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Abstract

Interest in the numerical solutions of shallow water equations has
grown in recent years. Shallow water equations predict tidal elevation
and velocities in bodies such as bays and estuaries. The circulations
patterns obtained can be used to determine contaminant propagation
in coastal areas. In this paper, we provide stability and error analysis
for the 1-dimensional linearized shallow water equations. We derive
L>°(L?) stability estimates for the Galerkin finite element approxi-
mation of the wave formulation in continuous time. We also derive
L°°(L?) error estimates for elevation and velocity which are optimal in
L>(H'). In addition, we successfully develop a Chorin-type projec-
tion operator-splitting scheme, using finite difference time-stepping,
for the primitive formulation. We also develop a stability estimate
which seems to be the first of its kind and a significant literary con-
tribution.



1 Introduction

Shallow water equations model the fluid flow in vertically well mixed fluids
experiencing external forces such as tidal and atmospheric forcing. There-
fore we can determine circulations patterns and tidal amplitudes in the region
subject to these forces at the open boundaries of the region. The applica-
tions of shallow water equations are numerous, consequently leading to a
growing interest in their numerical solutions. For environmental purposes,
circulations patterns obtained from the shallow water equations can be used
to determine contaminant propagation in coastal areas under varied condi-
tions in order to evaluate different courses of remediation. Shallow water
equations are also used to estimate the impact of structures such as dams
on hydrological conditions of bays [6]. In addition, data on wave heights
and tidal forces can be used to determine loads on offshore structures such
as oilwell platforms.

The numerical procedures used to solve the shallow water equations must
ensure the accuracy of the numerical solution while maintaining the physics of
the problem. Many early finite element simulations of the primitive 'shallow
water equations were plagued with spurious oscillations. Many attempts to
eliminate these oscillations did not resolve the oscillations successfully [5].
Consequently, Lynch and Gray [3] reformulated the continuity equation of
the shallow water equations into a second-order wave equation. The resulting
generalized wave continuity equation (GWCE) successfully suppressed these
oscillations without using numerical damping.

In Section 2, we introduce the 1-dimensional primitive equation formu-
lation and wave equation formulation of the shallow water equations. We
then establish our linearization of these two formulations and the numerical
methods we used to solve them.

Then in Section 3, we prove a stability result in the L? and L* spatial
norms of the linearized 1-dimensional GWCE in continuous time. The mo-
tivation in developing this stability result is that stability analysis is more
general than the traditional Fourier analysis. We derive an error estimate for
a Galerkin finite element method approximation to these shallow water equa-
tions. Error estimates for the 1-dimensional case are devoid in the literature.
Martinez [7] analyzed the 2-dimensional shallow water equations, but did not
explore the 1-dimensional case. Martinez derived L>(L?*) and L*(H") a pri-

1 “Primitive” is understood to reflect the pure governing equation.



ori error estimates for both the continuous-time and discrete-time Galerkin
approximation to the nonlinear 2-dimensional wave model. Unable to circum-
vent the nonlinearities of the model using either an L? or elliptic comparison
function, Martinez was only able to prove H'(Q) optimality. The error esti-
mates presented in this paper, give us insight into developing a comparison
function, based on the solution of the linearized model, to improve optimality
in the fully nonlinear error estimates in 2 dimensions.

In Section 4, we analyze the stability of the Chorin projection of the
primitive shallow water equations. The Chorin projection is a procedure
used to decouple surface elevations and velocity in the momentum equation.
The prevailing issue is whether we can develop a scheme to yield larger At
than the traditional time-stepping methods. The Chorin projection in a
Navier-Stokes setting seemed to yield larger time-steps [2]. However, can
the Chorin projection in the incompressible Navier-Stokes be generalized to
a compressible flow application? The answer is yes. There has been some
work done in combustion applications [8]. However, until now, no analysis
had been done. We will provide the first analysis of the Chorin Projection
in the setting of the primitive formulation of the shallow water equations.

