenvalues and the singular values
in opposite ways.
Suppose first that £ = 1 and let us show that we can expect g to be nearly or-

thogonal to Sy. Suppose that §; has multiplicity k. Therefore, S1 = {vu_gs1, ..., V5 }.
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Figure 4.7 The Secular Function ¢’(A) in a Near Potential Hard Case.

Let t =v;, n—k+1<7 <n. Then
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Derivative of phi(lambda) in a potential near hard case
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Let us see now that we can expect ¢”x to be small in discrete ill-posed problems.

In order to do this, we will analyze both the exact and noisy data cases.

In the exact data case, e = 0 and we saw in §3.1.2 that if the underlying continuous

problem satisfies the Picard Condition then uib, n —k +1 < 5 < n are small and

since o, is also small, we have that ¢ is nearly orthogonal to & in this case.
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Derivative of phi(lambda) in a potential multidimensional hard case
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Figure 4.8 Multiple Potential Hard Case.

For noisy data, ¢ # 0 and g"z might not be small since although o,u7b will be
small as before, the term euj s might be large enough to compensate for the small o,,.
For most severely ill-conditioned problems however, ¢, is so close to zero that even
if u7s is large, g will still be nearly orthogonal to .

In Table 4.1 we illustrate the situation with problems from the Regularization
Tools package [36]. In these examples the multiplicity of é; is one and therefore
r = v,. We show an exact data case for problem heat, n = 50, a noisy data case for
the same problem where ¢”x is still small and a noisy data case for problem deriv2,
n = 50 in which ¢z is not too small.

A similar argument to the one used for §; can be used to show that ¢ is nearly
orthogonal to §;, ¢« = 2,...,¢ when the cluster of small singular values of A is of

size £. To illustrate this, we computed the values ¢"v;, 7+ = 1,2,...,n for problem
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Figure 4.9 Near Multiple Potential Hard Case.
Problem o1 ulb eurs g v,
heat 1.19 x 10727 | 4.59 x 10~17 0.0 5.4621e — 44
heat 1.19 x 10727 | 4.59 x 10~17 | -0.0061 | —7.38 x 10~
deriv2 3.33x107° | —=3.33x 10~ | 0.0051 | —1.68 x 10~ "

Table 4.1 Near orthogonality of g with respect to Sj.

52

foxgood from [36], n = 300, with noisy data. In Figure 4.10 we show the absolute

value of ¢g"v; in logarithmic scale and observe that up to £ = 292 all the values are of

magnitude less than or equal to 107'°.

The above discussion implies that in order to use methods for the TRS for the

regularization of discrete ill-posed problems, we must take into account that multiple

potential hard cases are very likely to arise in this context. Until now, none of the
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Orthogonality of g to the eigenvectors of A from problem Foxgood, n=300
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Figure 4.10 Orthogonality of g with respect to the
eigenvectors of a discretized ill-posed operator.

existent methods for the TRS has considered this issue. We present an overview of

those methods in the next section.

4.4 Methods for the Trust—Region Subproblem

Several methods have been proposed for the solution of the trust-region subproblem,
most of them for small to medium scale problems. The main methods in this category
are the dogleg methods of Powell [63] and [62], the double dogleg method of Dennis
and Mei [13] and the method of Moré and Sorensen [55]. The first two methods work
within the context of optimization algorithms and do not provide an optimal solution

whereas the method of Moré and Sorensen does. The method of Moré and Sorensen
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is the method of choice for trust-region subproblems for which the factorization of
matrices of the form H — Al is affordable.

Until recently, the only method available for the solution of large—scale trust—
region subproblems was the method of Steihaug [72]. The method uses the Pre-
conditioned Conjugate Gradient method to compute an approximate solution for
the trust-region subproblem in a Krylov subspace. Although this method does not
provide optimal solutions, it has been shown to be very efficient in the context of
optimization algorithms. However, the method cannot be applied to discrete ill-
posed problems even in that context, since it does not handle the hard case which is a
very common case for these problems as we showed in Section 4.3. Another limitation
of this method is the need for a preconditioner which is still an open issue for discrete
ill-posed problems, as we discussed in §3.4.3.

The new methods for the large—scale trust—region subproblem are the methods of
Sorensen [71], Rendl and Wolkowicz [66], Santos and Sorensen [68] and Rojas, Santos
and Sorensen [67]. All these methods pose the trust-region subproblem in terms of a
parameterized eigenvalue problem with a matrix closely related to the Hessian H.

The methods in [71], [68] and [67] are based on a rational interpolation strategy to
update the parameter of the eigenvalue problem. The eigenvalue problems are solved
with the Implicitly Restarted Lanczos Method [70]. We will discuss the differences
among these approaches in Chapter 5.

In [66], the trust-region subproblem is relaxed to a semidefinite program. The
strategy for updating the parameter is a dual simplex method in the standard case
and a primal simplex method in the hard case. The eigenvalue problems are solved
with a block-Lanczos procedure.

In Chapter 5 we present a new method which is based on [67]. Among the con-

tributions of this new method is the treatment of the hard case for which we have
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developed a complete theory. These features allow us to solve any kind of trust-region
subproblems, including those arising from the regularization of discrete ill-posed prob-

lems.
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Chapter 5

A Method for the Large—Scale Trust—Region
Subproblem

We recall the definition of the Trust—Region Subproblem (TRS) from the previous
chapter
min () (5.1)
st |zl<a
where ¢(z) = 2" Hr + g"z, H e RV, H=H"; g R"; A€ R, A > 0.

In this chapter we present a method for the large—scale trust-region subproblem,
for which the Hessian H is large and might not be available explicitly. These features
prevent the use of methods like [55] that require the factorization of matrices of the
form H — Al

Our method is based on a formulation of the TRS as a parameterized eigenvalue
problem. In this setting the computation of a solution for the TRS depends on
computing an optimal value for the parameter. The computation of this optimal
parameter requires the solution of a sequence of large—scale eigenvalue problems for a
matrix closely related to H. We solve these eigenproblems by means of the Implicitly
Restarted Lanczos Method [70]; as a consequence, we use the matrix H only in
matrix—vector products and we have low storage requirements.

In our method, we assume that g # 0. If ¢ = 0 then solving the TRS reduces to
finding an eigenvector x corresponding to the smallest eigenvalue of H, and normal-
izing it such that ||z|| = A.

In Section 5.1 we introduce the basic idea of the method when the hard case is not

present. In Section 5.2 we give the characterization of the hard case in terms of the
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parameterized eigenvalue problem. In Section 5.3 we present the main contributions
of this work, which consist of the necessary tools to properly handle the hard case.
In Section 5.4 we describe the main algorithm and in Section 5.5 we describe each
component in detail. In Section 5.6 we present the convergence results. In Section

5.7 we present numerical results on test problems.

5.1 Motivation

Observe that if we define the bordered matrix B, as

o T
B.=|""7 (5.2)
g H
then the following relationship holds

« 1 . 1

If we now let y = (1,2")", we can write problem (5.1) as

min ly"Bay . (5.3)
s.t. yTy<14A2
ely=1
This formulation of the problem suggests that we can compute a solution for the
TRS from an eigenpair of B,, as long as the required normalization of the eigenvector
can take place. This follows from the observation that if we eliminate the constraint
on the first component of the solution, then problem (5.3) is equivalent to the mini-
mization of a Rayleigh quotient whose solution is an eigenvector associated with the
smallest eigenvalue of the matrix B,,.

The formulation of the TRS in terms of a parameterized eigenvalue problem was

first used in [71] and later in [66], [68] and [67].
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At this point let us introduce some notation and also recall the one from Chapter

(1) We will denote the eigenvalues of B, by X, ¢ = 1,....,n + 1, with

M <he < < hg
(it) We will denote the eigenvalues of H by é;,¢ = 1,...,n with §; <&, <--- < 4,..

(117) Let k < n be the number of distinct eigenvalues of H, then S; will denote the

eigenspace corresponding to §;, 1 =1,...,k i.e. S ={q|Hq= d:q}.

(iv) H = QDQ" will denote an eigendecomposition of H, i.e. QQ" = Q"Q = [ and
D= diag(51, 52, ceey (Sn)

(v) vi = q]g, i.e.~; will be the component of g in the direction of the ith eigenvector
of H, 1=1,2,...,n

Let us now see how we can use the solution of the parameterized eigenproblems
to solve the TRS. In order to do this, suppose that {X,(1,2")"} is an eigenpair of
B, 1.e.

which is equivalent to
a—A=—g"z and (H - M)z =—g.

Suppose that A # §;, ¢ = 1,2,...,n. Then z satisfies + = —(H — AI)~'¢g and we have

n

Z 5 % and

=1 7t

a—X = g'(H-=M)"

n

'z = g'(H— X))~

5—)\)

=1
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This implies that given the eigenpair {A, (1,2")"} of B,, we can compute the

values of the functions ¢ and ¢', defined in §4.2.1, at the eigenvalue A as

J0) = —g'a (55)
YA = 2"z (5.6)

i.e. these values are readily available from an eigenvector of the form (1,z")". We

show next that we are interested in an eigenvector corresponding to the smallest
eigenvalue of B,.
As a consequence of Cauchy’s Interlace Theorem (see for example [60, Section

10-1]) and also from equation (5.5), we have
)‘IS(SIS)‘ZSS)\nS(SnS)\n—I—I

This relationship implies that the matrix H — A/ is always positive semidefinite,
independently of the value of a.

This observation leads to the following idea for solving the TRS in terms of a
sequence of parameterized eigenvalue problems.

Given an initial guess for the parameter «, compute Ay, the smallest eigenvalue
of B, and a corresponding eigenvector vy. If Ay < §; and if we can normalize v; so
that vy = (1,27)7, then we can evaluate ¢(A1), ¢'(A1) by means of (5.5) and (5.6).

Now, if we find an o« such that the eigenpair {Ai,(1,2")"} for B, satisfies
¢'(A) = A* with ¢(A) = a — A, then we will have (H — A\ /)x = —g and
M(A — Jjz]]) = 0 with H — X\ [ positive semidefinite. Therefore, if Ay < 0 then
Lemma 4.1 implies that z is a boundary solution for the TRS.

