An Interface Between Optimization
and Application for the Numerical
Solution of Optimal Control
Problems

Matthias Heinkenschloss and Luis N.

Vicente

CRPC-TR98760
April 1998

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted August 1998; Also available as Rice CAAM TR
98-05 and submitted to ” ACM Transactions on Mathemat-
1cal Software”

An Interface Between Optimization and Application
for the Numerical Solution of Optimal Control
Problems

Matthias Heinkenschloss
Rice University

and

Luis N. Vicente
Universidade de Coimbra

An interface between the application problem and the nonlinear optimization algorithm is pro-
posed for the numerical solution of distributed optimal control problems. By using this interface,
numerical optimization algorithms can be designed to take advantage of inherent problem features
like the splitting of the variables into states and controls and the scaling inherited from the func-
tional scalar products. Further, the interface allows the optimization algorithm to make efficient
use of user provided function evaluations and derivative calculations.

Categories and Subject Descriptors: G.4. [Mathematical Software]: User Interfaces
General Terms: Algorithms, Design

Additional Key Words and Phrases: Optimization, simulation, optimal control

1. INTRODUCTION

This paper is concerned with the implementation of optimization algorithms for
problems of the form

min f(y,u)
_ (1)
arising in optimal control. Here u represents the control, y represents the state, and

¢(y,u) = 0 represents the state equation. Often, y and u belong to a function space
such as the Sobolev space H'! or the space L2, and the state equation is a differential

This work was supported in part by the DoE under Grant DE-FG03-95ER25257, by the AFOSR
under Grant F49620-93-1-0280, by Centro de Matemadtica da Universidade de Coimbra, FCT,
and Praxis XXI 2/2.1/MAT/346/94.

Name: Matthias Heinkenschloss

Address: Department of Computational and Applied Mathematics, Rice University, Houston, TX
77005-1892, USA, E-Mail: heinken@caam.rice.edu

Name: Luis N. Vicente

Address: Departamento de Matemadtica, Universidade de Coimbra, 3000 Coimbra, Portugal, E-
Mail: lvicente@mat.uc.pt

2 . M. Heinkenschloss and L. N. Vicente

equation in y. Examples of optimal control problems of the form (1) are given, e.g.,
in Cliff, Heinkenschloss, and Shenoy [1997], Gunzburger, Hou, and Svobotny [1993],
Handagama and Lenhart [1998], Ito and Kunisch [1996], Kupfer and Sachs [1992],
Lions [1971], Neittaanméki and Tiba [1994]. In many cases, the optimal control
problem is not posed in the form (1), but the state equation c(y,u) = 0 is used
to define y as a function of u with the aid of the implicit function theorem. This
procedure eliminates the state variables y and the state constraint ¢(y,u) = 0. The
resulting problem is given by

y(u) <7, (2)

Obviously, the two problems (1) and (2) are related, but they are not necessarily
equivalent. If for given u the equation c¢(y,u) = 0 has more than one solution,
the implicit function theorem will select one solution branch y(u), provided the
assumptions of the implicit function theorem are satisfied. Hence, the feasible set
of (2) is contained in (1) but the feasible sets are not necessarily equal.

For a numerical solution, the original infinite dimensional problem is discretized
and the optimal control problem leads to a nonlinear programming problem. In
theory, any finite dimensional nonlinear programming algorithm can be used to
solve this problem. In many practical applications, however, such an approach is
not advisable or not valid. In fact, many existing optimization packages do not use
a significant part of the problem structure or require problem information in a form
that is difficult or expensive to generate.

The purpose of this paper is to develop a framework for an interface between
optimization algorithms and applications of the form (1) or (2). We intend this
interface to be used in two ways: as a guideline for the theoretical development
of optimization algorithms and as a tool for the implementation of optimization
algorithms for (1) or (2). While our framework is applicable to a wider range of
problems, we believe it is particularly useful for optimal control problems governed
by partial differential equations.

As we have mentioned before, we assume that the optimization problem (1) is
finite dimensional and we use a Hilbert space structure for its description. The
first assumption is natural in the context of numerical solutions of optimal control
problems. The second assumption is made because a Hilbert space structure is
at least implicitly used in many optimization algorithms using iterative Krylov
subspace solvers such as the conjugate-gradient method. If the original infinite
dimensional optimal control problem is posed in Banach spaces, imposing a Hilbert
space structure for the discretized problem is somewhat unnatural. However, we
have made good experiences with our framework even in such cases [Cliff et al.
1997]. Limitations of our framework for an interface will be discussed in Section 6.

We assume that), Y, and A are finite dimensional Hilbert spaces of dimension
Ny, Ny, and ny, respectively. These Hilbert spaces can be identified with [R™v, IR,
and IR™, respectively, but are equipped with scalar products {-,-)y, (-,)y, and
(-,-)A. The functions

f:YxU — R,

An Interface Between Optimization and Application . 3
c: Y xU — A,

are assumed to be at least once differentiable. In some of our discussions we will
also use second derivatives of f and c.

The discretized problem inherits structure from the infinite dimensional problem
that is not easily captured by techniques included in nonlinear programming codes.
Besides the obvious splitting of the optimization variables into y and u, there is also
a scaling associated with these variables that is derived from the infinite dimensional
problem and its discretization. This scaling depends on the particular application.
In many cases it cannot be expressed by a diagonal scaling matrix. If this problem
scaling is not incorporated properly, the optimization algorithm can behave poorly.
See, e.g, the papers [Cliff et al. 1997] and [Heinkenschloss and Vicente 1998]. In
particular, in this case one can often observe that the convergence behavior of
the optimization algorithm deteriorates rapidly if the discretization of the problem
is refined. A second reason for the mismatch between conventional finite dimen-
sional optimization algorithms and nonlinear programming problems arising from
discretized optimal control problems is that much of the problem information is not
available explicitly, but can only be accessed indirectly. For example, the derivative
or partial derivatives of ¢ may not be available in matrix form but only the result
of a derivative-times-vector operation may be accessible. This is, e.g, the case if
¢(y,u) = 0 corresponds to a partial differential equation discretized with a finite
element method. In this case it is often not necessary to assemble the finite ele-
ment matrices, but only to store the contributions from individual elements in the
FEM mesh. This alternative allows one to compute matrix-vector multiplications
without forming the matrix explicitly.

Our view of these optimization problems is not new. However, there are few
attempts to make optimization algorithms available for a broad class of optimal
control problems, parameter identification problems, and optimal design problems
of the form (1) or (2). There are many examples of optimization algorithms and
implementations which use the structure of a particular problem in the class (1) or
(2). See, e.g, the papers by Betts [1997], Betts and Frank [1994],Bock [1988], Gill,
Murray, and Saunders [1997], Kupfer and Sachs [1992], Petzold, Rosen, Gill, Jay,
and Park [1996], and Varvarezos, Biegler, and Grossmann [1994]. However, in all
cases either specific optimization algorithms are implemented for a specific problem
or for a specific class of problems such as optimal control of ODEs or DAEs. The
exchange of the optimization algorithm or the use of the optimization algorithm
for different applications requires to rewrite large portions of the code. The use of
the interface is to make applications available to optimization algorithm developers
and to make optimization algorithms available to application people.

