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Abstract

We demonstrate the feasibility of using a nonconforming finite element method on an
unstructured grid in solving a magnetospheric physics problem. We use this approach to
construct a global discrete model of the magnetic field of the magnetosphere that includes
the effects of shielding currents at the outer boundary (the magnetopause). As in the
approach of [17] the internal magnetospheric field model is that of Hilmer and Voigt [3]
while the magnetopause shape is based on an empirically-determined approximation [12].
The result is a magnetic field model whose field lines are completely confined within the
magnetosphere. The numerical results indicate that the nonconforming discrete model

1s robust and efficient.

Keywords Magnetopause, magnetosphere, Chapman-Ferraro Currents, Nonconforming

finite elements, Laplace’s equation, Neumann boundary value problem

1991 Mathematical Subject Classification 65M60, 656N50, 65J10, 85A20, 85-08

1 INTRODUCTION

The Earth’s magnetosphere is formed by the interaction of the solar wind with the Earth’s magnetic
field. This interaction, to zeroth-order, causes the solar wind to flow around the cavity carved out
by the Earth’s magnetic field forming the region known as the magnetosphere. The magnetospheric
shape is compressed on the upstream or sunward side and stretched out to form a long tail in
the downstream region. This solar-wind magnetosphere interaction produces currents both within

the magnetosphere and at the boundary (the magnetopause). The magnetopause currents, often
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called the Chapman-Ferraro Currents [2], confine the magnetospheric magnetic field lines within the
magnetosphere in the idealized case of a closed magnetosphere considered here.

Let © be a three dimensional domain representing the Earth’s magnetosphere, 92 the magne-
topause, and 0Qrar, be the downstream boundary. We define the internal source magnetic field Bg
for any z € € to include (1) the magnetic field of Earth’s dipole moment, (2) the tail field generated
by currents flowing in the Earth’s tail, (3) the ring current field which is generated by a region of
trapped plasma in the near-Earth region. Note that the methods outlined here are general enough
to be applicable to any magnetic field model. The Chapman-Ferraro field Bop results from the
shielding Chapman-Ferraro current at the magnetopause dQ2. The total normal component at the

magnetopause for a closed magnetosphere is then

(Bs(x) + Bep(z)) n=0, «€dQ, (1.1)

where n is the outward unit vector normal to the magnetopause 2. The details of the Hilmer-Voigt
magnetic field model Bg can be found in [3]. By definition, the Chapman-Ferraro field Bcop is

curl-free in €2, thus it can be computed as the negative gradient of a scalar potential ®

Bep(x) & —va(z), 2eqQ. (1.2)

Since the magnetic field B¢ is required to be divergence-free, we have

A®=0, z€Q. (1.3)

The solution of the equation (1.3) subject to the boundary condition (1.1) is called the Chapman-
Ferraro problem [2]. A general discussion of this problem and a review of early work can be found

in [21] or [11].
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A perturbation of this shielding process occurs when there is a small but finite normal component
of the magnetic field at the magnetopause [15, 16]. The method we present here is applicable to
an arbitrary magnetopause boundary condition and is readily adapted to the open magnetosphere
modeling approach introduced in [15]. The open magnetosphere is modeled by replacing (1.1) with
a non-homogeneous Neumann boundary condition.

If the magnetopause coincides with one of the coordinate surfaces (e. g. sphere) of a system in
which Laplace’s equation is separable [9], then ® may be expanded in harmonic functions of that
system and the coefficients may be derived by an inversion integral. Examples include spherical co-
ordinates with a spherical magnetopause [22], parabolic coordinates with a paraboloid-of-revolution
magnetopause [1, 13]; [18], and a combination of spherical and cylindrical coordinates with a hemi-
spherical dayside magnetopause joined to a semi-infinite cylinder tail magnetopause [20, 22]. While
these approaches have provided elegant and useful magnetic field models, the restrictions imposed
by the technique limit the class of magnetopause shapes that can be considered. For example, the
magnetopause shape that results from a magnetophydrodynamic pressure-balance calculation, where
the shocked solar-wind pressure is balanced against the internal magnetic-field pressure, does not
generally coincide with any of the shapes for which a separable solution to (1.3) can be found.