We can update the parameter by computing the value of « that satisfies the

following nonlinear equation

(5.7)
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since once we have computed an eigenpair {A, (1,2")"} of B,, we can replace A by
a 4 ¢g"z and solve for a. Hebden [39] and Reinsch [65] pointed out the numerical
advantages of solving (5.7) instead of (4.5). We can solve equation (5.7) by Newton’s
method or the Secant method. However, Newton’s method requires the solution of
linear systems with coefficient matrices of the form H — Al and the cost of solving
these systems might be very high for large—scale problems.

Since (5.7) is an equation in one unknown, another possibility for updating the
parameter « is by means of local rational approximations to ¢(A) and ¢'(A). This
approach has the advantage of taking into account the rational structure of these

functions. The use of rational interpolation in this context was discussed in [39] and

[69].
In this approach, we construct rational interpolants q%()\) and q%’()\) for ¢(A) and
_ 1 1
@'(N), respectively. Then we compute A such that A//(j\) = and update the
) /

parameter as o = \ + g%(;\) This choice of the parameter needs to be safeguarded to
guarantee convergence.

Sorensen in [71] reports that this strategy for updating « is more efficient than the
use of the Secant method to solve (5.7). Rational interpolation is used in [71], [68],
[67] and also in the present work. We describe the interpolation schemes in §5.5.3
and the safeguarding mechanism in §5.5.4.

If in the process of updating a we find Ay > 0 and ||z|| < A then we can claim
that the problem has an interior solution. To see this, recall from Section 4.2 that
the TRS has no solutions on the boundary if and only if H is positive definite and
|H 'g|| < A. We now show that these two conditions are satisfied if A\; > 0 and
Jall < A.

Observe that 0 < A implies that H is positive definite since A; < §;. This also

implies that H is nonsingular.
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Observe now that ¢'(A1) = ||[(H — M I)Tg||> = ||z||> < A? and recall that ¢'())
is strictly increasing in (—oo,d1). Therefore, since Ay > 0 and ¢'(A;) < A2, then
#'(0) = |[Hg||> < A?. Note that H nonsingular implies H! = H~' and therefore
|- < A.

The computation of interior solutions for general problems requires the solution of
linear systems. For discrete ill-posed problems, these systems are very ill-conditioned
and other strategies are needed in this case. We discuss our approach for computing
interior solutions for these problems in §5.5.6.

Up to this point in our discussion we have assumed that we can normalize an
eigenvector associated with A; to have first component one, and that A\; # §;, ¢ =
1,2,...,n. The strategy we presented for solving the TRS will break down if the
normalization cannot be carried out or if A\; = é;, 1 <7 < n. In Section 5.2 we will
see the connection between this situation and the hard case. In Sections 5.2 and 5.3

we develop the necessary tools for the treatment of this case.

5.2 Characterization of the Hard Case

We recall that a potential hard case arises whenever ¢ is orthogonal to the eigenspace
associated with the smallest eigenvalue of H.

In this section we present a characterization of potential hard cases in terms of
the parameterized eigenvalue problem introduced in Section 5.1. We show that a
potential hard case is related to the case when we cannot normalize an eigenvector
associated with the smallest eigenvalue of B,, and we develop the bases for the
numerical treatment of this case.

The first result shows a very interesting relationship between the first components

of the eigenvectors of B,, and the orthogonality of g with respect to the eigenspaces
of H.
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Lemma 5.1 Forany o € Rand any ¢ € S;, 1 <1 <n, {6;,(0,¢7)"} is

an eigenpair of B, if and only if ¢ is orthogonal to &;.

Proof The proof follows from the observation that ¢ 1 S; and Hgq = 4;q are

equivalent to

O

If §; are eigenvalues of H for ¢+ = 1,2,...,/ with 1 </ < n in Lemma 5.1, then
this result establishes that for any value of o in a potential hard case we have that the
d;’s are eigenvalues of B, with eigenvectors that have zero first components. Lemma
5.2 shows that for each 7, 1 <1 < n, such that g 1L §;, there exists a special value

of a for which B, will also have an eigenvector with first component one, associated

with §;.

Lemma 5.2 Suppose that g is orthogonal to §;; 1 < 7 < n, and let
p=—(H—§1)Tg. The pair {&;, (1,p")"} is an eigenpair of B, if and only

if @ = &; where &; = 6; — g"p.
Proof First we observe that ¢ L S; implies that ¢ € R(H — 6;/) and therefore
(H—&D)p=—(H—&I)(H —681)'g = —g, (5.8)

since (H — §;1)(H — &;1)T is an orthogonal projection onto R(H — &;1).

Suppose now that &; = §; — ¢”p with p = —(H — §;1)Tg. Then

a; g" 1 a; +4qg"p 5 1
g H P g+ Hp P

since by definition of &; we have that &; + ¢"p = &; and by (5.8), g + Hp = d;p.
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To prove the other implication, let p = —(H—4;1)g and suppose that {d;, (1,p”)"}

is an eigenpair of B,, i.e.

a g" 1 1
9 s
g H p P
It follows directly from this relationship that o = &; = §; — ¢"p. (]

Corollary 5.1 Suppose that g is orthogonal to &;, 1 <1 < n, and let
Zila) = {2 € R | Byz = 4§z} If & = & + g'p with
p = —(H — §I)Tg then dim Z;(&;) = dimS; 4+ 1 and for any other value
of a, dim Z;(a) = dim S;. Moreover, if {¢1,...,q,} is an orthogonal basis
for S; then

1 0 0

p il ) ar

is an orthogonal basis for Z;(&;) and

0 0

q1 qr

is an orthogonal basis for Z;(«), for o # &;.

Lemmas 5.1 and 5.2 are straightforward generalizations of Lemmas 3 and 4 from
[67], respectively, where the results are established for ¢ = 1 only. The proof of
Lemma 5.1 is similar to the one of Lemma 3. The proof of Lemma 5.2 follows a
different strategy from the proof of Lemma 4.

These lemmas provide the main tools to prove Theorem 5.1, which establishes that
there always exists an eigenvector of B, with first component one. This eigenvector
will correspond to the smallest eigenvalue of B, , except in potential hard cases where,
depending on the value of «, it will correspond to the ith eigenvalue of B,, for

1 <1< n.



64

5.3 Treatment of the Hard Case

In this section we present the theoretical bases for our treatment of potential hard
cases, when we might not be able to normalize an eigenvector associated with the
smallest eigenvalue of B, to have first component one.

Our first result, Theorem 5.1, was essentially presented in [67] but we present it
here in a more general way and give a different proof that emphasizes the importance

of the result.

Theorem 5.1 Let A(a) be the smallest solution of the equation
dAN)=A—a. (5.9)

Then, for any value of a, A(a) is an eigenvalue of B, that has a cor-
responding eigenvector that can be normalized to have first component

one.

Proof Suppose first that g is orthogonal to §;, ¢ = 1,2,....¢ with 1 < 7 < n.
We show next that for any a € IR there exists an eigenvector of B, that can be
normalized to have first component one.

Since v, =0, 1 =1,2,....¢ it follows that

¢\ = g"(H—A)'g

B n ,)/22 ‘
- 275

j=0+1

Let A(a) be the smallest solution of equation (5.9). Then A a) € (—o0,ds41), and
since ¢(A) is strictly increasing on its domain and A — « is a decreasing straight line,
we conclude that A(«) is unique.

Since A(a) depends continuously on a, so does p(a) = —(H — M a)I)g and also

v(a) = (1,p(a)”)". Moreover, v(a) is an eigenvector of B, associated with A(a). To
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see this, consider
b))
g H )\ ple) 9+ Hp(a)
atg'pla) = a—g"(H-Na))ly

= a—¢(Aa))
= Ma), by definition of A(a).

and note that

Now, g L S, @ = 1,2,...,0 implies that ¢ € R(H — A) for A € (—00,dp41).
Therefore g € R(H — M «a)l) and we can conclude that (H — A(a)l)p = —g as in the

proof of Lemma 5.2. From this it follows that

g+ Hpla) = Ma)p(a).
Therefore, Byv(a) = Aa)v(a).
Suppose now that ¢ is not orthogonal to S;. Then A(a) € (—o0, d1) is the smallest

eigenvalue of B, and Lemma 5.1 implies that any eigenvector associated with A(«)

can be normalized to have first component one, independently of the value of a. [

Depending on the value of «, we can characterize the first £ or £ 4+ 1 eigenvalues

of B,. This is established in the following lemma.

Lemma5.3 Let A(a) be the smallest solution of (5.9) and let v(«) be the
corresponding eigenvector as in Theorem 5.1. Let A;, 1 =1,2,...,n+1,

be the eigenvalues of B, in increasing order. Define &; as in Lemma 5.2.

Let 1 </ < n and suppose g L. §;,; 1 =1,2,...,L. Then:

(1) fa=a&;,1 <i</lthen \; = Xa) =6 and \; =6, 5 =1,2,...,L.
Moreover the multiplicity of A; is equal to the multiplicity of §; plus

one.
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(2) If @ < @y then Ay = M) and A1 =46;, 7 =1,2,... 7.

(3) If 6y < a < ONzZ', 1 = 1,2,...,£ then A\; = /\(a), )\j = (Sj for
J=1...;i—1,and A\j;; =4d;fory=0v41,... L

(4) If @ > ay then Apy1 = AMa) and A\; =4;, 5 =1,2,...,L.

Proof These results are a direct consequence of Cauchy’s Interlace Theorem and

the properties of the functions ¢(A) and A — a. ]

In Figure 5.1 we present an example to illustrate Lemma 5.3. In this example
n =17, { =4, the eigenvalues of H are {—2,0,2,3,5,7,9} and a = a3. Therefore the

first four eigenvalues of B, are —2,0,2 and 3. The eigenvalue 2 has multiplicity two.

Eigenvalues of the bordered matrix in the potential hard case

25 T T T T T T
20 X eigenvalues of bordered matrix
o eigenvalues of H
15
10

phi(lambda), alpha - lambda
o
T

—-15+

_20 -

_25 | | | | | | | |

lambda

Figure 5.1 Eigenvalues of the Bordered Matrix in a Potential Hard Case.



67

Theorem 5.1 along with Theorem 5.2, constitute the key results for our treatment
of potential hard cases.

Our next result, Lemma 5.4, is a technical result used in the proof of Theorem

5.2.

