On the Component-wise
Convergence Rate

Amr El-Bakry and Trond Stethaug

CRPC-TR98761
August 1998

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted August 1998; Also available as Rice CAAM TR
98-16



On the Component-wise Convergence Rate

Amr El-Bakry* Trond Steihaug!
Computational and Department of Informatics
Applied Mathematics University of Bergen
Rice University Hoyteknologisenteret
Houston TX 77005-1892 N-5020 Bergen Norway

DRAFT August 26, 1998

Abstract

In this paper we investigate the convergence rate of a sequence
of vectors provided that the convergence rates of the components are
known. The result of this investigation is then used to study the
m-step convergence rate of sequences.
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Introduction

Convergence and convergence rate of iteration sequences play an essential
role in the design and analysis of optimizations methods. Convergence rate
has been used as a measure of efficiency and a tool for performance com-
parison of optimization algorithms. See for example Ortega and Rheinboldt
Chapter 9 (Ref. 1). In certain methods, the convergence and convergence
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rate of component-wise sequence of the underlying vector sequence played
an important role in analyzing the performance of the underlying method.
One such example is in studying interior-point methods for complementarity
problems in the absence of strict complementarity, see Monteiro and Wright

(Ref. 2) and El-Bakry, Tapia, and Zhang (Ref. 3).

A natural question then arises: What can one infer about the convergence
rate of a vector sequence provided that the convergence rates of the compo-
nents’ sequences are known? This question was partially answer by El-Bakry,
Tapia, and Zhang (Ref. 3). In this paper we attempt to further investigate
this question. We further demonstrate that the m-step convergence rate of a
given sequence is ought to be seen naturally in a certain “augmented” space.

2 Component-wise Convergence Rates

In this section we prove the main result concerning the convergence rate of
a vector sequence provided that the convergence rate of the components’s
sequences are known. Then we use this result to investigate the m-step
convergence rate of sequences.

Definition 1 Let {a*} be a sequence of real non-negative numbers converg-
ing to 0. We say that {a*} converges with Q-order at least p € [1, <) if there
exist kg and non-negative number q such that

o < g (@F) for k> ko (1)
Moreover, if
o1
lim su = q, 2
mSUp oy = (2)

then we say that {a*} converges with Q-order p.

In the following, we will consider the /; norm unless otherwise specified. For
a vector a = (a1, ay,...,a,)" € R”, the £; norm is defined as

. 1/t
lalle = (Z |az'|t) and [laflec = max {]a;}.
1=1 -



Theorem 1 Consider the sequence {a*} C R, where a* = (af,af, ..., of)T.
Assume that the sequences {a%}, {ak}, ..., {a*} converge to zero with Q-

orders at least py,pa, ..., pn, respectively. Then we have :

1. The sequence {a*} converges to zero with Q-order at least
b= min pi,

in any norm in IR". Moreover, there exists K such thal HakHHt <
q Haka for k > K, where

Gg=max{q | pi=p, 1=1,2,... ,n}.

2. If there exists at least one 5 € {1,... ,n} such that {a?} converges to
zero with Q-order p, then the sequence {a*} has the exact Q,-factor

Gg=max{q; | p;=p, 1=1,2... ,n}.

Proof: Since all the sequences {af},7 = 1,...,n converge to zero, then
there exists some positive &,

af <1, fori=1,...,n and for all k > k.

From the assumptions that the sequence {a¥} converges to zero with Q-order
at least p;, we have from (1) that

aftt < gi(af),  for k> K,

3

for some positive integer kY > k3. Consider the sequence {af} for which
p; > p and let K; > k? such that

g(ab)Pi=? < gfor k > K;. (3)

This can be done since af — 0 as k — oo. Note that (3) holds for all ¢ if
we let K; = kY for those i such that p; = p. Let K = maX;<i<, K; and let
k> K.



We first consider the case with finite .

a1 =3 (@) < N (g (o))
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Hence

la"* !l < glla*)7.

Consider the 4., norm. Then

k+1|

7

o+

lo** o = max a )

TN )

< gi(ah) = g;(ak)riP(ak)?
< 4 max jak)
< qlla®|E..

The convergence with Q-orders at least p in any norm follows from the equiv-
alence of norms in IR".

Now we turn our attention to prove the second part of the theorem. We have
just shown that the Q,-factor of {a*} is less than or equal to §. We now show
that it is exactly ¢. To do this we need to show that there exists a subsequence
of {a*} with Q, factor equals to §. We assume that all components have
the same order; otherwise we may use the above procedure to show that
components with higher order vanish in the limit. Without loss of generality,
consider the case p = 1. In this case we have

qi.

