Preconditioning Newton’s Method

Alv Bouaricha, Jorge J. More’, and
Zhyyun Wu

CRPC-TR98762
May 1998

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted August 1998; Also available as Argonne
Preprint ANL/MCS-P715-0598

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

PRECONDITIONING NEWTON’S METHOD

Ali Bouaricha, Jorge J. Moré, and Zhijun Wu

Mathematics and Computer Science Division

Preprint ANL/MCS-P715-0598

May 1998

This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Computational and Technology Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38, and by the National Science
Foundation, through the Center for Research on Parallel Computation, under Cooperative
Agreement No. CCR-9120008.

ABSTRACT

The development of algorithms and software for the solution of large-scale optimization

problems ...

PRECONDITIONING NEWTON’S METHOD

Ali Bouaricha, Jorge J. Moré, and Zhijun Wu

1 Introduction

Algorithms for the solution of large-scale unconstrained minimization problems include
conjugate gradient methods, limited memory variable metric methods, and Newton meth-
ods. In this paper we compare and contrast these algorithms, and show that the efficient
and reliable solution of large-scale unconstrained minimization problems requires a New-
ton method. Moreover, we describe a Newton method that has proved to be efficient and
reliable on optimization problems from applications.

Conjugate gradient methods for the minimization of a nonlinear function f: R” — R

generate xxy1 from z by setting

Th+1 = Tk + ardy,

where the scalar oy is chosen by a line search, and the direction dj is generated by a

recurrence of the form

dy = =V f(zr) + Brdr_

for some 3y > 0. These methods only require a small number (5 is typical) of vectors of
storage, but tend to require a large number of iterations for convergence. In most cases,
better performance is obtained by a limited memory variable metric method.

Limited memory variable metric methods differ from conjugate gradient methods in that

the user is allowed to choose the number of vector of storage, and in each iteration,

Tpy1 = Tk — o HE V f(z)

where the symmetric, positive definite matrix Hj is determined by m vectors obtained
during the previous m iterations, and stored in compact form so that the product H;V f(z)
only requires order mn flops (floating point operations). The number of iterations usually
decreases as m increases, but the cost per iteration increases. In practice a choice of m =5
is reasonable.

Limited memory variable metric methods have several advantages. For example, they
only require the user to provide code for the evaluation of the function and the gradient,

and the required storage is fixed. On the other hand, they tend to fail on difficult problems.

This work was supported by the Mathematical, Information, and Computational Sciences Division
subprogram of the Office of Computational and Technology Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38, and by the National Science Foundation, through the Center for Research on
Parallel Computation, under Cooperative Agreement No. CCR-9120008.

Even if they converge, their rate of convergence can be too slow to obtain an accurate
solution, if compared with a Newton’s method. We will come back to this point when we
discuss numerical results at the end of this paper.

An important difference between variations of Newton’s method is how they obtain the
Newton step. Implementations of Newton’s method that use a direct method to obtain the
step are not suitable for many large problems because of their cost in terms of computing
time and storage. We prefer a variation of Newton’s method that uses an iterative method
to obtain the step because if properly preconditioned, this variation is efficient and reliable.

In this paper we propose a trust region version of Newton’s method that uses an incom-
plete Cholesky decomposition and the conjugate gradient method to obtain the trust region
step. In this algorithm the step s, between iterates is an approximate solution to the trust

region subproblem
min {gx (w) : || Dywl|] < Ay},

where g : R™ — IR is a quadratic model of the function at the current iterate, Dy is a
scaling matrix, Ay is the trust region radius, and || - || is the /3 norm. The trust region
version of Newton’s method is described in Section 2, and the computation of the step in
the trust region method is described in Section 3.

Other codes that are suitable for the solution of large-scale unconstrained minimization
problems include LBFGS (Liu and Nocedal [15]), TN (Nash [20]), TNPACK (Folgeson and
Schlick [26, 27]), SBMIN (Conn, Gould, and Toint [7, 6, 8]), and STENMIN (Bouaricha
4, 5)).

LBFGS is a limited memory variable metric method, TN and TNPACK are truncated
Newton methods, and STENMIN is a tensor code that bases each iteration on a tensor
model of the objective function. Of these codes, only TN and TNPACK use precondition-
ers. Both TN and TNPACK algorithms use a preconditioned conjugate gradient method
to obtain the Newton step. The preconditioner used in TN is a scaled two-step limited
memory BFGS method. In TNPACK however, the user must supply a preconditioner; if the
preconditioner is not positive definite, a modified Cholesky decomposition is used to obtain
a positive definite preconditioner. The success of TNPACK clearly depends on the precon-
ditioner. If the user supplies the Hessian matrix as a preconditioner, TNPACK reduces to a
line search version of a modified Newton’s method. With the Hessian as a preconditioner
TNPACK would not be suitable for large problems, so the preconditioner must be chosen
with care. SBMIN is the implementation of Newton’s in the LANCELOT package. Although
our algorithm and the SBMIN algorithm rely on the trust region philosophy,the codes are
quite different. We detail some of the differences in Section 3.

In this paper we consider a preconditioner based on the incomplete Cholesky factor-
ization of Jones and Plassmann [13] with the modifications proposed by Chin and Moré

[14] for the solution of trust region subproblems. This version of the incomplete Cholesky

factorization has predictable storage requirements, a dynamic sparsity pattern, and does
not require the specification of a drop tolerance. These advantages make this incomplete
Cholesky factorization an attractive ingredient in an optimization code. The SBMIN code,
on the other hand, uses the incomplete Cholesky factorization of Munksgaard [19] that has
unpredictable storage requirements and requires the specification of a drop tolerance. As
shown by Chin and Moré [14], codes that require the specification of a drop tolerance suffer
from erratic behavior.