Lemma 5.4 Let z; = (v;,27)T € R™', 7 =1,2,...,k and define the

7

matrices Z = [z 2z, -+ z;] and 7 = [21 Z9 -+ Zg]. Assume

(1) Baz1 = Az, with Ay the smallest eigenvalue of B,.

(ii) 277 = I.

Ife]ZZ%e > 1 then 3 ¢ € IRF with ||¢|| = 1 such that

A2

| Zt]?
1) ——— =1+ A2
1) terzey =1
(2) a+2¢(%) = ;\(1 + A?), WheAre
VA
et 71

\N=1"Z"B,Zt and i =

Proof In order to prove (1), consider

(e{Zt)Q ( )

and let us derive the conditions for this equation to have a solution ¢ € IR¥, with

t # 0. Observe that we can rewrite equation (5.10) as

11272t = (14 A?) (T Zt)

= (1+ A% (t"Z%e1e] Z1)
which is equivalent to
T [k — (1+A%) ZTe1e] Z] t =0 (5.11)

since 277 = [ by hypothesis.
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Observe that for equation (5.11) to have a solution ¢ # 0, the matrix M =
I — (14 A%) Z"e1e] Z has to be indefinite or positive semidefinite and singular. In
order to see when this holds, let us study the eigenvalues of M.

The eigenpairs {;, y;} of the matrix M = I — (1 + A?) Z"e €] Z are given by

/\1 = 1- (1 + A2) efZZTel, Y1 = ZT€1

Ni = 1, y; € R* suchthat vy, L Z%e, i=2,...,k.

Thus, the matrix M will be indefinite if A\; < 0 and positive semidefinite and sin-
gular if Ay = 0, i.e. equation (5.11) will have nontrivial solutions if \y = 1 —
(1+A%) elZZ"e; <0.

Therefore, if e] ZZ"e; > 1_:7& then 3¢ € IR®, ¢ # 0, so that (5.10) is satisfied.

Note that since ¢ # 0, we can normalize it to have |[t|| = 1. It is straightforward to

see now that for such ¢, || Zt|| = 1. Therefore

) 1
(e121)" = T Aw (5.12)
Since this implies that e] Zt # 0, we can claim (1), i.e. M =1+ A%
! (eTZ1)
€1
To see that (2) holds, note that
a g 1
o t20(d) = (1 &)
g H z
1
= (1 27) B,
T
and since (1,27)" = ! Zt, it follows that
’ (e12t) "
1
2(z) = 1" 7" B, Zt
2B =
. 1
= A

(eTZ1)*
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Now if e] Z7Z7%¢; > then using (5.12) we have

1
14 A2
a+20(2) = M1+ A?
as claimed. ]

The following Lemma now establishes a way of computing the solutions for equa-

tions of the form of equation (5.11).

Lemma 5.5 Let g € IR, z € IR". The equation
' — Bzz"]t =0 (5.13)

in t with ¢ € IR", has 2(n — 1) nontrivial solutions if the matrix
M = I — Bzz" is indefinite and one nontrivial solution if M is positive

semidefinite and singular.

Proof Let P € R™" be such that P"z = ||z|le; with P"P = I and apply this

orthogonal transformation to the matrix M to obtain
PT[I — B22"|P = I — B|z]|*ere] -
Therefore the solutions of equation (5.13) in this new basis are the solutions of

-0 0
y" y=10 (5.14)
0 I

where © = —1 + 3]|z||’ere].

The nontrivial solutions of (5.13) are then given by ¢ = Py where

(1) y = (1,v/0eNT or y = (—1,v/0Oe")" with ¢; the ith canonical vector in IR,
1 =1,2,...,n — 1, if M is indefinite, i.e. if ® > 0, or
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(2) y = ey, if M is positive semidefinite and singular, i.e. if @ = 0.
Therefore equation (5.13) has 2(n — 1) nontrivial solutions if M is indefinite and
one nontrivial solution if M is positive semidefinite and singular. (]
Now we are ready to present our main result.
Theorem 5.2 Let A\ be the smallest eigenvalue of B, with correspond-

ing eigenvector z; = (v, 2])". Let Aj, 1 =2,....k be any k — 1 of the re-

maining n eigenvalues of B, with corresponding eigenvectors

2 = (V’thiT)T
Define Z = [z1 2z -+ 2| and 7 = [21 Z9 -+ Zg|. Let n > 0.
If
. | Zt]]*
dt= Tt =1 h that =1+ A%
(Z) (Tl T2 Tk) > H H suc a (eth)Q +
k
(i) 0 30— ) 7 (14 A7) < —29(3),
1=2
A
for z = 7
Then
1

where z, is a boundary solution for the TRS (5.1) with ¢ (z.) < 0.

Proof Observe that because z, is a boundary solution of (5.1), we have that
P(ze) < P(z), ¥V 2z € R” such that ||z|| = A. Therefore, in order to prove that
=A.

T

P(x.) < (7)), it will suffice to show that

First notice that

7t 1 e1Z

= t
e1Zt el Zl VA
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which implies that

A A VAT A RS A AN A
el 7t (efZ1)?
I A (5.15)
(e] Zt)>
= 14+ A% by (1) (5.16)
Since ||z||* = tTZTZt, (5.15) and (5.16) imply that ||Z]| = A and
(e1 Zt)?

therefore, ¢ (z.) < ¥(2).
Let us now prove the other part of the inequality.
Observe that a + 2¢(z.) = (1 z,) B, (1,z.)". Thus, by Rayleigh quotient

properties

o+ 2(z.) > ML)

And since ||z.|| = A, it follows that |[(1,z])7|]> = 1 + A%, and therefore

a4+ 2¢(x) > M(1 4+ A?). (5.17)
Now, observe that {);, z;} satisfies conditions (7)—(ii) in Lemma 5.4 and observe also

7zt |
= 1+ A?. Therefore,
eAth

that by hypothesis we have ¢ € IR* with ||¢|| = 1 and

satisfy

k
< 7
as in Lemma 5.4 we have that A = g 2N and T = 7
i=1 €1

A

a+2¢p(z) = A(1+A?
k
= ZTf/\i (1—|—A2)

k

and since Z 7,2 = 1, we have
=2

a+2¢(z) = [(1 - Zz;rf) A+ zk:nm] (1+A?)

=2

- [)\1 + zk:(xi —~ )\I)Tf] (1+A%)

=2
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Therefore

a+20(3) — zkj(xi CA)TE(L AT = A(1L+ A

) < a4 2¢(x.), by (5.17).

k
If Z(/\Z — M) (1 + A*) < =2n¢p(&) holds, then

a+20(8) + 2np(E) < o+ 2¢(z)

a+2(1+n)y(d) < a+2P(z.)

and we can conclude (%) < ——(x,).

Therefore 1(z.) < (2) < —=t(z,) as claimed. ]
It follows directly from this result that

. n
0 < U(#) — () < — 1)

0. I6(E) = b(e)] < ()] (5.18)

The inequality (5.18) implies that under the conditions of Theorem 5.2, ¢(&) will be
arbitrarily close to ¢ (z.). We will call such & a quasi—optimal solution for (5.1).
The following corollary is of particular interest when solving large—scale problems.

In this case we typically use & = 2 since the use of more vectors may be prohibitive.

Corollary 5.2 1If £ = 2 in Theorem 5.2 then the necessary eigenpairs
are one associated with the smallest eigenvalue of B,, and a second one

associated with any of the remaining eigenvalues of B,.

Theorem 5.2 and Lemma 5.4 provide the tools for approximating the vector
x = p+ 7z from Lemma 4.2, as a combination of eigenvectors of H. Theorem
5.2 also establishes conditions under which the vector * computed in this way is a

quasi—optimal solution for problem (5.1).
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Moreover, Theorem 5.2 guarantees that if we are working with only two vectors
and the second smallest eigenvalue belongs to a cluster, as in discrete ill-posed prob-
lems, we can still build the special vector # from an eigenvector associated with the
smallest eigenvalue of B,, and an eigenvector associated with any eigenvalue of the
cluster, not necessarily the second smallest. If the first eigenvalue and & — 1 of the
remaining ones and the corresponding eigenvectors of B, are available for k > 2, we
can use all of them to build a quasi—optimal solution for the TRS. This strategy might
yield faster convergence than the one that uses only two eigenpairs and has yet to be
tested.

Lemma 5.4 and Theorem 5.2 are generalizations of Lemmas 6 and 7 from [67],
respectively. The differences are that in [67] the results are proved for two vectors
only and in Lemma 7 these vectors are required to be eigenvectors associated with
the two smallest eigenvalues of B,. Our results hold for k vectors, 2 < k < n and in
Theorem 5.2 we require an eigenpair associated with the smallest eigenvalue of B,,
and any other k& — 1 of the remaining eigenpairs.

Observe that Lemmas 5.4 and 5.5, respectively, provide a way of computing the
vectors z and ¢ needed in Theorem 5.2. We use Theorem 5.2, Lemma 5.4 and Lemma
5.5 in the design of one of the stopping criteria in our method. We describe this
stopping rule in §5.5.6.

In Sections 5.4 and 5.5 we will present the complete description of our method for
the Large—Scale Trust—Region Subproblem. Our method is the result of the evolution
of the ideas originally presented in [71], [68] and [67]. We extended the ideas in the
previous works to handle the high degree of singularities present in discrete ill-posed
problems. This lead to the development of a complete theory for the treatment of

the hard case.
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The treatment of discrete ill-posed problems was not possible with the previous
methods for several reasons.

In [71] there is a separate treatment of the hard case and the easy case. The
iteration for the hard case has slower convergence than the one for the easy case.
That work did not present robust safeguarding strategies and did not consider the
possibility of a multiple hard case.

The method in [68] uses a different interpolation scheme from the one in [71],
introduces a safeguarding strategy for the parameter and presents a unified treatment
of all cases. The treatment of the hard case and the stopping criteria are the weak
aspects of that method.

The method in [67] is based on [68] but uses a more robust safeguarding strategy
and makes important contributions to the treatment of the hard case. It also presents
more robust stopping criteria than the ones in [68]. This work does not consider the
possibility of a multiple hard case.

Although our method is based on [67], we have introduced new elements in the
treatment of the hard case, the safeguarding strategies and the stopping criteria. We
have also designed an approach to handle interior solutions in the special case of

discrete ill-posed problems.

