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Abstract

Newton-type methods are fundamental techniques for solving systems of nonlinear
equations. However, it is often not fully appreciated that these methods can produce
significantly different behavior when applied to equivalent systems. In this paper,
we investigate differences in local and global behavior of Newton-type methods when
applied to two different but equivalent systems from linear programming: the opti-
mality conditions of the logarithmic barrier formulation and the perturbed optimality
conditions. Through theoretical analysis and numerical results, we show Newton-type
methods perform more effectively on the latter system.

Key words. Newton’s method; equivalent systems; interior-point methods; sphere of
convergence; linear programming

1 Introduction

Newton’s method is generally accepted as an effective tool for solving a system of nonlin-
ear equations, F'(v) = 0, where I : R* — R™. It is a locally and quadratically convergent
method under reasonable assumptions (see e.g. Dennis and Schnabel [1]). In many prac-
tical applications, globally convergent methods are required to solve nonlinear systems.
As a result, Newton’s method is modified and the resulting variant is termed a Newton-
type method. It is often not fully appreciated that Newton-type methods can exhibit
significantly different local and global behavior on two equivalent systems. In this paper,
we compare the behavior of Newton-type methods applied to two well-known equivalent
systems of nonlinear equations associated with linear programming.

The first of these equivalent systems consists of the first-order optimality conditions
of the log-barrier formulation of the linear program. The second system consists of the
perturbed first-order optimality conditions for the linear program. Though the two non-
linear systems have the same set of solutions, El-Bakry, Tapia, Tsuchiya, and Zhang [2]
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show that Newton’s method necessarily generates different iterates for the two systems.
In this paper, we show that Newton’s method applied to the perturbed optimality con-
ditions for the linear program has a larger sphere of convergence than Newton’s method
applied to the optimality conditions of the log-barrier formulation of the linear program.
In addition, we apply an interior-point path-following method to solve the two equivalent
systems, and discuss several distinguishing properties in the behavior of the method on
the two systems.

Of these two equivalent systems, the perturbed first-order optimality conditions are
widely used to solve the linear program. However, the reasons for favoring this system
have not been fully analyzed. In this paper, we explain why the system associated with
the perturbed optimality conditions is the system of choice.

The paper is organized as follows. In section 2, we present the two equivalent nonlinear
systems under consideration. In section 3, we introduce the notion of the sphere of
convergence of Newton’s method. We provide results on the radius of the sphere of
convergence of Newton’s method applied to the two equivalent systems. Section 4 presents
numerical results supporting the theory we developed in the previous section. In section
5, we discuss the implementation of our interior-point path-following algorithm applied
to the two equivalent systems. Section 6 describes the numerical behavior of our interior-
point path-following method on the two equivalent systems. Finally, in section 7 we make
some concluding remarks.

2 Two Equivalent Formulations

In this section, we introduce the linear programming problem and the two equivalent
nonlinear systems under consideration. We consider the linear programming problem in
the standard form

minimize Ty
subject to Az =1b (1)
z >0

where ¢,z € R, b € R, A € R™*" with m < n, and rank(4) = m. The Lagrangian
function associated with problem (1) is

L(z,y,2) = 'z + yT(Am —b)— a7z,

where y € R™ and z € R’} are, respectively, the vectors of Lagrange multipliers associated
with the equality and the inequality constraints. The first-order optimality conditions for
problem (1) are

ATy—I—z—c
F(z,y,2) = Az —b =0 (z,2>0) (2)
XZe

where 7 = diag(z), X = diag(z), and e = (1,...,1)T € R".
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We derive one of the equivalent systems by formulating problem (1) in the logarithmic
barrier framework. This framework, which was introduced by Frisch [4], consists of solving
a sequence of equality constrained minimization problems with decreasing values of the
barrier parameter g > 0. For problem (1) and a given value of g > 0, the log-barrier
subproblem has the following form

n
minimize Tz —p E log x;
=1

subject to Az =1b
(z,pu>0).

Let z7, denote the solution of the log-barrier problem for a given value of y > 0. Then
under mild assumptions (se e.g. Fiacco and McCormick [3]), as 4 — 0 the sequence of
iterates {z} } converges to a solution z* of problem (1), i.e. lim, o 2} = 2",

The optimality conditions for the log-barrier subproblem are derived by differentiating

the Lagrangian function,

L(z,y;pn) = e — ,uZlog T; — yT(Ax - b)

i=1
where y € R™ is the vector of Lagrange multipliers associated with the equality con-
straints. Then the optimality conditions are

ATy + uX-te —c
Fp(z,y;p) = [ Y Ag_b ] =0 (pz>0) (3)
Observe that the Jacobian of Fg is given by
! . _ —puX2 AT
FB ($7 Y; N) - [ A 0 :

If rank(A) = m and = > 0, then Fg(z,y;p) is nonsingular for 4 > 0. If any primal
variables, z, are zero at the solution, then near the solution the Jacobian necessarily
becomes ill-conditioned for p close to zero.

Now we derive a nonlinear system equivalent to system (3). Consider the introduction
of an auxiliary variable, z € R", and define z = uX ~'e which is written equivalently as
X Ze = pe. Substituting z into system (3) and adding our equivalent defining relations
yields the system

ATy—I—z— c
Fp(z,y,z;u) = Az — b =0 (p,z,z>0). (4)
XZe — pe
The Jacobian of Fp is given by
0 AT 1
Fp(z,y,250) = [ A 0 0
Z 0 X
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The Jacobian is nonsingular if rank(A4) = m and z,z > 0. System (4) can also be
obtained by considering the first-order optimality conditions (2) of the linear program
and perturbing the complementarity equation, X Ze = 0, by pe.

Central Path

Let (27, y;) denote the solution to system (3) for a particular value of > 0, and similarly
let (z},y,2;) denote the solution to system (4). Then by the central path for system
(3), we mean

Cp = {(l‘:,y:;) :FB(:CTuy;i;:u) =0, pu, $Z > 0} (5)

McLinden [6] shows that Cp is a continuous path such that lim,_o(z},y;) = (2%, y%). We
remark that systems (3) and (4) are equivalent, in the sense that for 4 > 0, and (z},y%) €
CB7

Fg(z,y;p) =0 <= Fp(z,,y,,2,;1) =0

for 2 = H(X;:)_le > 0. For system (4), we have lim, o (2}, y, 25,) = (2%, y", z"). Thus,
for system (4) the central path is defined as

Ce=A{(,y5 20) - Fp(ay, v 2usm) =0, py 2y, 25 > 0} (6)

El-Bakry, Tapia, Tsuchiya, and Zhang [2] show that although systems (3) and (4) are
equivalent, Newton’s method necessarily generates different iterates for the two systems.

