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Abstract

Effective Finite Termination Procedures
in Interior-Point Methods for Linear Programming

by

Pamela Joy Williams

Due to the structure of the solution set, an exact solution to a linear program
cannot be computed by an interior-point algorithm without adding features, such
as finite termination procedures, to the algorithm. Finite termination procedures
attempt to compute an exact solution in a finite number of steps. The addition of
a finite termination procedure enables interior-point algorithms to generate highly
accurate solutions for problems in which the ill-conditioning of the Jacobian in the
neighborhood of the solution currently precludes such accuracy.

The main ingredients of finite termination are activating the procedure, predicting
the optimal partition, formulating a simple mathematical model to compute a solution
and developing computational techniques to solve the model. Each of these issues are
studied in turn in this thesis. First, the current optimal face identification models are
extended to bounded variable linear programming problems. Distance to the lower
and upper bounds are incorporated into the model to prevent the computed solution
from violating the bound constraints. Theory in the literature is extended to the new
model. Empirical evidence shows that the proposed model reduces the number of

projection attempts needed to find an exact solution. When early termination is the



goal, projection from a pure composite Newton step is advocated. However, the cost
may exceed the benefits due to the average need of more than one projection attempt
to find an exact solution.

Variants of Mehrotra’s predictor-corrector primal-dual interior-point algorithm
provide the foundation for most practical interior-point codes. To take advantage
of all available algorithmic information, we investigate the behavior of the Tapia
predictor-corrector indicator, which incorporates the corrector step, to identify the
optimal partition. Globally, the Tapia predictor-corrector indicator behaves poorly

as do all indicators, but locally exhibits fast convergence.
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Chapter 1

Introduction

Many aspects of everyday life can be modeled as linear programming problems.
Examples include the design and restoration of fiber optic networks in the telecom-
munications industry, portfolio selections in the financial sector, and diet plans in the
burgeoning weight loss industry. In 1947, Dantzig [8] developed the simplex method
to solve linear programming problems. To search for an optimal solution, the simplex
method selects a sequence of vertices. Although the simplex method possesses the
finite termination property, the method has in the worst case an exponential running
time complexity.

Interior-point methods emerged as computational tools to solve linear programs
in the early 1980s. The introduction of Karmarkar’s method [19] propelled research
activity in the area of interior-point methods. Karmarkar’s projective algorithm is
a polynomial time algorithm for solving linear programs that was reportedly signif-
icantly faster than the simplex method. Interior-point methods generate iteration
sequences that travel through the interior of the feasible region and, under proper
assumptions, converge to the solution set. Since the introduction of Karmarkar’s al-
gorithm, interior-point algorithms have been developed with strong theoretical prop-
erties and excellent numerical performance.

One of the few questions that remains to be resolved for interior-point methods is
the development of effective finite termination procedures, techniques that compute
an exact solution in a finite number of steps. For linear programming problems,
the duality gap is exactly zero. Interior-point algorithms generate an approximate

solution in polynomial time; however, because of the structure of the solution set the



algorithms cannot produce an exact solution in polynomial time without the addition
of finite termination procedures.

The basic idea for a finite termination procedure is as follows. Once the iterates
become close enough to the solution set, the interior-point method can be suspended
and the zero-nonzero structure of the solution set can be estimated and used to obtain
a solution through some finite procedure whose arithmetic complexity is bounded by
a polynomial in the size of the input data. Assuming infinite precision arithmetic, the
computed duality gap would be zero. If the output of a finite termination procedure
satisfies the feasibility and optimality conditions, then an exact solution has been
recovered. Otherwise, the interior-point algorithm resumes.

Research in finite termination can be categorized into two areas, optimal face
identification (Tardos [46], Mehrotra [30], Mehrotra and Ye [35], and Ye [52], [54],
[55]) and optimal basis identification (Andersen [1], Andersen and Ye [2], Bixby and
Saltzman [5], Marsten, Saltzman, Shanno, Pierce and Ballintijn [24], Tapia and Zhang
[45], Vavasis and Ye [47], Ye and Todd [50], and Ye [51]). Optimal face identification
techniques identify the face upon which the objective function attains its optimal
value. The optimal face is uniquely defined by the set of variables which are zero
at the solution. Once the zero variables have been identified, the solution to the
linear program can be obtained by calculating an interior feasible point on the face.
Optimal basis identification methods construct an optimal basis from the zero-nonzero
structure of the solution set.

In 1989, Gay [13] proposed stopping tests that computed optimal solutions for
interior-point methods for linear programming problems. While these tests do not
constitute a finite termination procedure, they are clearly predecessors of current op-
timal face identification techniques. Gay’s idea was to use the zero-nonzero partition

of the variables to find the solution of linear programs. It was his belief that the



output of the stopping tests could be used as stopping criteria for the algorithm.
Furthermore, he thought that the early stopping tests would decrease numerical dif-
ficulties associated with Jacobians which were necessarily singular on the solution
set.

Gay solved two linear feasibility problems to obtain interior points on the optimal
primal and dual faces. The linear feasibility problems were defined to take advantage
of the Cholesky factorization which was already a part of the underlying interior-point
algorithm. Instead of factoring the coefficient matrix of a scaled linear system, Gay
formed the associated normal equations and then used a Cholesky factorization to
decompose the normal equations matrix. However, Gay used an iterative, not direct
method to find a feasible point. Hence, his technique cannot be categorized as a finite
termination procedure.

Gay’s influence can be seen in Mehrotra and Ye [35] where the authors solve a
linear feasibility problem via Gaussian elimination. In Chapter 5, we propose linear
feasibility problems similar to the ones that appeared in Gay [13].

Adding finite termination procedures to the interior-point framework would lead to
definitive stopping criteria, computational savings, and highly accurate solutions. For
degenerate problems, the Jacobian is necessarily singular at a solution. Therefore,
we expect that the Jacobian will be ill-conditioned close the solution set. The ill-
conditioned Jacobian may produce step directions which prevent the problem from
being solved to a high accuracy. With a finite termination procedure, we can avoid,
to some degree, the effects of ill-conditioning.

In this work, we extend the current optimal face identification models to linear
programs with upper bound constraints. We also propose new criteria for when to

first attempt the calculation of an exact solution.



Identification of the active set is an important component of a finite termination
procedure. The active set corresponds to variables that are zero at the solution. A
commonly used indicator is the Tapia indicator (see Tapia [43]), which consists of
the step direction and the current iterate. A natural extension of the Tapia indicator
is obtained by using the predictor and centering-corrector directions generated by
predictor-corrector interior-point methods. We investigate this new indicator that
takes advantage of the supplemental information provided by the centering-corrector
direction.

The thesis is organized as follows. Section 1.1 gives essential background material
on the linear programming problem. In Section 1.2, we describe a generic finite ter-
mination procedure. Chapter 2 provides an overview of finite termination procedures
that incorporate optimal face identification. In Chapter 3, theoretical results regard-
ing the addition of a weighted projection model to infeasible primal-dual interior-point
algorithms are presented. We also determine the optimal choice for a weighting ma-
trix. Numerical comparisons are presented to show how a weighting matrix affects the
performance of a finite termination procedure. Variants of the Mehrotra-Ye proce-
dure are the subject of Chapter 4. In Chapter 5, fast local convergence of the duality
gap 1s used to determine when to attempt to compute an exact solution. In Chapter
6, we extend the Tapia indicator to include corrector information from the Mehrotra

primal-dual predictor-corrector algorithm. We give concluding remarks in Chapter 7.

1.1 Background and Notation

We consider linear programs in the standard form:

minimize T

(1.1)

subject to Az =b, = >0,
where ¢,z € R", b e R™, A € R™*" (m < n) and A has full rank m.



The optimality conditions for (1.1) are

Ax —b
F(z,y,z)=| ATy+z—¢ | =0, (z,2) >0, (1.2)

XZe

where y € R™ are the Lagrange multipliers corresponding to the equality constraints,
z € R™ are the Lagrange multipliers corresponding to the inequality constraints,
X = diag(z), Z = diag(z) and e is the n-vector of all ones.

The Jacobian of (1.2) is

A 0 0
F'llz,y,z)=1| 0 AT 1 |. (1.3)
Z 0 X

The primal-dual feasibility set is defined as
F={(z,y,2): Az =b, ATy+z=r¢, (z,2)>0}.
The strict feasibility set of the primal and dual is
FOo={(z,y,2): Az =b, ATy+z=c¢c, (z,2)>0}
We denote the solution set of (1.2) as
S={(z,y,2): Fla,y,z) =0, (z,2)>0}.

If a solution satisfies

r+z>0,

in addition to XZe = 0, then this solution is said to satisfy the strict complemen-

tarity condition or strict complementarity.



Given feasible iterates, we see that ||F(z,y, z)|li = zTz. It can be shown that the

T2 is equal to the duality gap, which is the difference between the primal

expression &
and dual objective function values. At optimality, 27z = 0.

The strict complementarity condition is not restrictive. For linear programming
problems, Goldman and Tucker [14], proved that among all optimal solutions there
exists at least one solution that satisfies strict complementarity. Thus for nondegen-
erate problems, the unique solution satisfies strict complementarity.

If S # (), then the relative interior of S, ri(S), is nonempty. In this case, the
solution set S has the following structure (see El-Bakry, Tapia, and Zhang [10] for

a proof): (i) all points in the relative interior satisfy strict complementarity; (ii) the

zero-nonzero pattern of points in the relative interior is invariant. Therefore, for any

(27,97, 27) € ri(S),
B={j:2;>0,1<j<n} and N={j:2]>0,1<j<n}
For more details, see Giiler and Ye [17] and McLinden [25]. Moreover,
B JN ={1,..n} and B[N =0.

Thus, the sets B and N define the optimal partition of the set {1,...,n}.

The optimal primal face is defined as
O,={z:Az=b,2>0,z;=0j€N}
Similarly, the optimal dual face is
O,={(y,2): ATy4+2=¢,2>0, z; =07 € B}.

In the following chapters, the columns of A corresponding to the indices of B

comprise the matrix B. The matrix N is formed in an analogous manner. The



components of the vector x whose indices are in B are denoted by xz. Unless otherwise
denoted, || - || is the Euclidean norm. The cardinality of set B is denoted by |B|. We
use the notation

minu = min u; for u € R".
1<i<n

The central path parameterized by p, see Megiddo [26], is defined as
C={(z,y,2) € F*: XZe = pe where p = 2"z/n}. (1.4)
We define a neighborhood of the central path as

N_wo(v) = {(z,2)| min(XZe) > ypu} (1.5)

where u = (z72)/n, v € (0,1). Restricting the iterates to N_,,(y) prevents them

from prematurely getting too close to the boundary of the nonnegative orthant.

1.2 Finite Termination

Consider a nondegenerate problem (i.e., an unique solution exists). Within the
interior-point framework, assume that the active set is known. Then for the standard
linear programming problem, n-m variables that are zero at the solution and m vari-
ables that are positive at the solution have been identified. After setting the variables
in the active set to zero, the reduced square system can be solved for the remaining
variables. If optimality and feasibility conditions are satisfied for both the primal
and dual problems, the solution has been identified and the interior-point algorithm
terminates.

However, in practice most problems are degenerate, which results in a rectangular
coefficient matrix of the reduced system. If the linear system is underdetermined,

there exists infinitely many solutions. Consequently, there is no straightforward way



to compute a nonnegative solution of the reduced system. Several models have been
proposed to recover a nonnegative solution.

We now describe a generic finite termination procedure.
Procedure 1 (A Finite Termination Procedure)

(1) At some iteration k, suspend the interior-point algorithm and esti-

mate (B, ).
(2) Set zp =0 and z = 0.
(3) Solve a mathematical model for the vectors (g, y, zx).

(4) If z5 > 0, zyy > 0, and we satisfy the primal and dual constraints,
stop. Since

2l = xng + ;L'JTVZN =0,

we have found an exact solution.

Else, return to the interior-point algorithm.

Below, we graphically show steps 1 and 3 of a finite termination procedure.

From the outline above, we see that four important questions must be addressed
in a finite termination procedure. When do we attempt to compute an exact solution
(Chapter 5)? How do we identify the optimal partition of a linear program (Chapter
6)7 In the presence of degeneracy, what mathematical model should be used to
attempt to find a solution (Chapters 3, 4)7 Given the model, what is the most
computationally efficient way to solve the model (Chapters 3, 4)7 Our research focuses

on these issues.
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Figure 1.2 Step 3 - Projection of z}; onto the optimal primal face
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Chapter 2

Contributions from the Literature

Much work has been done in the area of finite termination for feasible interior-point
methods for linear programming, see Mehrotra [30], [31] and Ye [52], [54], [55]. Finite
termination procedures in infeasible interior-point methods for linear programming
have been studied by Potra [38] and Anstreicher, Ji, Potra, and Ye in [3], where a
probabilistic analysis was given. Monteiro and Wright [36], as well as Ji and Potra
[18] investigated finite termination procedures in infeasible interior-point algorithms
for degenerate monotone linear complementarity problems (LCPs). Resende and
Veiga [39] identified the optimal dual face and generated a primal basic solution to
derive robust stopping criteria for minimum cost network flow problems. The authors
also introduced an optimal stopping criteria that required solving a maximum flow
problem to determine a primal solution. Subsequent research into identifying the
optimal dual face for network flow problems appeared in Portugal, Resende, Veiga,
and Judice [37] and Resende, Tsuchiya, and Veiga [40]. Ye [55] proved that given a
homogeneous self-dual linear program a finite termination procedure can generate an
optimal solution to the standard linear program or detect infeasibility in finite time.
He also showed that the finite termination procedure can find a feasible point for the
homogeneous linear system.

In the following three sections of this chapter, we give a detailed description of
existing models and techniques used to find an interior feasible point on the optimal
primal and dual faces. The models and techniques differ in the incorporation of the

inequalities and the method by which an interior feasible point is computed.
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Recall that the optimal primal face can be written as
O,={x:Bxg=0b, x>0, zy =0},
and the optimal dual face as

04 ={(y,2): BTy =cp, CN — NTy =zy, zy >0}

Finite Termination Problem: Given that the partition (B, N) is correct, the vector

u € RIBl is close to the linear manifold
Bxg =0,
and v € R" 18 is close to the linear manifold
ATy +z=c,

the actual problem is

Find Au s.t. u+Aue0,

(2.1)
and (Av, Aw) s.t. (v+ Av,w+ Aw) € O4.
A solution of the primal subproblem can be obtained by solving
minimize 1||zp — ul?
2 ” B H (2.2)
subject to Bxg =15 xg > 0.
Similarly, a solution of the dual subproblem can be obtained by solving
minimize 1|y — v]|?
2lly —vll (2.3)

subject to ATy +z2=c¢ zy =cy — NTy > 0.

There exist many iterative methods that can solve (2.1) or (2.2) and (2.3). However,
finite termination procedures require the solution of the problem by a direct, not indi-

rect, method. Kincaid and Cheney [20] define direct methods as methods that proceed
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through a finite number of steps and produce a solution that would be completely ac-
curate if not for roundoff errors. In general, the presence of nonnegativity constraints
render direct methods ineffective for solving problems (2.1) or (2.2). However, if the

vectors u and v are close enough to the solution set, we can solve approximation

models of problems (2.1) and (2.2) by a direct method.

2.1 Orthogonal Projection

Ye [52] was probably the first to study finite termination in interior-point methods
for linear programming. He was motivated by the fact that the simplex method for
linear programming has the finite termination property and also by research activity
in efficient algorithmic termination techniques.

Ye computed a point in the interior of the optimal primal face by solving the

following least squares problem,

minimize ||z — x|’

(2.4)
subject to Bxg =b.
The dual least squares problem can be written as
minimize ||y — y*|?
Hly — ol )

subject to BTy = ¢3.
No rank assumptions were made on the matrix B.

