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Abstract. We extend optimal face identification methods to bounded variable linear program-
ming problems. Distance to the lower and upper bounds are incorporated into a projection model
and Mehrotra—Ye’s solution technique to prevent the computed solution from violating the bound
constraints. Empirical and theoretical evidence are provided that support use of the new models to
compute an exact solution. We also introduce a nonlinear weighted projection method to solve the
optimal face identification problem.
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1. Introduction. Finite termination procedures are methods inserted into itera-
tive algorithms to compute an exact solution in a finite number of steps. In particular,
finite termination procedures can be added to interior-point methods to advance from
an approximate solution to an exact solution.

Optimal face identification methods identify the face upon which the objective
function attains its optimal value. The optimal face is uniquely defined by the active
set, the set of variables which are zero at the solution. Once the active set has been
identified, the exact solution of the linear program can be obtained by computing an
interior feasible point on the face. For a survey of optimal face identification methods;
see Williams, El-Bakry, and Tapia [52].

Adding optimal face identification methods to the interior-point framework can
lead to computational savings and highly accurate solutions. Moreover, a point on the
optimal face can be used to generate an optimal basic solution in strongly polynomial
time; see for example Megiddo [30], Andersen [2], and Andersen and Ye [3]. Knowledge
of the optimal face in sensitivity analysis in the context of interior-point methods was
assumed by Adler and Monteiro [1]; Monteiro and Mehrotra [38]; Jansen, Roos, and
Terlaky [19, 20]; Jansen, Roos, Terlaky; and Vial [21]; and Greenberg [16, 17].

In this work, we extend finite termination procedures based on the optimal face
identification methods of Ye [57, 58, 59] and Mehrotra and Ye [37] to linear programs
with upper bound constraints.

1.1. Background. We consider linear programs of the form
T

minimize ¢’ x
(1) subject to Az =b
[<z<u

where c,z € R", b € R™, A € R™*” (m < n) and A has full rank m. The vector
[l € R” represents the vector of lower bounds and u € R"™ represents the vector of
upper bounds for the vector z. Without loss of generality, we assume all the variables
have lower bounds of zero and finite upper bounds. Problem (1) rewritten in standard
form is
minimize ¢’z
subject to Az =b

rT+s=u

z,s>0

(2)
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where s € R” is the primal slack vector.
The corresponding dual problem is

maximize 5Ty —uTw
(3) subject to ATy + z — w=¢
z,w>0

where y € R™ are the Lagrange multipliers corresponding to the equality constraints,

z € R are the Lagrange multipliers corresponding to the inequality constraints,

w € R” are the Lagrange multipliers corresponding to the upper bound constraints.
The optimality conditions for (1) are

Az —b
r+s—u
(4) Flz,y,z,s,w)=| ATy4+z—w—c | =0, (2,2,5,w)>0,
XZe
SWe

where X = diag(z), 7 = diag(z), S = diag(s), W = diag(w), and e is the n-vector of
all ones.

The Jacobian of (4) is

A 0 0 0 0
I 0 0 I 0
(5) F'(z,y,2,5,w) = 0 AT I —-I 0
Z 0 X 0 0
o 0 o0 w S

The vectors z and s are feasible for the primal if Az = b,z + s = u, and (z, s)
is nonnegative. We say that w and z are feasible for the dual if there exists y such
that (y, z, w) is feasible for (3). A point (z,y, z, s, w) is said to be strictly feasible if
it satisfies Az = b, 2 +s=u, ATy+2—w=c, and (z,s,z,w) > 0.

We denote the solution set of (4) as

S={(z,y,2z,s,w): F(z,y,z,s,w) =0, (z,2z,s,w)>0}.

If a solution satisfies x+2z > 0 and s4+w > 0, in addition to X Ze = 0 and SWe = 0,
then this solution 1s said to satisfy the strict complementarity condition or strict
complementarity. Given feasible iterates, we see that ||F(z,y, z, s, w)|1 = 2T 2+ sT w.
It can be shown that the expression 2”7z + s w is equal to the duality gap, which
vanishes at any solution.

1.2. Algorithmic Framework. Kojima, Mizuno, and Yoshise [25] introduced
the primal-dual interior-point method in linear programming. It is well-known that
their method can be viewed as perturbed and damped Newton’s method on the first
order optimality conditions. In this section, we describe an infeasible primal-dual
Newton interior-point method.

ALGORITHM 1 (Infeasible Primal-Dual Interior-Point Algorithm).