Preliminaries

Throughout the paper, we make use of the following assumption and notation.

Nondegeneracy Assumption. The matrix A has full rank m. Let (2*,y*, 2*) be
a primal and dual nondegenerate solution of system (2). Without loss of generality,
we assume that the first m components of 2* are positive, and the remaining (n — m)
components are zero.

Let B = {i: (2*); > 0} and N = {i : (z*); = 0}. Then by the nondegeneracy
assumption, B ={1,...,m} and N ={m+1,...,n}. The matrix A will be partitioned
into A = [Ag Ax] where Ap denotes the matrix consisting of the columns of A indexed
by B and similarly for Ay. Note that rank(Ag) = m. If u is a vector, then its uppercase
counterpart U will denote the diagonal matrix whose diagonal consists of the elements
of u. For a vector u € R™, ug is the vector of the first m components of u and wy is
the vector of the remaining (n — m) components of u. The quantity u* represents the
vector © whose components are individually squared. All norms || - || are assumed to be
the Euclidean norm unless otherwise noted.
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3 Sphere of Convergence: Analysis

Standard local theory of Newton’s method applied to a nonlinear system (see e.g. [1])
provides the existence of a neighborhood about a solution that contains points which
make Newton’s method well-defined. Most importantly, starting from any point in the
neighborhood, Newton’s method guarantees convergence to the solution. For systems
(3) and (4), a neighborhood also exists about the solution for any given x > 0. In this
section, we introduce the notion of the sphere of convergence for Newton’s method. We
analyze the behavior of the radius of the sphere of convergence associated with systems
(3) and (4) by considering Newton’s method applied to these equivalent systems as p — 0.
Under the nondegeneracy assumption, our analysis shows that the radius of the sphere
of convergence of Newton’s method on system (3) decreases to zero in the same order as
i — 0. However, we show the radius of the sphere of convergence of Newton’s method
applied to system (4) has a lower-bound estimate independent of u. We believe these
results show Newton’s method to be more efficient on system (4) than on system (3), at
least for small values of u > 0.

3.1 Preliminaries

We introduce the notion of the sphere of convergence for Newton’s method. Then, we
present lemmas to be used in our analysis for the radius of the sphere of convergence of
Newton’s method on systems (3) and (4).

We remark that the notion of the sphere of convergence is not new. Several references
can be found in the literature where this notion or similar concept is used, see [1, pg
91], for example. To conduct a rigorous study on the radius of convergence for Newton’s
method, we give a formal definition for the sphere of convergence below.

Definition We define the closed ball with radius r centered at v* as B(v*;r) = {v :
v =[] < r}.

Definition For a given nonlinear system, I'(v) = 0, and a solution v*, the sphere of
convergence of Newton’s method at v* is defined as the largest closed ball centered
at v* such that starting from any interior point in the sphere, excluding v*, Newton’s
method is well-defined and generates a sequence that converges to v*.

*

Lemma 3.1.1 Consider u > 0 and (27,4}, 2},
generacy assumption, there exists i > 0 so that for p < i there is a ball B((z},2},);4,)
such that for (z,z) € B((z},2;);8,), and (z,2) > 0, (z, z) satisfy

) contained in Cp. Then under the nonde-

x; > CY and 2z < Cou 1€8 (7)
2, <Cs3u and z>C; 1N

for constants C1,C5,C3,Cyq > 0.
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Proof.  Let RY"={(z,2z) :2 >0,z > 0}. For each p > 0, we have

(xh)i(zp)i=p i=1,...,n. (8)

We have that z}, i € B and 2}, i € N are strictly positive, and (27, 2}) — (2*%,2*) as
p — 0. Then there exist i > 0 and C' > 0 such that for p < i, (2},); > C for 7 € B and
(23)i > C for i € N. Consider p < fi. Since (2}, z) is an interior point of R3", there exist
8, > 0 such that 6, < min{Bu,C/2}, for 8 > 0 and points (z,2) € R with (z,z) > 0
that satisfy

T —x,
(275 )] <o v
From (9), we obtain
| 2; — (#7,): |< 6, and | zi = (23)i <8, fori=1,...,n. (10)

First we show that z; for ¢ € B are bounded away from zero. From the first relation in
(10) we have

()i —0p <a; <Oy + ()i fori=1,...,n (11)
Since (z}); > C for i € B and §, < /2, from (11) we obtain
0<C/2<C -6, <z for i € B.

Thus z; > C; for i € B with C; = C'/2. Similarly, we can show z; > Cy for i € N and
Cy > 0.
Now, we show the second part of the proof. By (8) and (11) we obtain

v < 8t (Z’i), = (Bu/p+1/(z)i)p.

Now 6,/ < 3, and for i € N, (25;); > C, then
$i§(ﬁ+%)u203uf0ri€/\f
where C3 = §+ 1/C > 0. Therefore
v, <C3u 1€N.

Similarly, from the second relation in (10), we obtain that for some constant Cy > 0,
z; < Cop, fori e B. O
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Lemma 3.1.2 Consider > 0 and (z},y};) contained in Cg. Then under the nondegen-
eracy assumption, there exists fi > 0 so that for pu < ji there is a ball B(x7};4,) such that
for € B(z};6,), and x > 0, x satisfies

x; > Gy and 1€ B (12)
z; <Gyu and i1eN
for constants G1,Go > 0.