The test problems described in Section 5 come from the MINPACK-2 test problem col-
lection [1] since this collection is representative of large-scale optimization problems arising
from applications. We considered using the CUTE collection [3], but found few large scale
problems that arise in applications.

The purpose of the numerical experiments in Section 6 is to analyze the performance
of our implementation NMTRS of a trust region version Newton’s method and to compare
this code with the limited memory variable metric code VMLM. The results show that
Newton’s method is superior to the limited memory variable metric method VMLM in
terms of computing time, and usually requires far fewer function and gradient evaluations.
We emphasize that the cost of the function and gradient evaluations of the MINPACK-2
test problems is moderate since these are model problems that have been coded with care.
On problems with more expensive function and gradient evaluations, Newton’s method is
likely to be the winner because of it requires a smaller number of function and gradient
evaluations.

Numerical results for limited memory variable metric method and truncated Newton
methods have been obtained by Phua [23], Nash and Nocedal [21], Gilbert and Lemarechal
[10], Zou et al. [30], Papadrakakis and Pantazopoulos [22], and Lucidi and Roma [16].
Interestingly enough, the implementations of Newton’s method in these papers do not use

preconditioning. Is this true?

2 Newton’s Method

At each iteration of a trust region Newton method for the minimization of f: R" — R we

have an iterate zx, a bound Ay, a scaling matrix Dy, and a quadratic model
qr(w) = Vf(zp)Tw + %wTBkw

of the possible reduction f(zx + w) — f(zy) for |Drw|| < Ag. Given a step s, the test
for acceptance of the trial point z; 4+ sp depends on a parameter 79 > 0. The following

algorithm summarizes the main computational steps:

For £k =0,1,..., maxiter

Compute the quadratic model g.

Compute a scaling matrix Dy.
Compute an approximate solution si to the trust region subproblem.
Compute the ratio pp of actual to predicted reduction.

Set k41 = zx + sx if pr > no; otherwise set 241 = 2. Update Ag.

In this section we elaborate on this outline and on our implementation of the trust region
Newton method for large-scale problems.

The computation of the model g; requires the gradient and the approximate Hessian
matrix By. In this work, By is usually either the Hessian matrix V2 f(z}), or a symmetric
approximation to the Hessian matrix obtained by differences of the gradient.

The iterate z; and the bound Ay are updated according to rules that are standard in
trust region methods. Given a step s such that ||Dgsi|| < Ag and gx(sg) < 0, these rules

depend on the ratio
f(zp 4 sg) — flax)
qx (sk)

of the actual reduction in the function to the predicted reduction in the model. Since the

(2.1)

pr =

step si is chosen so that gx(si) < 0, a step with px > 0 yields a reduction in the function.
Given 19 > 0, the iterate 2 is updated as in the basic algorithm, that is, 2541 = 21 + sg if
Pr > Mo, otherwise ;41 = 2. The updating rules for Ay depend on constants 7, and 7,
such that

0<mo<m <m <1,

while the rate at which Ay is either increased or decreased depend on constants oy, oy, and
o3 such that
0<op <o <1<os.

The trust region bound Ay is updated by setting

Ak+1 € [UlAk,UgAk] if Pk < m
Apy1 € [01A,03A] if pr € (71, 72)
Apy1 € [Ag, 03A%] it pr > n2.

We choose a step s; that provides an approximate solution s to the trust region subproblem
min {ge(w) ¢ | Dy < A}

There is no need to compute an accurate minimizer; the main requirement is that the step
sg give as much reduction in the model ¢; as the Cauchy step sg, that is, a solution to the
problem

min {qr(w) : || Dywl|| < Ag, w=—vVf(xg), v € R}.

This requirement guarantees global convergence of the trust region method under suitable

conditions.

The above outline of a trust region Newton method is standard. The main differences
appear in the method used to compute the step s; and the use of the scaling matrix Dy.
We discuss the algorithm used to compute the step s; in Section 3, and the scaling matrix

in Section 4.

3 Computation of the step

The computation of the step in an unconstrained trust region method requires an approxi-

mate solution of the subproblem
min {q(s) : | Dsl| < A}, (3.1)
where D is the scaling matrix and ¢ : R” — R is the quadratic
q(s) =gTs+ %STBS.

In this formulation g is the gradient at the current iterate and B is the approximate Hessian
matrix. In this section we describe the method used to compute the step, and contrast our
approach with others that have appeared in the literature.

In our approach we transform the ellipsoidal trust region into a spherical trust region
and then apply the conjugate gradient method to the transformed problem. Thus, given

the problem (3.1), we transform this problem into
min {(w) : [lu]] < A}, (3.2

where

~

jw)=g"w+tw"Bw, G=D"'g, B=D'BDT.

Given an approximate solution of (3.2), the corresponding solution of (3.1) is s = D™ Tw.
We are interested in the solution of large-scale problems, and thus the conjugate gradient

method, with suitable modifications that take into account the trust region constraint and

the possible indefiniteness of E, is a natural choice for computing a step w. The global

convergence theory of the trust region method only requires that
g(w) < Bg(s°), (3.3)

where s¢ is the Cauchy step and (3 is a positive constant, but for fast local convergence we

need
IVa(w)|l < &[IVa(0)]], (3.4)

where £ € (0,1) is a constant that may depend on the iteration.
At the moment we leave the matrix DD unspecified. The main requirement on D is
that the resulting B must have clustered eigenvalues. As we shall see in Section 4, this

requirement is satisfied by choosing D from an incomplete Cholesky factorization of B.