The solutions of (2.4) and (2.5) are the orthogonal projections (i.e, the solutions
are the closest points to 2§ and y* on the respective linear manifolds). The advantages
of Ye’s orthogonal projection model are twofold. First, the solutions zgz and y are
unique. Second, the cost of solving both the primal and dual formulations is equivalent
to the cost of one interior-point iteration.

However, the model has some drawbacks. In particular, Ye’s model does not

include the nonnegativity constraints. If 2 is close to the boundary, the orthogonal



13

projection can produce points outside the positive feasible region. As a result, the
subsequent x5 is rejected and control is returned to the interior-point algorithm.

Ye [52] proved, under certain conditions, that a finite termination procedure added
to a feasible interior-point algorithm yields an exact solution in polynomial time.
Analogous results were proven by Anstreicher, Ji, Potra, and Ye [3] and Potra [38]
for an infeasible primal-dual interior-point method for linear programming and by
Monteiro and Wright [36] and Ji and Potra [18] for degenerate monotone linear com-
plementarity problems.

Portugal, Resende, Veiga, and Judice [37], Resende and Veiga [39], and Resende,
Tsuchiya, and Veiga [40] used the orthogonal projection model to find dual solutions
for minimum cost network flow problems. The block triangular structure of the con-
straint matrix led to computing the solution by orthogonally projecting onto each
individual subspace. This resulted in a significant reduction in the cost of the orthog-
onal projection model. A point on the optimal dual face can be computed in O(p)
operations as opposed to O(p*), where p is the number of columns in the constraint

matrix.

2.2 Mehrotra-Ye Procedure

In [46], Tardos proposed the use of Gaussian elimination to calculate a feasible point
on the optimal face of an integer linear program. Mehrotra and Ye [35] studied the
effectiveness of this factorization in computing an interior point on the optimal face
of a linear program. Instead of solving a least squares problem, the authors used

(Gaussian elimination to find basic solutions to

BAzg =b— Bzl and BTAy = cz — BTy".
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Linearly dependent rows and columns were dropped as they were encountered
during the elimination process. Components of the solution vectors corresponding
to linearly dependent rows/columns were set equal to zero. The nonnegativity con-
straints on xg and z,r are ignored.

Whereas Ye’s formulation produces an unique solution, the Mehrotra-Ye model
potentially has an infinite number of solutions. One would think that ignoring the
inequalities would be disastrous. On the contrary, the numerical results in [35] are
quite impressive. For 74 out of 86 netlib problems, the authors were able to find an
interior point on the optimal face in one attempt when the procedure is activated
when the relative gap is less than or equal to 1072,

In the presence of degeneracy, the Gaussian elimination approach has two major
deficiencies. First, the approach does not incorporate information about the inequal-
ities. All components of the current iterate are treated equally. There is no penalty
for radical movement of the small components of the current iterate. Second, success
of the procedure is dependent on the choice of the basis matrix, i.e., a nonsingular
submatrix of B. Different basis matrices produce dissimilar solutions, some of which
may lie outside the positive orthant. However, the procedure is computationally in-
expensive. The cost for the Mehrotra-Ye procedure is one matrix factorization and

four back substitutions for the primal and dual solutions.

2.3 Weighted Projection

The weighted projection model incorporates information about the inequalities into
the objective function by weighting the distance between the current iterate and the
solution of the least squares problem. The model restricts movement in components
that can least afford to deviate from zf by placing large weights on the smaller

components. Large movements in the components of small magnitude are penalized
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more heavily than movements in components of larger magnitude. The primal model,
proposed by Ye [55], is
minimize S|[(XE) Y zp — z§)||?
LX) s — 2Bl )
subject to Bxg =b.
Ye defined the dual model as

minimize %H(ijv)_lNT(y —y")|I?

subject to BTy = ¢z.
Since NTy + zy = ey, problem (2.7) is equivalent to

minimize %H(Zf{/)‘l(z/v - ijv - rg_/\f)HQ
subject to BTy = ¢p (2.8)
NTy + zy = e,

where rgN = cy — NTy* — 25 Clearly rij = 0 in feasible interior-point algorithms.

Ye [55] proved that the solutions of problems (2.6) and (2.7) are interior points on
the optimal primal and dual faces. Moreover, the solutions can be obtained in finite
time when included in a feasible primal-dual interior-point algorithm.

We can rewrite (2.6) as

minimize %Hd;{;BHZ

(2.9)
subject to (BXg)dzs = b— Bz,
where drg = (X5) "' (xp — z§).
Similarly, the dual can be rewritten as
minimize L|[(Z%)7'NTAy]|?
(74 N o0

subject to BTAy = ¢g — BTy*,

where Ay =y — yF.
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Note that the primal constraint matrix depends on the primal weighting matrix,
but the dual constraint matrix does not depend on the dual weighting matrix. Thus,
two matrix factorizations are required to find feasible points on the optimal primal
and dual faces, making this model twice as expensive as the previous two.

Samuelsen [41] referred to the choice of weight in problem (2.6) as the Dikin-
Karmarkar weight. In [41], the author showed that the Dikin-Karmarkar norm, unlike
the Euclidean norm, does not suffer from the short step syndrome. Freund [12]
measured proximity to the feasible region by formulations similar to (2.6) and (2.7).
However, he did not drop columns of the matrix A and components of the vectors x
and z corresponding to zeros on the solution set.

In the next chapter, we extend the existing theory to infeasible primal-dual interior-
point algorithms. Furthermore, we provide numerical experimentation to compare the

effectiveness of the weighted projection model with the orthogonal projection model.
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Chapter 3

Weighted Projections

In this chapter, we prove that the weighted projection model implemented in an
infeasible interior-point method produces, in finite time, a solution that satisfies the
strict complementarity condition. First, we provide an algorithmic framework for
the problem and show that the optimal partition can be identified when the residual
| F'(x,y,z)||1 is sufficiently small. Then, we present a technical lemma which will be
relevant in our analysis of the finite termination procedure, give an optimal choice for
weighting matrix, extend the weighted projection model to incorporate upper bound
information, establish an arithmetic complexity result for the given algorithm, and

describe our numerical experiments.

3.1 Algorithmic Framework

Kojima, Mizuno, and Yoshise [21] proposed the first feasible primal-dual interior-point
method for linear programming. It is well-known that their method can be viewed as
perturbed and damped Newton’s method on the first order optimality conditions. In
this section, we describe a generic infeasible primal-dual interior-point method, which

is also based on Newton’s method.

Algorithm 1 (Infeasible Primal-Dual Algorithm)

Given (2% y,%,2°%) with (2°,2°) >0, for k =0,1,2,..., do

(1) Choose o* € (0,1) and set u* = ((z*)T2%)/n.
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(2) Solve for the step (Az*, Ay, AzF)

AzF b— Az*
Fl(a® y" ) | Ak [ =] e— ATy — 2
AzF oFure — Xk Zke

(3) Choose 7% € (0,1) and set of = min(1,7%a*), where

—1
min((X#*)-1Azk (ZF)-1AzkF)

&k

(4) Let (25, g+, 2041) i (o b, 25) 4 oF(Ack, Ayt Azh).

(5) Test for convergence.

The optimality conditions (1.2) are perturbed to keep the iterates in the interior of
the nonnegative orthant. If % = 0 (i.e., no perturbation), global convergence may
be precluded. See Proposition 3.1 of Gonzalez-Lima [22] for a proof. The iteration
sequence is damped to maintain the nonnegativity requirement.

The algorithm is considered an infeasible interior-point method since we do not
require feasibility with respect to the linear constraints. The terminology, infeasible
interior-point methods, was first introduced by Zhang [56].

The following lemma provides a theoretical basis for finite termination procedures.

Lemma 3.1 (Giiler and Ye [17]) Let {(z*,4*,2%)} be an iteration se-
quence generated by an interior-point algorithm that converges to the

solution set of a linear program. Furthermore, let 2 and 2* satisfy

min(Xkae)

(%) T2 /n ] (3.1)

where v > 0 and is independent of k. Then every limit point of {(z*, z*)}

satisfies the strict complementarity condition.
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Giiler-Ye [17] showed that iterates of feasible path-following algorithms (e.g.,
Kojima, Mizuno, and Yoshise [21], Mizuno, Todd, and Ye [34]) satisfy inequality
(3.1), which is one of many centrality measures used in linear programming.

All points in the relative interior of the solution set satisfy the strict complemen-
tarity condition. Therefore, Lemma 3.1 is sufficient to guarantee that all limit points
of the iteration sequence are in the relative interior of the solution set, see Giler
and Ye [17]. Tt is well-known that in the relative interior the nonzero-zero pattern of
points is invariant, see El-Bakry, Tapia, and Zhang [10]. Consequently, the optimal
primal and dual faces are uniquely defined.

We now present some definitions that are essential to the development of the the-
ory for infeasible interior-point methods. First, we define a central path neighborhood

that includes infeasible points as

Neoa(7,8) ={(z,y,2)| (rp; ra)ll < [I(rp, r)Il/1°1Bp,
(,2) >0, min(XZe) > yu}

(3.2)

where v € (0,1), 3> 1, u =2Tz/n, r, = b— Az, and ry = ¢ — ATy — z. The first
inequality of (3.2) is known as the Feasibility Priority Principle, see Zhang [56]. It
requires that infeasibility decreases at least as fast as complementarity.

We also define the following quantities:

71 = Nl (g, i)
Pp = (1= Ny = 1125 (1 — o)
O,={z:Axz=b, >0, z;,=0for j € N}

(3.3)

O4=1{(y,2): ATy+z=0¢, 2>0, z; =0 for j € B}

If F° # ), then ©, and ©, are nonempty and bounded. Hence, ¢ and & are bounded,
where

&= 1}%1;1 {maxz;, s.t. © € 0,},
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£ = HE%\I/I {maxz;, s.t. (y,z) € 04}, and
J
& = min(€7,65). (3.4)

We assume that the iteration sequence generated by Algorithm 1 stays in
N_.(7,0). This condition is necessary for the proof of global convergence of the

algorithm.

3.2 Optimal Face Identification Theory

The following theorem shows that the optimal partition can be identified when the
residual ||F(z,y, z)||1 falls below some threshold value and also provides bounds on
the iteration sequence {(z*,z*)}. The proof follows the outline of Anstreicher et al.
(Lemma 3.2 [3]), Mizuno [33], Monterio and Wright (Lemma 2.1 [36]), Potra (Lemma
3.2 [38]), and Wright (Lemma 6.3 [49]).

Assuming all algorithmic parameters are the same, the upper bound imposed on
the duality gap in Theorem 3.1 is more stringent than the bound which appears in
Proposition 5.2 of Potra [38]. For our defined value of 7, a smaller duality gap is
required before the optimal partition can be identified. The constant 7 depends on

the value of 3 given in (3.2). For his analysis, Potra sets 3 equal to one.

Theorem 3.1 Let (z*,y*,2*) € S, and B* = {Tf > zf} Then B* = B,
when

(2%)"" <y(€)*/m"n,

for some 7 > 0.
Proof We have

Az® —b= (1 — " N (Az"" —b) = (A2 — b) (3.5)
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by definition of the algorithm and (3.3). Similarly,
ATyF 4 2% — e = (ATy" 4+ 2° — o). (3.6)

Thus, by (3.5) and (3.6),

A(‘rk - 77/)ka) — b and AT(yk - ¢ky0) + (Zk - 77ka0) —
(1 — ) (1 — )

Then Az* =band ATy* + 2* = ¢ imply Az = 0 and ATy + z = 0 where

T =thpr’ + (1 —p)a™ —2F and 2 = 2 + (1 — o)™ — 25,
Due to the orthogonality of x and z,
277 = (hpa® + (1 — )™ — ") (2’ 4+ (1 — o)™ — 2F) =0

which can be written as

21z = Lbz(:zjoTzo) + (1 - ¢k)2$*Tz* + (1l — L/Jk)(;z;OTz* + ZOT:I:*)—I—

(3.7)
(25)72F = a2 28 4 20Tak) — (1= y)((25)T 2" + 251 2).
Hence the nonnegativity of the iteration sequence implies
£ < PR 20) (1 - gr)(a® e+ 2 ) 5.3

(472 = (1= ) (ah) T2 + 2 ).
Therefore, we have

(1— ) ()72 4 24 2) < 2(a®T20) + i1 — i) (2T 2" + 22T a)  (ah)T2h

¥
= Yi(np®) + u(l - I/Jk)(l’OTZ* + ZOTJ:*) + np*,
(3.9)

from the definition of u*.
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We now divide both sides of the inequality by (1 — ¢) to obtain,

ENT LT P2nud k T T
(@) T2+ 28 2 < 4 P 4 (2 2 2% )

¢k(#°)_1(1mik)w°+n#k +¢k($0TZ* +ZOT$*)

* T

(wkﬁtl ¢—:)T ‘i B((x )Tzk/a:OTZO)(SI?OTz* + ZOTJL’*)
(+801- 6;00) (z%)T2* +B((x )TZk/LL’OTZO)(;L‘OTZ* n ZoTl,*)

BO/BHA—NETE 4 g BT ok 130T 0)(50T = 4 10Ty

a

IA

IA

IA

0T«

T x .
<[5+ | T since 5 2 1.

(3.10)
Let
2—a® 0Ty + 20T g
725{ = (3.11)
Thus, we have z i< 2 2% < r((2%)T2%). The value of 7 is identical to what appears

in Potra [38], with the exception that here the constant 3 is greater than or equal to

one. Observe that,
x>
—((25)"5)/n < = (xf2])
J
which implies that
“Ly((z")T2%) /n < 7((2%)T2") or equivalently ;L’;C > yxi/n.
From the definition of £*,

J;f > (v&)/mn, for all j € B

and
i < (r(a")T2") /€7, for all j € B.
Similarly,
> (v€)/mn and ¥ < (r(2%)T2%) /€, for all j € N,
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Given B* = {:E;“ > zf}, the partition is optimal when

x5 > (v€)/mn > (r(a*)"2h) /€ = .

Lo

This concludes the proof. (]

Notice that the separation of variables depends on the size of the (—oc) neigh-
borhood and the initial iterate. A large neighborhood (i.e, v close to zero) could
seriously impact the effectiveness of any indicator in identifying the optimal partition
in a timely fashion. Moreover, the larger £*, the fewer interior-point iterations needed
to identify the optimal partition. Conversely, as £* decreases, the number of interior-
point iterations required to determine the optimal partition increases. An important

fact to remember is that £ depends on the problem data.

3.2.1 Technical Result

Subsequent theory requires bounds on the primal and dual residuals. Rather than
repeatedly deriving the bounds, we establish them at this juncture. Note that the
bound depends on the current duality gap, the initial duality gap, and the minimum

positive value in the solution set, which is not known a priori.

Lemma 3.2 Let {(z*,y* 2*)} be the iteration sequence generated by
Algorithm 1. Further, assume that B* = B. Then,

16 = Bagll < (np°¢) (€ Bl + pOmny/n||N|) (%) 2"

(3.12)
e — BTYH| < (np0€)~ (€8I0 + pOrn/m)(2*) T2+,
Proof We have
Ib— Bagll = ||b— Baj — Naf + Nag||
< ||r¥|| + || N2k
< |lrpll + [Nz || 3

< ()7 pRBIIrll + v/m max (@) || V]|
< ()T BN + m/m(€)THINII(2R) T
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Similarly,
les — BYy*|| = lles — BTy* — 25 + 25|
< gl + =5l (3.14)
< ()T BN 4 /(€)= F) TR
Substituting p* = (2¥)T2* /n, completes the proof. ]

Observe that the primal residual depends on the norm of N, but the dual does not.
The bounds on the residuals are valid once the optimal partition has been identified

but not before.