Proof.  The proof is similar to that of Lemma 3.1.1 so we omit the proof. a

Lerr%ma 31.1.3 Suppose the nondegeneracy assumption holds. Let A = AW where W =
(X)z(Z)~2. Define

o —m - [ Pss P
P=AT(AAT) 1A= | B8 BN 13

(A447) [ Pys Pyw (13)
where Pgg € R™ ™ Pgy € R™*(=m) Py e R=m)Xm and Py € R=m)x(n=m)
Then there exists fi > 0 such that for 0 < u < fi, and for (z,z) € B((z},2},);3,) where §,
is such that Lemma 3.1.1 holds,

1Pss — Inl| < Cept?, [1Pox| < Crp (14)
I1Pvsll < Cap, [1Pvwll < Cop?
for constants Cg,C7,Cs, Cy > 0.
Proof. Consider 0 < p < fi where g is such that Lemma 3.1.1 holds. Let
1 1 1 1

Ws = (X3Zg?) and Wy = (X3 Z,?). Note that Wi and Wy are nonsingular. Let
A= AW = [AgWg AxyWyr]. Then substituting A in the definition of P we obtain

P=[AsWs AxWyl” (As(Ws)2A% + Av(Wa)?A%) ™ [AsWs AvWy].
Now, introduce the m x (n — m) matrix R where
R = (Wg) 'Az Ay Wy (15)
Then P can be partitioned as follows

(16)

p_ (I, + RRT)~1 (I, + RRT)™'R
~ | RT(I,, + RR")™' RT(I,,+ RR")™'R |~

Applying the bounds in (7) to (15), we obtain ||R|| < Csp for a constant Cs > 0. Since
|IRRT|| = O(u?), then || RRT|| — 0 as p — 0. Then there exists fi > 0 and ji < ji such that



VILLALOBOS, TAPIA, ZHANG 8

for all < ji, we obtain ||RRT|| < 1. Then using the Neumann series on (I, + RRT)™!,
we obtain from (16) and (13) that

[P — I, |] Cep?, | Pa|

< Cru
|Pvsll < Csp, | Prvall

Cop?

VANIVAN

for p < ji and constants Cg,C7,Cg,Cg > 0. O

Lemma 3.1.4 Suppose the nondegeneracy assumption holds. Let A= AX. Define

_ AT iiTv-11— | B8 Psy
P = AT(AAT) A_[PNB oy (17)

where Pgg € R™*™ Pgy € R™*(=m) pPyp e R=m)Xm qnd Py € R=m)x(n—m)
Then there exists fi > 0 such that for 0 < p < fi, and for z € B(;r;; 5,) where §, is such
that Lemma 3.1.2 holds,

1Pss — Inm|| <
|Pvsll < Gsp, | Prvall

for constants G3,G4,Gs5,Gg > 0.

Gap

G6H2 (18)

VANIVAN

Proof.  The proof is similar to that of Lemma 3.1.3 so we omit the proof. O

3.2 Sphere of Convergence for System (3)

We provide a tight result showing that the radius of the sphere of convergence of Newton’s
method on system (3) decreases to zero in the same order that g — 0. Our result follows
from showing that a lower-bound and an upper-bound of order p exist for the radius of
the sphere of convergence.

Lemma 3.2.5 Under the nondegeneracy assumption, there exist i > 0 and constant
Ky > 0 such that for any p < [i, the radius of the sphere of convergence, rg(u), of
Newton’s method satisfies

K < rp(p).
Proof.  We will prove the above result by showing that the sequence of Newton iterates
converges to the solution (z},y) if the initial point 20 satisfies

2% = 25| < K. (19)

Consider ji given in Lemma 3.1.4. Suppose Newton’s method is applied to system (3) for a
particular value of 4 < ji. Denote (z,y) as the current Newton iterate where z € B(z};d,)
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and z satisfies the conditions given in (12). Now, consider the next Newton iteration to
obtain

¥

( mi ) = ( ’ ) — Fp(z,y; 1) Fp(e,y; ).

Using the fact that Fg(z},y); ) = 0 and evaluating Fg at the given points, we obtain

at — ‘rz / -1 * ok / ‘rzi -
e = Fglz,y; )~ |Fela),y5s 1) — F(z,y; 1) — Fg(z,y; 1) vy
2 2
*\—1_ -1 —2( .k _
= Fy(z,y;p) " [ pX) e - pX 0€+“X (@ — =) ] , (20)
By Taylor’s Theorem,
*)—1 _ —1,  Yv—=2(,*x _ =3 (% \2
(AX_Mg) € T X,* e_1 X (_ﬂnlM m):I—ZX* (z—=3)* or (21)
X7@—-2,)" = (X)) e-X"et+ X7*(2z}, — )

for some &; € [min{(z});, z;}, max{(z});, z;}],4 = 1...n. Substitute (21) into (20) to
obtain

zt — z* _ X_3($—$*)2
ff = F/ T, Y, 1 K [ , 29
(y+_y#> B(T,y; 1) [ 0 (22)
where
i ()~ = HXPAT(AXZAT)TTAX? - X7 XPAT(AX2AT)!
B -f7yyﬂ - (AXQAT)—IAX? H(A)(QAT)_I

Making the above substitution for (Fg)~! in (22) and multiplying the right-hand-side of
(22) we obtain

et -5\ | X[XAT(AX2AT)='AX - [IX X 3(2 — 27%)?
yt -y | T p(AXZAT)TAX2X (2 — 27)? '
Now substitute in the definition of P in (17) to obtain
4+ Lk _ X =3 (e k)2
$+ xf - X(2P T I—)1XX2 (3—63 o x2 |- (23)

We will consider first the vector (% — 27%) in (23). If we partition (z* — 27) into its
basic and nonbasic components and use the notation for P in (17), then
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(@t —2p)s = Xp(Pss — Ln)XsX5 (2 — 23)F + XsPow X X3 (2 — 27)%
(@t —ap)yv = XwPusXpXp' () — o)+ Xnv (Pyw = In) Xw X377 (2], — 2)F

which leads to

It =il < (1Xs(Pos ~ ) XsX5) | XsPay X X3 e = 31
It = pwll < (IXwPrsXsXs®l + 1 Xn(Pyw — L) Xu X3 o - 31

Applying the bounds given in (18) and (12), we obtain

* 1 *
[(e® —2)sll < C;l\w—%l\Qv (24)

* 1 *
[(@* = 25wl < C;Hiﬁ—%HZ

for some constant C' > 0. Since ||z — z}|| < J, then using (24), the initial Newton point