An alternative approach for non-separable solutions of (1.3) has been implemented in [14]. The
coefficients are fitted to the boundary condition by least squares [14, 19]. A finite difference method
has been used in [17] using a curvilinear grid but the technique is restricted to axis-symmetric

magnetopause shapes.

2 THE FINITE ELEMENT FORMULATION OF THE CHAPMAN-FERRARO PROBLEM

Finite element approximation of the potential ® of the Chapman-Ferraro magnetic field B¢ p is based
on the generalization of the spatially averaged non-conforming finite element introduced in [10]. This
approximation has been extensively used in [4] to approximate almost everywhere discontinuous

deformations associated with the Martensitic transformation. The numerical analysis of this finite
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element has been done in [6]. This finite element does not have a conforming core making it special

among a class of nonconforming finite elements.

2.1 THE WEAK FORMULATION OF THE CHAPMAN-FERRARO PROBLEM

Let © be a bounded domain with Lipschitz boundary and let us assume that the necessary compat-

ibility condition for the interior Neumann problem is satisfied, i.e.

/ Bs -ndS =0. (2.1)
QL

The boundary condition (1.1) yields the following weak formulation. The function ® € W12(Q)
is called the weak solution of the Chapman-Ferraro problem (1.3) with the homogeneous Neumann

boundary condition (1.1) if

/V@(I)Vv(;r) dr = / Bs -nvdS, foranywve Wl’z(Q). (2.2)
1e)
Q

It is well-known that the interior Neumann problem (2.2) has at most one solution ® € C#(2) N
CH(Q) if Q € C'. The solution is determined up to an arbitrary additive constant. The solution
can be singled out by assuming any of the conditions fﬂ u(z)dz = 0 or f(,m udS = 0 or by fixing
the solution ® at some point on 9. For Q with a polygonal boundary the solution of (2.2) is less
smooth. In particular, the solution ® is in W2?2(Q) if the angles among the boundary segments are

strictly less than 180°.
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Figure 1: This Figure illustrates the geometry and the coordinate system used in this work where
z points towards the sun. The angle ¢ is the cylindrical coordinate out of the z — z plane. In this
coordinate system, the Earth’s dipole field tilts in the z — z plane at an angle ¥. The tail boundary
1s labeled 6QTA1L

2.2 MAGNETOPAUSE SHAPE APPROXIMATION

We have taken the Earth’s magnetosphere Q to have the boundary given by the function used in

[12]. We approximate the magnetopause 9 by the function

Ronp(2) = Ro <ﬁ>ﬁ (2.3)

where (Rg) is a standoff distance, and « is an angle such that & = 0 corresponds to the location
(z,y,2) = (Rg,0,0), cf. Fig.l. The parameter 3 determines the downstream flaring angle of the
magnetopause, for simplicity a value of § = 0.5 1s used.

The three-dimensional magnetospheric cavity is generated by a rotation about the z-axis to
produce an axisymmetric magnetopause. Non-axisymmetric magnetopause shapes are modeled by
making the magnetotail radius R, () a function of the angle ¢. For the Earth’s magnetosphere,
Ry varies between 8 — 12 Earth Radii (Rg) although during extreme solar wind conditions it can

become as small as 4Rg. For the cases presented here, a constant value of 10Rg was used.
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2.3 THE NONCONFORMING FINITE ELEMENT FORMULATION

We partition the Earth’s magnetosphere © with the magnetopause 952 into quadrilaterals Qp, € 7,

such that
Qp def U Qn, where
QreETh
Q,CQ, 0°Q, €09, %1_1}1(1) meas(Q — Q) =0, and
(2.4)
lim — < oo, where
h—04 p

p 4 rhindiam Qn, h 2 hax diam Q.
Qn Qn
The averaged harmonic finite element is defined by the triple (Q, Pg, Xg), where Q = [a—7r,a+7] X