Finally, in Section 5 we discuss our analysis and conclude in Section 6
with future work.

2 The Model

2.1 Preliminaries

Let us define the notation we use throughout the this paper. Recall the usual
Sobolev spaces:

o L) ={v:Q—=R:|v(z)| < Kae. onQ for some constant K };
o () ={v: Q= R: [,|v(z)]Pdr < oo};

e H'(Q) ={v:Q = R: [, |v(z)]’dz < ocand [ |D*v|*dz < 400 for
o] =1}

o Hy()=H'(Q)N{v:v=20o0n 00}
Define the norms associated with these spaces:

o |[vllze@) = ess sup,qlo(z)];



o |[ollzge) = (Jo v(@)]*de)? = |Jo];
o vl = (ool D072

o [[vlwy(e) = max (<1 D507 @))-
Define the time-space norms:

o |lvllze(x) = maxocicr [l 1)l x;

o ||vflrzre) = ff]\v(-,t)!\%Q(Q)dt;

o [[ollzoe (o) = maxocicr [0 D)= (@)-

Define the inner product as:

(1.9)= [ fg do.

Recall the Cauchy-Schwartz inequality:
[ow]] < o]l - [lwll,

and the arithmetic geometric mean inequality:

1
ab < —a? —|—€bz, e > 0.
4e

We use the following standard tools frequently throughout this paper:

Gronwall’s Lemma 2.1 If f, g, h are piecewise-continuous, non-negative
functions and g is non-decreasing, and

F(1) + h(t) < g(1) —|—/:f(s)ds, Vi € [a,b],

then
J(t) +h(t) < e7g(1).

The analogous general discrete version from Heywood and Rannacher [4] is:



Gronwall’s Lemma 2.2 Let At, B, K and a", b, ", ¥ (for integers
n > 0) be non-negative numbers such that

N N N
aN—I—AthngAthynan—l—Athn—l—B for n>0. (1)

n=0 n=0 n=0

Suppose that Aty™ < 1 for all n, and set o™ = (1 — Aty™)~'. Then,

N N N
a”—l—Athngexp(AtEJ”’yn)—I—{Athn—l—B} for n>0. (2)

n=0 n=0 n=0

Remark: If the sum on the right in (1) extends only up to N-1, then estimate
(2) holds for all At > 0 with o™ = 1.

2.2 The Physical Model

Shallow water equations model flow in water bodies under the following as-
sumptions as considered in Weiyan [9].

e The change in the underwater topography is not abrupt.

o The water body is shallow. The total water depth H < the wave length
or the characteristic length of water body, L.

o The value of the horizontal space scale is between 1 and 1000 meters.
In addition, we define the following as in the literature:

o ( is the free surface elevation above the geoid,

hy is the bathymetry,
H = hy + € is the total fluid depth,

i > 0 is the viscosity,

7 = ¢y/u/hy > 01is the bottom friction where is ¢ is a friction coefficient,

7o is a tuning parameter, (7, > 0) ,

g is the gravitational acceleration,

F' corresponds to external body forces which we will assume to be

bounded in L?(L?),

u is the depth-averaged fluid velocity.



2.3 The Mathematical Model

The shallow water equations describe conservation of mass and momentum in
a fluid. They are derived by depth-integration of the incompressible Navier-
Stokes equations under the assumption of hydrostatic pressure distribution.
The 1-dimensional shallow water equations model the propagation of planar
free surface waves. We focus our attention on the primitive equation formu-
lation and the wave equation formulation [5]. The primitive shallow water
equations formulation (hereafter referred to as P-SWE) are expressed as the
continuity equation:

e+ (uH)y =0 (3)
and the non-conservative momentum equation:

Let U = uH, then P-SWE may be expressed as (3) and the conservative
momentum equation:

U
Ui + (7) + Hgéy — pUpe + TU + HF = 0. (5)

The P-SWE was reformulated into the wave shallow water equations [3]

(hereafter referred to as W-SWE) by replacing the primitive continuity equa-
tion by the wave continuity equation:

S~ (GHE) — s~ (r = m)UL — (HE) =0, (6)

6t 7ot = (7).