2% must satisfy

* : 1
H'ro - .13#” < lnln{(sm 5#} (25)

to obtain convergence to z7,.
Now, consider the remaining m components of (23). Taking the norm and partitioning
matrices, we obtain

ly* =yl < llin(AsXEAS + Av X AR) T (A X3 X" + AvXEXF) (2 — 23)])

and applying (12), we get

lv* - vill < u[o) + 062 oM + 00/l - =)l

Then for a constant ' > 0, we obtain

ly* — il < Cllz — 23| (26)

Thus, the Newton sequence in y converges to y;; if (25) holds. Then, using (25) and (26),
Newton’s method guarantees convergence to (%, y*) if the initial iterate z° satisfies

e~ 2l < K (27)

for constant K3 > 0 and p < fi. a

The above lemma shows that the radius of the sphere of convergence of Newton’s
method satisfies Ky < rp(p). It establishes only a lower-bound result for the radius
of the sphere of convergence of system (3). To establish that the sphere of convergence
decreases to zero at exactly the same order as ¢ — 0, we need an upper-bound of the
same order. The following lemma establishes such an upper-bound.
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Lemma 3.2.6 Consider Newton’s method applied to system (3). There exist constants
>0 and Ky > 0 such that for any given p < i, the radius of the sphere of convergence,
re(u), corresponding to this u satisfies

rp(p) < Kap.

Proof. It suffices to show the existence of a point z > 0 with ||z — 27|| < Kypu
from where Newton’s method does not converge or is not defined. From Lemma 3.1.2
there exist ji > 0 and constant Ky > 0 such that for p < fi and for i € N, (27}); < Kyp.
Consider an i € N, and let

where e; is the ith canonical vector. Obviously, ||z — 2%|| < Kzu. Moreover, because
z; = 0, Newton’s method is not defined at z. Therefore, rg(u) < Kapu. a

Theorem 3.1 There exist constants i > 0 and Ky, Ky > 0 such that for p < [, the
radius for the sphere of convergence, rg(u), of Newton’s method applied to system (3)
satisfies

Kip <rp(p) < Kap.

Proof.  Application of Lemma 3.2.5 and Lemma 3.2.6 produces the result. a

For the log-barrier formulation of the nonlinear program with inequality constraints,

S. Wright provides a lower-bound result for the radius of the sphere of convergence. In

[10], it is shown that there exists a g > 0 such that for g < i convergence to the solution
*

zy, can be obtained from any point 20 that satisfies

2° = 5]l < Cp® (28)

for constant €' > 0 and o > 1. In the case of linear programming, our result for system
(3) is tight and shows that the radius of the sphere of convergence decreases in the same
order as pt — 0, that is @ = 1 in our results.

3.3 Sphere of Convergence for System (4)

We now provide a lower-bound estimate for the radius of the sphere of convergence of
Newton’s method on system (4). We show the lower-bound estimate is independent of
the value of p. This result establishes that the sphere of convergence is bounded away
from zero as p — 0.



VILLALOBOS, TAPIA, ZHANG 12

Theorem 3.3.1 Under the nondegeneracy assumption, there exist constants D1 > 0 and
i > 0 such that for any p < fi, the radius of the sphere of convergence, rp(u), of Newton’s
method satisfies

Dy <rp(p).

Proof.  We will show that Newton’s method applied to system (4) generates iterates
that converge to the solution (z},y}, z;;) if the initial point (29, 20) satisfies

(33) < »

which then shows that rp(p) > Dy > 0. Consider g < i where fi is given by Lemma
3.1.3. At a given value of u, let (z,y,z) and (z},y}, z;) denote respectively the current
iterate and the solution of Newton’s method applied to system (4). We have by Lemma
3.1.1 that (z,2) € B((z}, z};); ,) and satisfies the conditions given in (7).

At the subsequent iteration, the Newton iterates are of the form

zt x
yt | = |y | = Fp(a,y,z0) Fr(a,y, 25 ).
P z

Since Fp(z},yy, 25; 1) = 0, we obtain

at — %
vt -up | = Fpleysm) T [Fe(el g s — Fel,y, 2ip)
zt — £

~ Fpz,y, 5 m{(z v5 25) = (2,9, 2)}]
0

= Fp(z,y,zp)" 0 (30)

(X = X3)(Z— Z%)e
7701, = XAT(AZT X ATV AZTY (X = X)) (7 — 77
= —(AZTIXATYTYAZY (X = X)) (Z - Z3)e
AT(AZT'XAT)AZ7NX - X)) (Z - Z7)e
where the last equality is obtained by multiplying the right hand side of (30).

We first consider convergence in the z variables. Let W = Z72X7 be a diagonal
matrix, then we obtain

(eF —a) = W[l = WATAW2AT) AW | WX (X = X2)(Z - Z3)e. (31)

Define P = (WAT(AWZ2AT)=LAW) where P has the submatrix representation given
in (13). If we partition the vectors and matrices in (31) into their basic and nonbasic
components, we obtain
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Wi(In — Pes)WsXg' WePsyWaXy' (X - X)B(z— 2B
Wy PysWeXg' Wy (In—m — Pon)Wa X' | | (X = X2n(z— 20w

Now, consider the basic components of (z* — z%). Substitute for W to obtain

_1 _1
2 2

1 1
(at -2 = Z5°X2(Inm — Psp) 252 X2 X5 (X — XNz — 208

1 1 1 1
+ Zg  XEPsnZ\ P XEX X - X vz — 25w

and take the norm of (z* — 27%)5 to obtain

_1 1 11
I(2* = a)sll < (125> X5 (Im — Pos)Z5* X5 X5 |

1 1 L 1 . )
+ 1257 X3 Pon Zy* X3 X3 DINX = X3) (2 = 23)].