Recently, Gockenbach, Petro, and Symes [1997] have proposed the Hilbert Class
Library (HCL), C++ classes to link optimization with complex simulation. Their
approach is in some sense similar to ours. However, there are important differences.
While the Hilbert space structure plays an important role in both approaches, its
implementation in [Gockenbach et al. 1997] is more comprehensive. For example,
HCL contains a vector class with member functions for the vector addition, scalar
multiplication, and the inner product in the underlying Hilbert space. In particular,
this means that in a code based HCL a (Hilbert space) vector does not need to be an

4 . M. Heinkenschloss and L. N. Vicente

array. This option is very useful in many applications. Our interface provides inner
products, but does not make provisions for the other vector operations. We tried to
keep the number of our interface functions small. Our reason is that optimization
algorithms for problems (1) or (2) involve three Hilbert spaces: one for each of
the variables y and v and one for the Lagrange multipliers (or adjoint variables)
A associated with ¢(y,u) = 0. In HCL, the functionality of all member functions
for all three Hilbert spaces would have to be provided. Instead, we only provide
an interface for the inner product structure, which is the important one from an
optimization point of view. Since we consider discretized, finite dimensional prob-
lems, each variable y, u, and A can be viewed as an array. An important feature of
our interface is that derivative information and information derived from solutions
of linear systems can be computed inexactly. From an optimization point of view
this is also important. In many cases, inexactness enters into these computations
because of the use of finite differences or iterative methods for the solution of linear
systems. In an efficient and robust optimization algorithm the degree of inexactness
needs to be controlled by the optimizer and adjusted to the progress of optimization
iterations. We view interfaces like ours and HCL not as competing models, but as
tools designed to aid the linking of optimization and complex simulations and the
development of more efficient optimization algorithms for problems of the form (1)
or (2).

This paper is structured as follows. In Section 2 we approach the scaling of the
problem and illustrate its use in a few particular instances. Section 3 addresses
the calculation of derivatives using sensitivity and adjoint equation methods. The
optimization-application interface that we propose for the numerical solution of
distributed optimal control problems is described in detail in Section 4. A few code
fragments corresponding to parts of known optimization algorithms are given in
Section § to illustrate the use of this interface. Section 6 discusses limitations and
extensions of our framework.

2. SCALING OF THE PROBLEM
2.1 Influence of the scalar products

The scalar products (-,-)y, (-,)u, and (-,-)a induce a scaling into the problem
that is important for the performance of the optimization algorithms. The scalar
products influence the computation of the gradients and other derivatives, they
influence the definition of adjoints, and they enter all subtasks that require scalar
products, such as quasi-Newton updates and Krylov subspace methods.

The partial gradients of f are defined by the relations

limp, 0 |£(y + Ry, w) = f(y,u) = (Vy f (Y, w), hy)yl/lIhylly =0,
limp, o |f(y,u+ hu) = f(y,u) = (Vuf (Y,), hudul /| hullu = 0.

In finite dimensions all norms are equivalent and, thus, the choice of norms in the
denominators in (3) do not influence the definition of the gradient. The choice
of the scalar product in the numerator, however, does. Moreover, if the problems
are derived from discretizations and if the different discretization levels are consid-
ered, the choice of norms and scalar products in numerator and denominator are
important.

3)

An Interface Between Optimization and Application . 5

The partial Hessians are defined by

limp, 0 IVyf(y + hy,u) = Vyf(y,u) — Vny(yJ w)hylly/llhylly = 0,
limp, -0 IVy f(y,u+ ha) = Vyf(y,u) = Vi, [y, Whally/l[hullu = 0, @
limh;y_>0 (IVuf(y + hyau) - Vuf(y,u) — Viyf(y,u)hyﬂu/llhylly =0,
limp, 0 [Vaf(y,u + ha) = Vuf(y,u) = Vi f (4, whallu/1hullu = 0.
The partial derivatives of ¢ are defined by
limp, 50 [le(y + hy,u) — c(y,u) — ¢y (y,whylly/llhylly = 0, 5)

limp, 0 [le(y, w + hu) = c(y, u) = cu(y, whullu/|[Pull =0

Because of the equivalency of norms in finite dimensions the Hessians are the first-
order partial derivatives of the gradients (which depend on the scalar product)
and the partial Jacobians of ¢ are the matrices of first-order partial derivatives.
Thus, choice of the scalar product does not matter in (4) and (5). However, as we
have pointed out in the context of the gradient computation, this is not true if the
problems are derived from discretizations and if the different discretization levels
are considered.
The adjoints of ¢, and ¢, are defined by the relations

(cy(y,u)*)\,v)y = <)‘ch(y7u)v>1\ V/\,’U,

(cu(y,u)* N whyy = (A eo(y,u)w)a VA, w. ©)

2.2 lllustration of the scaling induced by the scalar products

Although it is not necessary for the following presentations, it will be illustrative to
study the effect of the scaling products onto some of the computations mentioned
above. Each scalar product on IRF can be identified with a symmetric positive
definite matrix and we therefore write

{y,v)y =y Ty, (7)
(w,why = u' Tyw, (8)
(A a = AT, (9)

where Ty, T\ € IR™*™ and T, € IR™*™ are symmetric positive definite matrices.
We emphasize that this is done for illustration only. The weighting matrices are
never directly accessed, but only the value of a scalar product for given two vectors
is needed.

Influence of the scalar products on derivative computations. If (y,v)y = y'v,
(u,w)y = u'w, then (3) yields

Vyf(y,u) = Vyf(y,u), Vuf(y,u) = Vuf(y,u),

where
el el T
evyf(y;u) = dy1 f(yau)a"'a Byny (yau)))

(
Vuf @) = (G f). g)

6 . M. Heinkenschloss and L. N. Vicente

denote the gradient with respect to the Euclidean scalar products, i.e., the vectors
of first-order partial derivatives. Similar notation will be used for the matrices of
second-order partial derivatives.

Now we consider the two scalar products (7) and (8). From

Vo w) v = (T, f(y,u) Ty = (T, eV, f(y,u),v)y Vo,

and (3) we can see that

Vyf(y,u) =T, eVy f(y,u). (10)

Similarly,

Vuf(y,u) =T, eVauf(y,u). (11)
The representations (10) and (11) of the gradients can also be interpreted differently.
Since T, and T, are symmetric positive definite, we can write them as the product
of two symmetric positive definite matrices, T, = (Ty / 2)2 and T, = (Ti/ 2)2. Now,
we can define y = Ty1/2y, u = T&ﬂu, and f(7,0) = f(Ty_1/2§, Tu_l/Qﬂ). If we
compute the first-order partial derivatives of f, then

sz(a: 17) = T;1/2evyf(y, ’LL)) V'Jf(ﬂ: a) = TJI/2evuf(y7 u)'

If we scale these vectors by Ty 12 and T, v 2, respectively, then we obtain (10) and
(11). See also [Dennis, Jr., and Schnabel 1983, Ch. 7].
The Hessians are given by

szf(yau) = Ty_lev?/yf(ya 'LL), Viuf(ya 'LL) = Ty_leVZuf(ya ’LL),
Ve, fwu) =T, Ve, f(y,u), Vi, f(y,u) =T, Vo, fy,u),

where ¢V? is used to denote the matrices of second-order partial derivatives. Note
that the partial Hessians V2 f(y,u) and V3, f(y,u) are symmetric with respect
to the scalar products (7) and (8), respectively, and that (V2 f(y,u)w,v)y =

(w, V2, f(y,u)v)y. See also the following discussion on adjoints.

Influence of the scalar products on adjoint computations. With the scalar prod-
ucts (7), (8), (9), and the adjoint relations (6) we find that

(A ey(y, w)v)a =)\TTAcy(y,u)v = (T;lcy(y,u)TTA/\)TTyv = (cy(y,w)* A\, v)y VA0
Thus

cy(y,u)* = Ty_lcy(y,u)TT,\.
Similarly,

cu(y,u)* =T, teu(y, u) " Th.

