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Abstract. We continue our investigation of finite element approximations to the system of
shallow water equations, based on the generalized wave continuity equation (GWCE) formulation.
In previous work, we analyzed this system assuming Dirichlet boundary conditions on both elevation
and velocity. Based on physical grounds, it is possible to not impose boundary conditions on elevation.
Thus, we examine the formulation for the case of Dirichlet conditions on velocity only. The changes
required to the finite element method are presented, and stability and error estimates are derived for
both an approximate linear model and a full nonlinear model, assuming continous time. Stability
for a discrete time method is also shown.
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1. Introduction. In this paper, we continue our investigation of finite element
methods applied to the GWCE (Generalized Wave Continuity Equation) shallow wa-
ter model of Gray et al. This model i1s described in a series of papers beginning in
[8]. Tt has served as the basis for many shallow water simulators, most notably the
Advanced Circulation Model (ADCIRC) described, for example, in [7]. The method
has the advantages that it allows for a weaker coupling between the continuity and
momentum equations, gives rise to symmetric positive definite matrices, and helps
stabilize the numerical solution. These have been supported by a large number of
studies (see [5, 6] and references therein).

In previous papers [3, 4], we derived a priori error estimates for the method, in
both continuous and discrete time, assuming Dirichlet boundary conditions on both
the free surface elevation and velocity. In this paper, we will relax this assumption
on the elevation and discuss the changes to the model and to the analysis. As it
turns out, the assumption of Dirichlet boundary conditions on elevation allowed for a
crucial substitution which substantially simplified the analysis. However, by making
appropriate changes to the model, we will demonstrate that we are still able to preserve
the accuracy of the method, at the cost of some additional computational work.

We will denote by £(,t) the free surface elevation over a reference plane and by
hy(®) the bathymetric depth under that reference plane so that H(x,t) = & + hp is
the total water column. Also, we denote by u = [u(®,t) v(x,t)]T the depth-averaged
horizontal velocities and we let U = uH.

We will start with the following simplified linear shallow water model:

(2) Ui+ GVE—puAU = F,
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which we solve over a domain © x (0,7T]. Here G > 0 is a gravitational constant and
1 > 0 is the eddy viscosity coefficient.
Note that, integrating (1) over €,

/&dQ—f— U vds =0,
Q 89

where v is the outward normal to Q. Moreover, integrating (2) over €,
/ [Ut—l—GV&'] dQ—/J VU~I/d8 = / .'F'dQ
Q a Q

Thus, it 1s necessary to specify some type of Dirichlet or Neumann boundary condition
on U, but it is not required (nor may it be desirable) to specify a boundary condition
on &.

We will assume the Dirichlet boundary condition

(3) U=y,
on 02 x (0,T]. We also assume initial conditions
(4) &(z,0) =€), U(z,0)=U"x).

The GWCE is obtained by differentiating (1) with respect to time and substituting
the divergence of (2) into the result. We then obtain

(5) it — V- (GVE)+uV - -AU +V - F=0.
with the additional initial condition that

(6) 5t(ma0):51(m)5_v'U0~

The GWCE shallow water model then consists of (2) and (3)-(6).

The rest of this paper is outlined as follows. In section (2) we introduce definitions
and notation. In section (3), we derive a weak formulation of the GWCE-CME system
of equations and state some assumptions on the solution. In section (4), we introduce
the continuous-time finite element approximation to the weak solution, and derive
stability and a priori error estimates for this approximation. In section (5), we extend
these estimates to a nonlinear shallow water model. Finally, in section (6), we discuss
a discrete time approximation to the linear model given above.

2. Preliminaries.

2.1. Notation. For the purposes of our analysis, we define some notation used
throughout the rest of this paper.
Let © be a bounded polygonal domain in IR? and #= (z1, z3) € IR%. Moreover,

let Q = QU IQ, where 09 is the boundary of Q.
The £? inner product is denoted by

(p,w) = /ngow dz,  p,we[L}(Q)]",

where “o” here refers to either multiplication, dot product, or double dot product as
appropriate. We will let (¢,w) denote an inner product on Q. We denote the £2
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norm by ||¢|| = (@,@)1/2. In R™, & = (a1,...,a,) is an n-tuple with nonnegative
integer components,

g1 e
D—por...pon— Y . 9
1 n Oz Oz, *n

and |o = Y0, .