Apply bounds (7) and (14) to the above inequality. Then for constants Dy, Dy, D3 > 0,
we obtain

Iz = 27) 5] (D + Do)l[(X = X7) (2 = )|

<
< D3 max{||lz — 23]1%, ||z — 231"} (32)

If we do a similar analysis on (z* — 27%), then

1 1 1 1
(zt —2l)v = ZXEPyeZg  XEX5'(X — X2)p(z - 23)5
1 1 1 1
+ 23Xy — Pen) 2 XF X0 (X = X w(z— 25w

And hence for constants Dy, Ds, Dg, D7 > 0, we obtain

I —ap)nll < (Dap+ Ds + Dop) max{||e — @], ||z — 2"}
< D max{lle — 2 |1% |2 - 257} (33)

Combining (32) and (33) yields

la* — a2}l < Ds max{||z - «}||* ]Iz - 2;|I*}. (34)
where Dg = maz{D3, D7}. Through a similar argument on (y* — y%) and (2% — 2}), we
obtain

ly* =il < Do max{llz —a}|*, ]z — 2]} and (35a)
l* =22l < Dyo max{lle — 222, l12 - 2212} (35b)
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for constants Dg, D1g > 0. It follows from (34) and (35b) that if the initial iterate (2°, 2°)
satisfies

|2 —a%]| < 1/Dg and
HZO_Z;H < 1/Dio

then Newton’s method converges to the solution (27, y;, 2;;). Thus, a lower bound estimate
for the radius of the sphere of convergence is

0 *
H(‘ro_f)H < Dy forp<p (36)
20—z
where Dy = min{l1/Dsg,1/Dyo}. O

Our analysis shows that the radius of the sphere of convergence is independent of
i and stays bounded away from zero as p — 0. This result indicates that the sphere
of convergence associated with system (4) would eventually be larger than the sphere of
convergence associated with system (3), at least for small y values, so that rg(p) < rp(u).
In the next section, we show numerically that this is indeed the case.

4 Sphere of Convergence: Numerical Results

In Section 3, we provided bounds on the radii of the spheres of convergence of Newton’s
method on systems (3) and (4) under the nondegeneracy assumption. Our analysis shows
that at least for small values of p, the sphere of convergence for system (4) is larger than
that for system (3). This result arises from the fact that system (3) is not well-defined in
a neighborhood of the solution for g = 0. Therefore, as © — 0, we expect the sphere of
convergence to decrease to zero. However, it is not clear what will occur if we consider
the half-sphere of convergence for system (3) which only contains points z > 0 from
where Newton’s method converges. In this section, we will obtain numerical upper-bound
estimates on the radius of the half-sphere of convergence for Newton’s method on system
(3) and on the radius of the sphere of convergence for Newton’s method on system (4).

Our upper-bound estimates are based on the following simple idea. In order to apply
Newton’s method with the same initial point for systems (3) and (4), the initial points
were selected so that the corresponding equations in systems (3) and (4) produced the
same residual, and the complementarity equation was met for system (4). So let z, € R"
be an arbitrary unit vector and A > 0 be a scalar. Consider applying Newton’s method
to systems (3) and (4) starting from initial points of the form

2¥ =25+ Azg, y° =0, (37)

and with z° = (X% ~'e for system (4). If for A = A, > 0, Newton’s method does not
converge to v* = (z%,y%, %) for system (4) (and to v% = (23, y%, (X )" 'e) for system
(3)) , then obviously A, is an upper bound for the radius of the sphere of convergence
of Newton’s method at vj, . This upper bound is the tightest possible in this particular
direction if Newton’s method converges to v}, for any A € (0, A,). Numerically, this upper

bound A, can be approximated by gradually increasing A from zero by a small increment
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until Newton’s method fails to converge. We can generate a tighter upper bound by
calculating A, for a set of random unit vectors {z,}, and then taking min,{A,} as an
upper bound.

Under the nondegeneracy assumption, for system (4) Newton’s method is well-defined
in a neighborhood of the solution to the linear program, corresponding to p = 0, which
includes negative values for z and z. Therefore, we can choose z, to be any unit random
vector. For this purpose, ten unit random vectors z, are selected using the Matlab
function randn.

As we mentioned earlier, because of the presence of the term X ! system (3) is not
well-defined for p# = 0, and nor is Newton’s method in any neighborhood of the solution
to the linear program. This implies that the sphere of convergence of Newton’s method
shrinks to zero as u — 0. However, it is not clear at all that the largest half-sphere
inside the positive orthant should also shrink to zero as ¢ — 0. To be fair to system
(3), we use only positive unit random vectors z,. In this way, we actually obtain upper-
bound estimates for the radius of the half-sphere of convergence instead of the sphere of
convergence. For this purpose, ten unit random vectors z,, are selected using the Matlab
function rand to ensure z, > 0.

To observe the behavior of the radii of the half-sphere of convergence for system (3)
and for the sphere of convergence for system (4) as g — 0, the numerical procedure
described above was performed for various values of p > 0:

w =50, 25, 1, 0.45, 0.25, 0.10, 0.05, 0.01, 0.0075, 0.005, 0.0005, 0.00005. (38)

We chose to include large values of u (1 = 50,25, 1) to determine the behavior of the radius
of the sphere of convergence of Newton’s method when far from the solution at u = 0.
The parameter A given in (37) was given an initial value of 107!° and was incremented
when the convergence criteria

lv; — o]

< tol
vyl

was satisfied at some iteration k, where v* = (2% y* u(X*)~'e) for system (3), and
v* = (2%, y*, 2F) for system (4). Nonconvergence was recorded for a particular system
with a given p value and initial point of the form given in (37) if the maximum number
of iterations, which we set to 50, was reached. The convergence tolerance was set to
tol = 107%. The numerical solution v} was obtained by solving system (4) with a given
value of y in (38).

The half-sphere and sphere of convergence were recorded based on the theory provided
in Section (3) for the radius of the sphere of convergence for system (3). Thus, we
particularly focused on determining the half-sphere/sphere of convergence in terms of
the primal variables, z. This test eliminated recording additional information, [[2° — z%||,
provided by the theory in section (3) for system (4). Therefore, the half-sphere and sphere
of convergence were recorded as

min{A,}, for Ay = ||z° — 27|
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We emphasize that in these experiments, we used the pure Newton’s method, so the
unit step-length was always taken.

Test problems consisted of six random nondegenerate problems ri-r6, the Netlib
nondegenerate problems: scagr7, scb50b, sharelb and the Netlib degenerate problems:
adlittle, afiro, blend, scb0a, and share2b. The random data were generated from
a uniform distribution on the interval (0, 1). For a given problem, the same ten unit vectors
z, were used for all values of y in (38). The problems were run on a Sun Ultra Sparc
workstation using Matlab version 5.1. Test problem dimensions can be found in Table 1.