5.4 Algorithm

In this section we present the general algorithm as Algorithm 5.4.1 (Figure 5.2). In

Section 5.5 we describe each of the components of the algorithm in detail.
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In the description of Algorithm 5.4.1. we use the following definitions and as-

sumptions:

e The vector g satisfies g # 0. If g = 0 we compute an eigenvector x associated

with the smallest eigenvalue of H and normalize it such that ||z| = A.

o a. = A — ¢"z,, where {),, z.} is the optimal pair from Lemma 4.1, except
when there is only an interior solution where we define z, = —(H — A\.I)Tg such
that ||z.]| = A.

e The values «,, ay are such that o, < a, < ay. These values are used to
safeguard the parameter o and they are updated at each iteration. We describe
the safeguarding strategy in §5.5.4.

e ¢ is the smallest eigenvalue of H and 4, is an upper bound for §;. The bound
0y is used for safeguarding purposes and it is updated at each iteration. We

describe this safeguarding strategy in §5.5.4.
o At iteration k, the pairs {A1, (v1,uf)"}, {2, (v2,u3)"} are eigenpairs of B, ,
where A; is the smallest eigenvalue and A, is a value equal or close to the second

smallest eigenvalue.

T

)"} is used to compute {A), 2 }, the current approxi-

e The pair {Ay, (vy u
mation to the optimal pair {\,, z.} and also to compute interpolation values.

When used to compute {Au, 2w}, {Aw, (vw uj,)"} is always equal to

A, (m,ui)" )

When {Ay), (v uf,)"} is used to compute interpolation values, it might be

equal to {Az, (v2,u3)"}. This is decided in Step 3.4 of the algorithm. The

criterion for choosing the interpolation values is described in §5.5.2.
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Algorithm 5.4.1 Method for the Large—Scale Trust—Region Subproblem.
Input: e,, €1y Eney €uy €as € € (0,1); AE€R, A>0; g€ R”, g#0;
and H € R™" with H = H”, or a procedure for computing Hv for v € IR".
Output: an approximation to an optimal pair {A., 2.} for problem (5.1),

given in Lemma 4.1.
1. Initial step

1.2 Compute initial safeguards 6, > d; and ay > a.

1.3 Compute o = min{0, ay }

1.4 Compute {1, (v1,uf)"}, {A2, (v2,u3)"} two eigenpairs of By,
with A; the smallest eigenvalue and Ay equal or close to the
second smallest eigenvalue

1.5 Set {A@); (110 ug))™} = {A1, (v, ul)7}

1.6 Compute initial safeguard o, < a,

2. k=0
3. while not convergence ({Aw), (v ug,))"}) do
. uiHuy | .
3.1 Compute 6, = min { dy, — yifug #0

3.2 Adjust oy, and compute {Ay, (v4,uf)"}, {Xe, (v2,u3)"} two
eigenpairs of Ba(k) with A; the smallest eigenvalue and A\, equal or
close to the second smallest eigenvalue, until either vy or vy is large

3.3 Select interpolation values {Ay), (v uf,)"} from
{)‘17 (Vlvuf)T} and {)‘27 (V27u§>T}

3.4if (k=0) then

Compute a4,y by one—point interpolation scheme from §5.5.3.
else

Compute o,y by two-point interpolation scheme from §5.5.3.
end if

3.5 Safeguard a4

3.6 Compute {A1, (v1,u7)"}, {A2; (v2,u3)"} two eigenpairs of By
with A; the smallest eigenvalue and Ay equal or close to the
second smallest eigenvalue

3.7 Set {)‘(k+1)7 (V(k+1) ua+1))T} = {)‘17 (Vlvuf)T}

3.8 Update safeguards a, and ay

39 k=k+1

end while
4. Compute A,, z, as in §5.5.6

K41))

Figure 5.2 Method for the Large-Scale Trust—Region Subproblem.
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5.5 Components

In this section we describe each component of Algorithm 5.4.1. For each component
we describe the theoretical aspects and discuss implementation issues.
Table 5.1 is intended as a guide to relate the steps of the algorithm with each

description.

Steps Discussed in
1.4 and 3.6

Solution of Eigenproblems §5.5.1
3.3

Selection of Interpolation Values §5.5.2
3.4

Interpolating Schemes §5.5.3
1.2, 1.6, 3.5 and 3.8

Safeguarding §5.5.4
3.2

Adjustment of « §5.5.5
Stopping Criteria §5.5.6

Table 5.1 Index of the Components of the
Trust—Region Subproblem Method

5.5.1 Solution of Eigenproblems

We are interested in problems where the matrix H is large and may not be available
explicitly. Instead a procedure for computing Hv is available, or in the special case
when H = A" A, procedures for computing A"w and Av are available.

As in [71], [68] and [67], we use the Implicitly Restarted Lanczos Method (IRLM)
[70] as implemented in [43] to solve the eigenproblems. This method has the following

advantages:
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e H is used only in matrix—vector products. Note that in the special case when

H = A" A, it is not necessary to form this matrix explicitly.
e The storage requirement is of order n x k, for k small and fixed.
e Fast convergence to the extreme eigenvalues if they are separated from the rest.

It is worth noting that for small values of A, the smallest eigenvalue of B, will be
separated from the rest and we can expect the IRLM to be very efficient in computing
that eigenvalue.

However, the Lanczos method will have difficulties in computing the smallest
eigenvalue of B, if it belongs to a cluster (see [25, Ch. 9]). If the second smallest
eigenvalue belongs to a cluster this does not pose any problem for our method, since
we can build a quasi—optimal solution using any eigenvalue from the cluster as we
discussed at the end of Section 5.2.

In discrete ill-posed problems we encounter several difficulties with respect to the
solution of the eigenproblems. The first one is that the smallest eigenvalues of the
matrix B, are clustered even when A is not too large. This is due to the facts that
potential hard cases are common and that the smallest eigenvalues of H are clustered.
We still need to address the treatment of clustered eigenvalues in our implementation.

A second difficulty is due to the fact that the smallest eigenvalue of H is usu-
ally very close to zero. Again, for values of A that are not too large we will have
that the smallest eigenvalue of B, will also be close to zero. Any method based on
matrix—vector products of the form B,v, will annihilate components precisely in the
direction of the eigenvectors of interest. To avoid this problem we apply a Tchebyshev
polynomial preconditioner that maps the smallest eigenvalue to a meaningful value.

Another issue is the computation of eigenvectors corresponding to eigenvalues

with multiplicity greater than one. Recall that to update the parameter o in Step



79

3.4 we require the smallest eigenvalue of the bordered matrix and a corresponding
eigenvector with significant first component. As we saw in Section 5.3, the smallest
eigenvalue of B, can have multiplicity greater than one with only one of the associ-
ated eigenvectors having a large first component. It is desirable that the eigensolver
computes such eigenvector. The Implicitly Restarted Lanczos Method does not guar-
antee the computation of this eigenvector as a result of this, we could be adjusting

the parameter a more than necessary in Step 3.2.

5.5.2 Selection of Interpolation Values

Given the two eigenpairs of B, {M, (v1,uf)"} and {As, (v2,u3)"}, we use the
values A\, = Ay and z) = Z—i as interpolation values as long as vy is different from
zZero.

In practice, 1 might be small in near potential hard cases so that dividing by
this value might produce large errors. For example, if @ > &; in a potential hard
case all the eigenvectors associated with A; will have small first component, as the
results from Section 5.3 establish. Moreover, even if a < &; the eigensolver might
not compute the eigenvector with large first component.

When v is too small, we use the pair {2, (vq,u3)”} to compute the interpolation
values. In Step 3.2 we adjust o in a way that guarantees that either vy or 1y is
sufficiently large. We discuss the adjustment procedure in §5.5.5.

Figure 5.3 presents the procedure for choosing the interpolation values from the
two given eigenpairs of the bordered matrix. In this procedure, ¢, € (0,1).

Note that if the test is not satisfied this means that vy is large and there is no need
to update {Ay), (vu uf,))"} since it is already equal to {A1, (v1,uf)"} after Step 1.5

or Step 3.8 of the algorithm.
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Step 3.3 Selection of Interpolation Values.

if (||g|| [1] < env/1—142) and (|A — o |1n] < /&) then
Set {/\(k)a (V(k) Uﬁ))T} = {2, (v2,u3)"}
end if

Figure 5.3 Procedure for the Selection of the Interpolation Values.

The previous test is motivated as follows. Observe that at any iteration we have
(H — M uy = —gvy, with ||(v4,u])7]| = 1, and therefore

I =\ Dyl ol bl
[[ua ] VA2
Thus, ||g|| |v1] < exv/1 —14? implies that |[(H — A 1)uq|| < &,]|ui]|, which can be

made scale independent by choosing e, = ¢|| H||. Also observe that |A; —a| |1n] < /&,
implies that g"u; is small.

Therefore, if the test is satisfied then {A;,u;} is an approximate eigenpair of H
with g"uy small, which is in agreement with Lemma 5.1. We save the best approx-
imation to a vector in &y, i1.e. the best wuy, to build a solution if the hard case is
detected (see §5.5.6) and the minimum length of the safeguarding interval has been
reached.

Observe that g"u; small implies that ¢ is numericallly orthogonal to &; if

S1 = {ui}.

5.5.3 Interpolating Schemes

As we discussed in Section 5.1 we update the parameter o by means of a local rational
approximation to the functions ¢(A) and ¢'(A). This approach takes advantage of the
rational structure of these functions and has proved to be very efficient in practice

while yielding local superlinear convergence of the iteration (see §5.6.2).
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As in [67] we use a two—point interpolating scheme in the main iteration. To start
the iteration we require two initial sets of interpolation values. The first set is chosen
from the eigenpairs of B, , computed in Step 1.4. The second set is obtained by
building a one—point interpolant based on the first set of values.

We describe the one—point and the two—point interpolating schemes next.
One—point interpolating scheme

The interpolant is a rational function of the form

We now show how to compute v and §.

Let Ag be the smallest eigenvalue of B,, with corresponding eigenvector (1, z{)",
le.

a—X=—g"zy and (H —Xl)zo = —g.
We require that ¢(A) and ¢'()\) satisfy the following conditions:
(i) $(Xo) = d(Xo) = —g" .
(ii) ¢'(Xo) = ¢'(Xo) = zh 0.
A straightforward calculation now yields

T 2
5:/\0_9T$0 and 4? = (9" o) .