For £ any nonnegative integer, let
H = {p e £2(Q) | Dop € L2(Q) for |a] < £}
be the Sobolev space with norm 1/2

lellaey = | D D™ [1Z2(y
jal<e

Additionally, H}(Q) denotes the subspace of H'(2) obtained by completing C§° ()
with respect to the norm |[-[[31(q) , where C5°(£2) is the set of infinitely differentiable
functions with compact support in €.

Moreover, let

W = {p € L2(Q) | D*p € L(Q) for |a| < £}
be the Sobolev space with norm

H?“vv@(n)zzﬁizﬁﬂl)a¢ Il oo g2y -

For relevant properties of these spaces, please refer to [1].

Observe, for instance, that H#* are spaces of IR-valued functions. Spaces of IR™-
valued functions will be denoted in boldface type, but their norms will not be distin-
guished. Thus, £%(©) = [£2(Q)]" has norm [ll> = S0, llgi% 7} (@) = [ (Q)]"
has norm ||<p||§_[1(ﬂ) =5, 2 lal<t ||D%p;]|; etc. For X, a normed space with norm

- Ilx and a map f: [0, 7] = X, define
T
(Vi / £ 1) %A,

sup |[|f(-?)]|x-
0<t<T

£l 2o 0,7:x)

3. Weak formulation. A weak formulation of (5) is obtained as follows. From
(1), we have

7) (€,0) — (U, V) +{g - v,0) = 0.
Differentiating this equation in time and using (2) we find
(8) (&u,v) + (GVE, V) — u(AU,Vv) — (F,Vv) + (g, -v,v) = 0. v e H(Q),
Moreover, multiplying (2) by a test function and integrating by parts,
(9) (U, ) + (GVE,w) + f(VU, Vo) = (F,0) + (VU -v,), 1w € H'(Q).
In our previous work, we were able to replace the term involving AU in (8) by

u(Vés, Vo),
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because of the assumption of Dirichlet boundary conditions on £&. We note that, by

(1),
A& =—-A(V-U)=-V-AU.
Multiplying by a test function and integrating by parts we find that
—(V&, V) = (AU, Vv),

if the test function is zero on 9. In (8), because our test function v is not zero on
the boundary, we cannot make this substitution without introducing boundary terms
involving ¢ which are not known. In defining our method below, we handle the AU
term in (8) without requiring additional continuity on the finite element space.

3.1. Some Assumptions. We will make the following assumptions about the
solutions and the data. First, we assume the domain Q is polygonal, and for (&,t) €
Q x (0,7,

A1. the solutions &, U to (2) and (3)-(6) exist and are unique,

A2. puis a positive constant,
We make the following smoothness assumptions on the initial data and on the solu-
tions.

A3. U (=) e H'(Q),

A4, £ e HHHH(Q), t>0,

A5. U,U; € HY(Q), t >0,

A6. AU € H'(Q), t >0,

where the integer £ > 2 is defined in the next section.

4. Galerkin Finite Element Approximation.

4.1. The Continuous-Time Galerkin Approximation. Let 7 be a quasi-
uniform triangulation of the polygonal domain €2 into elements F;, i = 1,..., m, with
diam(FE;) = h; and h = max; h;. Let Sp (Sp) denote a finite dimensional subspace of
H(Q) (’Hl(Q)) defined on this triangulation consisting of piecewise polynomials of
degree less than s;. Let 8 = S N{w : w = gon 0N} and S) = Sy N {w : w =
0 on 9Q}. Assume S}, (Sp) satisfies the standard approximation property

10 inf ||v—
(10) weéff(sh)”t @l

2o (Q) S I{OhZ—SD ||{U||'Hé(ﬂ) s v E %I(Q) N %Z(Q),
and the inverse assumptions (see [2], Theorem 4.5.11)

(11) lelle @y < Kollelleamyh™, ¢ €8n(Q),

A

(12) el < Kollelleaoyh™  » € Sa(9).