Given v? = (29,9, 2%, 5% w®) with (2°,2° 5%, w®) >0, for k=0,1,..., do
1. Choose o € (0,1) and set p* = ((z%)T 2% 4 (s*)Tw")/2n.
2. Solve for the step AvF

F'(vF)Avk = —F(v%) + pé where p > 0
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3. Choose 7% € (0,1) and set o* = min(1, 7%a*), where

o 1

~ min((XF)"TAzk (ZF)1AZE (SF)=1Ask (WE)=1Awk)’

4. Let vF+1 = oF 4 oF AWk,
5. Test for convergence.

In Step 2, € = (0,...,0,1,...,1,1,...,1)T with 2n 4+ m zero components. The
optimality conditions (4) are perturbed so that the Newton direction obtained from
the perturbed KKT conditions does not point towards the boundary. If of = 0
(i.e., no perturbation), global convergence may be precluded. See Proposition 3.1 of
Gonzalez-Lima [26] for a proof. The iteration sequence is damped to maintain the
nonnegativity requirement.

1.3. Notation. For notational convenience in the statements and proofs of the
theory, we introduce the following notation:

= (z,s) € R>"
7= (z,w) € R

In all other instances we will refer to the point (z,y, z, s, w).

If 8 # 0, then the relative interior of S, ri(S), is nonempty. In this case, the
solution set § has the following structure (see El-Bakry, Tapia, and Zhang [9] for a
proof): (i) all points in the relative interior satisfy strict complementarity; (ii) the
zero-nonzero pattern of points in the relative interior is invariant. for any (Z*,y*, %)
in the relative interior of the solution set of (1), we define the index sets B and A as

B={j:&>0,1<j<2n}and N={j:3;=0,1<j<2n}
For more details, see Giiler and Ye [18] and McLinden [28]. Moreover,
gUN:{l,...,'Zn} and Bﬂ./(/:@.

Thus the sets B and N define the optimal partition of the set {1,2,...,2n}.
We define the index sets B and N as

B={j:2;>0,1<j<n}and N={j:2;=0,1<j<n}

In the following sections, the columns of A corresponding to the indices of B
comprise the matrix Ag. The matrix Ay is formed in an analogous manner. We
represent the components of the vector z whose indices are in B by zz. Unless
otherwise specified, || || is the Euclidean norm. The cardinality of set B is denoted
by |B|. We use the notation

minu = min u; for u € R™.
1<i<n
The inequality > 0 denotes component-wise nonnegativity.

The paper is organized as follows. We provide an historical overview of the
optimal face identification problem in Section 2. Section 3 contains technical results.
Section 4 deals with mathematical models and solution techniques to solve the optimal
face identification problem. Sections 4.1 and 4.2 are devoted to methods specifically
designed for linear programs with upper bound constraints. We offer computational
results in Section 5. Section 6 contains concluding remarks.
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2. Historical Overview. In 1989, stopping tests to compute optimal solutions
in interior-point methods for linear programming were proposed by Gay [13]. While
these tests did not constitute a finite termination procedure because the primal and
dual optimality checks were iterative methods, they were clearly predecessors of cur-
rent optimal face identification methods. Ye [57] popularized the study of finite termi-
nation in interior-point methods for linear programming. He was motivated by the fact
that the simplex method for linear programming has the finite termination property
and also by research activity in efficient algorithmic termination techniques. Ye [57]
established a theoretical base for Gay’s tests when added to primal-dual interior-point
algorithms which generate iteration sequences that converge to strict complementar-
ity solutions. Mehrotra and Ye [37] developed a solution technique based on Gaussian
elimination to compute an interior feasible point on the optimal primal and dual faces.
Previously Tardos [49] used Gaussian elimination to calculate a feasible point on the
optimal face of an integer program. More recently, Ye [59] proposed an optimal face
identification model, which incorporated bound information, for the standard linear
program with nonnegativity constraints. Ye [59] proved for k sufficiently large the
solutions of his proposed optimal face identification methods can be obtained in finite
time when included in a feasible primal-dual interior-point method.

The theoretical aspects of finite termination procedures in infeasible interior-point
methods for linear programming have been studied by Potra [42], Williams [51], and
Anstreicher, Ji, Potra, and Ye in [4], where a probabilistic analysis was given. In
particular, Williams [51] extended the analysis of Ye’s weighted projection models to
infeasible interior-point algorithms.

Optimal face identifications methods have not been restricted to linear program-
ming. Researchers have considered optimal face identification in linear complemen-
tarity problems and network flow problems. Monteiro and Wright [39], as well as Ji
and Potra [22] investigated finite termination procedures in infeasible interior-point
algorithms for degenerate monotone linear complementarity problems (LCPs). Re-
sende and Veiga [43] identified the optimal dual face and generated a primal basic
solution to derive robust stopping criteria for minimum cost network flow problems.
Subsequent research into identifying the optimal dual face for network flow problems
appeared in Portugal, Resende, Veiga, and Judice [41] and Resende, Tsuchiya, and
Veiga [44].