The following expression yields A such that qAb’(j\) = A?
9" o

=3 +
[[zol[ A

and some algebraic manipulation leads to the formula for a4

Y e Oéo—)\o A-Hl’o” 1
o1 = At e(d) =00+ Ey ( A ) \A T Tl (5:19)
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Note that this interpolation scheme could also be used in the main iteration.
However, as observed in [71], this choice yields a linearly convergent method and will
not be used. Instead we will update the parameter through a two—point interpolating
scheme which yields faster convergence. We describe this scheme next.

Two—point interpolating scheme

To build the two—point interpolant at iteration &£+ 1, & > 1, we use the interpola-
tion values at iteration £ — 1 and at iteration k, namely {\,_,), (vu_y ua_l))T} and
{As (v ufy)}

From these values we compute,

Vi

b = d(Awy) = =9z,

b= ' (My) = 27

fori=k—-1, k.
The rational interpolant that we use in the two-point scheme is of the form

2

BN = 55+

2

for which qﬁ’()\) — T Since we know the values ¢h_,, ¢, we can compute v*

(6 —A)
and d, which are given by

N = Ay = Aol [Pl and § = A llzmll = Av—nllza-nll
Uzl = llzw-yl)? [zl = [z -yl
< 1
Knowing +* and 4, we can compute A such that —— = —. This value can be
¥ A

shown to be

N = Aoy Iz llzwll = A) + A 2w (A = [lza-nl]) (5.20)
Alllzwll = llzw-n D
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Recall now that the parameter o is updated using the formula a = X + 95(5\) To

evaluate g;(;\) we need to choose a value for n. Our choice is

/\(k) - A ) ( A— /\(k—l) )
— RN S _ _I_ [ St A
! ()‘w) — Ay = Aty — Ay T

2

where we define n; = ¢; — 5 —7/\(1') ,for 1 = k—1, k. This choice makes use of the rest
of the information available, namely ¢,_,, ¢,. )
After some manipulation and defining w = ﬁ the formula for updating
a can be expressed as
Appy = At wdpr + (1 —w)dy
4 Iz lllzall(lzell = llzenl) Aemy =M = A)
wllzw |l + (1 = w)l[zp-y|l (A = Ao

= wap + (1 —w)agy,

Hl'(k—l)HH%)H(HCU(MH - Hl’w—l)H) ()‘w—l) - 5‘)()%) - )‘)
wllzwll + (1 = w)||z gyl (A = A=)

_|_

(5.21)

where a; = Ay + ¢, 1 =k —1,k.

5.5.4 Safeguarding

There are two quantities that we need to safeguard in Algorithm 5.4.1. These are the
parameter o and ), the value that satisfies g;’(j\) = A’. We describe the safeguarding
strategies next.

Safeguarding )

Since there is the possibility that we will use an eigenpair of B, associated with
the second smallest eigenvalue or with a value close to it to build the interpolants, it
is possible that A > §;. Using such X to compute a = XA+ qAb(;\) might yield values of «
that are far away from the optimal one. Another situation that requires safeguarding

) is the occurrence of a zero or small denominator in (5.20).
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We set A = &y, where §; > &;, if A > &, or if we cannot safely compute A by
means of (5.20).
To obtain an initial value for é, we observe that any Rayleigh quotient is an upper

bound for §;. Therefore we define the initial &, as:

(a) 6, = min e; He; for 1 < i < n, if the diagonal elements of H are available, or

vTHv

vTo

(b) 6y =

for a random vector v € IR™, v # 0, otherwise.

We update this bound in Step 3.1 of Algorithm 5.4.1 by

TH
5U — min{5U7 U1 UI} )

ui Uy

if uy # 0, where (v1,u])” is an eigenvector corresponding to the smallest eigenvalue
of Ba(k).

Observe that A > &, might occur because we used an eigenpair associated with
the second smallest eigenvalue of B, to compute the interpolation values. As we saw
in §5.5.2, this choice of interpolation values implies two things. First, that u; is a

ui Huy |
is a

good approximation to an eigenvector of H associated with 41, i.e. that .
sharp estimate for §;. And second, that ¢"u; is small which in turns implies that we
are in a potential hard case if & = {u1}.

Therefore, we set A = d§, precisely when §, is close to d;. Such choice of A will
produce a value of « close to the value &; from Lemma 5.2, which is the optimal
value in potential hard cases. In other words, in case we need to use the safeguarding
strategy we will obtain a value of the parameter that is close to the optimal.
Safeguarding o

To assure global convergence of the iteration we must safeguard the parameter

Oy, after Step 3.4 of Algorithm 5.4.1 or during the computation of o by (5.21) in

Step 3.4. As in [68] and [67], we maintain a safeguarding interval [a,, o] containing
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the value a.. If spy) € [, ay], we attempt a linear adjustment of the parameter and
if this value is still not contained in the safeguarding interval we take the midpoint of

the interval as the new value of the parameter. We present the procedure in Figure

5.4.
Step 3.5 Safeguarding of «
if (s € [, ap]) then
if (k=0 or [z <|zwnl) then
Aryr) — Oy + &i + ¢2(5U - /\(k))
else
A(p41) = Oy + oy + Qb;—l((sU - /\(k—l))
end if
if (o & [or, ay]) then
o, + ay
a(k+1) = T
end if
end if
Figure 5.4 Procedure for the Safeguarding of the Parameter .
where, as in §5.5.3, we define z, = u(i), b = o(Ay) = —g'z, and

b= ' (A\yy) =z, fori =k —1, k.

The initial values we use for a; and ay are based on the bounds introduced in
[66], but we wish to present a more straightforward derivation here.

First we show that a.. <&, + ||g]|A.

Let {A., z.} be the optimal pair from Lemma 4.1, except when there is only an

interior solution in which case we define z, = —(H — )\*])Tg such that ||z.|| = A.

We define a, as

T
a*:/\*_g L
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therefore
= A < aw = A < lgll] |
and [|z.|| < A implies
a. <A+ [lgllA
Since A, < §; < §y, we conclude

a. < dv + |gllA.

Now we prove that §; — M < ay.

A

For an optimal pair {A., z.} defined as above, we have that

A = P\
N
=1 (52 - /\*)2
and therefore
n ,.)/22
A < -
o ; (51 - )\*)2
lgll®
(61— A)?
which implies
5o < Lol
51 - Hi;l‘ S )\*

and since A, < a, by Rayleigh quotient properties, we can now claim

51—”14” < . (5.22)
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In practice, the computation of §; can be expensive but we can avoid it by ob-
serving that (5.22) still holds if we replace d; with d, such that 6, < d;.

An initial lower bound for d; is available after Step 1.4 in Algorithm 5.4.1 since
A1, the smallest eigenvalue of Ba(o), satisfies A\; < ;. Therefore we can compute an

initial value for o, as

In Figure 5.5 we present the procedure for updating the safeguards corresponding

to Step 3.8 of Algorithm 5.4.1.

Step 3.8 Update of Safeguards.
if (vy =1 and wuy =u;) then
if (||[zw] > A) then
oy =«
else
if (Jlzwl| < A) then
o, =«
end if
end if
else
oy =«
end if

Figure 5.5 Procedure for the Update of the Safeguards.

To see that with this procedure for updating the safeguarding interval the value o,
remains in [a,, oy, first note that if we are using the pair {A;, (14, u])"} to compute
{Aws T}, then Ay < §;. Now recall that the function ¢(A) is strictly increasing in
either (—oo, d1) in the easy case, or (—oo, 1] in a potential hard case; and also that
&'(Aw) = ||lzwl|*>- Therefore, if ||z)] < A then oy < a. and if ||z| > A then

gy > Ol
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Moreover, if we are using the pair {A;, (r5,u3)"} to compute {A,), 2.}, then

the value o, that yields such eigenpair is an upper bound for a, since Ay > 4.

5.5.5 Adjustment of o

As we saw in §5.5.2, at iteration k the values {Ay), (vu uf,)"} are chosen as an

eigenpair associated with the smallest eigenvalue of B, or with a value equal or
close to the second smallest eigenvalue of this matrix. The choice between the two
eigenpairs is based on the magnitude of the first component of each eigenvector and
therefore we must guarantee that one of the two eigenvectors will have a sufficiently
large first component. The following procedure shows our approach to adjust a to

satisfy this requirement. The procedure follows the one in [67] and we present it in

Figure 5.6.

Step 3.2 Adjustment of .

while (14 small or vy small) do
]_. Oy = Oé(k)

z.a:w

3. Compute {A1, (v1,u])"}, {A2, (v2,ul)"} two
eigenpairs of By, , with A; the smallest eigenvalue and

A2 equal or close to the second smallest eigenvalue
end while

Figure 5.6 Procedure for the Adjustment of the Parameter a.

We consider vy or v, small according to the criterion we use in the selection of the
interpolation values (see §5.5.2).
Note that Theorem 5.1 implies that the only case in which an eigenvector corre-

sponding to the smallest eigenvalue of B, has small first component is in a potential
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hard case when a > a,. Therefore the interval [a,, o] after Step 1 in the while loop
will still contain .

After Step 2, either a;, < a < a,or ay > a> a,. If o, < a < a, then Theorem
5.1 implies that vy will be large. If we always get oy > a > a, then, since we reduce
the interval [a, ay] at each iteration, we have that eventually a will get close enough
to a. (from the right) and Theorem 5.1 implies that v, will be large.

In practice we must also check if the minimum length for the safeguarding interval
is reached in this process. In this case, the algorithm finishes and a solution is

computed as indicated in §5.5.6.

5.5.6 Stopping Criteria

T

)"} we check for a boundary solution, an interior

Given the values {A), (vu u
solution or a quasi—optimal solution according to Theorem 5.2. We can also stop the
iteration if a maximum number of iterations has been reached or if the length of the
safeguarding interval is too small.

In the tests, we check with v, and u, instead of z,, = ? because at that point
in the algorithm we do not know if this division is well deﬁne((l;l), i.e. v could be zero.
In practice, v, could be very small and dividing by such value will produce large
errors.

(1) Boundary Solution.

A boundary solution is found if
(1 Hu(k)H - A|’/(k)| | < ea *A|V(k)|) and (/\(k) <0).
If this condition is satisfied the solution is

u
A =Ap and =z, = nlN
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(2) Interior Solution.