Here, sq and £ are integers, 0<so</f<s;. Moreover, Ky is a constant independent of
h and v. We also define the space S5 = S,,/S).

In defining our method, we approximate four quantities, &, U, AU, and A =
VU -v on 0. The equations for ¢ and U are derived from (8) and (9). We note that
by integration by parts,

(13) (AU, w) = —(VU,Vw) + (A, w), w € H'(Q).
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Moreover, by (9),

pAw) = ((Un), w) + (GVEn, w)
(14) +u(VU, Vw) — (F,w), w e H(Q).

Define an approximation &, (-,t) € S, by

(15) (£h(~,0),v):(£0,v), UESIM

(16) ((€n)e(-,0),0) = (&4, v) = =(V - Un(:,0),0), v € S,
and for ¢t > 0,

(17) ((€n)er,v) + (Gm(VEn), V)

— p(ARUR, V) — (F, V) +{g, - v,v) =0, veESh,

where (V&) denotes the L? projection of V§, into Sy, and ApU}, is defined below.
Define an approximation Uy (-, t) € 89 by

(18) (VU(-,0), Vw) = (VU", Vw), w€E S},
and for ¢t > 0,
(19) (Un)e, w) + (GVEL, w) + p(VU,, Vw) = (F,w), weS).

The “discrete Laplacian” AU} € 8y, in (17) is defined by
(20) (AhUh,w) :—(VUh,Vw)—|—<Ah,w>, w € Sp,
where the approximate boundary flux A, € Sgﬂ is defined by

wAn, we) = (Up)s, ws) + (GVE, wy)
(21) +u(VU, V) — (F,wp), w, € S

Thus, the system (15)—(21) yields a system of equations in four unknowns, &, Up,
AhUh and Ah.

In section (6), we will formulate a discrete time version of this scheme and show
that these unknowns can be determined in a sequential manner. Moreover, all matrices
which arise are symmetric, positive definite, and time-independent.

4.2. A stability estimate. As a prelude to deriving an error estimate, we study
the stability of the scheme above in the case g = 0 and F = 0. Integrating (17), (19)
and (21) in time, we obtain

(22) ((&n)e,v) + (/0 Gn(Vép)ds, V) — ,u(/o ApURds, Vo) = (&,v), v E S,

t t
(23) (Uh,w)—i—(/ GV{fhds,w)—i—u(/ VU,ds,Vw) = (U w), weS),
0 0
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¢ t
(24) ;L</ /\hds,wb) = (Uh,wb) + (/ GV&hds,wb)
0 0
¢
—}-,u(/ VU, ds, V) — (U°,wy), w, € S5
0
Adding (23) and (24) we find
¢
(25) (Uh,w—i—wb)—}—,u(/ VU ds, V(w + wy))
0

¢ ¢
+ (/ GVépds, w + wyp) — u(/ Ands, w + wp) = (Uo,w + wp).
0 0

Here we have used the fact that w = 0 on 9Q in the term involving Ap.
We now set w + wp = m(VEy), and we set v = €5, in (22) to obtain

((&n)e,&n) + (/Ot Gn(Vép)ds, VEp)

t
(26) — /0 AnUsds, Vén) = (6h,&n),

and

W e+ ([ ' OVends, m(VEn)

e b VUL V(e - al / Ands, 7(VEn)) = (Un(-,0), Ven).

Integrating (20) in time, setting w = 7(VEy), we find

t t
(/0 AhUhdS,Vgh) (/0 AhUhds,w(VE'h))

—(/Ot VUhdS,Vﬂ'(th)) + </0t Ahds,ﬂ'(v5h)>,

Substituting this result into (27) and subtracting from (26), we obtain

(28) (E0)en6n) = (Un, Vén) — ( / Gr(VEn)ds, VEn) + ( / GVEnds, w(Ver)

+(£i’£h) - (Uh(" 0)’ v£h)
= (Uh: v&h) + (gl}mgh) - (Uh('a 0): v&h)

Letting w = Uy, in (19) we obtain
(29) (Un)e, Un) + pu(VUR, VUR) = —(GVER, Up).
Adding (28) and (29) and integrating by parts we find