The classical conjugate gradient method for minimizing the quadratic ¢ generates a

sequence of iterates {wg} as follows:

Let wg € R™ be given. Set ro = —(g + Ewo) and dy = rg.
For k=0,1,...,

Compute oy = ||ry||?/(df Bdy).

Update the iterate: wgy1 = wg + agdk.

Update the residual: rgqyq = rp — akédk.

Compute S = [lre41|*/|[7x/*.

Update the direction: dgy1 = rp+1 + Brdy.

Since the trust region (3.2) is centered at the origin, we choose wy = 0. With this choice,
the conjugate gradient method generates iterates wy, ..., w,, where m is the largest integer
such that d%f?dk > 0 for 0 < k < m, such that

¢(wg) = min {(?(w) Tw E span{ro,ﬁfro, .. .,Ek_lro}}, 0<k<m.

The conjugate gradient method terminates with r,, = 0 or with d%édm < 0. These
properties of the conjugate gradient method are well-known, see, for example, Hestenes and
Steifel [12], Hackbusch [11], Axelsson [2], or Saad [25]. We also need to know that since we

have chosen wg = 0, the iterates satisfy
[we]] < [lwrgrll, 0 <k <m.
This result was first obtained by Steihaug [28] from the inequality
(wy1 — wi) T (wjp — w;) > 0, Jj<k.

As we shall see, this result is of importance to our development.
We claim that as the conjugate gradient method generates iterates for the trust region
problem (3.2), there is an index k with k < m such that ||wg|| < A and one of the following

three conditions holds:
Irell <€IGI dEBdr <0 Jjwpga > A. (3.5)

Clearly, if we continue to generate iterates with ||wg|| < A then one of the first two conditions
in (3.5) will hold for some k < m; otherwise, we must exit the trust region at some iterate,
and then the third condition holds.

Given an iterate wy that satisfies the conditions in (3.5), we can compute a suitable
step w. If for some € € (0,1) and 0 < k < m we have ||wg|| < A and |[|rg]| < €]|g]|, then we

accept w = wy, as the step. In this case w is a truncated Newton step. If ||wg| < A and

dT Bdy < 0, or if ||wg|| < A and ||wes]| > A, let 7, > 0 be the unique positive solution to
the quadratic equation

|lwr, + Tdi|| = A,

and set w = wy + 7di. In all cases we have
G(w) < min{q(w),(s)},

for the final step w, and thus this choice of step satisfies the sufficient decrease condition
(3.3) of trust region methods.
Steihaug [28] suggested the trust region step described above, but his description was

in terms of the preconditioned conjugate gradient method applied to the problem
. T\ 1
min< q(s): (s'Cs)2 < A¢,

where C' is a positive definite matrix. The preconditioned conjugate gradient method for

minimizing ¢ takes the following form:

Let so € R™ be given. Set rqg = —(g + Bsg) and dy = qo where Cqg = ro.
For £k =0,1,...,

Compute oy = (r{ qr)/(d} Bdy).

Update the iterate: sgp4q = si + axdk.

Update the residual: riy1 = ry — o Bdy.

Solve C'qxy1 = Tgt1-

Compute i = (rFy1qes1)/ (T).

Update the direction: dg41 = qr41 + Brdi.

The relationship between this algorithm for generating {si}, and our algorithm for
generating {wg} is that if C' = DTD then Ds; = wy. This can be verified by an induction
argument. Thus, the two methods are equivalent. However, our approach based on the
subproblem (3.2) is more direct. Moreover, we deal with the scaling matrix D directly, and
not through the matrix C' = DT D.

Conn, Gould, and Toint [7, 6] and [8, Sections 3.2 and 3.3] also use the preconditioned
conjugate gradient method to compute steps in a trust region method. In their approach,

the trust region subproblem

min {q(s) : [[s[loc < A}

has no scaling matrix and uses the [, norm. A preconditioned conjugate gradient method
is used to generate the steps {s;}; the preconditioner is a diagonal matrix in [7, 6], while
more general preconditioners are used in [8].

A disadvantage of the Conn, Gould, and Toint [8] approach is that they cannot rely on
the property that {||sx||} is monotonically increasing; instead, they have that {s!Cs;} is

monotonically increasing, where C' is the preconditioner. As a consequence iterates may
enter and leave the trust region several times. This does not destroy the global convergence
properties of the algorithm, but can lead to poor behavior because we would expect later
iterates to produce better steps. In particular, if the first iterate exits the trust region, then

their approach generates a steepest descent iterate.

4 Incomplete Cholesky factorizations as preconditioners

The efficiency and reliability of the algorithm for computing the trust region step depends
on the preconditioner. There are many widely used preconditioners, ranging from diagonal
to full-matrix preconditioners. However, choosing a good preconditioner for a given problem
has always been a difficult task. Diagonal or band preconditioners may not be successful if
the essential part of the Hessian matrix is not contained within the diagonal or the band,
respectively. Full-matrix preconditioners, on the other hand, may be prohibitive if it is too
expensive to factor or store the Hessian matrix. In this section we describe a preconditioner
based on the incomplete Cholesky factorization.