Let £, € (0,1), then an interior solution is detected if
(luml < Alyw]) and  (Ay > —e5,.) and (H is positive definite).

Where H is declared to be positive definite if any of the A, for ¢ = 1,2

g Ly eeay

k,
satisfies A\;) > —&,, since this implies that &, > A, > —e,. We emphasize that we
check the condition on A at a point in the algorithm where this value corresponds
to the smallest eigenvalue of B,,.

We know from Chapter 4 that an interior solution is given by z,y, = —H™'g
with corresponding Lagrange multiplier A;y, = 0. We recall from Section 5.4 that for
the purpose of computing the safeguarding interval in the interior solution case, we
redefine z, as z, = —(H—/\*[)Tg such that ||z.|| = A, and therefore, a, = A—g" ..

We can guarantee that we detect the existence of an interior solution since
. > —g"x;nr, and the safeguarding interval is reduced in a way that guarantees
that we eventually compute A; positive with |[(H — X\ I)Tg|| < A.

An interior solution satisfies the linear system Hx,y, = —g. Therefore when we
detect the existence of an interior solution we should, in principle, solve such system.
The Conjugate Gradient Method (see for example [25, Ch. 10]) is a natural choice for
solving this system in the large—scale case. However, for discrete ill-posed problems
this approach amounts to applying the Conjugate Gradient Method to the normal
equations with a very ill-conditioned matrix. For the reasons exposed in §3.4.2 we
want to avoid this computation.

We use a different strategy that consists of checking if A, which is the smallest

eigenvalue of B,, is sufficiently small. If so, we set A, = 0 and z, = ~%.. Note that

’lL(k
(k)

z, = —(H — Xyy1) g and for A, close to zero such z, will be a good approximation

to the unconstrained minimizer given by —H~'g. However, if there is a high level
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of noise in the data, this unconstrained minimizer is the least squares, unregularized
solution of the perturbed problem and it is contaminated by the noise in the data
This solution will not be a good approximation to the desired solution of the original
problem (see §3.1.2).

If A4y is not small enough, we reduce the radius A and start the algorithm again.
This approach is different from the one in [71], [68] and [67] where the interior solution
is computed by solving the system Hzx = —g.

(3) Quasi-optimal Solution.

To declare that a quasi-—optimal solution has been found, we first compute X and
Z as in Lemma 5.4, provided that the conditions of the lemma are satisfied.

If A and 2 satisfy condition (i) of Theorem 5.2, we declare that a quasi-optimal
solution has been found and set A\, = X and T, = 2.

(4) The interval [o,, a;] is too small.

If |ay — a;| < eomax{|a,]|,|ay|} then we stop the iteration and set A, = Ay,. If
vy 1s too small or zero, we cannot compute a solution. This situation can arise in
practice because the eigensolver might not provide the eigenvector with significant
first component that the theory guarantees. We have not encountered this case in
our experiments.

If v, is large enough, we set p = ? and if |||p]| — A| > e * A then we set z, = p.

If ||p|| < A then we are in the hard(k():ase and a, is within ¢, of &;. In this case we
compute z, as T, = p + Tuy such that ||z.|| = A. The vector u; is an approximate
eigenvector associated with the smallest eigenvalue of H. This vector is available in

potential hard cases, after Step 3.3 of the algorithm.
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Of the two possible choices for 7, we choose the one with smaller magnitude since
this value minimizes ¢ (p 4+ Tuq) (see [55, p. 558]). This choice of 7 is given by

A* —|pl? ,
prun + sign(pTun)y/(pTur )2 — (A2 — ||p||?)

T =

5.6 Convergence Properties

In this section we present the convergence results for Algorithm 5.4.1. In §5.6.1 we
prove that the iterates generated by Algorithm 5.4.1 are well defined, in §5.6.2 we
present the local convergence theory and in §5.6.3 the global convergence theory of

the method.

5.6.1 The Iterates are Well Defined

Lemma 5.6 ([67]) The iterates generated by Algorithm 5.4.1 are well
defined.

Proof In order to define the current iterate z, in Algorithm 5.4.1, we must ensure
that we can safely normalize an eigenvector corresponding to either the smallest
eigenvalue or a value equal or close to the second smallest eigenvalue of By, , to have
first component one. This is accomplished in Step 3.2 where we adjust the parameter
oy until one of these two eigenvectors can be normalized to have first component
one.

We described Step 3.2 and discussed its convergence properties in §5.5.5. Theorem
5.1 guarantees that the adjusting procedure in Step 3.2 yields a value of a such that
for the smallest eigenvalue or a value equal or close to the second smallest eigenvalue

of B,, there exists a corresponding eigenvector with significant first component.
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5.6.2 Local Convergence

We established in the previous section that the iterates generated by Algorithm 5.4.1
are well defined. In this section we present the local convergence properties of the
algorithm.

We will use Lemmas 5.7 and 5.8, in the proof of Theorem 5.3 which contains the

local convergence result.

Lemma 5.7 ([67]) Let A. < §; be the Lagrange multiplier corresponding
to a boundary solution of problem (5.1). Let A, be the (i+1)th iterate
computed by Algorithm 5.4.1 using the two—point interpolating scheme
given by (5.21) to update a. Then, there exists a neighborhood B of A.,
B ={X]||X— A <r},such that if A, ,;, Ay € B then Ay, satisfies

Ay = A = Aoy = A) (A — A)O(D). (5.23)

Proof See [67]. 0

Lemma 5.8 Let A\, < §; be the Lagrange multiplier corresponding to a
boundary solution of problem (5.1). Let {A., } be the sequence of iterates
generated by Algorithm 5.4.1 using the two—point interpolating scheme

given by (5.21) to update a. Then

geR(H —AyI) and g e R(H—\I).

Proof First we prove that g € R(H — Ay I). We consider two cases.
Case 1: g £ S, 1 <@ < n. Then VEk, Ay < 61, H — Ay)I is nonsingular and
g€ R(H — Ayl).
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Case 2: g L S;,1=1,2,...,0,1 <l <n. Then, if A\, # 6;, e =1,2,...,¢ then
H — X! is nonsingular and g € R(H — A,y 1). If A,y = d;, for some ¢ such that
1 <</, then since g L N(H — §,1) we have that g € R(H — A\, I).

To prove that g € R(H — A.I) observe that A, < &;. If Ax < &; then H — AT
is nonsingular and therefore g € R(H — A 1). If A, = §; then g L N(H — A\.I) must
hold and hence g € R(H — A\.1). (]

Observe that under the conditions of Lemma 5.8 and because H is symmetric, we

have

(H =Xy D)(H =Xy Dg = (H=XyD'(H=XyyI)g=9g  (5.24)

and (H —X1)(H—=M\1D)'g = (H—=MND'H-M\1)g=g, (5.25)

since (H — A I)(H — My )V and (H — A\ [)T(H — A,y I) are orthogonal projections
onto R(H — A1), and (1"-]—/\*[)([-[—/\*[)Jr and (H—/\*[)T(H—/\*]) are orthogonal

projections onto R(H — A\.1).

Theorem 5.3 ([67]) Let A\, < §; be the Lagrange multiplier correspond-
ing to a boundary solution of problem (5.1). Let {A,} be the sequence of
iterates generated by Algorithm 5.4.1 using the two—point interpolating
scheme given by (5.21) to update a. There exists a neighborhood B of
A such that if A,_,), Ay € B then {A,}, £ > 1 — 1, remains in B and
converges superlinearly to A\.. Moreover, if x4, = —(H — A, I)Tg then the
sequence {z, }, beginning with z_,), z, converges superlinearly to x,
with ||lz.|| = A if \. < &1, or to p = —(H — &,1)Tg with ||p|| < A for
A = 01,

Proof First we show that {\,} converges to A, and that the rate of convergence

is superlinear.
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Let p; = Ay — As. Let B, = {X | [ = A.| < r} be the neighborhood of Lemma 5.7
and suppose that A,_,, Ay € B,. Then, (5.23) holds and implies that there exists

a constant ¢ > 0 such that

Pe‘+1| < c|ps Pi—1|- (5-26)

Let # = min{r, -}, define B; = {A | |]A — A| < 7} and observe that B; C B,. If
Aiony, Ag € B; we have that (5.26) holds and since ¢

pioa| < % then

[Oi+1| < %
Therefore Ay € B, for k > 1 — 1, which implies that |p,,,| < ¢ |pi] |pr_i|, for & > 1

Pil-

with |peii| < 3]px]. Therefore p, goes to zero as k goes to infinity. We can conclude
now that {\, } remains in B; and converges to A..
To see that the convergence is superlinear, observe that by (5.23) for & > ¢ we

have

Avan = Al

which goes to zero as k goes to infinity.

In the second part of the proof we show that the sequence {z(,} converges to
the vector y = —(H — \.I)'g such that if ||y|| = A and A, < §; then y = z., and
if ||ly|] < A and A = §; then y = p. We then show that the rate of convergence is
superlinear.

Let us study 2 —y which is given by
tw —y=(H—=XD)lg—(H = XyI)lg. (5.27)
Observe that by (5.24) we can write
(H=X\1)lg = (H =AD" (H =Xy )(H = Ay 1)'g, (5.28)
and by (5.25)

(H = Moy Ylg = (H — Moy DN(H = MDY (H = XD)g (5.29)
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which is equivalent to
(H = XDl = (H = NI (H = NI)(H = Ay I)'g (5.30)

which follows after substituting the SVD of the matrices in (5.29) and changing the
order of the diagonal matrices of the SVD’s.

Substituting (5.28) and (5.30) into (5.27), we obtain

rw—y = (H- )‘*[)T((H —Aw!l) = (H = A))(H — )‘WI)TQ

= —(H - /\*[)T(/\u«) — A)(H — /\(k)[)TQ-
Taking norms on both sides we have
ey = yll = ey = Al I(H = AD)H = Xy D)g]l. (5.31)

Since A,y — A, we have that z(,, — z.if A, < §; and ||y|| = A, or 2,y — p
if Ao =67 and |jy|| < A.

To see the superlinear convergence observe that (5.23) and (5.31) imply that

a’: j—
e =yl _ Mer) — A O(1).
[z =yl

This completes the proof. (]

5.6.3 Global Convergence

Theorem 5.4 ([67]) Algorithm 5.4.1 is globally convergent.