(30) ((€n)e,€n) + (Un)e, Un) + p(VUR, VUy)
= (&4,&n) — (V- Un, &) + (G&, V- Un) + (V- Un(+,0), &)
=—(V-Up,&) + (G&, V- Uy),
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where in the last step we’ve used the fact that ¢} is the L? projection of =V -Uj(+,0)

into Sy,
Integrating (30) in time from 0 to T we find

T
(31) ||sh<~,T>||2+||Uh<~,T>||2+2u/0 VU |2t
T
< ||£°||2+||U0||2+/0 [4l[YULIP + Clies]?] dt

T
< ||£°||2+||U0||2+/0 4l [YULIP + Clien]?] dt.

An application of Gronwall’s Lemma gives the following result.
LEMMA 4.1. For the case g =0 and F =0, and any T > 0

(32) [1€x ( DI+ TR T C (1] + IT°)]) -

4.3. An a priort error estimate. . We now consider the more general case
where g and F are not zero. In order to derive an error estimate let éh denote the L?
projection of ¢ into Sy, and U}, the elliptic projection of U into 8%; that is, U, € S
is defined by

(33) (V(U, —U),Vw) =0, weS).

Let ¢ = & — En, vu = Un = U, g = € = &h, and by = U — Uy,
Integrating (8) in time and combining with (22) we find

@) 0) + ([ Gn(vais, 0
= (& — &(-,0),v) + ((0¢)e, v) + (/Ot GVéds, V) + u(/ot(AhUh — AU)ds, Vv).
Integrating (14) in time and combining with (25) we find
(Yu, w + wy) + (/Ot GVénrds, w + wp)
= (O, w + wp) = (Ou (-, 0), w + we) + (/Ot GVds, w + wy)
(35) + u(/ot(AhUh — AU)ds, w + wy).
Here we have used the definition of AUy, (20), and (13).

Setting v = ¥¢ and w +wp = m(Vile), where m(Vi)¢) is the L? projection of Vi),
into 8y, and subtracting (35) from (34) we find

(fe)er ) = wu,wg)—(/o GVeds, m(Vie) — Vi)
+((8e)e, ) — (O, 7(Ve)) + (Ous -, 0), 7(Te))

(36) (| | AUds, 7(Vg) = Viie) + (7 - (Un — U) (-0, ).
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From (19), we find

(37) (Yu)t, Yu) + (GVYe, Yu) + p(Vipu, Vipu)
= ((Bu)e, Yu) + (GVe, Yu) + p(Vu, Vipy).

Adding (36)-(37), integrating by parts, and using the definitions of the L? and
elliptic projections, we find

(38)  ((¥e)e, Ye) + (Y )t Yu) + (Vo , Vipur)
= (V) + (| G(VE~ r(VE)ds, (V) - Vo)
— (O, 7(V) + (Bu-,0), W(V)) + (6o )
+ (G 0,V ) + ([ (AU = 5(50))ds, (V) = Vi

T (V . (Uh —u)(~,0),1/)§)a

where m(AU) is the L? projection of AU into S.
Integrating this equation in time, we find

T
(39) ||wg<-,T)||2+||wu<-,T)||2+2u/0 V]2t
T T
2 -2 _ 2
5“/0 IV gull?dt + Ch /Onv& w(VE)||2dt
T
+C [ 10l + el a
0
T
+c/ (52160 |” + (| Gu)elI” + el 2] dt + CH210ua (-, O)?
0

T T
+ Ch_2/ |AU — n(AU)|]*dt + Ch? / [ (Ve) II? + [[Vebe[*] dt
0 0
+ OV (UL(,0) = U, 0))|]?
It is easily shown that

m (Vo) < Vel
Using (40) and the inverse estimate (12), we find

T
(40) e (- T2 + ||¢u<~,T)||2+u/0 1V ol P

T
<O ¢ [ Il + v ] .
0

Applying Gronwall’s inequality and the triangle inequality, we obtain the follow-
ing:

THEOREM 4.2. Let the assumptions A1-A6 hold. Assume the finite element
solutions &p, Up, ApUy, and Xy to (15)-(21) exist and are unique. Then there exists
a constant C' independent of h such that