[b—s,b+ s] x [c—1,c+1] is a rectangular parallelopiped with its center at (a, b, ¢), and the lengths

of its edges 2r, 2s, 2t, where r;s,t > 0,
N2 Y\2 /z\2 2N\ 2
Po=span Lows (7) = (5) . (5) - (3) -
Q Span{ T, Y 2\ " " y
b)Y {1/ ds|i=1 6}
=< — q i=1,...,65.
¢ UrlJk,

Here F;, i = 1,...,6, are the faces of the rectangular parallelopiped @, and where |F| denotes the

(2.5)

area of the face F'. This finite element is well defined since X¢ is Pg-unisolvent. This can be easily
checked by considering the six polynomials ¢; = ¢;(z,y,2), i = 1,...,6, obtained by permuting the

terms (z — a)/r, (y — b)/s and (z — ¢)/t in the polynomial

1/z—a 2 1 y—2b 2_}_1 z—c 2+dz—c+l
4 r 4 s 2 t 2t 6’

with d = £1. It is obvious that ; € Pg,2 = 1,...,6, and it is easily checked that with a suitable

labeling of the indices,

1 / .
— P dS = 6;;.
|Fil Jp, !
Thus, {1/%}?21 is the standard basis for the finite element (@, Pg,Xg). Now, we define a vector-

valued polynomial space

P x P x P {(w(z), ws(x), ws(z)) | wi(x) € Py fori=1,2,3}. (2.6)
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The finite element space V}, used to approximate in some sense the Sobolev space W12(Q) used in

(2.2) is defined by the triple {Q, Pg, Xg}. Namely,

Vi={w, € LZ(Qh) : vh|Qh € Pg,, YQi € m;

(2.7)
/ vhl,, dS:/ vh|,,, dS, for any face F=0Q,noQ, #0, Q4 Q1 € }.
F @h F QY
The weak formulation (2.2) with the definition (2.7) of the space V3 reads
Vh<I>h (m)thh(:p) dr = / BS s NUp ds. (28)
Qh Qh

The discrete gradient operator Vj used in the formulation (2.8) is defined on ®p(z) € V}, to be the
function defined on Qp by applying the classical gradient differential operator V in the subdomains
@1, and by neglecting the contribution of the gradient operator V when applied across the faces of

Qp where @ (z) is possibly discontinuous. In other words, we have that
Via®p(z) = V&, (2) for z € Q. (2.9)

The discrete gradient operator Vj ignores the effect of the discontinuities of the potential ®, € V},

when computing the gradient, so

; Vp®p(2)Vyvp(z)de = Z/ V&, (z)Vop(z) de.

The finite element defined through (2.5) in (2.7) is called nonconforming finite element space
with respect to the second order problem (2.2) because Vj, € W'?(€Q) as is required by the weak
formulation. It follows from the continuity condition imposed in the definition of the space Vj
(2.7) that there exists on each face of J at least one connected curve such that the function @ is
continuous along this curve.

The idea behind the implementation of the nonconforming approximation for the solution of the
elliptic problems is adaptivity. Our calculations serve as a precursor for the solution of the MHD
equations. It has been demonstrated in [4], [5] that the finite element (2.5) is very well suited for
the computations of phenomena that can be described by a function that has almost everywhere

discontinuous gradient. In other words, i1t allows for good approximation of sharp discontinuities.
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The shocks associated with the solutions of MHD are sharp to a first order approximation. Most
of the field is smooth however. The calulations described in this paper demonstrate that both
non-smooth and smooth solutions can be obtained via nonconforming calculations thus reducing
computational expense.

Theoretically, the order of approximation using nonconforming finite elements is O(h) due to
omission of the values of @) along cross-interelement boundaries, c.f. (2.9). The computations
presented in this paper produce somewhat higher than expected smoothness.

We define subparametric family of averaged harmonic elements {Q5, Pg, , Xg, } using the invert-
ible equivalence map F € (Py(Qret))?, i-e.