7 = max
q 1<:<n

Let J be the set of indices such that
ot
limsup——=4¢, je€J. (4)

k— oo a]‘

NN



To simplify the proof, we assume that 7 is a singleton. Let K be a subse-
quence and let 5 be the index such that

o+

lim —L— = 4.
keK a;? 4

To prove the case when J is not a singleton, we restrict the subsequence K
such that the above relation is satisfied for all j € 7.

We want to show that the Q,-factor of {a*} is arbitrarily close to ¢ in any /;
norm. We have two cases.

First assume that ¢ > 0. Let ¢ > 0 be such that
€ < § — maxg;.
q oy q
First we show that af/a? can be made arbitrarily small. Let ¢ > ¢g > 0 and
consider k € K sufficiently large so that

af“ > (¢ — eo)ak.

A 1
0<5§1—<f] 5)
q—=¢o

and choose k € K sufficiently large and ¢ # j so that
k AN s \ 7
%s<fz>%s< >. (5)
o qg— <o ¥ n—1

la* Ml > (a5 > (G- e0)'(e])'

2(4—%Y<Wﬂﬁ—§:w9?

]
(G —e0)" (lla™[l; = d(e3)")
(G —e0)'(1 =) [la"|;
(G—e)'lla";
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and we have shown that there exists a subsequence K so that for & sufficiently
large k € K that

[

la*]:

>q—e.

If we consider the (., norm, then we see from (5) that

k

la* o = o

for all £ sufficiently large and & € K. Then

[0l 2 0 2 (4= 20)of = (d = o)l 2 (= 2)]la"]

Now assume that ¢ = 0. Suppose that the Q; factor of {a*} is not zero.
Then there exists a subsequence K such that

lo® 1

lim =z>0,

kel [|la*|}
This implies that there exists & < & such that

n

() > £ (ah (6

i=1
Since ¢; = 0 for all i = 1,... ,n, then there exist sequences {c!},i =1,... ,n
converging to zero such that

n

Y (<Y F(al) (7)
=1 =1

Combining (6) and (7), we obtain Y. cf(af)’ > &Y"  (af)!, which implies
that >°(c¥—&)(a¥)! > 0. Since ¢f — 0 foralli = 1,... ,n, the last inequality
leads to a contradiction and completes the proof. a

The above theorem implies that both the convergence rate and Q-factor in
the vector is determined by the slowest converging component.



2.1 Multi-Step Convergence Rate

Assume that the sequence {z¥} C IR converges to z*. We say that the
sequence {z*} has an m-step Q-order at least p if for some positive integer
ko we have

Iz — 2% < Qull=* — 271, (8)

for £ > kg. The main result of this section is the following. If we consider
a certain sequence, composed of elements of {z*}, then this sequence has a
1-step Q-order at least p.

Choose a positive integer jo such that m(jo — 1) + 1 > ko and define the
sequence {yj};?';jo in IR”’, where n' = m - n, by stacking every m consequent
elements of the sequence {2*} together. Thus

l,m(j—l)—}—l

mj

Furthermore, define the vector
v=| : | e R, (10)

If {z*} C IR" converges to z* then the sequence {y’} converges to y*. We
now investigate the convergence rate of the sequence {y’}. If the norm used
in (8) is the £; norm define o] = ||z™=F — z*||; for i = 1,... ,m and the

m-vector @’ = (af,... ,al )T. Tt follows that
Iy =yl = ™ < Qu Nl [T = Nly” — y71

using Theorem 1. We will now show that if we have m-step Q-order at least
p in some norm in IR” then the sequence {y’} converges to y* with Q-order
at least p in any IR -norm.

Theorem 2 Assume that the sequence {z*} C IR" converges to x* with m-
step Q-order at least p. Then the sequence {y’} C IR™ defined by (9), con-
verges to y* with Q-order at least p in any R"™ -norm.



Proof : Let ozf = |le™=D+ — z*|| for i = 1,...,m. Then from the

assumption that the sequence {z*} has an m-step Q-order at least p
ol < Q. (af)".
Define the m-vector
ol = (a{, el )T

From Theorem 1 we know that the sequence {a’} C IR™ converges to zero
with Q-order at least p and in ant ¢, norm we have

lo?*H e < Qulle’ |-

For = € R" and the norms |l - |1l - ||, we can define a norm in R" in
the following manner. Partition z into m-projections z;, 1 = 1,... ,m each
in IR". Define a(z) € R™ by

a(z) = (z1ll;- - s lzmlD™
Then the function ||z||« = ||a(z)]|: defines a norm in IR”™. Thus

[y =yl < Qully’ — y¥|I2.

Convergence with Q-order at least p in any norm follows from the equivalence
of norms. O
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