3.2.2 Positivity of the Finite Termination Solution

Next, we demonstrate that the finite termination procedure described in Section 2.3
produces a solution that satisfies the strict complementarity condition.

First, we present theory for the case where B has fewer rows than columns. The
theoretical result is given for an arbitrary scaling matrix D instead of X[ as proposed
in (2.6). The following notation is needed for the proof. Let B; denote a set of max-
imal independent rows of the matrix B. Then Ay, Ny,by, y¥, are the corresponding

submatrices of A and N and components of the vectors, b and y*.

Theorem 3.2 Let {(z*,y*, zF)} be generated by Algorithm 1. Assume

(1) B* = B.
(2) The matrix By is full rank.

(3) D is a diagonal matrix such that d;; < z% for all j in B and

min(d;;) > ||BY (BB 7| [(1°n€) 7 (EBIr°N + porn/ml| N )] (*) "2
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(4) Z}, is a diagonal matrix such that

min(zy) > (p®€) 7 [BE (INTINBB) T Bl + 1) 1]

+n/nrpl INTI(B1BY) ™ B[] ()" 2"

Then the solution xz obtained from solving

minimize || D~ (x5 — zf)||

(3.15)
subject to Bxp = b.
satisfies x5 > 0. Moreover, zy = cy — N7y is positive.

Proof Obviously (3.15) is equivalent to
minimize 1||D~'(z5 — zf)||”
subject to Bixp = by.

Let dzy = D™ 'Axp, where Az = x5 — x’,}. Therefore,

ldzs]| = |IDBY(B1D*B{)~" (by — By
= [|DBY (B:D*BY )" BiDD™ [Bf (BB )™ (b1 — Biaj)]| (3.16)

< ID=HIBL (BB I[I(6r — Biag)|
< IDTHIB (BB (6 = Bl

From Lemma 3.2, we have
Ides]| < D7 IBT (BB~ [(np®€) (€ Bl Il + pOrny/m||N])] (24)" 2.

Consequently, ||dzg|ls < ||dzg|lz < 1. The first inequality holds from the fact that
for any vector v, |[v]le < ||v|[2, the second inequality from the assumption that

min(d;;) > [ BT(B B [(n0€") (€ BIr°]l + pOrn /| NII)] ()72, Hence

Al’]’

—1 <
djj

<l= .ff—d]‘]'<l’§+A$]‘<$§+djj for all j € B.
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The additional assumption, d;; < z; , ensures the solution is positive.
First, components of Ay that correspond to dependent rows of B are set equal to
zero. Then, we solve the following least squares problem for the remaining compo-

nents, Ay;. Formally, let Ay; be the solution of

minimize L1||(Z% _INTAy ?
L/(Z) NT Ay -
subject to BT Ay, = ¢ — Bly*

Then,
Ay = (BiB{ )™ Bi(cs — Bl yr). (3.18)

Let y = y* + Ay and dzy = (Z§) ' Azy = (Z) " (NT(y — y*) — rk, ). Recall that

rh = c— ATy* — 2% Tt follows that the residual for the equations that correspond to

the variables zy is rgN = cy — NTyk — 2k We also have, zy = cy — NTy. By direct

substitution, we arrive at an expression for dzy. Therefore,

ldzn |l = 1(Z5) " INT(y — o) — 75 ]Il
< Z) M (INTIN B BT )= Bu(es — BIyb)| + Ik 1)
< Z5) I (INTI (B BT~ BY ([lles — BTyl + |I7411)
= 1(Z5) I (INTIN(B BT~ BE |[lles — BT y¥ — 2k + 2k + |I751])
<2 (NI (B BT + 1)~ BT ([Ir1| + INTII(B. BT~ BE (|25 -

(3.19)

From the Feasibility Priority Principle and the bound on z, we have

ldzwll < (€)M I(Z3) 7 B¢ (INTINB BT BE | + 1) |17

+ny/nrpl NTI(BBY) ™ By 1(2%) 2"

By assumption (3), we have ||dzy|2 < 1. Combining the above inequality with the

fact that for any vector v, ||v]|e < ||v]|2, we obtain ||dzy||e < ||dza|l2 < 1. Thus

<<= zf—zf<zf—|—Azj<zf—l—zf for all j € V.

<j
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O

We can state an analogous result when matrix B has more columns than rows.
Define B, as a maximal matrix of independent columns of B. Let D; be the non-
singular, diagonal matrix whose diagonal entries correspond to the columns of the

matrix By and ¢, the corresponding elements of the objective function coefficients.
Theorem 3.3 Let {(z*,y*, zF)} be generated by Algorithm 1. Assume
(1) B* = B.
(2) The matrix By is full rank.

(3) Ds is a diagonal matrix such that d;; < 2% for all j € B and
. T -1 T 0 pgx\—1 7 0 0 NT _k
min(d;;) > [|(By B2) ™' By [|(np€")THEBIr° I +4"mnv/n| N (27) 2.
(4) ZJ, is a diagonal matrix such that

min(z) > (nu®€) 7 BE (14 INT|||| Bo( BY B2)~Y[) 1))

+n/nrpl NI Bo( By By) 7' [](2%)" 2.

Then the solution xz obtained by solving the following least squares prob-
lem
minimize L||D7' (x5 — z5)||?
41D~ e — )] 50
subject to Bxp = b.

satisfies x5 > 0. Moreover, zy = cy — N1y is positive.

Proof Recall that Azg = z5 — .TL‘]E;. Now, let us partition Azp into

A.Tl
A.”IJQ
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where Axz; and Ax,, respectively, correspond to the dependent and independent
columns of B. After setting Az; = 0, (3.20) is equivalent to the following formu-

lation
minimize 1| D5 (xy — z5)||2
2” 2 ( 2 2)” (3‘21)
subject to Byxy = b,

where z,, 25 are the subvectors of x5 and z}; corresponding to independent columns

of B. Let dzg = D' Azp. Therefore,

ldzs|| = |[(D2B; BaDy)™" Dy By (b — Byaj )|
= H(Dg)_l(BzTBg)_lBQT(b — BQ:C]ZC)H due to the nonsingularity of D,
< ||DFH[I(BF B2)™' By |[||(b — Baah)]|
< || DFHII(BF B2) ' By |[(npu®&*) =" (€ BlIr°|| + pO7n/n||N])) (%) 2",

(3.22)
The last inequality holds from Lemma 3.2. By assumption (2), x5 > 0.
For the dual slack update, we have
ldzwll = 11(Z5) ™ [NTBa(BY Ba) ™ (e2 = Biy") = ri] | (3.23)

< ICZ5) M (INT I B2 BE Ba)Mlllex — BIy*|| + [Ir4]l) -

Then

ldzxll < (n®€) M N(Z85) 7 18E (1 + INT I Ba(BY B2~ 1) 117

+n/nrul | NUI| Bo( By Ba)~H1(2%)" 2"

The last inequality holds from applying Lemma 3.2 and the Feasibility Priority

Principle. Then by assumption (3), the theorem is complete. (]

Remark: Since we assume the matrix By has full column rank, the solution of
the linear system of (3.20) is unique. Thus, the result presented in Theorem 3.3 can

be obtained by solving the linear system without introducing a weighting matrix.
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3.3 Choice of Scale

In Theorems 3.2 and 3.3, ||dzg||c < 1 was a necessary and sufficient condition to
guarantee the positivity of the computed xz on the optimal primal face. The theorems
are applicable for any arbitrary diagonal matrix, D, that satisfies assumption (2).
An obvious choice for weighting matrix D is dj; = min(zf;) for all j € B, which
satisfies the assumptions of Theorems 3.2 and 3.3. However, an uniform weight for
the diagonal elements d;; does not change the geometry and hence the solution of the
least squares problem. The optimal value will change but not the solution.
Remark: Given our method of proof, d;; = wf for y € B are the maximum weights

that will lead to a positive solution of problem (2.5).

3.4 Dual Formulation

As previously mentioned, one drawback of the weighted projection method is that the
proposed formulations require separate matrix factorizations for the optimal primal
and dual face identification problems. To reduce the total cost of the finite termination
procedure, we suggest using the following optimization problem:

) 1
min L X5(B"y - co)| (3.24)
to find an interior point on the optimal dual face. This particular formulation al-
lows us to reduce the work of a finite termination procedure which uses a weighted
projection model to one matrix factorization which is the same cost a finite termina-
tion procedure that uses the orthogonal projection model or Mehrotra-Ye technique

described in Chapter 2. Moreover, for feasible iterates, the problem is equivalent to

minimizing the complementarity equation,

1
min SHXEZBHZ. (3.25)
ZRB 2
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If we denote the solution of (2.5) as ywrs and the solution to the above problem

as Yx,, then
yxp — ywrs = (BXE BT ' B(XE = (s — BTywis). (3.26)

Here we assume the matrix B has full row rank. If ¢ € range(BT), (i.e., the linear

system is consistent), then yx = ywrs Golub and Van Loan [15].

Lemma 3.3 Let {(z* y* 2%)} be generated by Algorithm 1. Assume

(1) B =5,

(2) B has full row rank,

(3) min(zf) > (np°€) 1 [BE (1+ INT|I(B B Bafl) 17|
+nv/nrpl|(BuBY) ™ Bi](2*)" 2", and

(4) cp € range(BI).

Then zy = cyr — NTy is positive.

Proof Let Ay =y — y*. Then

Ay = (B (XA BT B (X8 (s — BT o
= (B BI)"'Bi(cs — Bly,) since ¢ € range(BY]).

From the second part of Theorem 3.2, zy is positive. (]
Ye proposed a related least squares problem in [51] to update the lower bound of

a potential function and the associated dual solution. His formulation included the

entire dual residual and the dual objective function.
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3.5 Complexity Theory

First we show that with proper choice of algorithmic parameters, Algorithm 1 obtains
e—complementarity in polynomial time. A polynomial bound for Algorithm 1 coupled
with the results in the preceding sections implies that an exact solution of the linear
programming problem can be found in finite time.

To establish polynomial complexity for Algorithm 1, the initial iterate, the cen-

tering parameter, and the step length parameter must satisfy certain conditions. Let
po = min{||(uo, vo)|| : Aug = b, ATy + vy = ¢ for some o }-
Then set
(2°,9°, 2°%) = (pe, 0, pe), for some scalar p > 0,
such that
p 2 poand p > p*/\/n, (3.28)

where p* = ||(z*, z*)|| for an optimal solution (z*,y*, z*). Zhang [56] specified this
particular initial point to establish polynomiality in infeasible primal-dual interior-
point methods. Next, the centering parameter must be bounded away from zero.

Given Gin, Omaz, and 0 < G5 < Opar < 1/2, choose

A= [Cmins Omaz)- (3.29)

Finally, the step length parameter, o* is chosen as the largest value of o € [0, 1] such

that
(z(a),y(a), 2(@)) € N_co (v, B)
and (3.30)
where

z(a) =z + oAz, 2H = 2 1L oF A
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and

T

AT
(5(@)2@(1—0’“—%an Az)'

-z

Now we can establish a polynomial complexity bound for Algorithm 1. Such

a polynomial bound for infeasible interior-point algorithms was first established in

Zhang [56].

Theorem 3.4 (see for example, Wright [49]) Let ¢ > 0 be given. Let

(2°,4°,2%) = (pe, 0, pe) where p satisfies (3.28). Assume
p2 S O/GH

for some positive constants C' and «. Furthermore, o* is chosen according
to (3.29) and o is chosen according to (3.30). Then there is an index K
with

K = O(n*log(1/¢))
such that the iteration sequence {(z*,y*, 2%)} generated by Algorithm 1

satisfies

,uk <e¢forall k > K.

We now present the main result; Algorithm 1 combined with the weighted projec-
tion procedure generates an exact solution in finite time.

Note that assumption (2) of Theorems 3.2 and 3.3 is equivalent to min(zg) >
||Azg||. Therefore, we can restate the assumption in a more succinct manner. We

also state the theorem in terms of the matrix Bf, the pseudoinverse of B.
Theorem 3.5 Let (2% 4°, 2% = (pe, 0, pe). Assume
(1) = > % and 2k, > % for £* defined in (3.4),

(2) min(zg) > || BY [(1*n€*) 7 (€ BIIr®ll + pOmn/nl| N|D] («*)T 25,
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(3) min() > (np€) M BE( + INTINBH TN
+n/nrpl | NEI (BT (5) 2"

Then Algorithm 1 combined with the weighted projection model defined

by problems (2.6) and (2.7) generates a solution in

0 ( (bg n + log (T<mij§§3f’ n>>))) iterations

for 7 as defined in (3.11), ¢ = || BY|| (¢*3]|r°|| + #°7n\/n||N]|), and
n =B (L+INTINBYTN) 1l + ny/mru INTII(BYT].

Proof From assumptions (1) and (2)

T _k ’Y(f*)zﬂo
T z . 3.31
@)= < B @RI £ gornyml V) (3.31)

For ease of notation, we set ¢ = || BY|| (¢*B||7°|| + u°mn/n||N||). Similarly from as-

sumptions (1) and (3)

2F)T (€)%
(%) = T BE (L INTIIBYTI) ] + /e e [NTI(BDT] (3.32)

We then set n = 36 (14 [INT|[|(BYT||) ]| + ny/nru INT||[[(BYT].
From Theorem 7.1 of Zhang [56], we know that the duality gap sequence {(z*)Tz*}

generated by Algorithm 1 converges () — linearly to zero, i.e., there exist § such that
(:Ek+1)TZk+1 § (1 . 5)($k)TZk,

where §(a*) > §. Given the initial point defined in (3.28), Zhang (Lemma 7.2, [56])
proved that 1/§ = O(n?), i.e., there exists some positive constant Cy such that 1/§ <
Cyn?.
Thus
(2725 < (1 = C5/n?)* 2" 22, (3.33)
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where C3 = 1/ and 20720 — np?.
We first derive an expression for the number of iterations that is needed to satisfy

(3.31). Taking the logarithms of both sides of (3.33), we obtain

log((2")T2F) < klog(l — Cs/n?) + log(2°" 2°)

. (3.34)
< k(=Cs/n?) 4 log(z°" 2°)

since log(1 — 0) < —6 for § < 1.

To satisfy (3.31), we need
k(—Cs/n?) + log(2°" 2°) < logy + 2loge™ + log(1°) — [log 7 + log ],
which implies
k(—Cs/n?) + log(z°" 2°) < log vy + 2log £* + log(z°" 2°) — logn — (log 7 + log ).

Thus, k& > (r?/C3)(logn + log 7 + log ¢ — logy — 2log £*). Then the inequality (3.31)
holds for any

E>K =0 (n2 logn 4 n* log(rqb/’y(f*)Q)) :

Similarly, we can show that inequality (3.32) holds for any

k> Ky =0 (nlogn +n?log(rn/4(¢))) .

*)2

From Theorem 3.1, we know B* = B when (z*)T2* < W(TT Consequently, any

k> Ks =0 (nlogn + n*log(rp/v(£)))

satisfies that inequality. The strict complementary solution can be calculated when

k = max(K;, Ky, K3). This concludes the proof. ]
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3.6 Bounded Variable Linear Programs

In this section, we extend the analysis of the previous sections to linear programs
with upper bound constraints.

Thus far we have only considered optimal face identification for linear programs
of the form (1.1). We now turn our attention to the more general linear programming

problem with upper bound constraints.

minimize ¢’z
subject to Az =10 (3.35)
[<zx<u

where [ € R” represents the vector of lower bounds and u € R” represents the
vector of upper bounds for the vector z. Without loss of generality, we assume all
the variables have lower bounds of zero and finite upper bounds. The above problem

rewritten in standard form is

minimize ¢’z
subject to Az =10
(3.36)
r+s=u
z,s >0
where s € R” is the primal slack vector.
The corresponding dual problem is
maximize bTy —uTw
subject to ATy + w — z=c¢ (3.37)

w,z >0

where y € R™ are the Lagrange multipliers corresponding to the Az = b constraints,

z € R™ are the Lagrange multipliers corresponding to the nonnegativity constraints
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(z > 0), and w € R" are the Lagrange multipliers corresponding to the upper bound

constraints.