Influence of the scalar products on quasi-Newton updates. Given u and v in U,
we define the linear operator u ® v on U by (u ® v)w = ({(v,w)y)u. Thus, if
(v,w)y = v w, thenu@v =uv'. If (v,w)y = v Tyw with T, symmetric positive
definite, then u ® v = uv ' T},.

We consider the BFGS update (see [Dennis, Jr., and Schnabel 1983, Ch. 9] or
[Gruver and Sachs 1980]) in the u component to illustrate the influence of this

An Interface Between Optimization and Application . 7

scaling onto the quasi-Newton update. We assume that y is fixed. The BFGS
update is given by

i — gy V@) = Vuf.0) © (Vuf (. us) = Vuf o)) _ Hs © Hs

(Vuf(y,us) = Vuf(y,u), 8)u (Hs, 8)u ‘

If (v,w)y = v'w, then V,f(y,u) = ¢Vuf(y,u) and we obtain the standard
BFGS update [Dennis, Jr., and Schnabel 1983, Ch. 9]. If (v,w)y = v'T,w, then

Vuf(y,u) =T, '«V,f(y,u) and

Tgl(evuf(y,u_,_) —eVuf(y,u)(eVuf(y,uy) — evuf(y,u))T
(evuf(y: u+) - evuf(yvu))Ts

_ Hs(T,Hs)"
s'T,Hs

Influence of the scalar products on Krylov subspace methods. The use of weighted
scalar products in conjugate-gradient methods is equivalent to a preconditioning
with the inverse of the weighting matrix. This is described, e.g., in the work by
Axelsson [1994, Sec. 11.2.6] or Gutknecht [1993].

3. DERIVATIVE COMPUTATIONS: ADJOINTS AND SENSITIVITIES

Sensitivity and adjoint equation methods are used to compute derivative informa-
tion in optimal control problems. In this section, we briefly describe what these
methods are in the context of this paper and how they can be used in derivative
computations.

We consider the problem

min , U
fly,u) (12)
s.t. c(y,u) =0
with associated Lagrangian
Uy, u, A) = fy,u) + (A ey, u)a (13)
and the associated reduced problem
min f(u) = f(y(u),w). (14)

Typically, sensitivity and adjoint equation methods are used to compute the
gradient and second-order derivative information for f. However, the same issues
also arise for certain first and second order derivative computations related to the
problem (12). The main purpose of this section is to show the commonalities in
these approaches for (12) and (14) and to establish a common framework that can
be used in many optimization algorithms for (12) and (14) and in fact for (1) and
(2). For more discussions on sensitivity and adjoint equation approaches we refer
to the literature. See, e.g, the collection [Borggaard et al. 1998].

In this section we use the sensitivity and adjoint equation methods to compute
the gradient and second-order derivative information for f and £. The fact that
f and f are objective functions is not important. It is only important that f :
U — R depends on the implicit function y(u). In general the sensitivity and
adjoint equation methods are needed when derivative information of a function,

8 . M. Heinkenschloss and L. N. Vicente

say, h : U — IR is computed that is a composition of a function h and y(-). Thus
many of the derivations below also apply in this context. In particular, if additional
constraints d(y,u) = 0 and d(u) = d(y(u),u) =0,d: Y x U — IR* are present in
(12) or (14), respectively, then the derivations in this section can be applied to the

component functions d; or the Lagrangian f(y,u) + (\, c(y,u))a + p' d(y, u).

3.1 First-order derivatives

Under the assumptions of the implicit function theorem the derivative of the im-
plicitly defined function y(-) is given as the solution of

cy(y(u), wy'(u) = —cu(y(u), u). (15)

This equation is called the sensitivity equation and its solution is called the sensi-
tivity of y. We can now compute the gradient of f:

~

(VIW),v)u = (Vyf(y(u),u),y'@o)y + (Vuf (y(u),u), v)u
(Vy £ (y(u), u), —cy(y(w), w) ™ eu(y(u), u)v)y + (Vuf (y(u),u), v)u
= (= (ey((w),uw) " euly(w),w)) " Vy f(y(w), u) + Vuf (y(u), u), v)u.

Hence,

Vi = - (@), w e lyw),v) Vo 4w, w) + Vol (y),u). (16

The formula (16) is used in the sensitivity equation method to compute the gra-
dient. First, the sensitivity matrix

S(y,u) = ¢y(y(u),u) euy(u),v)

is computed and then the gradient is formed using (16).
To introduce the adjoint equation approach, we rewrite the formula (16) for the
gradient as follows:

Vi) = —culy(u),u) (cy(y(u),w)*) Vyf (y(u),u) + Vo (y(u),u).

Thus one can compute the adjoint variables A(u) by solving the adjoint equation

cy(y(u),u)"Mu) = =V, f(y(u),u) (17)
and then compute the gradient using
V(u) = —cu(y(u),w)*Mw) + Vo f(y(u), v). (18)

This calculation is the adjoint equation method to compute the gradient.
Traditionally, the sensitivity equation method and the adjoint equation method
have been used in the context of the reduced problem (14). However, the same
techniques are also needed to compute derivative information for the solution of
(12).
Consider the Lagrangian (13). Its partial gradients are

Vyl(y,u, \) = Vy f(y,u) +cy(y,w)" X, Vaul(y, u,A) = Vuf(y,u) + culy, u)*
We see that V,£(y, u, A) = 0 corresponds to the adjoint equation
C’y(yau)*)‘ = _Vyf(y; ’LL) (19)

An Interface Between Optimization and Application . 9

If we define A(y, u) as the solution of (19), then
Vug(yaua A)|)\=)\(y,u) = Vuf(yau) - Cu(ya u)*(cy(y7u)*)7lvyf(ya u)

In particular,
Vi(u) = Val(y, u, \)|y=y(u) x=A(y(u),u)-
With

W(y,u) = (—cy(y,u}:cu(y,u)> :

we can write
* v U
Vue(y7u7)‘)|)\=)\(yvu) = W(y7u) (Vy:);gz U;) '
and

VF(u) = W(y,u)* (%;823) ‘y=y(U)-

An optimization algorithm applied to the solution of (12) may require the eval-
uation of the Lagrangian f(y,u) + (A(y, u), c(y, u))a, where A(y,u) is the solution
of (19). If the adjoint equation method is used for the derivatives, the adjoint vari-
ables A(y,u) can be calculated. If only the sensitivities ¢, (y,u) ¢, (y, u) and their
adjoints are provided, adjoint variables cannot be computed from (19). In such a
situation we can evaluate the corresponding value of the Lagrangian by solving the
linearized state equation

cy(y,u)s = —c(y,u) (20)
and by using the relation

<A(y7 U), C(y) U))A = _<(Cy (y7 U)*)_lvyf(y, u)7 c(y, u)>1\
_<Vyf(y7u)acy(yau)ilc(yau»)’ . (21)

The introduction of W (y,u) which plays an important role in solution methods
for (19) allows an elegant and compact notation for the first-order derivatives and,
as we will see in the following, for the second-order derivatives. It also localizes
the use of the sensitivity equation method and the adjoint method in the derivative
calculations. In all derivative computations, the sensitivity equation method or the
adjoint equation method is only needed to evaluate the application of W (y,u) and
W (y,u)* onto vectors. For example, the computation of the y-component z, of
z = W(y,u)d, is done in two steps:

Compute vy = —cu(y, u)dy.
Solve cy(y,u)zy = vy.