We have observed that for system (4) negative components in the iterates (z*, 2*) did
not preclude convergence; on the other hand, for system (3) negative components in zk
always led to nonconvergence.

4.1 Nondegenerate Problems

We performed our experiments on the set of six random nondegenerate problems and
the three Netlib nondegenerate problems. Figures 1-2 show the radii of the half-sphere
of convergence associated with system (3) and the sphere of convergence associated with
system (4) graphed against the values of u given in (38). Figure 1 contains the graph
for a random problem, and the remaining graphs show results for the Netlib problems.
The results show that the radius of the sphere of convergence of Newton’s method on
system (4) is bounded away from zero even for p sufficiently small, but the radius of the
half-sphere of convergence of Newton’s method on system (3) decreases to zero as p — 0.
Furthermore, our tests show a larger radius of the sphere of convergence of Newton’s
method on system (4) than on system (3) as g — 0. In some instances, the radius for
system (3) is larger than that for system (4) for g > 1. This observation was particularly
seen in four of the random problems and in problem sc50b, where the two radii slightly
differ.

For the two equivalent systems, we observed that if Newton’s method failed to con-
verge for an initial point v° with parameter A,, the final Newton iterate had negative
components. For system (3), if any components of z* were negative the Jacobian matrix
was highly ill-conditioned and convergence was precluded for Newton’s method.
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4.2 Degenerate Problems

In addition, we investigated the half-sphere and sphere of convergence, respectively, of
Newton’s method on systems (3) and (4) for degenerate problems. We have not obtained
any theory for the spheres of convergence of Newton’s method on degenerate problems
but present only numerical results. The same values of p given in (38) were used. Our
numerical results are shown in Figures 3-4.

Our results show that the radius of the half-sphere of convergence of Newton’s method
on system (3) appears to decrease to zero as y approaches zero, as in the case with the
nondegenerate problems. We also observe that the radius of the sphere of convergence
of system (4) decreases to zero as u decreases to zero, contrary to the results obtained
with the nondegenerate problems. However, the radius associated with system (4) stays
well above that for system (3), by at least a magnitude of ten, as px — 0. In these tests,
we observe that the radius of system (4) is always larger than or equal to the radius of
system (3) for all the y values given in (38).

When Newton’s method failed to converge, the final Newton iterate contained negative
components. Also, if any component of the iterate z* was negative for system (3), the
Jacobian became highly ill-conditioned and convergence of Newton’s method was not
obtained.

5 Interior-Point Path-Following Algorithm

In the previous two sections, we investigated differences in the behavior of the sphere of
convergence of Newton’s method when applied to the two equivalent systems (3) and (4).
The notion of the sphere/half-sphere of convergence is considered to be a local feature of
Newton’s method. As such, our theoretical and numerical investigations were both done
for fixed p values, even though we did consider the effects of p approaching zero. Now,
we study the global behavior of a Newton-type method applied to systems (3) and (4) as
i decreases to zero.

As is well known, Newton’s method is only locally convergent in general. In most
applications, a “globally convergent” method is desired. For linear programming, interior-
point path-following algorithms are such “globally convergent” methods. These algorithms
generate iterates that closely or loosely follow the central path parameterized by p to a
solution as u decreases to zero. The central path can be defined through either system
(3) or (4), see (5) and (6). For a given value of y, a damped Newton’s method is used
to drive the iterates towards the point on the central path corresponding to the given
value and to keep the nonnegative variables, z in (3) and (z, z) in (4), strictly positive as
well.

A very simple interior path-following algorithm is given below as Algorithm IPF. We
will apply this same algorithm to both systems (3) and (4) and determine its performance
on these two equivalent systems. Since damped Newton is the underlining method used to
solve these systems, any performance discrepancy in Algorithm IPF should be due to the
different behavior of (damped) Newton’s method on the two equivalent systems. In our
numerical experiments, we will pay particular attention to the behavior of Algorithm IPF
when the iterates are required to follow the central path loosely or closely.
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We emphasize that Algorithm IPF is not at all an efficient algorithm for system (4), for
which there exist more efficient interior-point path-following algorithms (for example, Ko-
jima et. al’s primal-dual interior-point algorithm [5], and Mehrotra’s predictor-corrector
algorithm [7]). For system (3), however, it has not been shown that one can do signifi-
cantly better than Algorithm IPF.

Algorithm IPF Let v* = (2% y%) for system (3), and v* = (2%, y* %) for system
(4). Given initial iterate v° with positive components corresponding to the nonnegative
variables, and parameters p, utol > 0, o, tol € (0,1], and o, 5(y) € (0,1).

While || F(v*; p)|| + p > tol
e Solve for AvF in F'(vF; p) Avk = —F(v*; )
e Form the new iterate
vRtl vk 4 ok AR
e Update 1 and ptol
if ||[F (" )| < ptol
B op
ptol « 5(p)
end
e Increment iteration number
ke—k+1
End

The algorithm’s goal lies in decreasing p to zero and in guiding the iterates along the
central path to the solution. The Newton step is damped to keep the iterates z* > 0
for system (3) and z¥, 2% > 0 for system (4). Damping is performed by selecting ay to
be a given fraction of the steplength to the boundary of the positive orthant from the
point v* along the direction Av*. The parameter x and possibly the tolerance utol are
updated once the iterates are in a neighborhood of the solution (27, y};) for system (3) and
(z%,y7%, z;) for system (4). When this update occurs, p is decreased to u* and another
nonlinear system is solved having u*t as its parameter. In the case of decreasing utol, the
subsequent iterates are required to follow the central path more closely. An approximate
solution is obtained when the convergence test is satisfied, that is, when the sum of y
and the Euclidean norms of the residuals of F'(v*; ) fall below a tolerance that is close
to zero.