The perturbed optimality conditions for (3.36) are

Az —b
r+s—u
Fu(z,y,z,s,w)=| ATy4+z—w—c | =0, (z,2,5w) >0, >0 (3.38)
XZe— pe

SWe — pe

where S = diag(s) and W = diag(w).
The Jacobian of (3.38) is

A0 0 0 0
I 0 0 [ 0

F(z,y,z,s,w)=| 0 AT T —I 0 (3.39)
Z 0 X 0 0
0 0 W S

Given feasible iterates, we see that ||F(z,y,z,s,w)|i = 27z + sTw. It can be
shown that the expression 2 z+sTw is equal to the duality gap, which is the difference
between the primal and dual objective function values of problems (3.36) and (3.37).

Below, we present an interior-point algorithm for (3.36) which follows the frame-

work of Algorithm 1. The duality gap contains the additional term, s w.

Algorithm 2 Given v° = (2% y,°,2% s w?) with (2, 2% 5% w®) > 0,

for k=0,1,..., do

*9

(1) Choose ok e (0,1) and set pk = ((l’k)TZk + (Sk)ka)/Zn'
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(2) Solve for the step AvF
Fﬁ(vk)Avk = —F,(v").
(3) Choose 7% € (0,1) and set of = min(1,7%a%), where

-1
&

min((X5) 1Az, (ZF) T AZF, (SF)=TAsk, (WF)=1 Awk)’

(4) Let v**! = vk 4+ oF Av*,

(5) Test for convergence.

For notational convenience in the statements and proofs of the theory in the next

sections, we introduce the following notation:

T =(z,5) € R*™

Z = (z,w) € R*".

It is obvious that 27% = 27z + sTw, which is the duality gap.

The central path of (3.36) is defined as the set

C={(,y,2) € FO: X7 = pe where p = (i72)/2n.}

For any (&*,y*,2*) in the relative interior of the solution set of (3.36), we define

the index sets B and A as
B={j:3;>0,1<j<2n}and N ={j:37=0,1<j<2n}.
The optimal primal face is
O,={¢:Az=b,x+s=u, £>0, 7 =0forj e N}
Similarly, the optimal dual face is

Oi={(y,2): ATy+z—w=¢, >0, 3, =0 for j € B}.
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If the set of strictly feasible points is nonempty, then (:)p and O, are nonempty
and bounded. Hence, 5; and 5; are bounded, where
5; = min {max i, : & € 0,}
jeB

& = min {max 2;,: (y,2) € 0,4}
JEN

& =min(g,&)).
3.6.1 Technical Results

We revisit results from Sections 3.1 and 3.2 that have been extended to include the
iteration sequence and solution of Algorithm 2.

A centrality measure for problem (3.36) can be written as

mzn()w(kzke) (3.40)
@)k m = '

where v > 0 and is independent of k. Inequality (3.40) requires that the pairwise
products of the iterates decrease at a controlled rate. No pairwise product can con-

verge to zero faster than the others.

A central path neighborhood that includes infeasible points can be defined as

Nooo(7,8) = 4@y, D)1 Nrp, rus ra) | < [N, s r) 1/ 1018,

. (3.41)
(#,2) >0, min(XZe)>yu, p=(zTz+sTw)/2n}

where y € (0,1), 8> 1,r,=b— Az, r,=u—z —s,and ry =c— ATy — z + w.

Theorem 3.6 shows that the optimal partition can be identified in infeasible

interior-point algorithms once the residual |[F(Z,y, 2)||1 is sufficiently small.

Theorem 3.6 Let (#*,y*, 7*) € S, and B* = {:i’f > 2;“} Then B* = B,
when

(&)72F < () /27",



39

for
- B 9 _ aO (:%O)Téj + (NEO)T;Z,* 0.
a0 (#0)720
Proof Substitute z,z, and 2n for z,z, and n in Theorem 3.1. (]

Subsequent theory requires bounds on the primal and dual residuals. Rather than
repeatedly deriving the bounds, we establish them at this juncture. Note that the
bound depends on the current duality gap, the initial duality gap, and the minimum

positive value in the solution set, which is not known a priori.

Lemma 3.4 Let {(z*,y* 2%)} be the iteration sequence generated by
Algorithm 2. Further, assume that B* = B. Then,

Ib— Bagl| < (2nu°&) 7" (€ BIIr°)| + 2nv2np®F||N||) ((«5)7 2% + (s5)"w*)
les = BTy*|| < (2n°&)THE B[l + 4nv/2np°F) (%) + (5) ) .

Proof We omit the first part of the proof because it follows directly from Lemma

3.1. The dual feasibility constraint includes an additional variable, w. It is interesting

to see how introducing the variable w affects the bound on ||csg — BTy¥||.
les — BTy*|| = lles — BTy* — 2 + 25 + wi — wi|
< rall + llz5 — wgll
< rall + 1zl + llwg] (3.42)

< |Irkll + 2v/2n max(2f)
< ()TN + F2V2n(E) 7 ((#F) T+ (85) k)

Substituting p* = ((xk)TZk + (sk)ka) /2n, completes the proof. ]
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3.6.2 Primal Model

Generating an exact solution for the bounded variable linear program is complicated
by the fact that a solution of any finite termination procedure must not only satisfy
xzp > 0 but also zg < upg, where up is the subvector of u corresponding to xz. In this
section, we consider two strategies for incorporating upper bound information into a

finite termination procedure.

Extension of the Orthogonal Projection Model

One approach to incorporating upper bound information is to explicitly include the

upper bound constraints as equalities in the problem formulation. The resulting

model is )
k
o ) I 0 TR — T
minimize 3
k
0 I SB — Sp

(3.43)
subject to Bxg =10

T+ S8 = ug,

where sg 1s the subvector of s corresponding to zz. From Chapter 1, recall that
B={j:2;>0,1<j<n}

and the columns of A whose indices lie in the set B comprise B.
Problem (3.43) is a natural extension of problem (2.4). In fact, when the interior-
point iterates are feasible, we can show that the solution of (3.43) is the same as the

solution of (2.4). For infeasible interior-point algorithms,

. 1
Iy = TR —|— §PB(T5)

where 2 is the solution of problem (3.43), 3 is the solution of problem (2.4), and Pg

is the projection of the upper bound residual onto N (B), the null space of B. Despite
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the presence of the upper bound constraints in (3.43), the solution of the model is not
affected, unless the model is implemented in an infeasible interior-point algorithm.

Moreover, (3.43) suffers from the same drawbacks as the orthogonal projection model.

Extension of the Weighted Projection Model

The bounded variable linear program (3.36) contains two sets of inequalities involving
the vector z (z > 0 and = < u). The component-wise distance of z* to its lower bound
is

(CL’;C —0) or simply :z:;C
Similarly,

(uj — «f)

is the component-wise distance of 2* to its upper bound.

The role of the weighting matrix (X£)~! in problem (2.6) is to incorporate in-
formation about the inequalities, 3 > 0, into the model. The weight is sufficient
for problems of the form (1.1). However, for bounded variable linear programs, one-
half of the inequalities are ignored. Specifically, the model does not incorporate the
inequalities corresponding to the upper bounds of problem (3.36). It would seem nat-
ural to incorporate the upper bound inequalities into the model in the same manner

as the lower bound inequalities appear. Consequently,
diag(u; — 2%) for j € B

is another potential weighting matrix.
How should we include this information into the model? Clearly replacing X£ in
problem (2.6) with U — X = diag(us—=f;) does not resolve the issue of incorporating

all bound information. This substitution robs the model of lower bound information.
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We introduce a diagonal weighting matrix D, where
d — . k k .
i = min(x},u; —x7) for j € B,

to incorporate both lower and upper bound information into a finite termination
procedure. We select the minimum of the distances to a bound as a weight to penalize
long steps of a component of zf; towards its nearest bound. Whereas the weighted
projection model described in Section 2.3 only penalizes movement of variables close
to zero, weighting the objective function by D penalizes the movement of variables
in the direction of their nearest bound. Therefore, if .TL‘;C for 5 € B is close to its upper
bound, the weight in (3.44) prevents the jth component of the solution vector zz from
violating its upper bound as well as its lower bound which is the desired result.

We propose the following weighted projection model

minimize LD Y xp — 25)|?
2” ( B B)H (3‘44)
subject to Bxg =10

where
dj; = min(:x;?,uj - "I;f) for j € B. (3.45)
When :z;§C = u; for j € B, we remove the corresponding columns from B and update
the right-hand side. Then we solve an equivalent form of the model.
The following theorem is a restatement of Theorem 3.2 for the diagonal matrix
D defined in (3.45). Note that assumption 2 still requires the diagonal element to be

less than or equal to the current iterate. Recall that the matrix By denotes a set of

maximal independent rows of the matrix B.
Theorem 3.7 Let {(z*,y*, 2¥)} be generated by Algorithm 2. Assume
(1) B* = B.

(2) The matrix By has full row rank.
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(3) D is a nonsingular matrix such that

min(d;;) > [(20p°8) T (E Bl + 20720 7| N))]

| BT (BB~ I(#)7 2

Then the solution xz obtained from solving

minimize 1||D~'(z5 — z)||”

(3.46)
subject to Bxg =10
satisfies
0 <z <ugand 0<spg < ug.
Proof See proof of Theorem 3.2. (]

From assumption (2) and the fact that ||dzg|l. < ||[dxsllz < 1, we have the

following description of the solution. Recall that Azg = x5— a:’g and deg = D™ 'Axp.

Case 1: If ;z:;C <uj — xf for all y € B, then

Al’]’
k
Ty

-1< < 1.

Hence,

k k k k k
x; —x; < i +Az; <zi + 2] and consequently, 0 < 25 < 2z5 < ug.

Case 2: If u; — Jif < xf for all y € B, then

A .

-1<

Hence,

f — (u; — Jif) < wf + Az; < a;f + (u; — Jif) and consequently, 0 < z5 < ug.
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This particular choice of weighting matrix satisfies both the lower and upper bound
constraints. If we let D = X} and Case 2 holds, it is trivial to show that the solution
xp satisfies the nonnegativity constraints but the upper bound constraints may be

violated. In Section 3.7, we present numerical evidence to support the theory.

3.6.3 Dual Model

Now, let us consider the optimal dual face identification problem.
To find a feasible point on the optimal dual face for bounded variable problems,

we solve

1
min §HD_1(BTy —cp))? (3.47)

Y

for Ay and then update the vectors w and z. Here,
d. = . k L .
;i = min(z},u; — x7) for j € B.

With this formulation only one matrix factorization is needed to solve both the opti-
mal primal and dual face identification problems.
To conclude that our finite termination procedure is successful, we must now show

that the dual variables z)y and wy are nonnegative.

Lemma 3.5 Let {(2* y* %)} be generated by Algorithm 2. Assume

(1) B* =B,
(2) B has full row rank,

(3) min(2%) > (2nu€) 1 BE" (1+ |INTIII(BLBT) Bill) (1]
T AnVZar I NTII(BLBY) T Billl(#)7#, and

(4) cp € range(BI).
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Then zy and wy are nonnegative.

Proof Let Ay =y — y*. Then

Ay = (B1D?*BY)"'B,D?*(¢sg — BT
y =(BiD*By) ' BiD*(cs — Biyn) (3.48)
= (B BI)™'Bi(cs — Bly,) since c5 € range(BI).

From problem (3.37), we have
ATy + z — w = ¢ which gives us
v — NTy = 2 — wy.

If cyx — NTy < 0, then zy = 0 and wy > 0. Therefore, we have to check for

optimality(i.e., that wy is positive). From the dual constraint, it is easy to see that

ldowl) = INT(y — o) — b, |
<IINTINCB BT Bales — BIE) | + 1%, | (3.49)
< IINTINCB BT BY s — Byt + 7).

From Lemma 3.1 and the bound on Zj, we have

ldwyll < (up®€)H B (INTINBB) T BE | + 1) 1]

+4ny/ 20T [INT|[(BBY) ™ By [1(2%) 2",

From the third assumption of the lemma, we have ||dwy||; < 1. Combining the above
inequality with the fact that for any vector v, |[v]|e < ||v]l2, we obtain ||dwy]|e <

|dwp||2 < 1. Thus

]
k
J

k

-1 < <l= w; —

wf<wf—|—ij<w;-“—|—w;C for all j € V.

If ey — NTy > 0, then zy > 0 and wy = 0. Hence, we only have to check that
zy 1s positive. The proof that zy > 0 follows the same format as the preceding proof

that wy > 0. U
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3.7 Numerical Results

The numerical experiments were conducted on a Sun workstation with 64 bit arith-
metic. We used the LIPSOL - Linear programming Interior-Point SOLver- pack-
age developed under the MATLAB* environment. The software package, written by
Zhang [57], implements an infeasible primal-dual predictor-corrector interior point
method. The netlib suite of linear programming problems comprises the test set. We
tested 87 out of 96 problems available in netlib.

The initial matrix is scaled in an attempt to achieve row/column equilibration.
Preprocessing deletes fixed variables, deletes zero rows and columns from the matrix
A, solves equations of one variable, and shifts nonzero lower bounds to zero. For
problem greenbea, preprocessing deletes fixed variables, deletes zero columns from
the matrix A, and shifts nonzero lower bounds to zero. No other preprocessing is
performed.

The transformed linear systems that define the optimal face are solved in the
least squares sense. Depending on the dimensions of the matrix B, we form the lower
dimensional normal equations matrix. If the linear system is underdetermined, we
factor BD?BT, where D is as proposed in previous sections. Likewise, if the linear
system is overdetermined, we factor BT B.

The LIPSOL code implements the Cholesky-Infinity method to factor the coef-
ficient matrix at each iteration. The Cholesky-Infinity factorization [58] allows the
decomposition of positive semidefinite matrices. In the presence of degeneracies, the
standard Cholesky factorization breaks down. When a negligible pivot is encountered

in the Cholesky-Infinity factorization, the corresponding L(j,7) element is set to a

*MATLARB is a registered trademark of The MathWorks, Inc.
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large number, where LLT is the Cholesky factorization of BD?*BT (or BBT). For a
more thorough discussion of the Cholesky-Infinity factorization, see Zhang [58].
Dividing by L(j,7) in the solution phase essentially zeros out the right-hand side.
Therefore, the least squares solution is a basic solution. That is, the components of
the solution vector corresponding to dependent columns of the matrix are set to zero.

We implemented the following optimal face identification procedure.

Procedure 2 (Optimal Face Identification - Finite Termination Procedure)

(1) If
Tz — bTy*| <10°*,
L+ [6Ty*|

and the number of projection attempts < 6, set
B =1{j: zf <l.e—14 or |Ap:1ck|/:(;§ < |Apzk|/zf}.

Here variables and the Tapia indicators are used to identify the op-

timal partition.

(2) Solve the optimal primal and dual face identification problems by any
of the projection models described in the previous sections.
(3) Update,
a;f +Az; j€B
0 jeN

Tr =

y=y"+Ayand z =c— ATy.

(4) If upper bounds exist, set s =u —z, § = ¢ — ATy,

0 ifd<0 —6 ifd<0

z = and w =
d else 0 else



(5) We set dual bound infeasibility (dbi) =

computed solution is complementary and satisfies

max(0, —zy, —zg). If the

(HA:c—bH JATy + = —c|| [Tz — bTy|
max

Lol " T+l

and dbi < 107?, we terminate the algorithm with a solution. If not,

we repeat the finite termination procedure at the next interior-point

iteration.