The optimal primal face of (1) can be written as
Op={¢:Az=bz4+s=u >0, =0jecN}.
and the optimal dual face as
Ou={(1,2) : ATy+z2—w=c¢, >0, % =0j€B}.

If the set of strictly feasible points is nonempty, then (:)p and O are nonempty
and bounded. Hence, {7 and ¢ are bounded, where

§, = min {maxZ;, s.t. ¥ € Op};
JjeB

£ = min {maxZ;, s.t. (y,2) € O4};
JEN ’

€ = min(¢, ).
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An ideal property of an optimal face identification methods is that it is compu-
tationally inexpensive. The cost of computing a point on the optimal faces should
be the same as an interior-point iteration. This property plays a pivotal role in our
optimal dual face identification models.

3. Technical Results. The following lemma provides a theoretical basis for
finite termination procedures for linear programs of the form

minimize Tr

(6) subject to Az =45, x>0,

where e,z € R*, b€ R™, A € R™*" (m < n) and A has full rank m.
LeMMA 3.1. (Giiler-Ye [18]) Let {(z*,y*, z*)} be an iteration sequence generated
by an interior-point algorithm. Furthermore, let £® and z* satisfy

min(X* Zke)
(7) T >

where v > 0 and is independent of k. Then every limit point of {(z*,2%)} satisfies
the strict complementarity condition.

Giler-Ye [18] showed that iterates of feasible path-following algorithms satisfy
Inequality (7), which is one of many central path proximity measures used in linear
programming,.

All points in the relative interior of the solution set satisfy the strict complemen-
tarity condition. Therefore, Lemma 3.1 is sufficient to guarantee that all limit points
of the iteration sequence are in the relative interior of the solution set; see Giler and
Ye [18]. Tt is well-known that in the relative interior the nonzero-zero pattern of points
is invariant; see El-Bakry, Tapia, and Zhang [9]. Consequently, the optimal primal
and dual faces are uniquely defined.

It is easy to see that an [_., central path neighborhood that includes infeasible
points for problem (1) can be defined as

(8) Nooo (. 8) ={@E v, D) N(rp, rus ra)ll < (. 7 r)lI/ %181,
(,2) >0, min(XZe) > ypu, p=(37%)/2n}

where vy € (0,1), 8> 1,7, =b— Az, ry, =u—2—s,and rg = c — ATy — 2z + w.
The first inequality of (8) known as the Feasibility Priority Principle, requires that
infeasibility decreases at least as fast as complementarity; see Zhang [60].

Theorem 3.2 shows that the optimal partition can be identified once the duality
gap is sufficiently small.

THEOREM 3.2. Let (2*,y*,%*) € S, B* = {25 > 28}, and {(3*,4*, %)} be the
iteration sequence generated by Algorithm 1. Assume further that

(#)72F < 4(€7)?/27n,
for some constant,

92— O[O (i‘O)T,??* + (EO)Ti‘*

S
0 (G073 > 0, then B = B.

T=0

Proof. If we let 3 = 1, the proof follows directly from Lemma 4.1 and Proposition
5.2 of Potra [42] with Z, Z replacing z and z. O
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Subsequent theory requires bounds on the primal and dual residuals. Rather than
repeatedly deriving the bounds, we establish them at this juncture. Note that the
bound depends on the current duality gap, the initial duality gap, and the minimum
positive value in the solution set, which is not known a priori.

LEMMA 3.3. (Williams [51]) Let {(&*,y*, Z*)} be the iteration sequence generated

by Algorithm 1. Further, assume that B = B. Then,
16— Al < (2np"é")~" (é*ﬁnron + 2w2nu°%||AN||) ((@)72)
lles — ABY* || < (2nu°€") 7 (€ BIIr°|| + Anv/2np’7) ((3%)72F) .

Proof. The proof uses the Feasibility Priority Principle, the bounds on ©, and
©4, and Theorem 3.2. 0

4. Mathematical Models and Solution Techniques. Generating an exact
solution for the bounded variable linear program is complicated by the fact that a so-
lution of any finite termination procedure must not only satisfy zg > 0 but also z5 <
up, where ug is the subvector of u corresponding to zz.

The bounded variable linear program (1) contains two sets of inequalities involving
the vector x (z > 0 and z < u). The component-wise distance of z* to its lower bound
is

(:E? — 0) or simply x?.

Similarly, (u; — :L‘?) is the component-wise distance of z* to its upper bound.