Qn = F(Q),
Po, ={pnlph:Qn >R, py=qoF~ ' g€ Py, pe Py, }, and (2.10)

Yo, =1—=— ds:i=1,...,6}.
Qh {|thl| Fh)lph 1 bl bl }

Working with Span{1,z,y,z? — y?, 22 — y*} would not yield properly defined finite element for
anything other than the cube [—r,r]3, r > 0. Therefore the choice of this polynomial space does not
yield an affine family of finite elements. This difficulty is removed by scaling the spatial variables
by r,s,t, c.f. the definition (2.5). The scaled averaged harmonic finite element is well defined
for any rectangular parallelopiped forming an affine family under the equivalence mapping F €
(P1(Qrer))?. Unfortunately, this finite element does not form a subparametric family under the
equivalence mapping F € (Q1(Qret))®>. F € (P1)3 even though the partition 7, of Qj requires
trilinear transformation on the referential rectangular parallelpiped. The analysis shows that further
nonconformity thus created is confined within the realm of O(h) error. The definition (2.5) of the
averaged scaled harmonic finite element is “non-local” in a sense that the referential basis functions
change with respect to the actual corresponding element Q.

We note that in general A¢ # 0 for ¢ € Pg unless r = s = t. Therefore we have included a
rectangular parallelopipeds @)} inside the magnetosphere ) to impose point-wise the divergence-

free condition (1.3). The partition of €2} is visualized in Fig.2. Note that a finite element method
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usually delivers only averaged values of computed quantities. The unexpected continuity mentioned

above is related to the harmonicity imbedded into the definition (2.5).
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Figure 2: The computational magnetosphere Q. The left figure highlights the tail of the domain that shows
imbedded cubes @, where the finite element (2.5) is harmonic. In this figure, each particular element Qp, is
shrunk by about 30% to illustrate that the partition 7, is isoparametricaly equivalent to a single rectangular
parallelopiped under a map F € (Ql(Qref))S7 where @ is the set of trilinear forms.

3 CALCULATIONS WITH ZERO TILT

Computation of the magnetic field with zero tilt (& = 0), i.e. when the source magnetic field Bg
points in the direction (0,0, —1) constitutes a mathematically and physically simpler problem. In
this model the tail is truncated at some finite downstream distance (cf. Fig.1, 0Qram.) where the
simple boundary condition Bep(z) - n = 0 for all z on 0Qarr, is used.

The calculations have been done with a low spatial resolution to provide sufficient computational
evidence of the efficiency of the method. Namely, we take the z—direction resolution h; to be 80/21,
and hy = h, ~ 40/12, measured at the diameter of Q. The numerical integration associated with
evaluation of the variational integrals in (2.8) is done using a Hammer and Stroud cubature formula

that is accurate up to polynomials of order 5. This cubature rule requires 14 cubature points. The
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partition 7, in combination with the presented finite element and high-order numerical integration
yields a system matrix Aj representing the system (2.8) with low condition number.

The discrete weakly harmonic solution to (2.8) must be symmetric. The fieldlines are computed
using an Euler integration routine with adaptive stepsize. The result is shown in Fig.3 which
represents the z — z view of the computed fieldlines. One of the important tests of the solution @
is to check if the fieldlines corresponding to V@, which originate in a plane stay in this plane. The
nonconforming approximation allows for a lot of freedom in this sense. The fieldlines stay within
a range of y = £0.05 except for the fieldlines that pass extremely close to the singularity in Bj.
This means that lateral approximation error is about 0.1% which is well beyond the y—direction
resolution hy, ~ 3%. The lateral numerical stability seems to be a consequence of the point-wise

harmonicity of the spatial approximation.
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Figure 3: The fieldlines given by the computed solution V®j, in the £ — z plane. The outer heavy line
represents the magnetopause location.