6 Numerical Results

In this section, we describe the numerical results obtained from applying Algorithm IPF
on systems (3) and (4). Attention is given to explain the role of the centrality tolerance,
ptol, as well as, the effect of ill-conditioning on the behavior of Algorithm IPFEF applied to
the two equivalent systems. Depending on the value of utol and on the ill-conditioning of
the nonlinear system, the iterates may not converge to a solution of prescribed accuracy,
as we will demonstrate.
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Before proceeding to explain the numerical results, we explain the parameters and
tolerances used in Algorithm IPF. As mentioned earlier, ||F'(v¥; )| denotes the sum of
the Euclidean norms of the residuals of F'(v¥; 11). We let ¢ = 0.2 and describe the centrality
tolerance, ptol by a given formula §(u). To keep the new iterates positive, we chose the
following steplength calculation of a* for system (3) and system (4)

-1
min((U*)~1Au*, —0.5)

of = min(0.95 , 1)

where
X* for system (3),
k _ k
vt = ( )Z(k ) for system (4)

and similarly for AuF.

Two sets of experiments were conducted to observe any change in the behavior of
Algorithm IPF. In the first set, utol was fixed for Algorithm IPF, i.e. §(u) = ptol. Three
tests were conducted depending on the value of utol given by

{107,107, 1072}, (39)

When ptol = 1075, the iterates were required to follow the central path closely, but when
ptol = 1072 the iterates followed the central path loosely. In the second set of experiments,
ptol was initialized with utol = 0.1 and updated as follows

3(0) = gomin(1, ). (40)

That is, when g > 1, then ptol = 0.1; when p < 1, ptol is set to one-tenth the current p
value. As p decreases to zero, Algorithm IPF is required to follow the central path more
and more closely.

Nonconvergence of Algorithm IPI was recorded if the maximum number of iterations,
which was set to 300, was reached.

Test problems consisted of six randomly generated, nondegenerate problems ri-r6,
three nondegenerate problems from Netlib: scagr7, sc50b, sharelb, and five degen-
erate problems from Netlib: adlittle, afiro, blend, sc50a, and share2b. For the
random test problems, the data was generated from a uniform distribution on the interval
(0,1); the initial point 2% was randomly generated, z° = 2° and ° = 0. For the Netlib
problems, the initial point was supplied by LIPSOL. For each problem, we used the same
initial point for all numerical tests performed. The parameter p was given an initial value
of [la®]/n.

In the first set of experiments, presented in Tables 1-4, the parameter utol is fixed at
one of the values listed in (39). Tables 1 and 2 show results for tol = 107® with respect
to utol = 1072 and ptol = 1076, Tables 3 and 4 show results for a larger convergence
tolerance of tol = 10=% with respect to utol = 1072 and utol = 107.

From Tables 1-4, we see that Algorithm IPF applied to system (4) terminated suc-
cessfully for all the test problems and for all the tested tol and utol values . These results
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suggest that Algorithm IPEF does not need to follow the central path closely in order to
obtain high accuracy solutions. In fact, fewer iterations are required if the iterates are
allowed to follow the central path loosely. Furthermore, for most problems the condition
number of the Jacobian matrix, F]’D(vk,,u)7 remained moderate near the solution as pu
approached zero.

When applied to system (3), Algorithm IPF exhibited very different behavior. With
tol = 1076 and fixed utol = 1072, we observe from Table 1 that Algorithm IPF does
not reach the prescribed accuracy in all the test cases except one (similar results were
obtained for utol = 10~*). Nonconvergence was due to failure in reaching the prescribed
accuracy in dual feasibility ||ATy* + u(X*)~1 — ¢||, which usually fell between 102 and
1076 at the end, short of the required accuracy of 1076. In addition, we observed that the
condition number of the Jacobian matrix I'5(v*, 1) tends to blow up at the end. It is worth
noting, however, that when utol = 1076 the Jacobian matrix exhibited better conditioning
near the solution, and the algorithm was able to reach the tol = 107% accuracy. These
results strongly suggest that the severe ill-conditioning of F5(v, 1) near the solution can
be alleviated if Algorithm IPF is forced to follow the central path closely.

Table 1: Results for tol = 107° and fixed utol = 1072

Problem Dimensions NPDM NLBM
Number m, n Tters | cond(Fp) | Tters | cond(Fpg)
rl 13,22 24 7.3e+03 | 1300 * Inf
r2 34, 45 28 8.6e+04 300 Inf
r3 13, 15 15 2.5e+03 300 Inf
r4 14, 16 16 2.7e+03 300 Inf
rH 23, 27 27 2.3e+04 300 Inf
6 26, 34 20 1.3e+04 300 3.2e+51
scagr7 130, 140 63 1.9e+07 300 5.1e+33
sharelb 118, 225 75 1.4e+11 300 2.4e+33
sc50b 51, 48 32 1.3e+405 300 2.6e+41
adlittle 57, 97 57 5.8e+12 183 8.5e+33
afiro 28, 32 34 4.9e+12 300 4. 4e+55
blend 75, 83 37 1.7e+408 300 4.6e+58
sch0a 51, 48 32 1.4e+07 300 2.1e477
share2b 97,79 45 1.5e+11 300 2.2e+45
Total Iters 505 4083

1 refers to the maximum number of iterations reached,
* Inf refers to Matlab’s representation of positive infinity.
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Table 2: Results for tol = 107° and fixed utol = 107°

Problem NPDM NLBM

Number Tters | cond(Fp) | Tters | cond(Fg)
rl 30 7.3e+03 79 1.2e+11
r2 34 8.6e+04 81 2.0e+11
r3 24 2.5e+03 64 2.2e+08
r4 22 2.7e+03 73 4.3e+10
rH 32 2.3e+04 83 1.3e+12
6 29 1.3e+04 70 2.9e+08

scagr? 79 1.9e+4-07 152 8.0e+15
sharelb 91 1.4e+11 138 2.6e+14

scH0b 43 1.3e4-05 87 1.4e4-07
adlittle 68 5.8e412 145 1.1e4-23

afiro 44 4.9e+12 103 8.8e+18
blend 55 1.7e408 108 3.0e414
sco0a 46 1.4e+07 89 6.4e408