(41) U ~Un)llemgo/rica) + 1€ = Enlle=(oric2) < CH'

We remark that this rate of convergence is the same as that obtained in our earlier
paper [3].
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5. A nonlinear model. Realistic shallow water models are nonlinear. For ex-
ample, the term GV¢ in the momentum equation (2) is actually gHVE, where g is
gravitational acceleration (assumed constant). Moreover, an advection term vV.U’/H
is also present. There are also forcing terms (Coriolis force, wind stress, tide poten-
tials, bottom friction) present in the equation; we will assume these are known, and
for simplicity lump them into the term F. Thus (2) becomes

2

U
(42) U, +gHVEF V- —pAU = F,
H
and the GWCE (5) becomes
U2
+uV - AU+ V. -F=0.
Let
U2
I'=oH R
gHVE+V T
and
U2
ry=gHyVE+ V- =2,
Hy
where
(44) Hy = hy + &

Let '), (7wI') denote the L? projection of I'y (I') into S,. Our finite element
method 1s defined as follows. We choose the initial data and define the discrete
Laplacian as before. Then, for ¢ > 0,

(45) ((€n)et,v) + (7, Vo)
— p(A UL, Vo) — (F, Vo) + (g, -v,v) =0, veESp,

((Uh)t’w)"i'ﬂ(VUh:vw) = _(Fh’w)"i'(f’w)
(46) = —(nly,w)+ (F,w), wES?L,
and
(47) wAp, we) = (Up)e, ws) + (I'n, ws)

+u(VU R, V) — (F,un), ws € S

For the error analysis below, we will assume that a constant K exists such that
AT, |[€nllcoe(o,msco0) F [UR| oo (0,7:000) < K,
and that positive constants H.., H*™* exist such that
A8. Hyo < Hp, < H**.
Using an induction argument as in [3], one can show that K, H.. and H** are
independent of h for h sufficiently small, for polynomials of degree two and higher.
We will also assume that
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A9. & hy, U e WL(Q), T € HY(Q).
Define t¢, Y, 0 and 0y as before. Integrate (45) in time and substract the
analogous equation obtained from (44) to find

(48) ((e)nt) = (el 0),0) + ( / #(T — I'y)ds, Vo)
+((0)e,v) + ﬂ(/o (AU — AU)ds, V)
+(/t(F —nI)ds, Vv), v e Sp.

Integrate (46) and (47) in time and subtract the analogous equation obtained from

(42) to find

t

(Yu,w) = (/0 7(I' — I'y)ds, w) + ;L(/O (ApUp — AU)ds, w) + (O, w)
—(Ou(-,0),w), we S,
From (46) and (42) we obtain
(49)  (($u)ow) + u(Vu, Vo) = (T = Tayw) + ((Bu)sw), w e S,

Setting v = te, w = m(Vife) in (49) and w = 1y in (49). Subtracting (49) from
(48) and adding (49) we obtain

(50) ((¥e)e, ve) + (Yu ), Yu) + p(Vibu, Vipu)
= ((¥e)e(+,0),v¢) + (Y, VPe) + H(/O (AU — n(AU))ds, m(Vipe) — Vi)

+ (At(r - FF)dS,Vl/)g) + (6U17rv’l/)§) - (HU(’O)wﬂ-vwE)
+ (F - Fh)ai/)u) + ((gu)t,¢u)~

The fourth and seventh terms on the right side of (50) are handled as follows.

t t
61 ([ @-ar)ds e < On7| [ (- aD)ds| + On*| Vv
0 0

< CRUTD 4 Oyl
Uu* U}
H  Hy
= (gh V(€ — &), Yu) + 5(VE = VE}, V)

(52)  (I'=Tn,pu) = (GHVE=gHVE, Pu) + (V- ( ) Yu)

= g€ — &,V - (hytpm)) — L(€2 — €2,V - yur)

2
U?H, -UIH
—(———"—V
( HHh 3 1/)11)
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= 96— 6. V- (hotu)) = J(E€ = €. V- )
_(UQ(Hh — H) - H,(U* -U3)
HHy,
Cllwell® + Cllbe]|* + Cllvull®

7
+C110ull” + SV iull®

) ku)

IN

Combining (50), (51) and (53), choosing ¢ sufficiently small, using bounds previ-
ously derived for the remaining terms, and integrating in time, we obtain

T
(53) ||¢g<~,T)||2+||wu<~,T)||2+u/0 11V |l
T
sch2<’—”+c/ [lell? + 1) dt.
0

Using Gronwall’s Lemma we obtain the following.