T 14 [bTy|

) S 10—11
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The update formula for the dual variables is the same strategy used by Resende,

et al in [37], [39], and [40], to generate feasible dual variables.

The first column in Table 3.1 represents the number of misses before the optimal

face identification problem was solved to the desired accuracy. A miss occurs if a finite

termination procedure generates a point which does not satisfy both the feasibility

and optimality tolerances. The second column gives the number of problems solved

by the orthogonal projection (OP) model for the given number of misses. The third

column contains the computational results of Ye’s weighted projection (WP) model

and the fourth column shows the number of problems per miss for our modified

weighted projection (MWP) model with weighting matrix D = min(X§, Uz — Xg).

Subproblems
# of misses OP | WP | MWP
0 64 | 65 69
1 131 13 12
2 3 3 5
3 2 3 1
4 2 0 0
5 1 1 0
more than 5 2 2 0
TOTAL misses | 48 | 43 25

Table 3.1 Comparison of missed projections per model
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Solving the three models produce identical results for problems with no upper
bound constraints, with the exception of problem scrs8. The problem scrs§ is a
staircase problem that after preprocessing has 485 rows and 1270 columns. The
problem requires more projection attempts when the matrix B is weighted by the
current iterate than when it is not. The matrix B has 305 rows and 317 columns. The
values of z; range from 7.71e+05 to 7.77e-04. The condition number of the matrix
BXEBT is 1.3e429 and the MATLAB calculated rank is 169. The extra projection
may be the result of the ill-conditioned matrix. The corresponding estimates for the
matrix BBT are a condition number of 1.98e+17 and MATLAB calculated rank of
301. When we weight by the minimum of the current iterate only one projection is
needed to obtain a solution. The condition number of the corresponding matrix is
2.91e+18; the numerical rank is 301. For this particular problem, weighting by the
minimum of the current iterate produces similar numerical effects as weighting by the
identity matrix.

To illustrate the effectiveness of weighting, let us look at how the misses per model
compare for problems with upper bounds. Column 1 gives the number of misses by
a finite termination procedure. Columns 2 through 4 give the number of problems

solved by the three respective projection models.

With the modified weighting matrix, we are able to compute interior points on the
optimal face for all problems in our test set. The other two models fail to deliver a
solution for two problems, greenbea and nesm. These two problems have upper bound
constraints. If we weight the constraint matrix of problem greenbea by the modified
weighting matrix, we can compute an interior point on the optimal face in one pro-

jection attempt. The solution agrees to thirteen digits with the CPLEXT reoptimized

TCPLEX is a trademark of CPLEX Optimization, Inc.
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Subproblems
# of misses OP | WP | MWP
0 131 15 19
1 131 12 11
2 2 2 4
3 2 3 1
4 2 0 0
5 1 1 0
more than 5 2 2 0
TOTAL misses | 46 | 40 22

Table 3.2 Problems with upper bound constraints

objective function value reported in Table II of Bixby [6]. The most accurate solu-

k
J

tions are obtained when we weight by the matrix D, where d;; = min(z7, u; — :L'f) for
j € B. Weighting by the current iterate, X£, produces the least accurate solutions.
Problem scsd6 exemplifies the instance where the partition has been correctly
identified, but the model cannot verify its correctness by computing an interior solu-
tion on the optimal primal and dual faces. For problem scsd6, the finite termination
procedure fails to compute a positive zy vector on its first two attempts. However,

the partition B* for k > 12 is invariant. The table below shows that assumption 3 of

Theorem 3.2 ( min(zy) > ||Azy||) is violated on the first two calls of the procedure.

Iteration | [|Azy|| | min(2},)
12 7.93e-08 | 1.28e-09
13 3.74e-08 | 9.27e-10
14 8.44e-10 | 9.28e-10

Table 3.3 Problem SCSD6, Weighted Projection model
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Chapter 4

Variants of the Mehrotra-Ye Procedure

In this chapter, we study the effectiveness of using Gaussian elimination to solve the
linear feasibility problems associated with the optimal primal and dual faces. Recall
that one of the major drawbacks of the Mehrotra-Ye procedure was that, unlike the
orthogonal projection methods, it does not incorporate nonnegativity information
from the current iterate into the model. We propose two strategies that explicitly
include the current interior-point iterate into the model. The goal is to bias the
Gaussian elimination so that the columns corresponding to the smallest components
of z are chosen as pivots last. The first idea is to column scale the matrix B by
the current iterate. In [42], Skeel provided a theoretical basis for column scaling as
an effective tool to achieve numerical stability. The second strategy is to order the
columns of B, where the ordering is a function of the current iterate.
The following example illustrates the benefits of the new strategies.

Example: Consider the optimal primal face defined by the single equation
10$1 + Tg = 1,

where z¥ = .05 and 2% = 1.002. To find a feasible point on the optimal primal face, we
perform Gaussian elimination with partial pivoting on the transpose of the constraint
maftrix.

For a single constraint, we can examine all the possible bases in O(|B]) time and
select the one that generates a positive solution. For larger problems, we would have
to inspect a combinatorial number of bases which would be extremely costly as the

dimensions of the matrix B increase.



Plot of the line 10x+ y = 1 and results of Finite Termination procedure
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Figure 4.1 Comparison of variants of Mehrotra-Ye
Method System Basis Matrix ‘ Solution
Mehrotra-Ye | 10Az; + Azy = —.502 10 z = (—.002,1.0002)T
Scaled DAz, + Azg = —.502 1 z = (.05,.5)T
Ordered 10Az; + Azy = —.502 1 z = (.05,.5)T

Table 4.1 Comparison of variants of the Mehrotra-Ye technique
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4.1 Scaled Columns

Skeel [42] proved that Gaussian elimination with row pivoting is numerically stable
when the matrix is column scaled by D = diag |0], where © is the computed solution
of Av = ¢g. Unfortunately, the value of ¥ is not known when the factorization be-
gins. Row pivoting is defined as the interchange of columns so that each pivot is the
largest in its row. The theory assumes that columns of A corresponding to negligible
components of v are selected as pivots last.

Skeel’s theorem motivated us to consider finding a feasible point on the optimal

primal and dual faces, respectively, by solving the following linear systems.

(BXp)dzs = b— Bxy, and (BTY*)dy = cg — BTy* (4.1)
where
E ok
y; y; #0
ij — J J
1 else

Here, we approximate the computed solution with the value of the current interior-
point iterate.

We now prove that the solutions of the linear systems just described leads to the
calculation of strictly positive vectors, zz and zy. First, we define B as an arbitrary
nonsingular submatrix of B with maximal rank. Similarly, N and Y* denote the

corresponding submatrices of N and Y.

Theorem 4.1 Consider the iteration sequence {(z*,y*, 2*)} generated

by Algorithm 1. Assume

(1) B* = B.
(2) B and Y* are nonsingular matrices.

(3) min(ap) > [ B [(1°n&) (€ BIIrll + pOrna/nl NI (2%)T 25,
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(4) min(zf) > (np0) 7B (1 + [INTI|[B=T) 1|
+n/nrp® | NI BTH[)(2") 2"
Then zz = a:’g + ngl’g > 0, where dxg is the solution of
(BX:)dzs = b — Bzl (4.2)
Moreover, zy > 0, where
(BTY®)dy = ¢5 — BTy* (4.3)
and y = y* + Y*dy, 2y = 25 + Azy.

Proof Assume B is a nonsingular submatrix of B. Let dzg = (Xg)_lAa:g. Then

[Azgs| = [[Xgdasg|
= X5BX 6 Bk "
= ||B~}(b — Bz%)| since (X£)~! is nonsingular by construction.
S ABHI(eng) ™ (€ BlIrll + prny/nlIN ) (2F)T 2.
The last inequality holds from an application of (3.12). From assumption (2), the
solution z is positive. Let dz; = 0, for j € B\ B when column B is linearly
dependent on columns of B. Hence the entire vector x5 is positive.
We now prove that the dual solution is positive. First, we compute the solution of
the scaled dual Mehrotra-Ye formulation. Let dy = (Y*)~' Ay, where Y* corresponds

to the linearly independent rows of the matrix B. The remaining components of dy

are set equal to zero. Then

Aj = VEidy = YE(BTYH) ™ (c5 — BT).
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Given zy = cy — NTy, we have

[Azy]l = [INT(y —y*) = r§, |
<INT(y — )+ 175
< INTIIYHBTY*) " (eg — BTy + ||ri,
< INTII B~ (es — BTy*)I| + [Ir]]

< (&) [BE (L4 INTIIB-T]) vl + ny/mrp® INTII[ BT | ()7 2%).
(4.5)

The last inequality follows from (3.12) and the Feasibility Priority Principle. Hence

by assumption (3), zy > 0. ]

We state the corresponding result for bounded variable linear programs. Recall
that
T =(z,s) € R*™
Z = (z,w) € R*".

Theorem 4.2 Consider the iteration sequence {(z*,y*, 7*¥)} generated

by Algorithm 2. Assume

(2) B, Y* and D are nonsingular matrices, where

D = min(Xg, Us — X),

(3) min(dy;) > | B~ [(20p06) 71 (€ Bl + o720 /2n|[N )] (3%)7 2%, and

(4) min(zk) > (2nu°€) 71 [BE (14 INTII BTN 11|

+4nV/ 20T | NI BT )(2%) " 25
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Then 0 < x5 = :z:]f; + Ddxp < ug, where dzxg is the solution of
(BD)dzp = b — B, (4.6)
and 0 < sg < up. Moreover, zy and wy are nonnegative, where
(BTY*)dy = c¢5 — BTy* (4.7)
and y = y* + YEdy, 2y —wy = cy — NTy.

Proof The proof that x; satisfies its lower and upper bounds is omitted because
it is the same as the proof of Theorem 4.1 with XJ replaced by D.

If ey — NTy > 0, then zy > 0 and wy = 0. The proof follows directly from
Theorem 4.1, since the scale factor for the dual linear system does not change if
upper bound constraints are present, since the dual variables y are not explicitly
dependent on the upper bound constraints.

If cy — NTy > 0, then zy = 0 and wy > 0. Substitute wy for zy in the proof of

Theorem 4.1. ]

We have shown that the scaled Mehrotra-Ye procedure produces a solution that
satisfies strict complementarity. Now, we show that this solution can be generated in

finite time when coupled with the partitioning strategy,
BY = {j:af >}
Theorem 4.3 Let (2°,4°,2%) = (pe, 0, pe). Assume

(1) B* = B.
(2) =f > % and 2§, > %, where £* is as defined in (3.4).

(3) min(zg) > || B~ [(1°ng) " Bl + pOrny/nl N)] ()T 2.
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(4) min(=f) > (np®€) 7 [Be (1+ [NTIB=T])) 1]
+ /Tl NTI| BT ()2

Then Algorithm 1 combined with the scaled Mehrotra-Ye procedure gen-

erates a solution in

O (TL2 <logn + log (T(maX(gp*a 99777))))) iterations,
v

where 7 is as defined in (3.11), ¢ = ||B~Y| (¢*3||r°|| + p°mn/n||N||), and
n =8¢ (1+INTIIBTN) Ir°ll + ny/mrul [NTI[| BT

Proof The proof is similar to the proof given in Chapter 3 for the weighted pro-

jection model. (]

4.2 Ordered Columns

Another modification to Mehrotra-Ye is to order the columns according to the magni-
tude of the vector zf. First, the components of zf; are sorted in nonincreasing order.
We then order the columns of B so that B corresponds to the largest element of
the approximate solution vector and B corresponds to the k-th largest element. We
want columns of B that correspond to large components of the vector z§ to enter the
basis first. Dependent columns are removed from the matrix when negligible pivots
are encountered. The column ordering scheme has the theoretical advantage of not
increasing the condition number of the constraint matrix.

In a related work when the linear programming problem has an unique primal
degenerate solution, Asic, Kovacevic-Vujcic, and Radosavljevic-Nikolic [4] performed
a similar column sort to transform the matrix A into near upper triangular (trape-
zoidal) form. This transformation allows the matrix A(X*)2AT to be inverted by the

inversion of well-conditioned matrices.



a8

4.3 Numerical Results

We compare the effectiveness of three solution techniques in finding an interior point
on the optimal face. The techniques are our implementation of Mehrotra-Ye, scaled
Mehrotra-Ye, and ordered Mehrotra-Ye. The numerical experiments were conducted
on a Sun workstation with 64 bit arithmetic. We use the LIPSOL - Linear program-
ming Interior-Point SOLver- package developed under the MATLAB?* environment,
see [57]. The tests were run on MATLAB version 4.2c. Because of the dense imple-
mentation of the Gaussian elimination routine, we were only able to solve problems
where the matrix B had approximately 500 rows and columns. Consequently, our
test set consisted of 55 problems from the netlib suite. The three largest problems
tested were maros with 835 rows and 1921 columns, scsd8 with 397 rows and 2750
columns, and ship08] with 688 rows and 4339 columns. The removal of columns cor-
responding to zero variables combined with the elimination of zero rows reduced the
original matrix A to the desired dimensions.

The initial matrix A is scaled in an attempt to achieve row and column equilibra-
tion. Preprocessing deletes fixed variables, zero rows, and columns from the matrix
A, solves equations of only one variable, and shifts nonzero lower bounds to zero. We

first attempt to compute an exact solution when

|ch,k _ bTyk| s
— | < 107", 4.8
() < -

The partition is determined by the Tapia indicators in tandem with variables as
indicators. The interior-point algorithm was terminated after six attempts to find a
feasible point on the optimal face.

The actual linear systems solved were

(BD)dzs = b— Bz}, and DBTdy = D(cs — BTy") (4.9)

MATLAB is a registered trademark of The MathWorks, Inc.
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where

p min(wf, uj — mf) for j € B and upper bounds exist
i =
k

T} for y € B else.

The dual model is not what we proposed in Section 4.1. The solutions of the proposed
model in Section 4.1 require two matrix factorizations. This is twice the computa-
tional expense of an interior-point iteration. However, with formulation (4.9) a single
matrix factorization suffices to compute primal and dual points on the respective
optimal faces.

For the column scaling approach, we factored the matrix DB” using Gaussian
elimination with partial pivoting and row interchanges. The matrix, DBT, was fac-
tored instead of its transpose to take advantage of the column scaling. Partial pivoting
with row interchanges of BD is equivalent to partial pivoting of B. In the column
ordering approach, we order by the vector d where d = diag(D) if upper bounds are
present.

If a negligible pivot was encountered, the column was removed from the matrix.

The pivot tolerance was
mazx(m,|B|) * || B, * 107°.

This is precisely the default tolerance used in MATLAB to determine the numer-
ical rank of a matrix. We did not pivot to minimize fill-in of the triangular fac-
tors, L and U. Zero rows were removed before the Gaussian elimination subroutine
started. At the completion of the factorization any remaining zero rows were deleted.
Components of the solution vector corresponding to dependent rows and columns
were set to zero. Consequently, we computed a basic solution of the reduced linear
system.

Table 4.2 shows the results of our numerical experiments. Column 1 gives the

number of calls to the finite termination procedure. Columns 2 through 4 give the
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number of problems solved by the three respective variants of the Mehrotra-Ye pro-
cedure. The results of Column 2 were obtained by computing an LU —factorization
of BT and using those factors to solve systems (2.2). If we factor B instead, the
projection count changes slightly. In fact, additional projections are required to find

exact solutions for some problems.

Techniques

# of misses Mehrotra-Ye | Scaled | Ordered
0 44 47 46

1 7 6 5

2 2 1 1

3 1 1 2

4 0 0 0

5 1 0 0

more than five 0 0 1
TOTAL misses 19 11 19

Table 4.2 Misses per technique

In terms of the number of attempts needed to find a solution, the three solution
techniques perform comparably. Scaling and ordering the columns of the matrix saved
one interior-point iteration for problems, boeing2, kb2, and seba. Two interior-point
iterations are saved for problems etamacro, finnis and stair. All six problems have
upper bound constraints. When we implemented the standard Mehrotra-Ye approach,
six attempts were needed to find feasible primal and dual points for problem etamacro.