share2b 60 1.8e+11 102 2.4e+19

Total Iters | 657 1374

Table 3: Results for tol = 1072 and fixed ptol = 1072

Problem NPDM NLBM

Number Tters | cond(Fp) | Tters | cond(Fpg)
rl 19 7.3e+03 36 4.1e4+07
r2 23 8.6e+04 38 6.5e+07
r3 10 2.4e+03 24 1.6e+05
r4 11 2.7e+03 27 2.8e+06
rb 22 2.3e+04 40 4.2e+08
r6 15 1.5e+04 31 1.1e4+05

scagr? 58 1.7e408 93 2.6e+13
sharelb 69 3.4e+13 81 2.8e+13

schb0b 26 3.4e+405 32 8.3e+03
adlittle 52 1.9e+09 91 1.2e+16

afiro 28 3.1e+08 51 3.7e+10
blend 30 8.0e+04 52 1.0e+06
schla 26 9.2e+05 32 2.2e4+04

share2b 37 8.1e4+06 50 2.5e+12

Total Iters | 426 678




VILLALOBOS, TAPIA, ZHANG 24

Table 4: Results for tol = 102 and fixed ptol = 107

Problem NPDM NLBM

Number | Tters | cond(Fp) | Tters | cond(Fp)
rl 23 7.3e+03 39 4.1e4+07
r2 27 8.6e+04 41 6.5e+07
r3 15 2.5e+03 28 1.6e+05
r4 15 2.7e+03 30 2.8e+06
rb 26 2.3e+04 42 4.2e+08
r6 20 1.4e+04 34 1.1e4+05

scagr? 70 1.8e+408 111 2.6e+13
sharelb 81 3.4e+13 101 2.8e+13

schb0b 33 3.4e+05 43 8.6e+03
adlittle 61 1.9e+09 104 1.2e+16
afiro 35 3.1e+08 60 3.7e+10
blend 39 8.0e+04 64 1.0e+06
schla 36 8.9e+05 45 2.3e+04
share2b 46 8.2e+06 58 4.2e+10
Total Iters | 527 800

In order to minimize the effects of ill-conditioning for system (3) in our comparison,
we also implemented the algorithm with a much relaxed stopping tolerance of tol = 1072
to observe the behavior of Algorithm IPF away from the solution. In this experiment,
Algorithm IPEF terminated in all test cases with low accuracy solutions for the both
systems. As can be seen from Tables 3 and 4, the Jacobian matrix exhibited smaller
condition numbers compared to the previous results when tol = 1076, especially for
system (3). In this case, we still observe that considerably fewer iterations are required
by Algorithm IPF on system (4) than on (3).
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In the second set of experiments, utol was initialized to ptol = 0.1 and updated as
given in (40). Thus, the iterates were required to follow the central path more closely
as p decreased to zero. In this instance, Algorithm IPFE applied to systems (3) and (4)
converged for all the test cases. Again, Algorithm IPF required fewer iterations on (4)
than on (3) as demonstrated in Table 5.

Table 5: Results for tol = 10~ with initial utol = 10~ and updated

Problem NPDM NLBM

Number Iters | cond(Fp) | Iters | cond(Fpg)
rl 24 7.3e+03 74 1.2e+11
r2 29 8.6e+04 77 2.0e+11
r3 15 2.5e+03 59 2.2e+08
r4 17 2.7e+03 66 8.6e+09
rH 27 2.3e+04 77 1.3e+12
6 23 1.3e+04 67 2.9e+08

scagr? 64 1.9e+4-07 127 8.0e+15
sharelb 75 1.4e+11 112 2.6e+14

schb0b 31 1.3e+05 73 1.4e+07
adlittle 55 5.8e+12 128 1.1e4+23

afiro 33 4.9e+12 89 8.8e+18
blend 44 1.7e408 92 3.0e+14
schla 35 1.4e+07 72 6.4e+08

share2b 46 1.8e+11 89 2.4e+19

Total Iters | 518 1202

In summary, we observed that for the tested values of tol or utol, Algorithm IPF is
more robust and more efficient using system (4) than using system (3). Using the former
system, Algorithm IPE does not need to follow the central path closely and requires
consistently less iterations. We believe that this phenomenon can be partly explained by
the difference in the sizes of the spheres of convergence for the two equivalent systems, as
studied in Sections 3 and 4.

In the case of system (3), our numerical results suggest that in order to obtain high
accuracy solutions, Algorithm IPF needs to follow the central path closely to alleviate the
problem of ill-conditioning. For a related work on ill-conditioning of primal-dual systems,
we refer the reader to the recent paper by M. Wright [8].

7 Conclusion

In this paper, we studied the local and global behavior of Newton’s method on two equiv-
alent systems from linear programming: the optimality system (3) for the log-barrier
formulation of the linear program and the perturbed optimality system (4) for the linear
program itself.
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On the issue of local behavior, we proved that for nondegenerate problems, the radius
of the sphere of convergence of Newton’s method on system (3) decreases to zero at exactly
the same order as ¢ — 0. On the other hand, the radius of the sphere of convergence
associated with system (4) stays bounded away from zero as y — 0. Our numerical
experiments confirm these results. Interestingly, for the majority of our tests, the sphere
of convergence of Newton’s method was consistently larger on system (4) than on system
(3) not only for small values of yu, but also for medium values as well. In addition, we
provided numerical results for the case of degenerate problems. Our results show that
both radii seem to decrease to zero as p — 0; however, the radius associated with system
(4) is still larger than that of system (3).

It is then not surprising that the superior local behavior of Newton’s method on system
(4) will be reflected in a global setting. To test the global behavior of (damped) Newton’s
method on the two equivalent systems, we applied a simple interior-point path-following
algorithm for solving linear programs using the two equivalent systems. Our numerical
results showed that to obtain convergence, the algorithm using system (3) needs to follow
the central path closely to alleviate the ill-conditioning of the Jacobian matrix. However,
convergence is always obtained with the algorithm using system (4). Moreover, even
when both algorithms followed the central path closely and converged, the algorithm
using system (4) required fewer iterations; thus it is more efficient. In fact, far more
efficient algorithms exist for system (4) than the simple path-following algorithm used in
our test.

We believe that the results in this paper not only confirm that the linear programming
system (4) is the system of choice to be used in an interior-point path-following framework,
but also provide an explanation. Similar results have been extended to the nonlinear
program and will be reported in a subsequent paper.
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