4  CALCULATIONS WITH NONZERO TILT

When the dipole tilt angle ® is nonzero we have
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/ Bs -ndS #0. (4.1)
o0

The non-zero boundary flux violates the basic necessary compatibility condition for the interior
Neumann problem. The amount of the flux Bg through the tail region dQra1r, is not known a

priori. We compensate this deficiency as follows. Let b be the total flux of Bg, i.e.,

bd:ef/ Bs -ndS = BS-ndS—i—/ Bs -ndS
an AN\ OQTAIL AQTAIL

(4.2)
:/ Bs - ndS + BIAM meas(0Qrarm).
80\ 8QramL

Here, 0Qrarr, refers to the cut-off of the computational domain with the outer normal n = (1,0, 0)
and meas(0QTa1r,) represents the area of this region. For an axisymmetric magnetopause we have
meas(0Qrar) = WR?FAIL for the simple computational region ploted on Fig.2. Rrarr, is the radius

of the domain 9Qrar,. We want to find a value B;FAIL such that

0= / Bgs -ndS + BEAIL meas(@QTAIL). (43)
60\6QTAIL

Let (BEAIL)m be the m—th approximation of B;FAIL. We define the (m + 1)st total flux by,41 by

def

bm+1 = / Bgs -ndS + (BEAIL)m HleaS(@QTAIL). (4.4)
6Q\6QTAIL

In view of (4.3) we approximate

—(B§*) my1 meas(0Qram) ~ / Bs -ndS. (4.5)
8O\ 8amL

Hence, (4.4) and (4.5) yield the following fixed-point iteration scheme

(Bs*) g1 = (B§* ) — bmg1 / meas(0Qrar).- (4.6)
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An example of a magnetic field configuration where the dipole field is tilted by 35° is shown in Fig.3.
A three-dimensional perspective plot is shown in Fig.1. Note that for non-zero tilt the Hilmer-Voigt
magnetic field model also displaces the tail field off the z — y-plane. In both figures the heavy lines

denote the location of the magnetopause.
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Figure 4: The fieldlines corresponding to the dipole field tilted by 35°.
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Figure 5: Three-dimensional plot of the final field configuration for the tilted dipole field. The heavy lines
illustrate the location of the magnetopause.

5 CALCULATIONS WITH A NON-AXISYMMETRIC MAGNETOPAUSE

A further application of our discrete model is the computation of a configuration where the mag-
netopause shape is no longer axisymmetric. In this case, the methods described in the previous
section are the same with the exception that meas(0Qramr,) becomes the cross-sectional area of
0QrarL. Pressure balance considerations indicate that the magnetopause should be indented in a
region where the magnetic field is a minimum (the cusp); such an indentation has been modeled and
is shown in Fig.6. The resulting field line configuration is shown in Figs.7,8. Figure 8 shows that

the y-extent has been compressed.
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Figure 6: Grid configuration for the case of a non-axisymmetric magnetopause.
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Figure 7: Fieldline plots as viwed in the z — z plane for the case of a non-axisymmetric magnetopause; the
indentations were placed near the local minimum in the magnetic field, the location of which is asymmetric
with respect to z. The outer-heavy line represents the magnetopause location.
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Figure 8: Fieldline plots as viewed in a three-dimensional perspective plot for the case of a non-axisymmetric
magnetopause. The outer-heavy line represents the magnetopause location. The indentations are placed
near minima in the internal magnetic field.

6 SUMMARY AND CONCLUSIONS

We have used a nonconforming finite-element method to generate a discrete magnetospheric field
model. This type of technique is a generalization and extension of previous work and has potentially
useful applications in magnetospheric modeling. The numerical calculations indicate that even
nonconforming finite elements can be successfully used to approximate continuous quantities. The
resulting method presented in this paper proves to be robust and to a large extent independent of the
underlying unstructured grid. The local harmonicity of the finite elements used in our calculations
proves to be useful in maintaining the symmetry of the solution even close to the singularity.

Our discrete method can be used to extend and generalize empirically-based magnetic field [19]

and theoretical models [16] by allowing arbitrary magnetopause shapes to be used in calculations.
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