Given a symmetric matrix B and a symmetric sparsity pattern §, an incomplete Cholesky

factorization is a lower triangular matrix L such that
B=LLT+R, [;;=0if(i,))¢S, ri;=0if(i,5)€S. (4.1)

The incomplete Cholesky factorization may not exist for a general symmetric matrix B.
Existence of the incomplete Cholesky factorization is only guaranteed if B is an H-matrix
with positive diagonal elements. For additional information on incomplete Cholesky factor-
izations, see Axelsson [2], or Saad [25].

A difficulty with an incomplete Cholesky factorization is that it is not clear how to
choose the sparsity pattern § for the numerical factorization. We could choose S to be the
sparsity pattern of B, but it is usually advantageous to allow some fill. Several approaches
for defining S have been proposed. IFixed fill strategies (Meijerink and Van Der Vorst [18])
fix the nonzero structure of the incomplete factor prior to the factorization. Drop tolerance
strategies (Munksgaard [19], for example) include nonzeros in the incomplete factor if they
are larger than some threshold parameter. Thus, the number of nonzeros in the incomplete
factor is unknown prior to the factorization.

Another difficulty with an incomplete Cholesky factorization is that the factorization
may fail or be unstable for a general positive definite matrix. The standard solution for
this situation is to increase the size of the elements in the diagonal until a satisfactory
factorization is obtained. See, for example, Manteuffel [17] and Munksgaard [19].

The strategies described above require that the user impose a fixed sparsity pattern on
the Cholesky factor or specify a drop tolerance. Jones and Plassmann [13] and Saad [24, 25]

have proposed factorizations in which the sparsity pattern is determined by the relative size

of the elements in the factorization, and by the available storage. Our approach is closely
related to the factorization proposed by Jones and Plassmann, but the ILUT factorization
of Saad is similar.

Jones and Plassmann retain the my largest nonzeroes in the off-diagonal part of the k-th
column of L, where my is the number of nonzero off-diagonal elements in the k-th column of
the lower triangular part of B. Thus, the number of nonzeros in the incomplete factor is the
same as in the original matrix. The numerical results of Jones and Plassmann show that
significant improvements in performance are obtained on problems generated from finite
element models, and on problems from the Harwell-Boeing sparse matrix collection. Their

algorithm can be summarized as follows:

Algorithm 4.1 Let B be a symmetric matrix, and let my be the number of nonzero off-

diagonal elements in the k-th column of the lower triangular part of B.

For k=0,1,...,
Compute the elements in the k-th column of L.
Select the my nonzeros in the k-th column of L with the largest magnitude.

Update the last n — k diagonal elements of L.

Algorithm 4.1 is an outline of the incomplete Cholesky factorization that we use. For
additional information, see Lin and Moré [14].

The performance of Algorithm 4.1 depends on the size of the elements of B. For a
general positive definite matrix B, Jones and Plassmann [13] recommended computing a
scaled matrix

B=D"'?Bp~1/2 D = diag(b;;),

and using Algorithm 4.1 on Br = B + a3l for some oy > 0. If the incomplete Cholesky
factor of Ek is ik, then L, = Dl/Qik is the factor of B + a;D. The algorithm used to
generate o was to start with ag = 0, and increment aj by a constant factor (0.01) until
Algorithm 4.1 succeeded.

This approach does not extend to general indefinite matrices. In the general case B
may have zero or small diagonal elements, and then the scaling above is almost certain to
produce a badly scaled matrix. We also note that the strategy of adding a constant factor
to the diagonal is not likely to be efficient in general.

In our approach we scale the initial matrix by the /5 norm of the columns of B. Scaling

by the [norm of the columns of B works better than setting
D = diag{|b; |, €}, or D = diag{max(b;;, ¢)},

for some € > 0, which are scalings that are commonly used in optimization (see, for example,
Gay [9], Conn, Gould, and Toint [8, page 125]. The following algorithm specifies our strategy

in detail.

Algorithm 4.2 Let B be a symmetric matrix.

Choose ag > 0.
Compute B = D=Y/2BD=1/2 where D = diag(|| Be;||2).
Set ag = 0 if min(gﬁ) > 0; otherwise ag = — min(gii) + as.
For k=0,1,...,
Use Algorithm 4.1 on Ek - B + a1 exit if successful.

Set apy1 = max(2ag, as)

For any ay, this algorithm is guaranteed to generate an H-matrix B, for some k > 0. Hence,
the incomplete Cholesky factorization exists. The choice of ag = 0 is certainly reasonable if
B is positive definite, or more generally, if B has positive diagonal elements. A reasonable
initial choice for ag is not clear if B is an indefinite matrix, but our choice of ag with
as = 1072 seems to be adequate.

Algorithm 4.2 produces the incomplete Cholesky factor Ly, of the final B’k, and thus
L, = D1/2ik is the factor of B4ay D. Since we are interested in using Ly as a preconditioner

for B in the conjugate gradient method, we want the preconditioned matrix

L'BL;T = 1Bt
to have clustered eigenvalues. We give an idea of the behavior of L as a preconditioner by
plotting the eigenvalues of B and of the preconditioned matrix LI;IBL;T for two problems.

Figure 4.1 is a plot of the eigenvalues of B and of the preconditioned matrix for the msa
problem with n = 100 variables. In this problem the Hessian matrix is positive definite and
Algorithm 4.2 produces the incomplete Cholesky factorization with ag = 0. Note that the
eigenvalues of the preconditioned matrix are clustered and that the condition number of the
preconditioned matrix is reduced. The important effect is the clustering of the eigenvalues.