Proof The goal of Algorithm 5.4.1 is to solve the trust-region subproblem by either
determining the existence of an interior solution, or by computing an optimal value o,
for the parameter «, such that the solution to the parameterized eigenvalue problem

for B,, can be used to compute a boundary solution for the trust-region subproblem.
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The global convergence of Algorithm 5.4.1 is achieved by means of a safeguarding
interval that contains the optimal parameter a,.

We first recall that the initial safeguarding interval [« ,, o] contains o (see §5.5.4).
Starting with that interval, the updating procedure for a, and «a, either in Step 3.2
(see §5.5.5) or in Step 3.8 (see §5.5.4), guarantees that a. remains in the interval and
that the safeguarding interval is reduced at each iteration.

Therefore, since « = A — ¢g"x, after a finite number of steps either the sequence
{A@ } reaches the neighborhood of A, of Theorem 5.3 that guarantees convergence,

or the length of the safeguarding interval |a, — a| goes to zero with a;, < a, < ay.

O

5.7 Numerical Results

In this section we present the numerical results obtained when we apply Algorithm

5.4.1 to the problem
min le"He 4+ g"x
st |lell<a

with H = A”A and g = —A"b.

The test problems are from the Regularization Tools package of Hansen [36].

Our program is a Matlab implementation of Algorithm 5.4.1. The eigenprob-
lems are solved with the ARPACK version ([43]) of the Implicitly Restarted Lanczos
Method (IRLM) of Sorensen [70]. Our Matlab code uses the IRLM by means of a
Mexfile interface with the ARPACK library.

We carried out all the experiments on a Sun Ultrasparc 2. The floating point arith-

metic is IEEE standard double precision with machine precision of

€ = 27°% 72 2.2204 - 10716,
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The required accuracy for the eigenpairs was 1072, but the IRLM usually com-
puted the eigenpairs at a higher accuracy. The initial vector for the Lanczos fac-
torization is a randomly generated vector that remains fixed in all the experiments.
In §5.7.1 and §5.7.2, the number of basis vectors for the IRLM was limited to nine.
Seven shifts (i.e. seven matrix—vector products) were applied on each implicit restart.

For the experiments in §5.7.3, the number of basis vectors and the number of
shifts varied for three different sets of problems.

We apply a Tchebyshev polynomial filter in order to recover very small eigenvalues.
We use a polynomial of degree ten, which implies that each matrix—vector product in
the IRLM amounts to nine matrix—vector products with the original matrix. In order
to use a Tchebyshev polynomial we need an estimate of the largest eigenvalue of the
bordered matrix. Since for discrete ill-posed problems, the largest eigenvalue is well
separated from the rest, we expect the IRLM to be very efficient in computing such
value. We observed that even for large problems it usually takes only one iteration
of the IRLM to compute that eigenvalue.

An alternative to the use of a Tchebyshev polynomial filter is the use of Leja
points as shifts, since they were reported in [2] to be very efficient for recovering very
small eigenvalues. We did not try this option.

Table 5.2 contains the values of tolerances used in all the experiments.

The meaning of the tolerances in Table 5.2 is the following:

e ¢, determines the accuracy of a boundary solution (see §5.5.6).

e —c,,, is a lower bound on an acceptable value of A for an interior solution (see

§5.5.6).
e ¢, determines the accuracy of a quasi-optimal solution (see §5.5.6).

e —c, is used as threshold to determine that a value is positive (see §5.5.6).



Tolerance | Value
En 1074
€1t 10~8
€ac 10~8
€o 10~
o 10~8
£, 1072

Table 5.2 Values of tolerances for experiments
with the Trust—Region Subproblem Method.
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e ¢, determines the minimum allowed length of the safeguarding interval [a, o]

(see §5.5.6).

e ¢, is used to determine when the first component of an eigenvector of B, is

small (see §5.5.2).

The purpose of this section is to illustrate some of the properties of the Trust—

Region Subproblem Method described in the previous sections. We show superlinear

convergence in §5.7.1, the computation of interior solutions in §5.7.2 and finally the

results for all the problems in the Regularization Tools package in §5.7.3.

In all cases, x;» denotes a discretization of the exact solution of the inverse prob-

lem.

5.7.1 Superlinear Convergence

In Table 5.3 we show the superlinear convergence behavior of the method when it is

applied to problem phillips from [36].

Problem phillips is a discretization of a classic test problem presented by D.L.

Phillips in [61], consisting of a Fredholm integral equation of the first kind. The kernel
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Iter & m_&i)”'
1 1.8188e-02
2 4.0480e-03
3 1.1766e-03
4 2.3746e-04
5 2.9231e-06

Table 5.3 Superlinear Convergence.

K, the solution f and the right-hand side g are given by

K(s,t) = ¢(s—1)

@) = ()
0 = 41002+ S (2)

where the function ¢(z) is defined as

I+cos(Z2), |z|]<3
plz) = (%)
0 |z| >3

and the integration intervals are [—6, 6]. Problem phillips from [36] is a discretization
of this continuous problem.

We chose the dimension of the problem as n = 300 and therefore the discretized
operator A is a 300 x 300 matrix. The right-hand side is b = b + er, where b is
a discretization of the right hand side ¢, ¢ = 0.01 and r is random vector with
components uniformly distributed in [0, 1]. The noise level is ¢||r|| = 0.0994.

We chose the trust—region radius as A = ||z,5|| = 2.9999. We obtained a relative
error in the approximation of order 1072, In Figure 5.7 we show z,, and z, the

solution of the trust-region subproblem computed with our Matlab implementation

of Algorithm 5.4.1.
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Problem: phillips. Dim: 300. Noise level: 9.9409e-02. Rel. Error: 1.9405e-02
0.4 T T T T

0.35F

0.3

0.25

0.2

X, Xip

0.15

0.05

— Solution of inverse problem (xIP)
—.— Solution of TRS (x)

-0.05 I I I I I
0 50 100 150 200 250 300

Figure 5.7 Boundary Solution for problem phillips.

5.7.2 Interior Solutions

As we discussed in §5.5.6, when there is noise in the right—hand side, an interior
solution corresponds to an unregularized solution which might differ considerably
from the desired solution (see §3.1.2).

The situation is different for the exact data case where there is no noise in the
right—hand side. In this case, it might be better to overestimate the value of the trust—
region radius since an interior solution will usually be detected for a small value of A,
especially for severely ill-posed problems where the smallest eigenvalue of H is very
close to zero. As we discussed in §5.5.6, a small value of X implies that —(H — \I)Tg

is a good approximation to the interior solution.
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The

We have chosen problem foxgood from [36] to illustrate this situation.

problem comes from the discretization of a Fredholm equation of the first kind with

both integration intervals equal to [0, 1], with kernel K and right-hand side g given

by
K(s,t)=vs2+ 1, g(s)= %((1 +57)7 — 89

and with solution f = ¢. This is an artificial discrete severely ill-posed problem which

does not satisfy the Discrete Picard Condition (see 3.1.2).
For n = 300, we have that ||z,| = 10. If we choose A = 20, for example, and

work with exact data, then our method finds an interior solution with an accuracy of

1072, We show z,, and z, the computed solution of the trust-region subproblem in

Figure 5.8.
Problem: foxgood. Dim: 300. Noise level: 0.0000e+00. Rel. Error: 1.5670e—02
1.2 T T T T T 7
— Solution of inverse problem (xIP)
1+ —.— Solution of TRS (x)

2
x

3

300

|
200 250

|
100 150
i

Figure 5.8 Interior solution for problem foxgood with ezact data.
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5.7.3 Results for Test Problems

In Tables 5.4, 5.5 and 5.6 we show the behavior of our method on all the problems from
[36]. We report the number of matrix—vector products and the number of iterations
used by the TRS method to compute a boundary or quasi—optimal solution. When
the solution to the original problem was available we used its norm as trust-region
radius.

Two important observations can be made from Tables 5.4, 5.5 and 5.6. The first
one is that we solve the trust-region subproblem in all cases. The second one is
that even though the computed solution is optimal or quasi-optimal and A = ||z,5||,
sometimes this solution is not a very good approximation to the exact solution, as we
can observe in problems baart and deriv2. In these cases, the difficulty might come
from the fact that we are not using the appropriate constraint. As we mentioned in
Section 3.2, for some problems the constraint should be of the form ||[Lz| < A where
L is a discrete derivative operator. This type of constraint controls the smoothness of
the solution rather than the norm of the solution itself. An example of this situation
is the application we present in Chapter 6. The trust-region subproblem should be
formulated according to the features of each class of problem.

Another observation is that the number of matrix—vector products might be large
with respect to the dimension of the problem. We want to point out that this number
does not seem to increase as the dimension increases and in some cases it actually
decreases. That this is the case can be observed in the three problems of dimension
1000 in Table 5.5, namely heat, phillips and shaw. We observe that the number of
matrix—vector products is of the same order as for dimension 300, and for problem

heat it actually decreases by a factor of two.
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In Chapter 6 we present an example of high dimension where the number of
matrix—vector products is low. In Tables 5.4, 5.5 and 5.6 BS stands for Boundary
Solution, QO for Quasi—optimal Solution, IS for Interior Solution, HC for Hard Case.

In the first set of problems the number of basis vectors was limited to five with

three shifts on each implicit restart. We show the results in Table 5.4.

Problem | Dim. A Ilz]| Exit by “ﬁu MV Prods. | Iter.
baart 300 1.2533 | 1.2533 | BS,Q0 | 1.7723e-01 491 9
deriv2 300 | 0.5773 | 0.5773 | HC 1.8506e+4-00 1181 13
foxgood | 300 | 10.0000 | 9.9999 | BS 4.3303e-02 389 7
spikes 300 | 31.9687 | 18.9296 | IS 8.1813e-01 447 7
ursell 300 | 10.0000 | 9.9999 | BS - 589 7
wing 300 | 0.5774 | 0.5774 | BS 6.8749e-01 524 10

Table 5.4 Results of the Trust—Region Subproblem Method for test
problems from the Regularization Tools package. First set of problems.

For the second set of problems the number of basis vectors was limited to nine

with seven shifts on each implicit restart. Table 5.5 contains these results.