However, the standard Mehrotra-Ye procedure generates the most accurate solu-
tions. For 91 percent of the problems, the objective function value agrees to thirteen
digits with the reoptimized CPLEX objective function value that was reported in [6].
The thirteen digit agreement is 89 percent for scaled and ordered Mehrotra-Ye.

Column scaling and ordering are equivalent for all but three problems - aggs3,

growl), and sers8. When the columns are scaled in problem scrs8, two attempts
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are necessary to find a feasible point on the optimal face. The ordered model only
needs one attempt. When column scaled the coefficient matrix of sers§ is highly
ill-conditioned. This degeneracy may be reflected in the additional projection needed
to obtain an exact solution. The rank of the matrix B is 301; the rank of BXE is
169. The matrix has 305 rows and 317 columns. The difference in the maximum and
minimum components of z is nine orders of magnitude.

In the following, we attempt to provide a plausible explanation for the behav-
ior of the ordered columns technique for problems agg? and growl5. According to
Skeel, Gaussian elimination without scaling leads to numerical instability. Instability
manifested itself in problems agg3 and growl!). After one call to the finite termina-
tion procedure, solutions were computed for the other problems in the grow and agg

classes. No solution was found for problem agg3.

Problem | Standard | Scaled | Ordered
grow?7 1 1 1
growl) 1 1 4

Table 4.3 Technique comparison for class GROW

Problem | Standard | Scaled | Ordered
agg 1 1 1
agg?2 1 1 1
agg3 1 1 -

Table 4.4 Technique comparison for class AGG

Problem growi15 has staircase structure and upper bound constraints; problem
agg3 does not. Growl5 is highly degenerate. The associated matrix B has 300 rows

and 573 columns. Agg? is only mildly degenerate. The full rank matrix, B, has
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512 rows and 551 columns. The condition numbers of the matrices are 5.64e+00 for

growl) and 2.35e+03 for agg3.
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Chapter 5

The Role of Fast Local Convergence

Thus far, we have studied various models and techniques for generating a feasible
point on the optimal primal and dual faces. Now, we turn our attention to another
important question in finite termination procedures - when should we first attempt
to generate an exact solution. Numerous issues impact the first attempt. Foremost,
is the researcher’s goal. Does he/she want to save computational expense or simply
generate an exact solution post optimally? If the choice is the former, the researcher
has to worry about indicator reliability when the iterate is far from the solution
set and the tradeoffs between the costs of multiple projections and the cost of the
standard interior-point iteration.

In [35], Mehrotra and Ye projected the current point onto the optimal faces when
the relative gap is less than or equal to 1078, In a subsequent numerical study,
Mehrotra [30], solved for a point on the optimal faces when the current iterate satisfied

k _ T,k k_ T, .k _ 1T,k

Y 9 51
S Y (5.1)

which is more commonly known as the eight digits of relative precision criterion.
Both criteria essentially initiate the finite termination procedure at the solution. For
many interior-point algorithms (e.g., HOPDM [16], LIPSOL [57], PCx [7] , etc.),
inequality (5.1) is the default stopping tolerance. Projecting when the iterates satisfy
inequality (5.1) does not generally save computational expense. When Mehrotra [30]
first observed superlinear convergence of the duality gap sequence {(z*)T2*} to zero,

he attempted to find an feasible point on the optimal face of the linear program.
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On the other hand, a more liberal strategy may not be advisable, especially if
a significant number of projection attempts is needed. Recall that the cost of a
projection attempt is equivalent to one interior-point iteration.

For many problems in our test set, the optimal face can be identified and veri-
fied before inequality (5.1) is satisfied. Consequently, we propose a more aggressive
criterion to test the optimality of the partition. We extend Mehrotra’s idea of using
fast convergence of the duality gap sequence {(z*)Tz*} as an indication of when to
proceed from an approximate solution to an exact solution. We propose projecting
from a full pure composite Newton step when the full Newton step gives ()-quadratic
convergence of the duality gap sequence {(z*)T2*}.

In Section 5.1, we present the composite Newton method. A general feasible
primal-dual predictor-corrector interior-point method is described in Section 5.2.
Convergence theory for the duality gap sequence {(z*)Tz*} is the topic of Section
5.3. In Section 5.4, we describe a weighted projection model that uses the pure

composite Newton step. Numerical results comprise the last section.

5.1 The Composite Newton Method

The composite Newton method is the modification of Newton’s method where the
step consists of the sum of a Newton step and a simplified Newton step. The previous
Jacobian is used in the simplified Newton equation. Below, we describe the level-m

composite Newton method for the nonlinear system of equations, F(z) = 0.

Solve F/(”L’k)(A.IZ) =—F(xp+ Azo+ Az + -+ Azi—q) for Az;;i=0,...,m

set Tpy1 = T + aF(Azg + Azy + -+ + Az,y), k=0,1,...
(5.2)

Under the standard Newton assumptions the level-1 composite Newton method has

a (J-cubic convergence rate.
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5.2 Predictor-Corrector Algorithm

In this section, we describe a general primal-dual predictor-corrector interior-point
method. The primal-dual predictor-corrector interior-point method was suggested by
Mehrotra [31], and was shown to be equivalent to a perturbed and damped level-one
composite Newton method by Tapia, Zhang, Saltzman, and Weiser [44].

Each iteration of this primal-dual method consists of a predictor step and a cor-
rector step. The predictor step is a step towards optimality; the centering-corrector
step goes toward the central path. Both the predictor and corrector steps satisfy a

linear system of the form

A 0 0 Ax 0
0 AT T || Ay |[=]0], (5.1)
Z 0 X Az r

where r = — Xz for the predictor step and r = e — Xz for the corrector step, where

(z,9,2) = (z + APzF y + APy* 2 + AP2*). Since for any feasible point (z,y, z), the
first two blocks of linear equations in F(z,y,z) = 0, see (1.2), are always satisfied; it
is easy to see that the matrix in the left-hand-side of (5.1) is F'(x,y, z) and the right-
hand-side is —F'(z,y, z) for the predictor step and oue — F(z,y, z) for the corrector

step.

Algorithm 3 (Predictor-Corrector Algorithm)

Given a strictly feasible point (z°,y% 2°) for £ =0,1,2,..., do
(1) Solve for the predictor step (APz*, APy APzF) from (5.1) with

(z,y,2) = (zF,y* %) and r = —X*2F.
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(2) For 0% € [0,1) and p* = ((z*)T2*)/n, solve for the corrector step
(Acexh Accyk AczF) from (5.1) with

(Z,7,2) := (aF + AP2F yF 4 APyF 28 4 APLR) = oFpFe — XFEE

(3) Set (Azk, AyF AzF) = (APzF APyk AP2F) + (Axh Accyk Acczk),
(4) Choose 7% € (0,1) and set a* = min(1,75a*), where

-1
&F

min((X*)"TAzk (ZF)"1TAzF)

(5) Let (2, y*+1, 2041) i (o, b, %) 4 oF(Ax*, Ayt Azh).

(6) Test for convergence.

The dampening and perturbing of interior-point iterates preclude the standard
proof of cubic convergence. Tapia, Zhang, Saltzman, Weiser [44] proved that for
nondegenerate problems that cubic convergence can be restored locally (in a neigh-
borhood of the solution) by taking the full pure composite Newton step, (i.e., no
centering or dampening). We present Theorem 3.1 of Tapia, Zhang, Saltzman, and

Weiser [44] which has been tailored to suit our purposes.

Theorem 5.1 ( Tapia, Zhang, Saltzman, Weiser [44]) Consider the it-

eration sequence {z*, y*, z*} produced by Algorithm 2. Assume

(1) strict complementarity
(2) x* is a nondegenerate vertex

(3) (2%, y*, 2%) converges to (z*,y*, 2*).
If the choice of o* satisfies

0 < o" < min(o, O((2%)T2*)?)
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and for large k

ok =1,

then the convergence is (J-cubic, i.e. there exists v3 > 0 such that for k

large

[(* g4, 25 — (2%, )] <l (a0t 24— (a7, )

5.3 Fast Convergence of the Duality Gap

When the interior-point algorithm exhibits fast local convergence we attempt to gen-
erate an exact solution rather than waiting for an approximate solution to attain
eight digits of relative precision.

Projecting early in the iterative process has its drawbacks. First, the variables
may not have separated enough for correct identification of the active set. Second
given the correct partition, the interior-point iterate may be far from the solution
set. Therefore, a finite termination procedure could generate a solution that, while
nonnegative, may fail to satisfy the prescribed linear feasibility and optimality toler-
ances. Incorrect identification of the active set dooms a finite termination procedure;
infeasibility of the iterate does not.

Now let us consider fast local convergence of the duality gap sequence From step
5 of Algorithm 3, we have the following expression for the duality gap at iteration
E+1,

R Tk (z* _I_akAl,k)T(Zk + ok AZK)
= (1-af(1-0%) okl ok

(5.2)

The @, factor for the sequence {.I‘kTZk} is

:z:kHTZkH/:CkTZk = (1 —a"(1 = a")).
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To obtain superlinear convergence of the sequence {;r:szk}, we need
(1 —a*(1—=0%) = 0ora®(1 —0F) =1,

which is achieved by letting of — 1 and o* — 0.

*is an algorithmic parameter, but the step length o* is not.

The centering term o
However, the step length o is dependent upon the algorithmic parameter 7%. Hence,
the theory for Q-superlinear convergence of the duality gap sequence {(z*)T2*} is

stated in terms of ¢* and 7*.

Theorem 5.2 (Zhang, Tapia, Dennis [60]) Let {(z*, 2*)} be generated

by Algorithm 1 and (z*,y*, 2F) — (z*,y*, 2*). Assume

(1) strict complementarity,
(ii) the sequence (z*)T2*/(n min(X*Z*e)) is bounded,
(iii) 7% — 1 and o* — 0.

Then the duality gap sequence {(z*)T2*} converges to zero Q-superlinearly.

That is, the Q);-factor
‘ R T k1
Q= klggosup T =0.
Zhang and Tapia [59] improved Theorem 5.2 by replacing the convergence of the

iteration sequence {(z*, y*, %)} assumption with the assumption that the duality gap

sequence {(z*)T2*} converges to zero.

Lemmab5.1 (Zhang, Tapia, Potra [61]) Under the assumptions of Theorem
5.2,

lim o = 1.
k—oo
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Mehrotra [30] used observed fast local convergence as an indication to project onto
the optimal primal and dual faces. The optimal partition is identified at the k& — th

iteration if the following conditions hold

xk+1TZk+1/$kTZk < .01 s
ok > .95, >3)

Mehrotra concluded that superlinear convergence is detected after the optimal face
and a point on it can be identified.

We propose a more aggressive criterion to test the optimality of the partition,
which is based on fast local convergence of the duality gap sequence {(z*)T2*} which
only consists of the predictor step. Under standard assumptions, Newton’s method
is known to give (J-quadratic convergence. We try to exploit this fact by forming
the full Newton iterate, 2 = x* + APz*. Recall that the predictor step is the Newton
step for problem (1.2). This particular update formula may violate the nonnegativity
constraints. We then use the intermediate duality gap, z7z, which only consists of the
full Newton step(predictor step) as a indicator for estimating the optimal partition.

Specifically, when we observe ()-quadratic convergence
iTE/J:kTZk < C4(J}kTZk), for some constant Cy > 0 (5.4)

we could estimate the optimal partition. However, in practice, it is difficult to deter-

mine a value for the constant Cj.

5.4 Projection from a Pure Composite Newton Step

All models in the literature project from a strict interior point. We investigate the
idea of projecting from a full pure composite Newton step when the full Newton step

gives Q-quadratic convergence of the duality gap sequence {(z*)72¥}. We denote the
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full pure composite Newton iterate as x, where
T = 2" + AP2F £ AcF

and the centering step, A®z*, is computed in step 3 of Algorithm 2 with ¢* = 0. We
know that quadratic convergence of the duality gap sequence {(z*)T2*} to zero in
the full Newton step implies cubic convergence of the duality gap to zero in the pure
composite Newton step.

In an earlier numerical experiment, we computed a full pure composite Newton
iterate in the neighborhood of the solution. We observed fast local convergence of
the duality gap sequence {(z*)T2*} to zero, but overall convergence was stymied by
an increase in constraint infeasibility when we set predicted zero variables to zero.
Note we used an infeasible primal-dual predictor-corrector interior-point algorithm
to perform the previously mentioned tests. Therefore, we combine the full pure
composite Newton iterate with the finite termination procedure to recover linear
feasibility. If we a finite termination procedure fails to generate a solution that satisfies
the feasibility and optimality tolerances, we discard the full pure composite Newton
iterate and proceed with the predictor-corrector algorithm by forming the damped
Newton iterate.

The new weighted projection model can be written as follows

minimize %HD_l(fL‘B — z5)|?

(5.5)
subject to Bxp = b,
where z = 2% + APzF + A%z* and d;; = diag(min(z;,u; — z;)) for j € B.
The dual model is
1
min =|| D™ (B"y — e5)||”. (5.6)

y 2
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It is important to note that identification of the optimal partition does not require
the formation of the full pure composite Newton iterate. We can combine inequality

(5.4) with the projection models and techniques discussed in Chapters 3 and 4.

5.5 Numerical Results

The numerical experiments were conducted on a Sun workstation with 64 bit arith-
metic. We used the LIPSOL - Linear programming Interior-Point SOLver- package.
In this numerical study, we tested 80 problems from the netlib set. Larger problems
such as fit2d, marosr7, standgub, pilots, elc were not included in this particular ex-
periment due to the prohibitive cost of an interior-point iteration. We used models
(5.5) and (5.6) to find feasible points on the optimal faces. The experiment is outlined
below.

The study is similar to the one proposed by Mehrotra in [30].

Procedure 3 (Projecting From Pure Composite Newton Step)

At every iteration of Algorithm 3,

(1) Set (2,5,2) i= (a*,y*, 2*) + (Arak, Avy*, ArzE.)
(2) If

(Ir* )+ (2%)72% <1 and ||7]] + 272 < (||r*]| + («5)72%)?)

LT
or ————— < 10
L+ [Ty~
continue. Otherwise, return to interior-point algorithm. The duality
gap of the pure Newton step is calculated as z7z := |z|T|z|. The

absolute value of the iterates must be taken since the unit step does

not ensure positive iterates. Recall that

I = [ 2" — b, ATy* 4 2 — .
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(3) Solve for the pure corrector step (Acz*, Acy* AczF) with right-hand
side = —Xz.

(4) Set (z,y,2) := (z,79,2) + (AzF, Acy* AczF).

(5) Partition the variables into the sets B and N.

6) Check the negativity of (z,2). If |#;| < 2% for j € N, then proceed
g y ) J j J ) p
with the finite termination procedure. Otherwise, return control to

the interior-point algorithm. Perform the same test for z;, j € B.

(7) Find the closet points to (23,y,zx) that lie on the optimal primal

and dual faces.
(8) Test for positivity of (x5, zpr) and convergence.

(9) If the convergence criteria is not satisfied, return control to the stan-
dard interior-point algorithm. Else, terminate the algorithm with a

solution.

In step (2), we delay the procedure until
|7* ) + ()T 2F < 1. (5.7)

If the k-th iterate is feasible, the value of the duality gap dominates (5.7). Given
(z%)T2% > 1 and the unit step, 272z < (z%)T2% < ((2%)T2%)2. Unfortunately, the pro-
cedure would be activated at each iteration. Empirical evidence shows that inequality
(5.7) criteria can be relaxed for some problems.