The plot in Figure 4.1 is fairly typical of the positive definite problems that we have
tried, and thus we expect good behavior from the conjugate gradient method. For more
information on the effect of clustering on the convergence behavior of the conjugate gradient
method, see Van der Vorst [29]. We now consider indefinite problems.

Figure 4.2 has the plots of the eigenvalues of B and of the preconditioned matrix for a
randomly generated sparse symmetric matrix of order 100. We used the sprandsym function
in MATLAB with a density of 0.05 and a distribution of eigenvalues defined by

k-1
A = prl10°F, s = ncond ()
n—1

where py is uniformly distributed in [—1, 1] and ncond = 8. For this problem Algorithm 4.2
produced the incomplete Cholesky factorization with ay = 3.
Since the Hessian matrix is indefinite, we have plotted the magnitude of both the positive

and the negative eigenvalues. The plots of the eigenvalues of the original matrix are on the

10

10 .

10" ¢

10°F 1

10~ I I I I I I I I I

10

10— I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Figure 4.1: Eigenvalues of B (top) and L;'BL;T (bottom) for the msa problem

top of Figure 4.2, while the plots of the eigenvalues of the preconditioned matrix are on
the bottom. These plots show that Algorithm 4.2 tends to cluster the eigenvalues of largest
magnitude, and tends to reduce the condition number of the preconditioned problem. In
general we do not get the almost spectacular clustering shown in Figure 4.2, but clustering
of the largest positive eigenvalues does seem to be a general trend. In a trust region
method we would want to have clustering of the positive eigenvalues because the algorithm
for computing the step in Section 3 terminates successfully once the conjugate gradient

method determines a direction of negative curvature.

5 Large-Scale Optimization Problems

Most of our test problems come from the MINPACK-2 test problem collection [1] since this
collection is representative of large-scale optimization problems arising from applications.
Below we give brief descriptions of the infinite dimensional version of these problems, and of
the finite dimensional formulations. The MINPACK-2 report contains additional information
on these problems; in particular, parameter values are chosen as in this report.

The optimization problems that we consider arise from the need to minimize a function

f of the form
f(v) = /DCD(:U,U,VU) de, (5.1)

where D is some domain in either R or R%, and ® is defined by the application. In all
cases f is well defined if v : D +— R? belongs to H'(D), the Hilbert space of functions such

11

10 - 10
w0 e ’ e
10 wt
10° 107
10°® 10°
107 ‘ 107 "
0 20 40 60 o 20 e -
L S ——— 10°
107
107 G0
10° 10°
10°
107 ‘ 107 s
0 20 40 60 0 20 20 -

Figure 4.2: Magnitude of the eigenvalues of B and LI;IBL;T for a randomly generated
sparse indefinite matrix of order 100. The positive and negative eigenvalues of B are on
the top left and top right, respectively. Similarly, the positive and negative eigenvalues of
L;IBL;T are on the bottom left and bottom right, respectively.

that v and ||Vv|| belong to L?(D). This is the proper setting for examining existence and
uniqueness questions for the infinite-dimensional problem.

Finite element approximations to these problems are obtained by minimizing f over the
space of piecewise linear functions v with values v; ; at 2z;;, 0 <4 <mn, +1,0 <7 <n,+1,
where z; ; € R? are the vertices of a triangulation of D with grid spacings A, and h,. The
vertices z; ; are chosen to be a regular lattice so that there are n, and n, interior grid points
in the coordinate directions, respectively.

Lower triangular elements 717, are defined by vertices z; ;, 241, 2i j+1, while upper tri-
angular elements Ty are defined by vertices z; j, 2,1, 2; j—1. The values v; ; are obtained

by solving the minimization problem

min {Z (f]-(v) + f,]](v)) HONS]Rn}7

where ffj and fi’; are the finite element approximation to the integrals in the elements 77,
and Ty, respectively.

The elastic plastic torsion (ept) and the journal bearing problem (jbp) are quadratic
problems of the form

min{f(v): v € K}, (5.2)
where f: K — R is the quadratic

10) = [{Fwi@IVo@) I - wie)o(z)} de,

12

where wy : D — R and w; : D — R are functions defined on the rectangle D. In the ept

problem w, =1 and w; = c¢. For our numerical results we use ¢ = 5. In the jbp problem

wq(51752) = (1 + GCOS&)S, wl(fb&) =esin &

for some constant ¢ in (0,1), and D = (0,27) X (0,2b) for some constant b > 0. For our
numerical results we use ¢ = 0.1 and b = 10.
The steady state combustion (ssc) problem and the optimal design with composites

(odc) are formulated in terms of a family of minimization problems of the form
min{f\(v) : v € H}(D)}.
For the ssc problem f) : H}(D) — R is the functional
— 1 2112 = , ,
)= [{HITv@)IE = Aexplo(e)]} da,
and A > 0 is a parameter. For the odc problem
B = [{on (V@) + vi) b da,

and 9, : R — R is the piecewise quadratic

t27 OStSth
PA(t) =S 2t (t — 3ty), t <t <ty
T2 —13) + 261 (2 — 1), ty < t,

with the breakpoints #; and t; defined by t3 =)\, t3 = 2X. In our numerical results we
consider the problem of minimizing fy for a fixed value of A; for the ssc problem A = 2,
while for the odc problem A = 0.008.

The minimal surface area (msa) problem is an optimization problem of the form (5.2)
where f: K — R is the functional

= [(1+1vv@)R) " ds,
and the set K is defined by
K = {v € H'(D) : v(z) = vp(z) for z € (?D}

for the boundary data function vp : 9D — R that specifies the Enneper minimal surface.
In all the problems so far v has been defined in some domain in R% For the one-
dimensional Ginzburg-Landau problem (gll) v is defined in a subset of R. This problem is
defined by
min{f(v) : v(=d) = v(d), v € C'[~d,d]},

13

where 2d is a constant (the width of the superconducting material), and

B %/ {a@©F + 38RO + 11O} de.