Problem | Dim. A ||zl Exit by “ﬁu MYV Prods. | Iter.
[l heat 300 | 4.2631 | 4.2631 | QO 3.7838e-01 2479 15
[l heat 1000 | 7.7829 | 7.7829 | QO 6.4598e-01 1480 9
Well heat | 300 | 4.2631 | 4.2631 | BS,QO | 7.1192e-02 1933 6
ilaplace 195 | 2.7629 | 2.7631 | BS,QO | 1.6841e-01 1192 12
parallax 300 | 5.0000 | 5.0000 | QO - 958 10
phillips 300 | 2.9999 | 2.9999 | BS 1.9405e-02 697 7
phillips 1000 | 3.0000 | 3.0000 | BS,QO | 2.6030e-02 751 7
shaw 300 | 17.2893 | 17.2892 | BS,QO | 5.4469e-02 859 9
shaw 1000 | 31.5659 | 31.5665 | BS 5.3534e-02 859 9

Table 5.5 Results of the Trust—Region Subproblem Method for test
problems from the Regularization Tools package. Second set of problems.
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Problem spikes required the use of seventeen Lanczos vectors (fifteen shifts per

restart) in order to be solved. Table 5.6 shows the result.

Problem | Dim. | A = ||z;5]| Nzl | Exit | DE=zel | vy ter.

[E373

spikes 300 31.9687 | 31.9687 | QO | 1.1809e+400 | 1584 8

Table 5.6 Results of the Trust—Region Subproblem Method for
problem spikes from the Regularization Tools package.

We also observe that even when the relative error in the solution of the trust-region
subproblem is large, in most cases this solution behaves similarly to the solution of
the original problem. We illustrate this fact in Figures 5.9 and 5.10, for problems
baart and ilaplace, respectively. In some practical problems an approximation of
this quality provides enough information about the desired solution.

In the next chapter we present the results obtained when we applied our method
to a large—scale problem. The problem is an inverse interpolation problem and the

data are real samples of the depths at different points of the Sea of Galilee.



0.12

X, Xip

Problem: baart. Dim: 300. Noise level: 9.9409e-02. Rel. Error: 1.7723e-01
T

Solution of inverse problem (xIP)

—.— Solution of TRS (x)

I
250 300

I I I I
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Figure 5.9 Trust-Region Subproblem solution for problem baart.

Problem: ilapl. Dim: 195. Noise level: 8.0073e-02. Rel. Error: 1.6841e-01
T

1.2
Solution of inverse problem (xIP)

i
—.— Solution of TRS (x)

X, Xip

I I I I I I
80 100 120 140 160 180

200

60
i

Figure 5.10 Trust—-Region Subproblem solution
for problem ilaplace (Inverse Laplacian).
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Chapter 6

An Inverse Interpolation Problem

The linear interpolation problem as defined by Claerbout [11], consists of finding the
values of a function at arbitrary points given the values of the function on a regular
grid of points. If we construct the interpolant represented by the matrix A € IR™*"
based on a regular grid of points, and we have that ¢ € IR" contains the irregular
spaced points, then we compute the values of the function at ¢ as Ac = z.

A more complex problem is the inverse interpolation problem: finding the values
of the function on a regular grid of points from which we can extract the values of
the function at irregularly spaced points by linear interpolation.

We can pose the inverse interpolation problem as the following least squares prob-

lem

min  ||Ac — z||

ce R"

where A € IR™*" and z € IR™. The vector ¢ represents the solution, i.e. the function
values on a regular grid, the vector z contains the function values at irregular spaced
points. The matrix A represents the linear interpolant.

To illustrate how our method works on this problem we will use the example of
reconstructing a depth map of the Sea of Galilee.

The data consists of triples z;, y;, z;, representing coordinates on the plane and
depth, respectively, of the Sea of Galilee. The number of triples is 132044 and they

were obtained by measuring the depth of the sea at different points, from a vessel.
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Many sources of noise were present when the samples were obtained, including
malfunctioning equipment that measured zero depths at points in the middle of the
sea.

A plot of the original data also shows the tracks of the vessel used to take the
samples. These tracks are the straight lines that we can observe in Figure 6.1. As

Claerbout points out in [11] a good image of the sea should not show these lines.

Sea of Galilee from the original data

260

255

250 -

> 245 -

240+

230 | | | | | | | |
198 200 202 204 208 208 210 212 214

X

Figure 6.1 Sea of Galilee from the original data.

In our case the dimension of the grid is nl x n2 with nl = n2 = 201 and therefore

the matrix A is an m x n matrix, with m = 132044 and n = 40401. This matrix is ill-
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conditioned and it is not available explicitly, instead we have procedures to evaluate
Av and A"w for v € IR" and w € IR™.
Initially, we posed the trust region subproblem as

1
min §CTATAC —(A"2)"c. (6.1)

sk, lefl<a

This approach yields the solution shown in Figure 6.2 corresponding to A = 6000,
which gave the best image among several trial values for the trust region radius. This
image still shows the tracks of the vessel and it does not show some of the features
reported in [11]. This result indicated that it was necessary to introduce a stronger

constraint on the smoothness of the solution.

Sea of Galilee regularizing with standard TRS. Delta = 6000
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Figure 6.2 Sea of Galilee. Regularizing with standard TRS.
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We then introduced a constraint on the smoothness of the solution of problem
(6.1), obtaining the following trust region subproblem
1
min ECTL_pATAL_”c —(L"A"2)"¢ (6.2)
s.t.  ||LPcl|<A
where L is a Helmholtz operator. Using this approach we produced the image shown
in Figure 6.3 for A = 26000 and p = 0.3. In this image we are able to identify some

of the features that Clerbout recovered, such as some ancient shores that are now

submerged on the southwest part of the sea and some shelves on the northeast part.

Sea of Galilee regularizing with smoothness contraint. Delta = 26000
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Figure 6.3 Sea of Galilee. Regularizing with constraint on smoothness.

After computing this solution we went back to our initial approach, but applying

the smoother L=" to the solution of (6.1). We call this approach post smoothing.
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We obtained the image in Figure 6.4 using the post smoothing approach, for
A = 23423 which is the norm of x when ||Lz|| = 26000. The image is very similar to

the one in Figure 6.3.

Sea of Galilee regularizing with standard constraint and post smoothing. Delta = 23423

200

180

160

140

120

> 100

80

60

40

20

0 20 40 60 80 100 120 140 160 180 200

Figure 6.4 Sea of Galilee. Regularizing with
standard constraint and post smoothing.

We also tried the postsmoothing approach for A = 6000 and even in this case we
recover the features that we mentioned before. We can observe that in Figure 6.5.

From the computational point of view, it is more efficient to solve problem (6.1)
combined with the post smoothing technique than to solve problem (6.2). There
are two reasons for this difference in efficiency. The first one is that the matrix—
vector products with the matrix in (6.2) are more expensive than the matrix—vector

products with A" A. The second reason is that the smallest eigenvalues of L7 ATAL™"
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Sea of Galilee. Standard TRS+Postsmoothing. Delta=6000. Contour plot.
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Figure 6.5 Sea of Galilee. Regularizing with standard
constraint and post smoothing. Contour Plot.

are clustered so the IRLM uses many iterations trying to compute these eigenvalues
and produces a low accuracy approximation to them. This in turn causes our method
to use the safeguarding strategy most of the time.

In Table 6.1 we report the number of matrix—vector products and the CPU time
used when we compute the regularized solution using the two approaches, namely: a
trust region subproblem with a constraint on the smoothness of the solution and a
trust region subproblem combined with the post smoothing technique. The times do
not include the time of processing the data, we report them to illustrate the difference

in cost of the matrix—vector products. Note that even though solving problem (6.2)
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is more expensive than solving problem (6.1) combined with post smoothing, the

number of iterations is relatively low in both approaches.

Although the technique of post smoothing is very efficient computationally as we

can see in Table 6.1, further study is needed to determine the physical meaning of

this approach.

In all the experiments in this chapter, we used the same values for the tolerances as

in Section 5.7 except for £, which is 107 in this case. The size of the Lanczos basis

is five and we applied three shifts on each implicit restart. Therefore, the storage

requirement is essentially five vectors of length 40401.

requirement as for the Conjugate Gradient Method.

This is the same storage

Problem Type of TRS | M-V | CPU time
Sea of Galilee. n = 40401 | Solution A ||| Iter. | Prods. (min.)
TRS with post smoothing | BS,QO | 23423 | 23418.58 4 508 3.64
Constraint on smoothness | QO 26000 | 24777.97 10 1030 115.99

Table 6.1 Performance results of the TRS
Method for an Inverse Interpolation Problem.
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Chapter 7

Concluding Remarks

In this dissertation we have presented a method for the solution of general large—
scale trust-region subproblems. Our method handles any level of singularities in the
trust-region subproblem, including those arising from the regularization of discrete
ill-posed problems.

Our method effectively computes the solution of the trust region subproblem and
the Lagrange multiplier associated with that solution. The method does not require
the explicit availability of the coefficient matrix and has low storage requirements.

We have developed the theoretical properties and a computer implementation of
the method. We have successfully applied the method to the regularization of discrete
ill-posed problems of medium to large scale.

We applied the method to an inverse interpolation problem on real data for which
we computed a solution for the trust region subproblem at a very low computational
cost.

After the numerical experiments, we reached the conclusion that the use of the
quadratically constrained least squares approach for the regularization of discrete ill-
posed problems requires careful study of each class of problem in order to formulate
the appropriate trust region subproblem. The use of an inappropriate trust region
subproblem might yield not so good approximations to the desired solution even when
relevant information about this solution is available.

Many issues remain to be studied after this work. Some of these issues are the

following:
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e The development of efficient software that will allow the application of the

method to larger problems.
e The implementation of the k vector version of the method for k£ > 2.
e The use of the TRS method in the context of optimization algorithms.

e Combination of the TRS method with a technique for estimating the trust

region radius.
e Comparison with other methods for the large—scale trust-region subproblem.

e Comparison with other methods for the regularization of discrete ill-posed prob-

lems.

e Design of new preconditioning techniques for the efficient computation of clus-

tered eigenvalues.

e Implementation of new deflation techniques to assure that the eigensolver com-

putes an eigenvector with significant first component.

With this work we have contributed to the area of optimization providing a new
tool for solving large—scale trust-region subproblems and to the area of regulariza-
tion where our method can be applied successfully to obtain regularized solutions by

solving large—scale quadratically constrained ill-conditioned least squares problems.
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