If the sensitivities S(y,u) = ¢, (y,u) eu(y,w) are known, then z, = —S(y, u)d,.
The equation ¢, (y,u)z, = vy is a generalized linearized state equation, cf. (20).
Similarly, for given d the matrix-vector product z = W(y,u)*d, d = (dy,dy), is
computed successively as follows:

Solve cy(y,u) vy = —d,.

Compute Uy = Cu(y,u)*vy.

Compute 2 Uy + dy.

10 . M. Heinkenschloss and L. N. Vicente

Again, if the adjoint of the sensitivities S(y,u) = c,(y,u) lcy(y,u) are known,
then z = —S(y,u)*dy + dy. The equation cy(y,u)*vy = —d, is a generalized
adjoint equation, cf. (19).

3.2 Second-order derivatives

The issue of sensitivities and adjoints not only arise in gradient calculations, but
also in Hessian computations. The Hessian of the Lagrangian

VZyE(ya u,)‘) vzue(ya u,)‘) >

(22)
V2 Y, u,N) V2, 0y, u,N)

V2 Ly, u,A) = (

and the reduced Hessian
V2 Uy, u,\) V2 L(y,u, A

vy (y) y (y) Wy, u)‘ (23)
V%yﬁ(ya u,)‘) meé(y, u,)‘) A=X(y,u)

~

H(y,u) = W(y,u)" (

play an important role. Both matrices (22) and (23) are important in algorithms
based on the sequential quadratic programming (SQP) approach [Fletcher 1987,
Ch. 12]. Moreover, it is known, see, e.g., [Dennis et al. 1994; Heinkenschloss 1996],
that the Hessian of the reduced functional in (14) is given by

V2 f(u) = H(y(u), u).

We note that the computation of (22) and (23) requires knowledge of the adjoint
variables A. In many algorithms, these are computed via the adjoint equations (19).
If only the sensitivities ¢, (y,u) !¢, (y,u) and their adjoints are provided, adjoint
variables cannot be computed from (19). If no estimate for A is available, then the
operators in (22) and (23) cannot be computed. In cases in which V, f(y,u) ~ 0
for (y,u) near the solution, one may set A = A(y,u) ~ 0, cf. (19). This leads to the
approximations

V2, fy,u) Vi, f(y,u)
V2 0y, u,) ~ vy uu 24
el) (v;iyf(y,u) vzuf@,u)) 24
and
. V2 f(y,u) V2, f(y,u)
H , MW , * yy yu W , i 25
() =Wy, u) (Viyf(y,u) vzuﬂy,u)) v,) =

The situation V, f(y,u) ~ 0 often arises in least squares functionals f(y,u) =
$lly —yall3 + Z|ullZ,, where yg is some desired state. In this case V, f(y,u) = y—ya
and if the given data yq can be fitted well, then V, f(y,u) = 0. In this case, the

-~

approximation (25) is the Gauss-Newton approximation to the Hessian V2 f(u),
provided y = y(u).

The Hessian VQf(u) of the reduced objective can also be computed by using
second-order sensitivities. In this approach one applies the chain rule to Vf(u) =
—y'(u)*Vy f(y(u),u) + V, f(y(u), u) and one computes the second-order derivatives
of y(u) by applying the implicit function theorem to (15). Unlike, (22) and (23)
this approach avoids the explicit use of Lagrange multipliers.

An Interface Between Optimization and Application . 11

We let H(y,u,) be the Hessian V2_{(y,u,\) or an approximation thereof. If
conjugate-gradient like methods are used to solve subproblems, Newton-based op-
timization methods for (14) or reduced SQP-based optimization methods for (12)
require the computation of some of the quantities

H(yaua)‘)57 (85H(y7ua)‘)8)/\f‘; W(yau)*H(y,U;)\)S;
Wy, u)"H(y, u, NW (y, w)su, (su, W(y,u)"H(y,u, Y)W (y, u)su)u-

for given s = (sy,5,) and s,.

Often, one does not approximate the Hessian V2_£(y, u,), but the reduced Hes-
sian. This is, e.g, the case if a quasi-Newton method is used to solve (14) or a re-
duced SQP method is used to solve (12). If H(y,u) ~ W (y, u)*V2_L(y, u, W (y,u),
then this approximation fits into the previous framework in which the full Hessian
is approximated by setting

Hy,u, \) = (8 ﬁ(; Y) _ (26)

If H(y,u,\) is given by (26), then the definition of W (y,u) implies the equalities

H(y,u,\)s = (ﬁ(y?u)su) ’

(s, H(y,u, \)s)x = (50, H(y,w)su)ut, Wy, u)*H(y,u,N)s = H(y,u)sy,
W (y, u)*H (y, u, NW (y,u)su = H(y,u)su,

~

(Sua W(y7 u)*H(yJ u, /\)W(ya U)Su)u = <Su7 H(y7 U)Su)u-

4. USER INTERFACE

Table 1 lists the functions or subroutines that are part of the user interface. In
this section, we will describe the sequence calls of these functions or subroutines
using MATLAB syntax!. The input parameters appear in brackets after the name of
the function or subroutine whereas the output parameters are displayed in square
brackets. Of course, the interface is not language specific and MATLAB is used
for illustration only. The main purpose is to show what information needs to be
passed from the application routines to the optimizer. We do not promote a specific
language for the implementation of this information transfer.

Not all interface routines listed in Table 1 are needed in the implementation
of all optimization algorithms. For example, if quasi-Newton updates are used to
approximate second-order derivative information, the subroutine hs_exact is not
used and if the optimization problem formulation (1) is used, then state is not
needed.

More details about the user provided subroutines will be given in the following
sections. All user provided subroutines return a variable iflag and most user
provided subroutines have an input parameter tol. The return variable iflag
indicates whether the required task could be performed. On return, the iflag
should be set as follows:

IMATLAB is a registered trademark of The MathWorks, Inc., info@mathworks.com,
http://www.mathworks.com.

12 . M. Heinkenschloss and L. N. Vicente

Table 1. User provided subroutines.

a. Adjoint and sensitivity equation approaches

fval evaluate f(y,u)
cval evaluate c(y,u)
lcval evaluate ¢y (y, u)sy + cu(y, w)su + c(y,u)
state solve ¢(y,u) = 0 for fixed u
linstate | solve cy(y,u)sy = —cu(y,u)su — c(y, w)
yprod compute (y1,y2)y
uprod compute (u1,u2)y
lprod compute (A1, A2)a
hs_exact | compute V2 £(y,u,\)s
xnew (re)activate a new iterate
b. Adjoint equation approach c. Sensitivity equation approach
adjoint | solve cy(y,u)*A = —Vy f(y, u) sens compute S(y, u)v
adjval evaluate cy(y,u)*A + Vy f(y,u) sensa | compute S(y,u)*v
grad evaluate ¢y (¥, u)*\ + Vo f(y,u) fgrad | compute Vy f(y,u) and V, f(y,u)

iflag = 0 : The required task could be performed.
iflag > 0: The required task could not be performed.

If iflag > 0 during the execution of the optimization algorithm, the optimization
algorithm can return with an error message providing the value of iflag and the
place in the optimization code where the error occurred.

The input parameter tol can be used to control inexactness. Often in practical
applications the state equation, the linearized state and the adjoint equations are
solved using iterative linear system solvers. Moreover, the derivatives of f and ¢ may
be approximated by finite differences. In such situations user provided information
will never be exact and an optimization algorithm has to adapt to this situation. In
fact, allowing inexact, but less expensive function and derivative information could
lead to more efficient optimization algorithms, provided this inexactness is con-
trolled properly. An example are inexact Newton methods for large scale problems
[Nash and Sofer 1996, Ch. 12]. The input parameter tol allows the optimization
algorithm to control the inexactness.