The functions o and 8 are piecewise constant, and 7 is a (universal) constant.

The Ginzburg-Landau problem (gl2) can be phrased as an optimization problem of the
general form (5.1), where v is defined in R*. The first two components represent a complex-
valued function ¢ (the order parameter), and the other two components a vector-valued

function (the vector potential). The dimensionless form of this problem is

min{fi () + f2(, A) : ¥, A € Hy(D)},

where D is a two-dimensional region,

@) = [{=0@)F +)"} da,
ae) = [{15 - @] 2w x e} o

and x is the Ginzburg-landau constant.

6 Numerical Experiments

Our aim in this section is to analyze the performance of the NMTRS code that implements
a trust region version of Newton’s method. In particular, we compare the performance of
the trust region code with the limited memory variable metric code VMLM since several
numerical studies have shown that algorithms of this type compare well with other codes
for the solution of large-scale problems.

We consider the behavior of the algorithm as the number of variables n varies between
2,500 and 40,000 since one of our purposes is to study the behavior of these algorithms as
the number of variables increases and to show that the trust region code can easily produce
solutions for problems where the number of variables is in this range.

For most of our results we imposed a limit of one hour of computing time per problem,
and a limit of 5,000 gradient evaluations. Our computations were performed on a Sun
SPARC 10 workstation using double precision arithmetic. The termination test used in

these results was

IVf @) <7V f(zo)ll, 7=107"

This test is scale invariant, and scales as the number of variables increases, but we do not
recommend this test as a general termination test for optimization algorithms. The choice

of 7 = 1075 tests the ability to solve optimization problems to moderate accuracy.

14

700

6001
5001
4001
3001

200 |
4

100 L L
50 100 150 200

Figure 6.1: Number of iterations of VMLM as a function of n'/?2

In the trust region algorithm we accept 241 as a next iterate if the ratio py in (2.1) is

bigger than 10~%; otherwise we update the trust region radius as follows:

Apy1 =05 Ay if pg < 0.25
Aps1 = Ap if pr € (0.25,0.5]
Aps1 = 2.0 Ay if py € (0.5,0.9]
Apsy1 =4.0 A, if pg > 0.9

We chose Ag = min(1000.0 || g(zo) ||,1000.0), where g(z¢) is the gradient value at the
initial guess xg. We selected this value of Ag based on the experimental test results. In the
conjugate gradient iterative algorithm, the value of £ in (3.4) is set to 1072 for all our tests.

We have to change the way A is chosen; the above choice stinks!

Table 6.1 contains a summary of the results for the NMTRS and VMLM codes on the
MINPACK-2 large-scale problems [1]. In this table iters is the number of iterations, nfev is
the number of function and gradient evaluations, nhev is the number of Hessian evaluations,
ncg is the number of conjugate gradient iterations, and time is the computing time (in
seconds).

An important difference between a limited memory variable metric method and a New-
ton method is that for the Newton method the number of iterations required to solve a
variational problem (such as those described in Section 5) can be independent of n. This
can be seen in Table 6.1 for most of the problems. In contrast, the number of iterations
required by a limited memory variable metric method is likely to grow with n. Table 6.1
suggests that for these problems the number of iterations grows like n'/2. This is verified
in Figure 6.1 by plotting the number of gradient evaluations required to solve the ssc and
msa problems.

Since the computing time for evaluating the function and gradient of these problems

grows linearly with n, and the number of iterations grows like n'/2 the computing time

15

Table 6.1: Performance of NMTRS versus VMLM on the MINPACK-2 test problems

NMTRS VMLM
‘ Problem ‘ n iters nfev nhev ncg time | iters nfev time
ept 2500 3 4 4 27 0.8 124 133 2.8
ept 10000 3 4 4 46 3.9 280 203 25.1
ept 40000 3 4 4 88 22.4 610 629 217.0
pjb 2500 3 4 4 32 0.8 226 236 5.1
pjb 10000 3 4 4 61 4.6 423 445 38.2
pjb 40000 3 4 4 120 28.0 823 855 310.2
gl2 2500 8 15 9 439 25.6 | 2710 2786 50.1
gl2 10000 11 17 12 1109 | 171.5 | 14831 15000 | 7368.0
gl2 40000 7 13 8 1052 | 506.9 | 14839 15000 | 11535.0
msa 2500 6 7 7 68 2.8 138 144 4.7
msa 10000 6 7 7 98 12.4 269 277 34.8
msa 40000 10 14 11 229 91.2 609 623 307.0
ssc 2500 3 4 4 33 1.4 167 176 7.5
ssc 10000 3 4 4 59 6.8 345 358 60.8
ssc 40000 3 4 4 113 35.6 588 615 414.8
gl 2500 14 23 14 62 1.5 | 4844 15000 t61.7
gll 10000 15 17 15 44 5.5 | 4847 15000 | 1246.3
gl 40000 21 30 21 61 30.9 | T4854 T5000 | 1933.0
odc 2500 40 61 41 253 20.3 260 268 11.3
odc 10000 187 274 188 858 | 362.4 410 415 69.3
odc 40000 882 1217 883 3946 | 7114.0 | 1209 1228 815.9

'Limit of 5000 function evaluations reached.