The W-SWE may be expressed by (4)-(6) or (5)-(6).

2.4 The Linearized Models

We restrict our attention to the linearized form of both the P-SWE and W-
SWE. We use (3)-(5) as the primitive formulation and (4)-(6) as the wave
formulation. In linearized form, (4) and (5) are shown to be equivalent.
Before we present the linearized forms, consider an example of a simple lin-
earization of u?. We linearize u® as u - f(u), where f(u) can be expressed as
follows:

f(u) =a, «a constant



or

f(u) = f*, f* independent of u

Applying similar linearizations to P-SWE, we retain the continuity equa-
tion (3) without modification and linearize the nonconservative momentum
equation in the following manner:

Ui+ (Uf )+ gH € — pUps + iy F = 0, (7)

where f* is given and is independent of % Similarly we assume H* is given
data in the original gH¢, term, 7U = 0. Finally, H I’ is linearized as hjF'.
To linearize the wave formulation, we write (6) as:

Stt + Toft - (ghbfz)z + ((To - T)th)z - Mfta:a: - (HF)$ = 07 (8)

and (4) as:
ur + g€ — ptgy + Tu+ F =0, (9)

X

hy
of (6) to (8) simplify by letting (%) = 0 (only in the wave formulation)

where the bottom friction is linearized as 7 = ¢-~. Notice in our linearization

whereas in the linearization of (4) to (9) we simplify by letting uu, = 0.

2.5 Numerical Methods

Applying standard numerical methods to solve the shallow water equations,
we use the Galerkin finite element method for the spatial discretization of
both formulations. The finite element method is a general technique for con-
structing approximate solutions to boundary-value problems. This method
involves dividing the domain of the solution into a finite number of subdo-
mains or elements. Concepts of the variational form of differential equations
can then be used to construct an approximate solution over the collection of
finite elements [1].

The difference in our numerical methods for solving P-SWE versus W-
SWE comes in the temporal discretization. For the W-SWE, we assume con-
tinuous time and hence no time-stepping. In solving the P-SWE, we apply
a finite difference time-stepping method. Furthermore, we utilize a Chorin
projection scheme to decouple elevation and velocity in the momentum equa-
tions. The innovation in our approach to solve the P-SWE is precisely the
use of the Chorin projection which has been shown to allow larger time-steps
than if we were to use a finite-difference time-stepping scheme alone.



3 Wave Formulation

3.1 Stability Analysis

We now analyze the stability of the wave continuity equation in the L? space.
Stability analysis in a functional space refers to the measurement in the norm,
in this case the L? norm, of the dependence of the weak solution at some final
time on the initial conditions, the forcing data and the boundary conditions.

Theorem 3.1 Let & and u be solutions to the linearized W-SWE (8)-(9). Let
o —1>0, He L®(L*®) with 75 bounded above, and K a positive constant.
If € € L*(H*(Q)), & € L*(H*(Q)), & € L*(H*()), v € L*(H*(Q)), and
u; € L*(H?*(Q)), and given homogeneous Dirchlel boundary conditions, then:

(T + a(DIP + 405 = DI + rlleo(T) + 1y ghsta (1))

HIEN 722y + plléell 22y + 1V 9h0 EellFz 2y + pllualz ey + VT wlliz @z
< KLJEO) + 1€ 0)]12 + 16012 + [u(O)2 + #1322 }

Proof: In proving Theorem 3.1, we begin by taking the weak form of
equations (8) -(9) and obtain:

(ftt ) U)—I_(TOSL‘ ) v)_((TO_T)th ) UI)‘|‘,LL(§7§I 7U1?)+(HF7 Ul’)—l_(ghng ) Ui?) = 0(vv>€ H(}’
10

(s, w) 4 (9€es w) + pr(tg, wy) + (Tu,w) + (Fyw) =0 Vw € Hy.  (11)
Set the test function v = £ in equation (10), then:

(€ )+ 2P~ (ks €0+ B P+ (I F. )+ b & = 0.