4.1 User provided functions used in the adjoint and sensitivity equation approaches

fval Given y and u evaluate f(y,u). The generic function is

[£, iflag] = fval(y, u)

cval Given y and u evaluate c¢(y,u). The generic function is

[c, iflag] = cval(y, u)

An Interface Between Optimization and Application . 13

lcval Given y, u, sy, 54, and tol approximately evaluate the linearized constraints

¢y (Y, u) sy + culy, u) su + c(y, u),

i.e., compute [. such that

l.— (cy(y, u) Sy + cu(y,u) sy + ¢y, u)) HA < tol.
The generic function is

[1c, iflag] = lcval(y, u, sy, su, tol)

state Given u, an initial approximation y;, and tol compute an approximate
solution y; to the state equation ¢(y,u) = 0, i.e., compute ys such that

Hc(ys, u)“A < tol.

The generic function is

[ys, iflag] = state(yi, u, tol)

linstate Given y, u, sy, ¢, and tol compute an approximate solution s, of the
linearized state equation

Cy(yau) Sy + cu(y,u) 8y, +¢c=0,

i.e., compute s, such that
Hcy(y, u) Sy + cu(y,u) sy + CHA < tol.

Particular cases of the previous task are the following ones:

Given y,u,c, and tol compute an approximate solution s, of the linearized
state equation ¢, (y, u) sy + ¢ = 0. Given y,u, s, and tol compute an approx-
imate solution s, of the linearized state equation c,(y,u) sy + ¢y (y,u) s, = 0.
The generic function is

[sy, iflag] = linstate(y, u, su, c, job, tol)

The parameter job specifies which equation has to be solved and is included
to allow to take advantage of the special cases. It has the following meaning:
job = 1: Solve ¢y (y,u)sy + cu(y,w)sy + ¢ = 0 for s,.
job = 2: Solve ¢, (y,u)sy + ¢ =0 for s,.
If job = 2, then su is a dummy variable and should not be referenced in
linstate.
job = 3: Solve ¢, (y,u)sy + cu(y,u)s, = 0 for s,.
If job = 3, then c is a dummy variable and should not be referenced in
linstate.

yprod Given y; and y, evaluate the scalar product (y;,y»)y. The generic function
is [yp, iflag 1 = yprod(y1, y2)

uprod Given u; and us evaluate the scalar product (uy,u2)y. The generic function
is [up, iflag 1 = uprod(ul, u2)

14 . M. Heinkenschloss and L. N. Vicente

lprod Given \; and A evaluate the scalar product (A1, Aa)a. The generic function
is [1p, iflag] = lprod(lambdal, lambda2)

hs_exact Given y, u, A, sy, and s, compute the product of the Hessian of the
Lagrangian V2 £(y,u,\) times the vector s = (sy,s,). The generic function
name is

[hsy, hsu, iflag] = hs_exact(y, u, lambda, sy, su, tol, ind)

The input variables are the y-component y, the u-component u, the Lagrange
multiplier 1ambda, the y- and u-component sy and su of the vector s, a dummy
variable tol (this variable is included to make the parameter lists of the Hessian
functions uniform, but is not used in this case), and an indicator ind:

ind = 0: sy and su are nonzero.

ind = 1: sy is zero. In this case the vector sy may never be referenced.
ind = 2: suis zero. In this case the vector su may never be referenced.

The return variables are the y- and the u-component hsy and hsu of V2_£(y, u, \) s,
and the error flag iflag.

Instead of V2_£(y,u,)), one can also use approximations of V2_£(y,u, \) such
as (24). In particular, the input parameter lambda provided by the optimizer
may not be the solution of (17) or (19) but a suitable approximation.

In many of the above interface functions, the input list contains a parameter job.
This is included to identify special cases that in some applications may be executed
more efficiently than the general task. The following interface function xnew is also
added to allow more efficient implementations and to improve monitoring. In many
applications a considerable overhead, such as the computation of stiffness matrices
or the adaptation of grids is associated with function or gradient evaluations. Of-
ten, these computations only depend on the iterate (y,u). If (y,u) is unchanged,
these computations do not need to be redone, regardless of how many function or
derivative evaluations at this point are computed. In this case it may be desirable
to do these computations only once per iterate and change these quantities only
if the iterate changes. Moreover, if one knows that a certain point z = (y,u) is
only used temporarily, one may decide to keep the information corresponding to
the point x that one will return to, rather than recomputing it when one returns.
The purpose of xnew is to communicate the change of x = (y, u) to the application.
The optimization algorithm should call xnew whenever the argument z = (y,u)
changes. Another application of xnew is the storage of intermediate information.
For example, the user may wish to record the development of iterates, or to stop
the optimization algorithm and to restart it at a later time. In this situation the
subroutine xnew can be used to store intermediate information on hard disk.

xnew The subroutine xnew activates, or reactivates an iterate. The generic function
is [iflag] = xnew(iter, y, u, new).
After the call to xnew the pair (y,u) passed to xnew is used as the argument
in all functions until the next call to xnew. The input parameter new is passed
to help the user to control the action taken by xnew. The following is a set of
possible options for this input parameter.

An Interface Between Optimization and Application . 15

new = ’init’ : Initialize with (y,u) as the current iterate. xnew has never
been called before.

new = ’current_it’: (y,u) is the current iterate.

new = ’react_it’: (y,u) is reactivated as the current iterate.

new = ’trial_it’: (y,u) is a candidate for the next iterate. xnew has never
been called with (y,u) before.

new = ’new_it’: (y,u) will be the next iterate. xnew has been called with
(y,u) and option new = ’trial_it’ before.

new = ’temp’: (y,u) is only used temporarily. Usually only one or two func-
tion evaluations are made with argument (y, u).

Since in xnew vital information, like stiffness matrices or grids, may be com-

puted, xnew also returns iflag.

As we have mentioned before, the options for new depend on the particular opti-
mization algorithm. The set of settings for new above will be useful in a trust-region
or a line-search framework [Dennis, Jr., and Schnabel 1983], [Nash and Sofer 1996].
Trust-region algorithms generate steps (sy, s,,) and evaluate functions at the trial
iterate (y + sy, u + sy) (new = ’trial_it’). Depending on some criteria, the trial
iterate (y + sy, u + s,) will become the new iterate (new = ’new_it’), or it will be
rejected and (y,u) will remain the current iterate (new = ’react_it’). For the use
of xnew in a simple line-search algorithm see Section 5. The option new = ’temp’
will be useful, for example, in finite difference approximations.

The settings above are motivated by a trust-region algorithm. In other optimiza-
tion algorithms more or fewer settings may be useful. For example, the steepest
descent algorithm in Section 5 requires fewer settings. Therefore, the actual settings
for new depend on the particular optimization algorithm and should be described
in the documentation of each individual optimization algorithm.

4.2 User provided functions used only in the adjoint equation approach

adjoint Given y, u, and tol compute an approximate solution A of the adjoint
equation

cy(y, u)* A+ V, f(y,u) =0,

i.e., compute A such that

Hcy(y, u)*A + V, fy,u) Hy < tol.

A slightly more general task is the following;:
Given y, u, fy, and tol compute an approximate solution A of the generalized
adjoint equation

ey, W) A+ f, =0.