16

Table 6.2: Percentages of the computing time for NMTRS and n = 10, 000

‘ Problem ‘ f(z), Vf(z) ‘ V2 f(z) ‘ ICF ‘ CG ‘

ept 6 28 14 49
pib 5 26 12 55
gl2 1 19 47 33
msa 7 50 9 33
sscC 11 44 8 36
gll 4 28 30 33
odc 9 68 10 11

to solve these problems with VMLM grows like n3/2. In particular, this implies that if we
quadruple the number of variables in VMLM, then the computing time grows by a factor of
8. This is verified by the results in Table 6.1.

For the Newton method the computing time depends on the cost of the four main
components of the Newton iteration: the function and gradient evaluation, the evaluation of
the Hessian matrix, the incomplete Cholesky factor of the Hessian matrix, and the conjugate
gradient iteration. In general we cannot expect a linear growth in the computing cost for
Newton’s method because the number of conjugate gradient iterations is likely to grow with
n; this holds even for simple model problems like ept.

The results in Table 6.1 show that the computing time of NMTRS grows almost like n%/2.
The reason for this is that for these problems the cost of the conjugate gradient iterations
tends to dominate, and the number of conjugate gradient iterations tends to grow like n'/2.

An analysis of the computing time reveals where the computing time is spent. In
Table 6.2 we present the percentages of the overall computing time spent by the various
components of the Newton method: the function and gradient evaluation, the Hessian
evaluation, the incomplete Cholesky factorization, and the conjugate gradient iteration. In
this table n = 10, 000.

Table 6.2 shows that, with the exception of the odc and msa problems, the cost of the
conjugate gradient iterations dominates the computing time. Elaborate on this.

We tried to improve the performance of the VMLM code by increasing the number of
vectors saved. The results for m = 5,10, 15,20 appear in Table 6.3. These results show,
in particular, that the number of function and gradient evaluations usually decreases as we
increase m from m = 5 to m = 10. The 45% reduction for the gl2 problem is significant,
but the reductions are less than 20% reduction for the other problems.

The results in Table 6.3 also show that the computing time usually increases as we

increase m. Thisis certainly the case if we compare the results for m = 5 with m = 10, 15, 20.

17

Table 6.3: Performance of VMLM as a function of m for n = 10, 000

m=2>5 m =10 m =15 m = 20
Problem | iters nfev time | iters nfev time | iters nfev time | iters nfev time
ept 281 293 25 245 249 27 240 248 30 192 198 27
pjb 424 445 38 395 404 43 393 400 48 340 350 48
gl2 6067 6277 471 3345 3441 328 | 3538 3622 400 | 2701 2780 357
msa 270 277 34 222 226 32 218 226 35 220 225 39
SSC 346 358 60 279 289 54 237 242 49 241 250 55
odc 411 415 67 476 489 89 396 403 80 473 480 104

We would have expected a decrease in computing time if the cost of evaluating the function
and gradient dominated, but this is not the case for these problems. The VMLM algorithm
requires (8m + 12)n operations per iteration; the number of operations for the function
and gradient is harder to estimate since most of the problems require the evaluation of
intrinsic functions. The cost of the function and gradient evaluations relative to the internal
arithmetic of the algorithm can be measured by computing the ratio t¢/7,,, where ¢; is the
time required to evaluate the function and gradient, and 7, is the time required for the
(8m + 12)n operations. These ratios are shown in Table 6.4 for m = 5.

Given these ratios, we can predict the required reduction in the number of iterations
before we see an improvement in the execution time for VMLM. The prediction is based on

expressing the time required for convergence as
bty = (tf + Tm)”my

where n,, is the number of iterations required for convergence. We have ignored the time
required by the algorithm when the line search requires more than one function and gradient
evaluation since most iterations only require one function and gradient evaluation. Since
we expect 7, to be proportional to the number of floating point operations, 719 > 1.7 75.

Hence, t1g < t5 implies that we must have

m<tf—|-7'5 1+V5 1+V5

ns ~ tr+ 710 (Tio/7s)+vs — 174w

where v, is the ratio t7/7,. This inequality gives a bound on the required reduction in
iterations needed for a decrease in computing time. For example, this inequality shows
that for any function with v in the interval [1.4,2.3] we can only have ¢y < t5 if we have
a reduction of approximately 20% in the number of iterations; for vs = 1.4 the reduction
should be 23%, while for v5 = 2.3 the reduction should be 17%. The results in Table 6.3

confirm this analysis.

18

Table 6.4: Ratios v,, = t¢/7, of VMLM for n = 10,000 and m =5

Problem | ept pjb gl2 msa ssc odc

ti/tm | 1.4 14 10 23 35 33

The above analysis shows that if the cost of the function and gradient evaluation is
moderate relative to the cost of the arithmetic in the algorithm, then it probably does
not pay to increase the number of vectors saved. If the cost of the function and gradient
evaluation increases, then it does pay to increase m. However, then the VMLM code requires
storage comparable with Newton’s method. Moreover, for problems with expensive function
and gradient evaluations the cost of the overall algorithm will be determined by the number
of function and gradient evaluations, and as we have already seen, Newton’s method is likely
to require a smaller number of function and gradient evaluations.

Of course, there is no guarantee that increasing m leads to a reduction in computing
time. This can be seen in Table 6.3 by comparing the results of m = 5 with those for
m = 10, 15,20. Note, in particular, that gl2 is the only problem where we obtained more

than a 20% reduction in computing time by increasing m.