As stated, the procedure requires three back substitutions per iteration instead
of two. Thus O(r?) additional work is needed per iteration. To save computational
expense, the pure corrector step can be replaced with the centering-corrector step
when ¢ = min (U, 05((1;]“)Tzk)2) where o € (0,1). From the statement of Theorem

5.1, we can expect J-cubic convergence for nondegenerate problems.
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Step six tests for the degree of negativity of the vector (z,y, z). Since we take an
undamped step, the iterate may have negative components. For predicted nonzero

variables which are negative, we reflect through the origin. That is,

z;:=|z;| JEB

=15 s
G=5l jEN.

which increases the residual

IBl2s| —ol|

The projection procedure is asked to compensate for the additional infeasibility.
One can argue that the success of this procedure is directly attributed to the

fact that (z,y, z) approximates (z¥+! y*+! 2*+1) This is true - the undamped pure

composite Newton update does approximate the k + 1st iterate. However, we are

using asynchronous indicator information. The partition generated in the k 4 1-st

iteration is based on
k42
Ly
E+1
Ty

Pt

J
not Pt
J

zk
Unless the indicators have converged by the k-th iteration, the data is inconsistent.
Tables 5.1 and 5.2 show the decrease of the duality gap when the undamped pure
composite Newton step is taken. The first two columns report the primal and dual
infeasibilities, respectively. The third column gives the value of the absolute duality
gap. We see cubic decrease in the duality gap, but the infeasibility does not decrease

at the same rate. It is important to note that the problems listed are degenerate.

Step | Az —b| | |[ATy + 2z — €| 2

k—th iterate 6.23e-12 1.02e-15 3.42e-02
Full Newton 1.81e-12 1.21e-15 1.09e-06
Composite Newton | 1.23e-13 1.88e-15 1.13e-10

Table 5.1 Problem AFIRO, m= 27, n = 51
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Step | Az —b|| | |[ATy + 2z — €| Tz

k—th iterate 3.19e-05 3.34e-12 1.36e-01
Full Newton 2.05e-11 3.78e-12 8.03e-04
Composite Newton | 5.01e-13 3.26e-12 5.53e-05

Table 5.2 Problem DEGEN2, m = 444, n = 757

Tables 5.3 and 5.4 illustrate the ability to terminate far from the solution set. The
second column reports the absolute primal infeasibility associated with the indicated
step. The third column gives the value of the absolute dual infeasibility. The last
column records the absolute duality gap. We projected from the pure composite

Newton step rather than the k—th iteration.

Step | Az —b|| | |[ATy + 2z — €| xlz

k—th iterate 3.19e-05 3.34e-12 1.36e-01
Composite Newton | 5.01e-13 3.26e-12 5.53e-05
Finite Termination | 8.52e-15 1.66e-12 9.74e-12

Table 5.3 Problem DEGEN2, Relative Gap = 7.46e-05

Observe that when the finite termination procedure is initiated there are only

three digits of accuracy in the solution of problem se105.

Step | Az —b|| | |[ATy + 2z — €| !z

k—th iterate 3.22e-08 7.28e-12 2.80e-01
Composite Newton | 1.11e-11 2.70e-16 5.88e-04
Finite Termination | 4.15e-13 1.32e-16 5.05e-15

Table 5.4 Problem SC105, Relative Gap = 5.20e-03

Unfortunately, projecting from the pure composite Newton step only saves six

percent (87/1547) of the total iterations. We averaged 1.92 projection attempts per
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problem, while only saving 1.24 iterations. Thus it appears that our projection crite-
rion 1s more time-consuming. However, we did save five iterations on problem degens,
which is highly degenerate.

Projecting from the pure composite Newton step generates highly accurate solu-
tions. For 95 percent of the (76 out of 80) problems, our objective function value
agrees to thirteen digits with the objective function value reported in [6]. Moreover,
we gained two digits of accuracy for problem gfrdpne when compared to the experi-

ments conducted in the previous chapters.
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Chapter 6

Indicators

The term indicator denotes a function that identifies constraints that are active at
the solution of a constrained optimization problem, see Tapia [43] and El-Bakry [9].
Indicators play an important role in finite termination procedures. After deciding
when to first attempt to compute an exact solution, we must estimate which variables
are active at the solution

Commonly used indicators include variables as indicators, the primal-dual indica-
tor, and the Tapia indicator. See El-Bakry [9] and El-Bakry, Gonzalez-Lima, Tapia,
and Zhang [11] for a thorough study of indicators. El-Bakry, Tapia, and Zhang [10]
showed that identification of the set of variables that are zero at the solution can lead
to reduction of problem size and computational savings.

The primal-dual predictor-corrector interior-point algorithm is the workhorse for
most numerically efficient interior-point implementations. The increased practical
efficiency of predictor-corrector methods can be directly attributed to the generation
of the corrector step. Lustig, Marsten, and Shanno [23] provided empirical evidence
that in terms of the iteration count, the predictor-corrector method outperformed the
primal-dual method when tested on the netlib suite of linear programming problems.
However, indicators in the literature do not incorporate the corrector step.

To take advantage of all available algorithmic information, we extend the defini-
tion of the Tapia indicators to the predictor-corrector algorithmic framework. The
centering-corrector step as well as the predictor step comprise this new indicator. In
this chapter, we investigate its theoretical properties. We also examine the numerical

effectiveness of this indicator in identifying the optimal partition.
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6.1 The Tapia Indicators

Tapia [43] used the following indicators to determine the active set in nonlinear con-

strained optimization problems. The Tapia indicators are

b aktt L 2E
T,(z3) = ;—k and Ty(z;) = ]Z—k,
J J

where xf“ = Tf + Apx;? and zf“ = z;“ + Apzf. In [10] El-Bakry, Tapia, and
Zhang showed the Tapia indicators have a 0-1 separation property and converge
R — superlinearly to their limiting values.

In the context of interior-point methods, Mehrotra [28] suggested the use of the

relative change of variables as indicators, which are a simple restatement of the Tapia

indicators. The relative change in variables as indicators are

APgk APk
Ry(ef) = —= =Tp(aj) =1 and  Ra(zf) = —= = Tu(z) - 1
J J

Mehrotra and Ye in [35], Mehrotra in [29] and [30], as well as Andersen and Ye [2]

used the Tapia indicators to identify the optimal partition. Specifically, they defined

|avat|  |Aved
BF={j: xk] < .} (6.1)

j &2

Mehrotra and Ye [35] proved that when B* was defined as in (6.1) the optimal partition
could be identified in finite time for algorithms that generate iteration sequences that

satisfy centrality measure (3.1).

6.2 The Tapia Predictor-Corrector Indicators

We define the Tapia predictor-corrector indicators as

bkt N
PC,(x7) = ;1? and PCy(27) = ]Z—k,

J J
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where :L’;H_l = .TL‘;C + Ap;r:;? + ACC;L'?, Zf“ = z;“ + Apzf + A“Zf, and Ap;zjé? and ACC;U;?

are computed as in steps 1 and 2 of Algorithm 3, respectively. The Tapia predictor-
corrector indicators differ from the Tapia indicators in the addition of the centering-
corrector step.

In the following proposition, we provide an expression for the sum of the primal
and dual Tapia predictor-corrector indicators. In subsequent results, we show, with
appropriate choices for the centering and step length parameters, the limit of the

right-hand side is one.

Proposition 6.1 Assume that the sequence of iterates {(z*, y*, z¥)} has

been generated by Algorithm 3. Then
(X5 (2575 =
(2 — aMe — FAPXFAPZH(XFZF) e 4 oF ot B (X ZR) e, (6.2)
where AP X* = diag(APz*) and APZ* = diag(APz*).
Proof Consider the linearized complementarity equation for the predictor step
XFAPE + ZFAPeh = — X ZFe
and the linearized complementarity equation for the centering-corrector step
XEACE L gk ek — Jk,uke — APXFAP e
Combining the two complementarity equations yields
Xk(Apzk + Acczk) + Zk(Apxk + Acc:tk) = —XF7Fe “ APXFEAPZEe 1 Jk,uke.
Thus,
Xk(zk'H) + Zk(.z:k"'l) =(2-— ak)Xkae —oFAPXFEAP ZFe 1 akak,uke.

Multiply both sides by (X*Z*)~! and this completes the proof. (]
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The following lemma shows that the (z,z) components of the iteration sequence
generated by a path following algorithm are bounded. The lower limit on the predicted
nonzero variables permit us to bound the ratio of the steps direction to the current

iterate.

Lemma 6.1 (Giiler and Ye, [17]) Let z° > 0 and v € (0,1). Then for

all points {(z*, y*, z%)} with
{(z", g 2 e Nowo(y) € PO, <
there exists a constant Cy such that ||(z, z)|| < Cp and

0 <y < (("M)7T2F)/¢ (jeN) 0 <z < ((«5)72")/¢ (j€B)
vy > (€y)/n (j € B) 7 2 (&) (JeN).
(6.3)

The next proposition is used in the separation proof for the Tapia predictor-
corrector indicator. Proposition 6.2 enables us to prove that the Tapia predictor-
corrector indicator retains the 0-1 separation property of the Tapia indicator. Moreover,
it shows, under certain conditions, that in the limit the Tapia predictor-corrector in-
dicator equals the Tapia indicator. To the best of our knowledge, it is not in the

literature.

Proposition 6.2 Consider a sequence of iterates {(z*,y*, %)} generated

by Algorithm 3. Assume that
1. (2728 -0
2. min(X*Z*¢) > yu*, for all k and some v € (0,1)

3. The algorithmic parameters are chosen such that

o = 0and 7% = 1.



80

Then for y =1,...,n

] Accxg? ] Accz;-“
lim — =10 and lim — =0.

Proof Consider the linearized complementarity equation for the centering-correction

direction,

XkACCZk + ZkACCCL'k — O'k/,Lke - ApXkAkae.

Divide both sides by (X*Z*). Component-wise, we have

Accl,k Acczk (xk)Tzk/n Apl’kAka
J J k J J
e = ) - :
X Z;
J J

(6.4)

T}z zjz}
Let’s consider the last term on the right-hand side. From Theorem 3.1 Ye, Giiler,
Tapia, and Zhang [53], Mehrotra [32], and Theorem 7.4 of Wright [49], we know

|APz* AP2*|| = O(p*). Combining |APz*, AP2*|| = O(u*) with (6.3), we obtain

APk . APZF .
| : | = O(,uk), ] €B and | o | = O(Nk)a JjeEN. (6.5)
7 J

If we look at the linearized complementarity equation for the predictor step, we see

Ap;r:é? Apzf

=—1. 6.6
P (6.6)
Equations (6.5) and(6.6) imply
Pk Pk .
im0 Azk] =0 and limy_yeo Az—k] =-1, 5€B
AP;’“ Apjzk . (6'7)
lIimy oo —t =1 and lIimy oo - =0, JE€ N.

From the observations made above and the assumptions of the proposition, Equation
6.4 takes the form

Acegh  Acek
: J iy o —
klggo :L’é“ Z;C ) =0y7=1,...,n. (6.8)

Given that ||A%z* AzK|| = O(u* + oF), see Wright [48], we have

Ace k Ace k
| kw |:O(,uk—|—ak), ]EB and #:O(Mk—ka‘k), ]EN

X <j
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From (6.8) this implies

AN AN ,
lim L =10 and lim L =0, jeB
k— o0 ;[jk k—oo Zk ’
J J
and a similar relation holds for j € V. (]

Now we formally present the limiting values of the Tapia predictor-corrector in-
dicator. As a direct consequence of Proposition 6.2, we show that the 0-1 separation

property of the Tapia indicator is retained.

Proposition 6.3 Consider a sequence of iterates {(z*, y*, %)} generated

by Algorithm 3. Assume
1. (2128 -0
2. min(X*Z%¢) > yu*, for all k and for some v € (0,1)

3. The algorithmic parameters are chosen such that

o s 0and 7% — 1.

Then for y =1,...,n

okt 0 jeN
lim ]k =
k+1 0 jeN
lim <1 — Z]k ) = J

where z**! = 2% + BF(APzF + A®z*) and 21 = 2k 4 BE(APZE + Acerh)

for any 3* € [o*, 1] with of given in step 4 of the Algorithm 3.
Proof Consider

Xk(Apzk + Acczk) + Zk(Apxk + Acc:tk) = —XF7Fe “ APXFEAPZEe 1 Jk,uke.
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Clearly,
XE(2F 4 BRHAPZE + A%2)) 4 Z8(a* + BH(APa® 4 Aa?)) = (6.9)
2 — BV XFEZke — BEAPXEAPZRe 4+ BRgk ke, .
(2—5%) I
Divide both sides by (X*Z*). Then
Xk —lxk—i—l + Zk —lzk—i—l —
(X*) (Z%) " (6.10)
(2 — B*)e — BEAPXFEAPZR(XFZF) e 4 phoh Lz (Xkzk) e,
From Proposition 6.2,
A . A |
lim L= 0 foralljy and lim L = 0 for all 5.
koo ¥ k—oo  2E
J J
Thus,
pl,k ccl,k pzk chk .
limyg o0 Ajj% = 0 and limg 00 A]j# =-1, 5€B ( )
y ] 6.11
Pk cepk N )
limg o0 A]:# =1 and limy_yeo AJ:% = 0, jeN

From (6.11) and the definition of &%, it follows that &* — 1. Since 7% — 1, it follows
that o — 1 and therefore 3* — 1. The result follows from (6.10) and assumptions

2 and 3. ]

We now show that the Tapia predictor-corrector indicators converge R-superlinearly
to their limits. This result is somewhat disappointing; we conjectured that the ad-
dition of the centering-corrector step would produce faster local convergence of the
indicators for variables in the active set than what has been proven for the Tapia

indicators.

Proposition 6.4 Consider a sequence of iterates {(z*, y*, %)} generated

by Algorithm 3. Assume that

1. (;r:k)Tzk —0



2. min(X*Z*¢) > yu*  for all k£ and some v € (0,1)

3. The algorithmic parameters o* and 7% have been chosen so that
of = O(((z")T25)) and 7% = 1 — O(((«")T2F)") X € (0,1).

Then for j =1,...,n

lim — =
k— o0 xj

:1:;?"'1 0 jeN
1 j€B

k
k ¥
— 00 Z]

i <1_z§“+1): 0 jeN
1 j€eB

with an R-rate of convergence 1+ A, where g+l — gk 4 ﬁk(Apxk + Acc:xk)

and zFt1 = 2k 4 BE(APZR + A2k for any BF € [oF, 1] with of given in

step 4 of the algorithm.

Proof For j € B,

Axk
[PC(zf) — 1] < gF|=2| < 34

k
X

APk Ak
J J
[+ 1= ).

k
X
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From Theorem 3.1 of Ye, Giiler, Tapia, and Zhang [53], Mehrotra [32], Theorem 7.4

of Wright [49], and Lemma 6.1 we know

|Ap:1:;?| B L
o O(p").

From the analysis in Wright [48] of steps generated by Mehrotra’s predictor-corrector

algorithm and Lemma 6.1,

Acc k
BT _ ot + %),
T

Therefore,
PC(E) — 1] < O(* + %),
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As a result of Proposition 6.1,

PC(ah) = (2 — B%)e — BFAPXFAPZH(XF Z7) e 4+ Bro* b (XFZF) e — PO(2F)

J

which implies for 7 € NV,
PO < 0"t (XZ) e + [PO(2E) — 1] = O(s* + o¥).

From assumptions 2 and 3 the indicators are bounded above by a sequence that tends

to zero with () — rate 1 + .

By symmetry, we can prove a similar result for the dual slack indicator. This

completes the proof. (]

We now present a surprising result regarding the relationship of the scaled ratio
of the predictor step for nonzero primal variables to the scaled ratio of the centering-

corrector step for zero dual slack variables.