Integrate this equation over time, from 0 to 7', and integrate the first term
by parts. Apply the Cauchy-Schwartz inequality to arrive at the following
inequality:

SUEDN” + ST + 1y g2z

< 2O + SlEO)1° + eI 1))

FIEONNEO + NEellT2rzy + 11(76 = T)hsllLoo ooy llull 222y 1 €all 2222y
H H || oo (rooy | F]| r222) |2l 22 (22)- (12)



Taking the test function v = & in equation (10), integrating over time and
applying the Cauchy-Schwartz inequality:

1
§H&(T)H2 + TolléellTzra) + plléalliare) + H\/Qh &(T)|?

1 1
< =I&(0)]12 + 5“\/9% EO)I* + (o = T)hall oo ooy lluell 222y el 22 (22)
H H || oo ooy | Fl| r2(z2y 1€l 22 (22) - (13)

Similarly, taking w = u in equation (11):
1
S (DI + plluelleoz) + 17 2ullz2ze)
1
< SIwlOIF + lg€ellzaa llull ey + 1 Fllpzwey Nullzwey. (14)
Next add equations (12), (13) and (14), and apply the arithmetic geometric

mean inequality to appropriate terms. Collecting terms, we arrive at the
following inequality assuming 2 —1 > 0:

1 1 To ) , 1
G + 51T + (2 = DIETIE +EI6T)I + Sl ohs £T)
1
o DN ooy N oy 1 oyl a2
1 1
< UG43/ gh O I IE O IEON+ 2 IEO P+ 5 160+ 5 ()]

[_H Pl + 5[l + 5 + 2=l I r)hbuioo] ol 22

1 H
+ —H2m+—+2—20@] Fll72z2)-
1+ 3 2 [

Applying Gronwall’s Lemma 2.1 and collecting terms with K; and K positive
constants, our theorem is proved since:

(T + a(DIP + 405 = DI + ulleo(T) 1 + 1y gkt (1))

FlIET2 2y + pll€esllTeqey + 1V ghs Eallzaray + pllualzage) + VT ullzz e
< KT L300 + 2ghy + o) IOV + [EO? + 2u0) + Kol P2z}

9



and

&(T)IP + TP + 42 = DI + llea(T)? + 1 /ghae (T

Fll 722y + plléeallFz ey + N ghs Eell Tz 2y + plluallZo 2y + VT ullZ2 (2
K {1617 + €O + €O + w(0) 1 + 11 F1172(z2) } -

This result indicates that the velocity (or elevation) at the final time
depends, up to some constant, on the velocity at initial time as well as initial
spatial variations in elevation and forcing terms.

3.2 Error Estimate of Wave Equations

Using finite element methods to solve for approximate solutions raises the
question of the degree of accuracy of the approximation. The error is the
difference between the exact solution and the approximate solution. The
errors (up — u) and (&, — &) are difficult to determine directly when u and &
are not known. Therefore, we separate the errors into two parts:

up —u = (up — ) + (p —u),
G—E=E—9)+(o—8)

where ¢ and ) are comparison functions in Sy, a finite dimensional subspace
contained in H}, and &, and wu; are the Galerkin finite element approxima-
tions to £ and u contained in S;. We can then estimate (u, —u) and (&, —€)
in the L% norm:

Jun —ullz < llun = &llze + lu = ¢llz2, (15)

1€n = Ellze < 16 — llee + 1€ = &l e (16)

We choose ¢ and  so that they give us good approximations of u and ¢
onto the approximating spaces and so that we know ||§ — ¢||z2 and |ju —
|2 from approximation theory results. In particular, we use the following
approximation theory result:

Approximation Theory Result 3.2 For a function v € H*(Q), there ex-
ists ¢ € SZ’k salisfying

lo =l < C(k, )R |loa.