THEOREM b.1. Assume the finite element solutions &, Uy, AUy, and Ay to
(15), (16), (45), (18), (46), (20) and (47) exist and are unique. Let the assumptions
A1-A9 hold and assume h s sufficiently small. Then, there exists a constant C
independent of h such that

(54) U = Ugllco(o,1:c2) + 1€ = Enlleo(o,1;c2) < Ch=1.

6. A discrete time method. In this section, we return for simplicity to the
linear model presented in section (1), with g = F = 0, and formulate a discrete time
method. We extend our continuous-time stability argument presented in section (4)
and show that the discrete scheme satisfies the same stability bound. We leave the
derivation of error estimates for this scheme to the reader.

Choose a time step At > 0 and set t* = kAt, k = 0,1,.... Denote g(t¥) by g*.
A discrete time scheme based on (2) and (3)-(6) can be defined as follows. We define
the initial approximations ¢p and U" as before, see (15), (18). We enforce the initial
condition (6) by

1 _ ¢0

(55) (£hAt£h’U)+(v'U0aU):0a v E Sy

Then, for k =1,2,...,

(56) (gt w) + (GVEE w) + u(VUS, Vw) =0, weS],
(57) /,L<Ai,'lUb> = (hAitthb) + (Gvgiawb)

+u(VU, V), wy € S7%,

(58) (ALUY w) = —(VUS, Vw) + (A} w), w € Sy,
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and

k+1 k k-1
(59) ( h 2£h+£h
At?

Note that, at each step in the above procedure, the matrices which arise are

) 4 (G (VER), Vo) — (AR US Vo) =0, veS,.

symmetric and positive definite, and independent of time.

We now extend the stability argument given above for the continuous time scheme
to this discrete scheme. This argument can also be used to show uniqueness (hence
existence) for the solutions to the system give above.

Adding (56) and (58) and using the definition (58) of A,U%, we find
Ut _ k!
(60) (——t— o w) + (GVE,w) — (AU w) =0, w € Sh.
Multiplying this equation by A¢ and summing on &, k& = 1,..., n, for some integer
n > 0, we find

(61) (U, w) + (i: GVER AL, w)

- p(z AhUﬁAt,w) = (U%,w), wE Sy
k=1

Multiplying (59) by At and summing on k we obtain

n+1 _¢n n
(62) G ) 1 (3 Gr(veh) At v)
k=1
& — &

k _
— p(d_ ARURAL, V) = ( N

k=1

Setting v = &2+ in (62) and w = 7(VERH!) in (61), substracting (61) from (62)
and substituting (55), we find

,v), v E Sh.

n+1 _ £n
(63) (A6t = UL V) = (V- ULgT) + (UL Ve,
Setting £ = n in (56) and w = U}, we obtain

UZ_UZ_l n n (12 n n
(64) (Tth)'i'/'LHVUhH = —(GVE&,Uy).

Adding (63) and (64), using the inequality a(a — b) > (a? — b?)/2, and integrating by
parts we find

&R+ = leR1I® n [URI* =[O,
At At

(65) +ullVUR|I?

Multiplying (65) by At and summingon n, n = 1,2,..., N where N > 1 is an
integer, we find

N
(66) IEFH P+ U1 + 1 Y [IVUR|Pdt

n=1
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N+1
< &P+ UL +C Y llerIPAt

n=1

N
Il n
+ 52 IVU?| At
n=1

Finally, we note that, by (55), setting v = ¢} we find
(67) €A1 < €111+ AtV - UR]|.

Combining (67) with (66) and applying the discrete version of Gronwall’s inequality
we obtain the following.
LEMMA 6.1. For the case g =0 and F =0, N a positive integer and At > 0,

(68) IR+ TR I < C ([€°1 + 1U°) + AtV - T°]]).
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