Theorem 6.1 Consider a sequence of iterates {(z*,y*, 2*)} generated

by Algorithm 3. Assume
1. (2728 -0
2. min(X*Z*¢) > yu*,  for all k and for some v € (0,1)

3. The algorithmic parameters are chosen such that

o = 0and 7% = 1.

Then
] Apz;-“ ] ACC:L’;? .
lim —% = lim —=%, jeN
k—oco 27 k—oo %
] J
and
] Ap;z;f ] Accz;“ ,
lim ——= = lim ——, j € B.
k—o0 Z; k—oo Z;
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Proof The predictor step for the dual slack is APz* = —AT(A(Z*)71 Xk AT)=1 A Xe.

The corrector step for the primal variable is

Accll’,‘k — _Xk(Zk)—lAT(A(Zk)—leAT)—lA(zk)—l(o_kluke . ApXkAkae)

+ (Zk)_l(ak,uke — ApXkAkae).
Clearly, the scaled dual predictor step has the form
(ZMYTIAPE = —(ZF)TAT(A(ZF) 7' XFAT) T AXe
and the scaled primal corrector step can be written as

(X)TTASh = —(Z0)TAN(A(ZY)TIXFAT) TTA(Z) T (o e — APXEATZEe)

+ (Xka)_l(Jk,uke — ApXkAkae).

Let’s consider the first term of (X*)~!Acz*. After distributing terms and substituting

for the scaled dual predictor step, we obtain

(Xk)_lAccl’k — _O_kluk(Zk)—lAT(A(Zk>—1XkAT>—1A(Zk>—1€

+ Jk,uk(Xka)_le + (Xka)_l(ak,uke — ApXkAkae).

Let A; denote the j — th column of the matrix A. Component-wise, we have

CCATEh oM AT(A (D) AT A aghut Avah Avek
lim A = lim A lim + T E lim % % .
k— oo ;[:j k—oo (Zj)Q k—o0 ;L’jzj k—co :L’j Z]-

The theorem’s assumptions guarantee Apr/xf — —1 for 5 € N. The remainder of
the proof follows from Assumptions 2 and 3. The second part of the proof can be

proven in a similar manner. (]

The result hinges on the centering-corrector’s step dependence on the product of
the predictor steps. The theorem is also applicable for algorithms that center the

predictor step instead of the corrector step, see Zhang and Zhang [62]. However, it
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is not applicable to primal-dual methods where the centering step is not an explicit
function of the centering parameter and the predictor (Newton) step.

Now we extend Theorem 2 of Mehrotra and Ye [35] to show that the Tapia
predictor-corrector indicator identifies the optimal partition in finite time. Unlike
their result, we allow the step length to vary from one iteration to another. To
prove the theorem, we need a different set of assumptions than what we used in the
previous propositions. The new assumptions are needed to establish global (poly-
nomial) convergence for Mehrotra-type predictor-corrector interior-point algorithms.
The previous assumptions guaranteed fast local convergence.

First, we provide an algorithmic framework. Then we present the main result of
this chapter, polynomiality of the Tapia predictor-corrector indicator.

Algorithm 4 Given a strictly feasible point (z°,y°, 2°), for k = 0,1,2,.. .,
do

(1) Solve for the predictor step (APz*, APy APzF) from (5.1) with
(z,y,2) = (z",yF, 2%) and r = —X":F
(2) For 0% € (0,1) and p* = ((2*)Tz*)/n, solve for the corrector step
(Acexh Accyk AczF) from (5.1) with
(z,9,2) := (aF + APz yF 4 APyF 28 4 APRR) - = oFpFe — XFZR
3) Choose the largest o* € [0, 1] such that
g
($k+17yk+1,zk+1) c N—oo(7)7
then update accordingly
ZL’k+1 = {L’k _I_ OékApiL’k _I_ (ak)QAccl,k
yk—l—l = yk _I_ akApyk _I_ (ak)QAccyk (612)

L= 2R oFAPZE 4 (oF)2ACE
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(4) Test for convergence.

Algorithm 4 differs from the previously presented predictor-corrector algorithm in the

calculation of the step length, o, and the iteration update.

Theorem 6.2 Consider the iteration sequence {(z*,y*, 2*)} generated

by Algorithm 4. Assume that
(1) (M8 =0
(2) min(X*Zke) > yu*, for all k and for some v € (0,1)

(3) The algorithmic parameter ¥ = ¢ where 0 < o0 <y < 1.

(4) ||APzE||, ||APZ*]|, ||A%<z®||, and ||A%<z*|| are O(u*) for k € K, where

K is a subsequence of the natural numbers.

Define

k(. okt k| /o k k41 k| )k
B —{].|;r:j —xj|/$j§|zj —zj|/z]-}.

Then there exists a finite K such that for all & > K and k € K

B = B.

Proof Let k € K. Then, from the linearized complementarity equations for the

predictor and centering-corrector steps we obtain

A:L’f Azf A Iuk Apazé? Apzf
o TR TR T T T
J J J77 J J

From z% > £*y/n, see Lemma 5.13 in Wright [49], Giiler and Ye [17], and assumption
5, we have the following inequality,

N
lim —— = lim T
k—o0 Z; k—o0 x;

aFAPZE + (aF)2ACLE of|Axk
| j+ () ]|<1im¥20 for y € B.

k— ;
o0 .f]




88

Due to the nonnegativity of o* and a:?, the limit must be zero. Now we must show
that |21 — zF|/zF is bounded below by a number strictly greater than zero.

From the complementarity equations, the preceding limit, and centrality condition

(16),
AzF k Azf APxk APE o

lim sup ]zlimsup(ak'ljk—l— - k])g——l for j € B.
k—oo 2 k—oo Tiz; T x; 2 Y

Note that the ratio |A?z¥|/z¥ is bounded below by /v and

Aral] |
=0forjeB

lim -
k— o0 ;z;j

which gives us the preceding inequality. The lim sup is negative, since o < 7. Thus
k+1 k E
2 T % Azf —
liminf| / - /| > 1iminf(ak)2| k]| > (ak)z(’Y )

k—o0 Z] k—o00 Z] 0

>0 forj € B.

Then there exists a K such that for all £ > K and k € K, we obtain

k41 k k+1 k
| J - ]|<(ak)2(7 J)§|] - ]|f01‘j€B.
T 5y z;
We can prove the analogous result for j € V. (]

6.3 Numerical Results

The numerical experiments were conducted on a Sun workstation. Once again, we
used LIPSOL, the software package, written by Zhang [57], which implements an
infeasible primal-dual predictor-corrector interior point method. The tests were run
on a subset of the netlib linear programming suite of problems.

In this experiment, the Tapia indicators and the Tapia predictor-corrector indica-
tors with step length o equal one are calculated and compared at each iteration of

the interior-point algorithm. The interior-point algorithm terminates when

_ T _ T, _ 1T
maX(HAw blla ATy + 2= cll2 |" gm)gm_g
1+ 1]l 1+ [fell2 1+0Ty
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The numerical experiments show the Tapia indicator has better global behavior
than the Tapia predictor-corrector indicator. The global behavior can be attributed to
the Tapia indicator’s lack of dependence on the centering parameter. The poor global
behavior of the Tapia predictor-corrector indicator is an immediate consequence of its
dependence on the centering parameter, 0. As evidence, the Tapia indicator for zero
variables approaches its limiting value earlier than the Tapia predictor-corrector indi-
cator. However, the Tapia predictor-corrector indicator exhibits good local behavior.
The behavior of the two indicators for nonzero variables is nearly identical.

The following tables track the behavior of the two indicators for a single variable
as the iteration sequence converges to the solution set. The first column gives the it-
eration count. The second column contains the value of the centering parameter. The
next four columns give the absolute values of the Tapia predictor-corrector indicator
for primal variables, Tapia indicator for primal variables, the Tapia predictor-corrector
indicator for dual variables, and the Tapia indicator for dual variables, respectively.
The last column reports the maximum relative error at that iteration. Clearly, the

semi-local behavior of the Tapia predictor-corrector indicator is undesirable.

Iteration | o PC,(z;) | Tp(x;) PCy(z;) | Tu(z) Relative Error
5 1.59e-03 | 6.34e4+00 | 2.96e-02 | 9.80e-01 | 9.70e-01 | 3.54e-02
6 2.93e-08 | 5.60e-08 | 2.86e-04 | 1.00e+00 | 1.00e+00 | 7.35e-05
7 7.33e-17 | 0.00e+00 | 1.43e-08 | 1.00e400 | 1.00e+00 | 3.68e-09

Table 6.1 Problem AFIRO, z} =0, 27 = 3.45¢ — 01

For problem afiro, the Tapia indicators identified the optimal partition at iteration
4. The Tapia predictor-corrector indicators took two additional iterations to gener-
ate the same partition. This typifies the behavior of the Tapia predictor-corrector

indicator.



90

In Figure 6.1, we plot the values of log(1—PC/(z*)) on the y—axis and the iteration
count on the xr—axis. Therefore in the plots, the Tapia predictor-corrector indicators
for the active set converge to zero and the Tapia predictor-corrector indicators for

nonzero variables tend to negative infinity.

Tapia Primal Indicator
10 \ T

Log of (1 - Indicator)

-30 L L L L L L
1 2 3 4 5 6 7 8

Iteration number
Tapia Primal Predictor—Corrector Indicator

Log of (1 - Indicator)

-30 L L L L L L
1 2 3 4 5 6 7 8

Iteration number

Figure 6.1 Indicator Plots for Problem Afiro

From the numerical experiments, it appears that the fast local convergence of

the Tapia predictor-corrector indicator to zero coincides with a sharp decrease in the

value of the centering parameter, o*.
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Tteration | o PC,(z) | Tp(x;) PCy(z;) | Tulz) Relative Error
11 1.00e-03 | 3.68e400 | 7.49e-11 | 1.02e+00 | 1.00e+00 | 1.67e-05
12 1.71e-08 | 4.52¢-08 | 4.04e-13 | 1.00e+00 | 1.00e+00 | 5.73e-08
13 2.74e-22 | 2.53e-16 | 5.06e-16 | 1.00e+00 | 1.00e+00 | 4.97e-14

Table 6.2 Problem BEACONFD, 27 = 0, 27 = 4.36e + 03

k

Iteration | o PC,(z) | Tp(x;) PCy(zj) | Tu(z) Relative Error
10 4.40e-03 | 1.09e400 | 1.09e+00 | 3.07e+00 | 8.62¢-02 | 1.81e-04
11 2.40e-10 | 1.00e+00 | 1.00e+00 | 5.28e-10 1.44e-05 | 9.13e-07
12 1.00e-11 | 1.00e+00 | 1.00e+00 | 1.06e-11 1.60e-11 | 8.88e-13

Table 6.3 Problem BLEND, z7 = 2.49¢ — 01, 27 =0

The study shows that the Tapia predictor-corrector indicator must be closer to the

solution set than the Tapia indicator to correctly identify the partition. For 46 out of

87 problems, the Tapia predictor-corrector indicator needed an additional iteration

to identify the optimal partition. For 30 problems, the two indicators identified the

optimal partition at the same iteration. Eight digits of accuracy in the solution was

insufficient for either indicator to identify the optimal partition for the remainder of

the test set.

Tteration | o PC,(z) | Tp(x;) PCy(z;) | Tulz) Relative Error
7 1.01e-02 | 2.40e+400 | 1.09e-01 | 8.48e-01 8.91e-01 5.24e-03
8 4.06e-05 | 7.50e-05 | 4.63e-03 | 9.95e-01 | 9.95e-01 | 7.47e-05
9 7.85e-12 | 1.51le-11 2.27e-06 | 1.00e+00 | 1.00e+00 | 4.14e-08
10 2.59e-24 | 0.00e400 | 2.27e-13 | 1.00e+00 | 1.00e+00 | 1.46e-13

Table 6.4 Problem SC105, 27 =0, z; = 1.80e — 03
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Chapter 7

Concluding Remarks

At the beginning of the thesis, we posed four questions that must be addressed in all
finite termination procedures. We answer each of them in turn. Then we propose a

numerically effective finite termination procedure and describe future work.

7.1 When do we first attempt to compute an exact solution?

If computational savings is not a pressing concern, project from the interior-point it-
erate when total relative error < 107®. When early termination is the goal, projection
from a pure composite Newton step is advocated. However for the activation criteria
suggested in Chapter 5, the cost may exceed the benefits due to the average need
of more than one projection attempt to find an exact solution. On the other hand,
projecting from the pure composite Newton step when total relative error falls below
107> appears to be a promising idea to generate highly accurate solutions and reduce

the iteration count.

7.2 How do we determine the partition of variables into

their respective zero-nonzero sets 7

Variants of Mehrotra’s predictor-corrector primal-dual interior-point algorithm pro-
vide the foundation for most practical interior-point codes. To take advantage of
all available algorithmic information, we propose the Tapia predictor-corrector indi-
cator, which naturally includes the corrector step, to identify the optimal partition.

Globally, the Tapia predictor-corrector indicator behaves poorly, but locally exhibits
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fast convergence. Therefore, the Tapia indicator should be used to identify the opti-
mal partition early in the iterative process. At later iterations, the Tapia indicator

and Tapia predictor-corrector indicator can be used in tandem.

7.3 Which mathematical model and what is the best way to

solve it?

Before answering the last two questions, we must compare the orthogonal projection
models with the Mehrotra-Ye procedures. Let us see how the procedures compare
numerically.

Observation 1: For the common 55 problems tested, the Mehrotra-Ye procedure

and the orthogonal projection method found the solution at the same iteration.

Observation 2: When the matrices were scaled, the weighted projection method

needed one more iteration for problems boeing?2 and finnis than did scaled Mehrotra-

k
J

or min(mf,uj — :L'f) for

Ye. Depending on the problem, the scale equals either z
J EB.

Even in the presence of degeneracy, the weighted projection model can be used
to find an exact solution on the primal and dual optimal faces. When the coeffi-
cient matrix is rank deficient, or ill-conditioned the Cholesky-Infinity factorization
implemented in LIPSOL calculates a basic solution of the linear system. Numerical
instability arising is no longer a problem. Assuming your interior-point algorithm
solves a normal equation at each iteration, no additional linear solver needs to be im-
plemented. If the interior-point algorithm solves a symmetric indefinite augmented

system at each iteration instead of reducing the KK'T conditions to the normal equa-

tions, we would favor the scaled Mehrotra-Ye approach for the same reason.
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7.4 Recommended Finite Termination Procedure

From our numerical experiments, we recommend the following procedure. We assume

that a normal equation is solved at each iteration.
Procedure 4 (A Practical Finite Termination Procedure)

(1) If total relative error < 107® | use the Tapia indicators to par-
tition the variables into (B, N).
(2) Set zp :=0and z5:=0.

(3) Solve the primal weighted projection model with

J min(;z;f, uj — :C;“) for 5 € B and upper bounds exist
i =

J;;“ for y € B else

and the following unconstrained least squares problem
min [ D(BTy ~ e
y 2 5

for the vectors (zp,y, 2y, s, w).

(4) lf 2 >0, zpr > 0, s > 0, w > 0, and we satisfy the primal and dual

constraints, stop. Else, return to the interior point algorithm.

7.5 Future Work
Areas of further research include
1. The investigation of a nonlinear weighted projection model of the form

min || D(zp, zj) (x5 — )|

s.t. Bxgp=b,
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where D = (Xllg/ng;l/Q)_l to generate a feasible point on the optimal primal

and dual faces,

. further examination of when to first attempt to generate a feasible point on the

optimal primal and dual faces,

. implementation of a sparse LU-factorization to adequately ascertain the numer-

ical effectiveness of column scaling or column ordering,

. experimentation with a weighted projection and a scaled Mehrotra-Ye procedure

added to interior-point methods for linear complementarity problems, and

. the addition of a weighted projection model to a parallel interior-point algo-

rithm.
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