10



where r is the polynomial degree of the basis functions, k is the continuily
imposed on the basis functions (in the finite element approzimation), C(k,r)
is a constant depending on k and r, ¢ = mun{s,r + 1}, and 0 < j <k +1.

Although the actual error can not be calculated unless the exact solution is
known, an estimate of the error can provide useful information. In deriving
our error estimate, we want an estimate of the closeness of u, to u and &,
to & as the mesh is refined (i.e. as A — 0.) This information is helpful in
determining the accuracy one would expect if the number of elements are
increased. Therefore we can obtain experimental rates of convergence.

Theorem 3.3 Let £ and u be solutions to the linearized W-SWE, (8)-(9).
Let & € S;™' and uy, € S§ be the Galerkin finite element approzimations to
¢ and u respectively, where Sy is a finite dimensional subspace of Hy(Q). If
>—1>0,27,—p >0, 7, = 7 = given dala, Fj, = F = given dala, and H},
En+ hy with & € L*(H™(Q)), & € L*(H™*(Q)), & € LZ(HTH( ), €
L=(H™(Q)), v e L*(HY(Q)), uy € L*(H™Y(Q)), and v € L=(H™(Q)),
then:

I — ) H+f|\\/97 (& = (T +2¢/5 = LII(& — €D

/20 [1(6 — €)u ()] + V2| (un — u)( TH‘F\/‘”O—?M 1€ — €ll 22y

+[y/gh (& — HL2 2y + /20| (un — w)el| 22y + 2|[V/T(un — )| 222
< KW =~ O(h")

\—/mll

for K a positive constant.

Proof: First recall the weak formulation of the wave equations, (8)-(9) as
well as the following Galerkin finite element approximation with S, C H}
where S}, is a finite dimensional subspace:

((&n)et s vn) + 7o ((En)e s vn) — (7o — T)urhs , (va)s) + p((En)e s (VR)2)
+(HLF, (vi)e) + (gho(€r)e » (vr)e) = 0 Vo € SpT5

((ur)ey wn) + (9(En) s )+ p((up)zy (Wh)z) + (Tun, wp) + (F,wp) = 0 Yw, € Sj.

We write an error equation resulting from subtracting the weak formulation
from the discrete problem associated with the Galerkin Finite Element ap-
proximation. Letting Fy, = F., 7, = 7, and Hj, = &, + hy, the resulting error
equations are:

11



(&= E)e s vn) + 7o (& — E)e s vn) — (Tohy(up — ), (vp)e) + (Thy(up — ), (vh))
+1((En = Eta, (V8)z) + (€ — EF, (vr)e) + (ghs(én — €, (V1)) = 0;

((un = e, wi) + (9(En — €)zyw) + p((un — w)e, (Wr)s) + (7(wp — u), wi) = 0.

Then we rewrite the weak form so that we separate the error into two parts
and choose our comparison functions, ¢ and 1, appropriately. In particular,
we let ¢ be the L? projection of £ onto Sy, so that (€,v) = (¢,v) and ¢ be the
elliptic projection of u onto S so that (u,,w,) = (¢, w,). Then we have:

((fh— D)ty vn) + To((En — D)e, vn) — (Tohw(un — ), (vi)e) + (Ths(un — 1), (vi)z)
((Eh— Dta s (vn)z) + (& — AV, (vi)z) + (gho(€n — &)s , (vh)s)

—(Tohy(u — 1), (vn)s) + (The(u — ), (vr)z)

((5 Dta s (vr)a) + (€ = O)F, (vn)s) + (ghs(§ — @)a, (vn)s);  (17)

((un = ) wn) + (9(6n — D)o w) + p((un = $)as (wa)o) + (7(un — ), wh)
= ((u - ¢)f7 wh) + (9(5 - qb)l’v w) + (T(u - 771})7 wh)' (18>