References

[1] B. M. AVERICK, R. G. CARTER, J. J. MORE, AND G.-L. XUE, The MINPACK-2
test problem collection, Preprint MCS-P153-0694, Mathematics and Computer Science
Division, Argonne National Laboratory, 1992.

[2] O. AXELssON, [terative Solution Methods, Cambridge Univeristy Press, 1994.

[3] 1. BoncarTZ, A. R. Conn, N. I. M. GourLp, anp P. L. ToinT, CUTE: Con-
strained and unconstrained testing environment, ACM Trans. Math. Software, 21
(1995), pp. 123-160.

[4] A. BouaricHA, Algorithm 765; STENMIN: A software package for large, sparse un-
constrained optimization using tensor methods, ACM Trans. Math. Software, 23 (1997),
pp- 81-90.

[6] ——, Tensor methods for large, sparse unconstrained optimization, SIAM J. Optim.,
7 (1997), pp. 732-756.

[6] A. R. ConNn, N. I. M. GouLD, M. LESCRENIER, AND P. L. ToINT, Performance
of a multifrontal scheme for partially separable optimization, Report 88-4, Namur Uni-

versity, Namur, Belgium, 1988.

19

[7]

[8]

[19]

[20]

A. R. Conn, N. I. M. GouLb, aND P. L. ToinT, Testing a class of methods for
solving minimization problems with simple bounds on the variables, Math. Comp., 50
(1988), pp. 399-430.

——, LANCELOT, Springer Series in Computational Mathematics, Springer-Verlag,
1992.

D. M. Gay, Subroutines for unconstrained minimization using a model/trust region
approach, ACM Trans. Math. Software, 9 (1983), pp. 503-524.

J. C. GILBERT AND J. NOCEDAL, Global convergence properties of conjugate gradient
methods for optimization, SIAM J. Optimization, 2 (1992), pp. 21-42.

W. HACKBUSCH, [terative Solution of Large Sparse Systems of Equations, Applied
Mathematical Sciences 95, Springer-Verlag, 1994.

M. R. HESTENES AND E. STEIFEL, Methods of conjugate gradients for solving linear
systems, J. Res. Nat. Bur. Standards, 49 (1952), pp. 409-436.

M. T. JonNEs AND P. E. PLASSMANN, An improved incomplete Cholesky factorization,
ACM Trans. Math. Software, 21 (1995), pp. 5-17.

C.-J. LIN AND J. J. MoORE, Incomplete cholesky factorizations with limited mem-
ory, Preprint MCS-P682-0897, Mathematics and Computer Science Division, Argonne
National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, 1997.

D. C. Liu aAND J. NOCEDAL, On the limited memory BFGS method for large scale
optimization, Math. Programming, 45 (1989), pp. 503-528.

S. Lucipt AND M. RoMA, Numerical experience with new truncated newton methods
in large scale unconstrained optimization, Comp. Optim. Appl., 7 (1997), pp. 71-87.

T. A. MANTEUFFEL, An incomplete factorization technique for positive definite linear
systems, Math. Comp., 34 (1980), pp. 307-327.

J. A. MEUJERINK AND H. A. VAN DER VORST, An iterative solution method for

linear equations systems of which the coefficient matriz is a symmetric M-matriz, Math.
Comp., 31 (1977), pp. 148-162.

N. MUNKSGAARD, Solving sparse symmetric sets of linear equations by preconditioned
conjugate gradients, ACM Trans. Math. Software, 6 (1980), pp. 206-219.

S. G. NasH, Newton-like methods minimization via the Lanczos method, SIAM J.
Numer. Anal., 21 (1984), pp. 770-788.

20

[21] S. G. NasH AND J. NOCEDAL, A numerical study of the limited memory BFGS method

and the truncated Newton method for large scale optimization, SIAM J. Optimization,
1 (1991), pp. 358-372.

[22] M. PAPADRAKAKIS AND G. PANTAZOPOULOS, A survey of quasi-Newton methods with
reduced storage, Internat. J. Numer. Methods Engrg., 36 (1993), pp. 1573-1596.

[23] K. H. PHUA, An evaluation of nonlinear optimization codes on supercomputers, Inter-
national Journal of High Speed Computing, 3 (1991), pp. 199-213.

[24] Y. SaaDp, ILUT: A dual threshold incomplete LU factorization, Numer. Linear Algebra
Appl., 4 (1994), pp. 387-402.

[25] ——, [Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston,
1996.

[26] T. ScHLICK AND A. FoGELSON, TNPACK — A truncated Newton minimization pack-
age for large-scale problems: I. Algorithms and usage, ACM Trans. Math. Software, 18
(1992), pp. 46-70.

[27] ——, TNPACK — A truncated Newton minimization package for large-scale problems:
I1. Implementations examples, ACM Trans. Math. Software, 18 (1992), pp. 71-111.

[28] T. STEIHAUG, The conjugate gradient method and trust regions in large scale optimiza-
tion, SIAM J. Numer. Anal., 20 (1983), pp. 626-637.

[29] H. A. VAN DER VORST, The convergence behavior of the preconditioned CG and CG-S
in the presence of rounding errors, in Preconditioning Conjugate Gradient Methods,
L. Y. K. O. Axelsson, ed., Springer-Verlag, 1990, pp. 126-136.

[30] X. Zou, I. M. Navon, M. BErGErR, K. H. Puua, T. ScHLIcK, AND F. X.
LE DIMET, Numerical experience with limited-memory quasi-Newton and truncated
Newton methods, SIAM J. Optimization, 3 (1993), pp. 582-608.

21