Here f, is an arbitrary vector and not necessarily the gradient of the objective
with respect to y. Since the gradient V, f(y, u) often has a particular structure,
e.g., has many zero entries, the equation ¢y (y,u)*A + V, f(y,u) = 0 might be
solved more efficiently than the equation ¢, (y,u)*\ + f, = 0 with a generic
vector fy. The generic function is

[lambda, iflag] = adjoint(y, u, fy, job, tol)

16 . M. Heinkenschloss and L. N. Vicente

The parameter job specifies which equation has to be solved.

job = 1: Solve ¢, (y,u)* A+ V, f(y,u) = 0 for A.
If job = 1, then fy is a dummy variable and should not be referenced in
adjoint.

job = 2: Solve ¢, (y,u)*A + f, =0 for A.

adjval Given y, u, A, and tol approximately evaluate the residual of the adjoint
equation

ey(y,u)" A+ Vy f(y,u),

i.e., compute the vector a such that

Ha — (Cy(y,u)*/\ + Vyf(y,u)) Hy < tol.

The generic function is

[adj, iflag] = adjval(y, u, lambda, tol)

grad Given y, u, A\, and tol approximately evaluate the reduced gradient

Cu(yau)*)‘ + Vuf(y; 'LL) ’

i.e., compute g such that

Hg - (cu(y, WA+ Vuf(y,u)) Hu < tol.

A slightly more general task is the following: Given y, u, A, fy, and tol ap-
proximately compute

cu(y; u)* A+ fu-

Here f, is an arbitrary vector and not necessarily the gradient of the objec-
tive with respect to u. Again, we distinguish between the two cases because
V.f(y,u) is often a very simple vector. The generic function is

[g, iflag] = grad(y, u, lambda, fu, job, tol)

The parameter job specifies which expression has to be evaluated.

job = 1: Compute ¢, (y,u)* A + Vi f(y,u).
If job = 1, then fu is a dummy variable and should not be referenced in
grad.

job = 2: Compute ¢, (y,u)* A + fu.

4.3 User provided functions used only in the sensitivity equation approach

fgrad Given y, u, and tol compute approximate partial gradients V, f(y,u) and
Vuf(y,u) of f,i.e., compute f, and f, such that

||Vyf(y,u) - fll”y < tol, ||Vuf(y;u) - fu“u < tol.

The generic function is

An Interface Between Optimization and Application . 17

[fy, fu, iflag] = fgrad(y, u, job, tol)

The parameter job specifies which partial gradient has to be computed and is
included to allow the optimization algorithm to take advantage of special cases.
It has the following meaning:

job = 1: Compute V, f(y,u).

job = 2: Compute V, f(y,u).

job = 3: Compute V, f(y,u) and V, f(y,u).

sensa Given y, u, and tol compute

e =culyw)* (e ww?) v

approximately, i.e., compute z such that

-1
2 — cyu(y,u)* (Cy(yau)*) v|| < tol.

u

The generic function is

[z, iflag] = sensa(y, u, v, tol)

sens Given y, u, and tol compute
2= cy(y,u) " eu(y, uly
approximately, i.e., compute z such that
||cy(y,u)z - cu(y,u)v”A <tol or Hz - cy(y,u)_lcu(y,u)vny < tol.
The generic function is

[z, iflag] = sens(y, u, v, tol)

4.4 Consistency and derivative checks
For the adjoint equation approach. In exact arithmetic, the adjoints have to sat-
isfy
(cy(y, u)sy, Na = (sy,¢y(y,u)"A)y, Visy, A,
(cu(y, u)Su, A = (Su,Cu(y,uw)* A)u, Y Sus A,
{ey(y,u)™te,sy)y = (e, (ey(y, W)™) sy)a, Ve, sy
If inexact solvers are used with tolerances as described in the previous section, then
(cy(y,u)sy, A — (sy,¢y(y,u)*A)y = O(tol), Vsy, A,
(eu(y, w)Su, AYA — (Su, cu(y,u)* Ny = O(tol), Vs, A,
(ey(y,u) e, sy)y — (e (ey(y,u) ™) sy)a = O(tol), Ve, sy.

Derivative computations can be checked using finite differences. If only the user
provided functions described in Sections 4.1 and 4.2 are to be used for these checks,

18 . M. Heinkenschloss and L. N. Vicente

then not all derivatives can be accessed. For example, ¢, (y,u)* is never computed
explicitly. Using the functions in Sections 4.1 and 4.2, one can perform the checks

Ly +asyw) —)|, = 00), (@0

“cy(ya u)sy — P

lewty w)se = = (ely,u + ase) = ety w)|, = O@), (28)
(ey)" A, 33y = = ({ely + sy, u), M — ey, w), Ma) = O(a),
((ely u+ a5, M — (ely, w), X)) = O(a)
(T F))y = = (Fly + as,,w) — f,0)] = O), (29)

(Tuf)5 =~ (F,ut as,) = f(y)| = Ofa). (30)

For the sensitivity equation approach. Similarly, one can check user provided
information for the sensitivity equation approach. With the user provided functions
described in Sections 4.1 and 4.3 one can perform the consistency check

(S(y,uw)Su, Sy)y — (Su, S, w)*sy)u = O(tol), Vsy,sy.
and the finite difference checks (27)-(28) and (29)-(30).

5. EXAMPLES OF OPTIMIZATION ALGORITHMS

In this section we provide code or code fragments for some optimization algorithms
to illustrate the use of the interface. To keep the illustration simple, we make
no use of the return flag iflag and simply assume that all requested operations
can be performed. Moreover, we do not address the control of inaccuracy and we
simply carry tol along without ever modifying it. What to do in an optimization
algorithm if certain application information can not be computed and how to control
the inexactness are important and interesting questions. The answers to these
questions belong into a paper on optimization algorithms and are beyond the scope
of this paper. Again, we use MATLAB syntax for illustration.

The first example is the steepest descent method with Armijo line search rule
for the solution of the reduced problem (14). Depending on whether the sensitivity
equation approach or the adjoint equation approach is used the gradient is com-
puted by (16) or by (18). In this example, u is the unknown variable and y is a
function of u. As a consequence, only u is passed to xnew and the variable y is only
used as a dummy argument.

% Loop k: a current iterate u is given and the corresponding
% solution y of the state equation has been computed.
h
% Compute the gradient W(y(u),u)*gradf (y(u),u) of the reduced
% function.
if der_cal == ’adjoints’

% Solve the adjoint equation.

[lambda, iflag] = adjoint(y, u, zeros(size(y)), 1, tol);

An Interface Between Optimization and Application . 19

%
% Compute the reduced gradient.
[rgrad, iflag] = grad(y, u, lambda, zeros(size(u)), 1, tol);
elseif der_cal == ’sensitivities’
% Compute the gradient of f wrt y and u.
[grady, gradu, iflag] = fgrad(y, u, 3, tol);
%
% Compute the reduced gradient.
[z, iflag] = semnsa(y, u, grady, tol);

rgrad = -z + gradu;
end
%
% Compute step size t.
t =1;
[gradnrm2, iflag] = uprod(rgrad, rgrad);
succ = 0;
while(succ == 0)
% Compute trial iterate (y is a dummy variable).
unew = u - t*rgrad;
[iflag] = xnew(iter, y, unew, ’trial_it’);
%
% Solve the state equation.
[ynew, iflag]l = state(y, unew, tol);
%
% Evaluate objective function.
[fnew, iflag] = fval(ynew, unew);
%
% Check step size criterion.
if(fnew - f <= -1.e-4 x t * gradnrm2)
succ = 1;
end
h
% Reduce the step size.
t = 0.5 x t;
end
%
% Set new iterate.
y = ynew;
u = unew;
f = fnew
[iflag] = xnew(iter, y, u, ’new_it’);
%

% End of loop k.