Next, choose appropriate test functions vy and wy. In equation (17), first
let vy, = (&, — ¢): then in the same equation let vy = (& — ¢). Apply the
Cauchy-Schwartz inequality and the arithmetic geometric mean inequality.
Collecting terms, we obtain:

SN — B+ el — D)l + BN — Bl + 5l (61— )
4 4
< (;Hnr\%m ; ;HThbH%oo) s = )17+ 26 — )17
4 4 4
s (;thbn%m s ;Hmbuim) =617+ 21e — )17
4
HIE = Bl + Hlohu(e ~ .7, (19

and

12



((€n — D)uts (En ¢))‘|‘——H(5h— o)|I”

2 di
d
FELNE — 9l + S I ghalEn — D)l
9 Thb 2 9 F 9
< (31 22e -+ 30 FHLW) s = )+ Sl (s = 9

_|_

9 Tohb Thb 2 9 F 112
(S1Z e+ G2l ) e = 007 + 3l T — 0
#3080l (€ = el + IV ahnl€ = LI (20)

Similarly, setting wy = up — ¢ in equation (18), we get:

1d

>l = I+ pll (s = ) H2+Hﬁ(uh— o)

_18W97 Bl + gl = e + 7€ - ). P

=)+ (3+—|\f|\m) — 1)

We assume 22 —1 > 0, add equations (19), (20), and (21), integrate over time
and apply Gronwall s Lemma 2.2 with K; a positive constant. The resulting
inequality is as follows:

0TI + (2 ool + 200 ) (& = ST + 45 = Dli(E — )T
+2H(Uh— 9)(T >||2 + (470 + 20) 16 — S)uallFairey
2]/ g (6 — D)allFaqaay + Aull(un = ¥)allFaqray +4IVT (un = ¥)llFaqrs)

< (160 + Sl ) 166 = Bl
+ (—thbuim + oIl + —ngim) (€ = &)ellzar

16 16 Thy 1
(Sl + Sl + 181l + STl + 1l ) b= Pl

16 9 1 1
F2(>o - -~ —200 — ¢ 22 2 - - 22 2 .
I (32 4+ Sl ) 16 = O + 10— 9l

13

(22)



Equation (22) gives us a bound on uj, — v and &, — ¢. Now we apply the
triangle inequality from (15) and (16), and use the our approximation theory
result with piecewise continuous basis functions. This yields the following
inequality with C and K constants, and our theorem is proved.

(& — &) H¢w@?&— D)l +2y/5 = 1l(& = D)

+Jﬂww— H+me—u M+ 47 — 20l (&6 — €)llz2z2)
I gha(n — € HBB+J7WVW!WB+ﬂWW%ﬂMBm
< Ch (H&HLZ’(HH?) 1€l 22y + ull sy + Nl 2 ey

+CH (1€l oo ey + [l o qarreny) + CRH[€] s

< KW + KW+~ O(h")

4 Chorin Projection for the Primitive For-
mulation

The Chorin projection is a particular type of Helmholtz decomposition of
the velocity variable. In practice, it looks like a predictor-corrector of the
velocity variable. It was first introduced by A. J. Chorin [2] in the incom-
pressible Navier-Stokes setting. In 1997, Najm and Wyckoff [8] applied this
projection method to compressible combustion applications. We will give an
analysis of the Chorin projection for the primitive formulation. This projec-
tion allows the decoupling of the wave elevation and velocity terms in the
momentum equation. The implications are two fold. First, by decoupling the
wave elevation and velocity terms, we are not forced to solve the simultane-
ous equations thereby decreasing computational expense. Second, and more
importantly, the Chorin projection, in conjunction with a finite-difference
time-stepping scheme, should allow us to take larger time steps, At than
traditional time-stepping methods.
Using this projection scheme we arrive at the following results:

Theorem 4.1 Lel 1—4Tm > 0 and 1-QAL > 0 where Q@ = &||g(H*)""||w @)+
2K + % + 1 > 0 a constant. In addition, let H* and f* be in W.,
a = min {1l — 4At .1 — QAt} and K* > 0 be a constant. Assume the fol-

lowing boundary condztzons. U=0and & = 0 at the land boundary, and

14



U, =0 and £(t) = 0 at the ocean boundary, then:

N N
o (1N IENH 2] 4+ 30 2(A0I(g(H™)" ) e 2 4+ S0 Al )2

n=0 n=0

iy al . N 9AL
< capc At} (32 Il eqpm P+ 00+ (14 250 o).

n=0

Proof: Consider the linearized P-SWE equations (3) and (7) and recall
that U = uH. Let U™ = U(z,t"*') where {"*! = (n + 1)At. Then we set

up the projection scheme writing (7) as two equations:

(jn—}-l —_[n ~ ~
(UM ) U =0 (23)
and .
Un+1 _ Un+1

At

Notice, (24) contains the coupled term, £, and (23) does not. Next, we take
the spatial derivative of (24):

+ gH e = 0. (24)

Uptt = UZF 4 At(g(H) ), = 0. (25)
Then approximate & in (3) by a first-order Taylor expansion:

n+l _ ¢n
T (26)

and substitute(25) into (26):
e — €7 = =AU 4 (AP (g(H)" €8,

Assuming &, = 0 at the land boundary and £(¢) = 0 at the ocean boundary,
we multiply by a test function, v, and integrate by parts obtaining:

(€71 = € v) + (A (g(H) € v,) = —AUUI ), Vo € H geenn)-

Set v = €™, multiply by 2 and apply the Cauchy-Schwartz inequality.

™17 = €17 + 2(A0% (g (H )" 2+ |1P < 28| Ul (27)

15



In (23), let U, = 0 on the ocean boundary and U = 0 on the land bound-
ary. Multiplying by test function, w, and integrating by parts, we get the
following:

(Un—}—l —_ U

At ’w>—I_((On—}_lf*)wvw)—l':u([j;-}_lvwf) = _(thn’w) Yuw € Hé(la“d)'

(28)
Note from (24), we have:

vr [N]n \n—1¢n 1
<E’U) - (E’U) - (Q(H ) I,’U) \V/U € HO(Ocean)'

Integrating by parts and recalling the land boundary condition £(¢) = 0 we
obtain the following expression:

Un Un *\n—1 n
<E7v) - (Evv> —I_((Q(H ) U)a:vg )7
which can by substituted into (28) to arrive at:

(Un+1 o Un

S | T 0 027 ) =~ (o),

Setting w = Un—{—l’ multiplying by 2At¢, and applying the Cauchy-Schwartz
inequality:
2 = 57+ 2] 2
< 20l o 10 1+ 2 S )02+ 0 6741
280l 0 )

Let K = C(fiyn (Q)). Add (27) and (29), apply the arithmetic geometric mean
inequality, and collect terms. Then let Q@ = %Hg(H*)”_l]\Wéo(g)—l—ZlC—l—#—l—l:

[T 4 7 = N0+ 1€ 1P] + 2 A2 (g(H)") 2 |1 4+ pAe U7+

2AL n n rrm n
< = DI 4 1€+ QAT+ (A0 + Il 71
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Summing over time we get:

N N
IO+ 1€V + 2(A8) 30 (g(H)") PG + e 3o O+ )2

n=0 n=0
2 ol 1112 2 ol ) 1112
<Ay e 12+ 11em]1?] + @At Y- [T+
n=0 n=0
N ~
2 n|2 0112 012
FAES Bl oo L2 4 00 + 1€
n=0

Since ||£"]|* and H(j“HQ are positive for all n, the following inequality holds
for At sufficiently small:

N N
UM X2 4 20802 S I(g(H ) 2P + paAe Y- |07+

n=0 n=0
4 N+1 ) N+1 N )
< ;At oM+ QA Y (lum|
n=0 n=0

ol 2 n| 2 7012 QAt 2
FALY Bl ooy I FI1P + NU°N1* + 1+7 1€°11°.