As our second example, we consider a simple version of a reduced SQP method
with no strategy for globalization. See, e.g., [Heinkenschloss 1996, Alg. 2.1]. At a

20 . M. Heinkenschloss and L. N. Vicente

given point (y,u), the SQP method computes a solution of

H(y,u)sy = =W (y,u)*Vf(y,u),
where H (y,u) is the reduced Hessian or an approximation thereof (see (23)) and
then a solution of

cy(y,u)sy = —c(y,u) — cu(y, u)sy.
The following code fragment illustrates the use of the user interface to implement
the reduced SQP method.

% A new iterate (y,u) has been computed before and xnew has been called.
h
% Compute the reduced gradient W(y,u)*gradf(y,u).
if der_cal == ’adjoints’
% Solve the adjoint equation.
[lambda, iflag] = adjoint(y, u, zeros(size(y)), 1, tol);
h
% Compute the reduced gradient.
[rgrad, iflag] = grad(y, u, lambda, zeros(size(u)), 1, tol);
elseif der_cal == ’sensitivities’
% Compute the gradient of f wrt y and u.
[grady, gradu, iflag] = fgrad(y, u, 3, tol);
h
% Compute the reduced gradient.
[z, iflag] = semnsa(y, u, grady, tol);

rgrad = -z + gradu;
end
h
Compute the value of c(y,u).
[c, iflag] = cval(y, u);
h

% Compute the norms of c and rgrad squared.
[rgradnrm2, iflag] = uprod(rgrad, rgrad);
[cnrm2, iflag] = 1lprod(c, c);

h

% Termination criterion.
if(sqrt(rgradnrm2?) < gtol & sqrt(cnrm2) < ctol)

return
end

h

% Compute su.

%
% Compute sy.

[sy, iflag] = linstate(y, u, su, c, 1, tol);
%

% Set the new iterate.

An Interface Between Optimization and Application . 21

y =y * sy;
u = u + su;
[iflag] = xnew(iter, y, u, ’current_it’);

One possible merit function to globalize the SQP method is the augmented La-
grangian:

f(yau) + ()\(y,u),c(y,u)),\ + p”C(yau)”?\a

where p is a positive penalty parameter. The following code fragment describes the
use of the interface to compute the value of the augmented Lagrangian function.
The calculation of the scalar product (A(y, u), c(y,u))a by the sensitivity equation
approach is shown in (21).

Compute the values of f(y,u) and c(y,u).
[f, iflag] = fval(y, u);
[c, iflag] = cval(y, u);
h
if der_cal == ’adjoints’
% Solve the adjoint equation.
[lambda, iflag] = adjoint(y, u, zeros(size(y)), 1, tol);
h
[ctlambda, iflag] = lprod(lambda, c);
elseif der_cal == ’sensitivities’
% Solve the linearized state equation.
[sy, iflag]l = linstate(y, u, zeros(size(u)), c, 2, tol);
h
% Compute the gradient of f wrt y.
[grady, gradu, iflag] = fgrad(y, u, 1, tol);
h
[ctlambda, iflag] = yprod(grady, sy);
end
h
% Compute the norm of c squared.
[cnrm2, iflag] = lprod(c, c);
h
% Compute the value of the augmented Lagrangian function.
auglag = f + ctlambda + rho * cnrm2;

The next example concerns the implementation of limited memory BFGS updates
for the approximation of VZ_£(y,u, X). We set

o= (09), w= () e = (o0)a) + (o) ()

where (Sy)i = Yi+1 — Yi, (Su)z = Ui41 — U, (Uy)i = vye(yi—klyui—i-l;/\i—i-l) -
Vil (Yi,wis Ai); (Vu)i = Val(Yir1, wir1, Nig1) — Val (Yi, wi Xi). I (sg—1,08-1)2 #0

22 . M. Heinkenschloss and L. N. Vicente

and if the Hessian approximation Hy— is invertible, then the inverse of the BFGS
update is given as

Hit = (I, —pr1se 1@ e 1) Hiy (In, — pro1061 @ 551)
+pr—15k—1 ® Sk—1, (31)

where ng = ny +n, and pr_1 = 1/(sk—1,Vk—1)x. See, e.g., [Nocedal 1980]. Given
z and w, z ® w is defined by (z ® w)z = (w, 2) x x. See Section 2.

The equation (31) leads to a limited storage BFGS (L-BFGS), by using the
recursion L times and replacing H 1 . by

17 0
—1 Yy My
ﬁ Yy .
- (0 Ln,

The computation of H, g, where Hj, is the L-BFGS matrix can be done in a
efficient way following [Matties and Strang 1979; Nocedal 1980] or [Byrd et al.
1994]. We demonstrate the computation of z = H; 'g, where g = (gy, g,) is a given
vector and H; ' is the L-BFGS approximation of V2_£(y,u, \) using our interface
and the recursive formula given in [Matties and Strang 1979] and [Nocedal 1980,
p. 779]. The integer L denotes the number of vector pairs s;,v; stored. The last
character in the variable name indicates whether the quantity corresponds to the
Y space or to the U space. Otherwise, the naming of variables and the structure of
the algorithm follows [Nocedal 1980, p. 779]. For simplicity, we assume that k > L.

for i = L-1:-1:0
j=i+k-L;
[vtsy, iflag] = yprod(vy(j), sy(j));
[vtsu, iflag] = uprod(vu(j), su(j));
rho(j) =1/ (vtsy + vtsu);
[gtsy, iflag]l = yprod(gy, sy(j));
[gtsu, iflag] = uprod(gu, su(j));

alpha(i) = (gtsy + gtsu) * rho(j);
gy = gy - alpha(i) * vy(j);
gu = gu - alpha(i) * vu(j);

end

gy = gy / gammay;

gu = gu / gammau;

for i = 0:L-1
j=1i+k-1L;
[gtvy, iflagl = yprod(gy, vy(j) J;
[gtvu, iflag] = uprod(gu, vu(j));

beta(i) = (gtvy + gtvu) * rho(j);
gy = gy + (alpha(i) - beta(i)) * sy(j);
gu = gu + (alpha(i) - beta(i)) * su(j);

end

An Interface Between Optimization and Application . 23

6. LIMITATIONS AND EXTENSIONS

In the previous section we have illustrated how some optimization tasks can be
implemented using our interface. We have used our interface to implement a class
of affine-scaling interior-point optimization algorithms [Dennis et al. 1994] for the
solution of

min f(y,u)
s.t. c(y,u) =0, (32)
u<u<mu.

However, our interface is certainly not sufficient to implement all optimization algo-
rithms for the solution of (32) or the more complicated problem (1). For example,
our interface requires that the vectors are small enough that they can be hold
in-core. This is problematic for problems with time-dependent partial differential
equations or problems with large data sets such as those arising in seismic inver-
sion. In such cases the special structure of the objective function or the special
structure of the state equation ¢(y,u) = 0 can sometimes be used to reduce the
in-core storage. Additionally, functions like those implemented in HCL [Gocken-
bach et al. 1997] are needed to accomplish tasks like vector additions, if vectors
cannot be stored in-core, but have to be stored on, say, hard disk. (In fact, seismic
problems which require out-of-core vectors are examples driving the development of
HCL [Gockenbach et al. 1997].) Besides the problem size, the types of constraints
may limit the applicability of the interface. In particular the presence of inequality
constraints poses interesting questions. In the original infinite dimensional prob-
lem, these are point-wise constraints and are associated with the Banach space L.
We have made good experiences with our code for solving (32) if the Hilbert space
for u corresponds to L2. These numerical observations are supported by the the-
ory in [Ulbrich et al. 1997]. In general, however, the pure Hilbert space structure
underlying our interface (and others) does not seem sufficient.

Besides the above mentioned limitations, we believe the interface presented in
this paper is very useful. It can be used to implement a large number of algorithms
for a significant class of optimal control problems. For instance, any problem of the
form

min f

s.t.

fw,u)
d(w 9(w,u) >0,

w,

[
I/\ IA

, U
w
u

IN A

e

can be reformulated as problem (1) by setting y = (w, s) with g(w,u) —s =0. In
this case the nonsingularity of d,,(w,) would imply the nonsingularity of ¢, (y, u).

We expect that the functions in this interface will be contained in interfaces devel-
oped to handle the very large scale problems mentioned above. The interface serves
an important theoretical purpose in the use of structure for algorithmic design. By
using this interface or some of its features, optimization algorithm designers are
forced to separate optimization and application tasks within the algorithms.

24

. M. Heinkenschloss and L. N. Vicente

REFERENCES

AXELSSON, O. 1994. [terative Solution Methods. Cambridge University Press, Cambridge,
London, New York.

BeTTs, J. T. 1997. SOCS sparse optimal control software. Technical report, The Boeing
Company, P.O. Box 3707, M/S 7L-21, Seattle, WA 98124-2207.

BETTS, J. T. AND FRANK, P. D. 1994. A sparse nonlinear optimization algorithm. Journal
of Optimization Theory and Applications 82, 519-541.

Bock, H. G. 1988. Randwertprobleme zur Parameteridentifizierung in Systemen nichtlin-
earer Differentialgleichungen. Preprint Nr. 442, Universitdt Heidelberg, Institut fiir Ange-
wandte Mathematik, SFB 123, D-6900 Heidelberg, Germany.

BORGGAARrD, J., BuUrNs, J., CLFr, E., AND SCHRECK, S. Eds. 1998. Computa-
tional Methods for Optimal Design. Proceedings of the ALSOR Workshop on Opti-
mal Design and Control, Arlington, VA, 30-September — 3-October 1997, Progress
in Systems and Control Theory (Basel, Boston, Berlin, 1998). Birkhduser Verlag.
http://www.icam.vt.edu/workshop/proceedings.html.

ByYrD, R. H., NOCEDAL, J., AND SCHNABEL, R. B. 1994. Representations of quasi-Newton
matrices and their use in limited memory methods. Math. Programming 63, 129-156.
CLIFF, E. M., HEINKENSCHLOSS, M., AND SHENOY, A. 1997. An optimal control problem for

flows with discontinuities. Journal of Optimization Theory and Applications 94, 273-309.

DENNIS, J. E., HEINKENSCHLOSS, M., AND VICENTE, L. N. 1994. Trust-region interior—point
algorithms for a class of nonlinear programming problems. Technical Report TR94-45,
Department of Computational and Applied Mathematics, Rice University, Houston, TX
77005-1892. To appear in STAM J. Control and Optimization.

DENNIS, JR.,, J. E. AND SCHNABEL, R. B. 1983. Numerical Methods for Nonlinear Equa-
tions and Unconstrained Optimization. Prentice-Hall, Englewood Cliffs, N. J. Republished
by SIAM, Philadelphia, 1996.

FLETCHER, R. 1987. Practical Methods of Optimization (Second ed.). John Wiley & Sons,
Chichester.

GiLL, P. E.;, MURRAY, W., AND SAUNDERS, M. A. 1997. SNOPT: An SQP algorithm
for large—scale constrained optimization. Numerical Analysis Report 97-2, Department of
Mathematics, University of California, San Diego, La Jolla, CA.

GOCKENBACH, M. S., PeTrO, M. J., AND SyMESs, W. W. 1997. C++ classes
for linking optimization with complex simulation. http://www.trip.caam.rice.edu/
txt/tripinfo/abstracts_list.html.

GRUVER, W. A. AND SACHS, E. W. 1980. Algorithmic Methods In Optimal Control. Pitman,
London.

GUNZBURGER, M. D., Hou, L. S., AND SVOBOTNY, T. P. 1993. Optimal control and opti-
mization of viscous, incompressible flows. In M. D. GUNZBURGER AND R. A. NICOLAIDES
Eds., Incompressible Computational Fluid Dynamics (Cambridge, New York, 1993), pp.
109-150. Cambridge University Press.

GUTKNECHT, M. H. 1993. Changing the norm in conjugate gradient type algorithms. SIAM
J. Numer. Analysis 30, 40-56.

HANDAGAMA, N. AND LENHART, S. 1998. Optimal control of a PDE/ODE system modeling
a gas-phase bioreactor. In M. A. HORN, G. SIMONETT, AND G. WEBB Eds., Mathematical
Models in Medical and Health Sciences (Nashville, TN, 1998). Vanderbilt University Press.

HEINKENSCHLOSS, M. 1996. Projected sequential quadratic programming methods. SIAM
J. Optim. 6, 373—417.

HEINKENSCHLOSS, M. AND VICENTE, L. N. 1998. Numerical solution of semielliptic optimal
control problems using SQP based optimization algorithms. Technical report, Department
of Computational and Applied Mathematics, Rice University. In preparation.

ITo, K. AND KUNISCH, K. 1996. Augmented Lagrangian-SQP methods for nonlinear optimal
control problems of tracking type. SIAM J. Control and Optimization 34, 874-891.

KUPFER, F.-S. AND SAcHS, E. W. 1992. Numerical solution of a nonlinear parabolic control
problem by a reduced SQP method. Comput. Optim. and Appl. 1, 113-135.

An Interface Between Optimization and Application . 25

Lions, J. L. 1971. Optimal Control of Systems Governed by Partial Differential Equations.
Springer Verlag, Berlin, Heidelberg, New York.

MATTIES, H. AND STRANG, G. 1979. The solution of nonlinear finite element equations.
Internat. J. Numer. Methods Engrg. 14, 1613-1626.

NAsH, S. G. AND SOFER, A. 1996. Linear and Nonlinear Programming. McGraw-Hill, New
York.

NEITTAANMAKI, P. AND TiBA, D. 1994. Optimal Control of Nonlinear Parabolic Systems.
Theory, Algorithms, and Applications. Marcel Dekker, New York, Basel, Hong Kong.
NoceDAL, J. 1980. Updating quasi-Newton matrices with limited storage. Math. Comp. 35,

773-782.

PeTzZOoLD, L., ROSEN, J. B., G, P. E., Jay, L. O., AND PArRk, K. 1996. Numerical
optimal control of parabolic PDEs using DASOPT. Na-96-1, Department of Mathematics,
University of california, San Diego, La Jolla, CA.

ULBRICH, M., ULBRICH, S., AND HEINKENSCHLOSS, M. 1997. Global convergence of trust-
region interior-point algorithms for
infinite-dimensional nonconvex minimization subject to pointwise bounds. Technical Re-
port TR-97-04, Department of Computational and Applied Mathematics, Rice University.
http://www.statistik.tu-muenchen.de/LstAMS/sulbrich/papers.html/papers.

VARVAREZOS, D. K., BIEGLER, L. T., AND GROSSMANN, I. E. 1994. Multiperiod design
optimization with SQP decomposition. Computers Chem. Engng. 18, 579-595.