n=0

Begin to set up the inequality to use Gronwall’s Lemma 2.2 by letting o =
min {1 — %At,l — QAL}:

- 2(A1)? X i MAt .
IO+ + (€M1 + Z I(g(H)™) 26| + E 1oz 2

4AL Y QAt

< LI =S
At X " ~ 1 2At
F2 S Pl gl I O 4 (1 + 2 ) e,
n=0

Then let K* = maa:{— =1 and:

IO R+ 2 S gy e+ B S
n=0 —
* a n2 rrn |2 At a 2 n|l2
<KDY NI 4 0] 4 205 e 7
n=0 n=0
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1, -~ 1 2At
P10+ 1 (14220 e
]

Finally, we apply Gronwall’s Lemma 2.2. Since the sums extend up to N (as
opposed to N + 1), then for all At > 0 and for all £* > 0 with ¢” = 1, then
our result is proved:

N N
a [TV 4 EVHP] + 2040 32 I(g(H ) PP+ pAL Y2 |02
n=0 n=0
* al 2 n|2 7012 2Ad 012
< eap{K" AL (ALY Weall oo [F71F + IO+ { 14 == V17N )
n=0

5 Discussion

In deriving stability and error results, there are two things we must consider.
Are our assumptions valid and what do our results mean? In stability Theo-
rem 3.1, is our assumption that 2> —1 > 0 reasonable? That is, does it make
sense that 7, > 2. Furthermore, Theorem 3.1 tell us velocity and elevation at
final time depend up to some constant on the velocity at initial time, forcing
data, and initial spatial variations in elevations. That is:

la(T)I> < & {IEO)N + 1€ (O)I1* + €O + [[w(O)” + I FIIF2(z2) |

and

IET> < K {NEO)P + 1O + IEO + (O + 112z } -

In Theorem 3.3, we have the additional condition that 27, — u > 0. Not
1

only must 7, > 2 but now, 7, > £. It is also important to notice that uy
converges like A"t! to the true solution u while £, converges like A" to its
true solution £. We address the spatial derivatives in u by using an elliptic
projection. In general the elliptic projection yields higher order convergence
than L? projection. Then why not use the elliptic projection of £ on H"?
Nothing is gained by using the elliptic projection of £. The spatial derivative
terms will not vanish, and there will still be first order & terms. Nonetheless,
this result tells us that uj converges faster than &, to its true solution.
Finally, in the stability result Theorem 4.1, we have two conditions on At:

1— %At > 0 and 1 —QA¢ > 0. These are relative constraints. We could give a
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better analysis by using non-dimensionalization. The non-dimensionalization
allows us to give a measure of size to all the units. Consequently, if we were
to use dimensionless equations, then we could get a reference for the size of
At. We will leave this for future work. Again, this stability result, tells us
that the velocity and elevation at final time depend on the initial velocity
and elevation and forcing data. In particular:

N
) < K{Z AL+ 0P + IISOHQ}

n=0
and

N
I < K {Z [P AL+ (00" + H€°H2} :

n=0

6 Future Work

The analysis presented here is a start to much work that has yet to be done.
The next step would be to perform numerical simulations and compare them
to the theoretical results we obtained for both the linearized W-SWE and
the linearized P-SWE. In addition to analyzing the dimensionless equations
for the Chorin projection, we would also like to derive an error estimate for
this scheme. Eventually, a more general analysis includes assuming general
boundary conditions rather than the homogeneous Dirchlet boundary con-
ditions we assumed for the linearized W-SWE. Once the linearized W-SWE
and linearized P-SWE have been completely explored, we can then begin to
analyze the fully nonlinear 1-dimensional equations. For convenience in our
analysis we linearized the advection terms by setting them equal to 0. By
using the mixed finite element method for our spatial discretization instead
of the Galerkin finite element method we may be able to handle the advection
dominated terms more easily.
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