4.1. Modified Weighted Projection. Williams [51] introduced a diagonal
weighting matrix D, where

9) d;; = min(:ﬂ?, uj — :E?) for j € B,

which incorporates both lower and upper bound information into a finite termination
procedure. Weighting the objective function by D penalizes the movement of the
variables in the direction of their nearest bound. Therefore, if :L‘éq for j € B is close to
its upper bound, the weight in (9) prevents the jth component of the solution vector
zp from violating its upper bound as well as its lower bound which is the desired
result.

We propose the following weighted projection model

minimize  $||D7! (x5 — zf)|?

(10) subject to Az =b
where d;; = min(m?,uj — r?) for 5 € B for the optimal primal face identification
problem. When x? = u; for j € B, corresponding columns from Ag can be removed

and the right-hand side updated. If no upper bounds exist, problem (10) reduces to
Ye’s weighted projection model; see Ye [59].

Now, we demonstrate that, under certain conditions, projection problem (10)
generates a positive solution. Without loss of generality, we assume Ag has full row
rank.

TurorREM 4.1. Let {(3*,y*,7%)} be generated by Algorithm 1. Assume B =8
and D s a nonsingular matrix such that

min(d;;) > [(2np%€) = (€ Bl || + 20v/Bnp®H Ax )| 145 (AsAR) | (#72*)
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Then the solution xp obtained from solving

minimize %HD_l(CEB — zj)|]?
subject to Apzp =b

(11)

satisfies 0 < zg < up, and 0 < sg < ug.
Proof. Let deg = D™ 'Azgp, where Az = x5 — x’g. Therefore,

ldesl| = [[DAG(AsD2AT) = (b — Asal)]|
(12) = | DAL(AsD? AL) 145 DD AL (45 4F) (b = Anal]|
< D MIAE(AsAR) (b — Azl

From Lemma 3.2, we have
[ des|| < ID~H[||AE (AsAB) | [(271#05*)_1(6*/3”7“0” + p'r2nV2m| | Ax ) | (8%)7 25,

Consequently, ||[dzg|lcc < ||dzg||2 < 1. The first inequality holds from the fact that
for any vector v, ||v]|co < ||v]|2, the second inequality from assumption (2).
Using assumption (2) and the fact that ||dzgs|lcc < ||[dzsll2 < 1, we have the
following description of the solution.
Case 1: If :cf <uj — :E? for all j € B, then

A.
—1<%<1.
L

Hence :L‘f — :L‘f < :L‘f +Az; < :L‘f + :L‘f and consequently, 0 < zp < 2z < ug.

Case 2: If u; — x? < x? for all j € B, then

A:L‘j
—-1< = < 1.
Uj —l‘j

Hence :L‘?—(uj—x?) < I‘?—}-Al‘j < :L‘?—}—(uj—x?) and consequently, 0 < zg < ug.

From the constraint z + s = u and Cases 1 and 2, we have 0 > sg < ug. This
completes the proof. O

Now, let us consider the optimal dual face identification problem. To find a
feasible point on the optimal dual face for bounded variable problems, we solve

(13) min 5|0 (A%y — es)
for Ay. Recall that Ay = y — y*. Here, the matrix D is defined as in (9) to save
computational expense. With this formulation only one matrix factorization is needed
to solve the both the optimal primal and dual face identification problems.

To conclude that our finite termination procedure is successful, we must now show
that the dual variables zpr and wys are nonnegative.

LEMMA 4.2. Assume cg € range(AL), B* = B, and

min(Z§) > (206"~ (06" (1 + AT INI(AAT) = Asl]) 1]
+ AnVInr Ol AR (1 (AAR) T Al ()72 + ()T k).
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Then zy and war are nonnegative.
Proof Let Ay =y — y*. Then

Ay = (ABD2A£)_1A}3D2(CB — Agy)

(14) = (AgAL) "1 Ap(cs — ALy) since cp € range(A%).

From problem (3), we have ATy + 2z — w = ¢ which gives us
cN — A%y = Zn — Wy

If exr — A%y < 0, then zpr = 0 and wpr > 0. Therefore, we have to check for
optimality(i.e., that wy is positive). From the dual constraint, it is easy to see that

(15) ||dwN|| = ||A£f(y_yk)T_ TSNLl I .
<[ ANNI(AsAB) " AR lllles — Ay || + |74l

From Lemma 3.1 and the bound on Eg, we have
[dw]| < (2np°€) 1B (AR II1(AsAB) ™ AR+ 1) [1r°)]
+4nv2nrp|| AR NI (As AB) AR ((25)T2F) .

From the third assumption of the lemma, we have |[dwyr|l2 < 1. Thus ||[dwar]|e <
||[dwar]|2 < 1. Therefore

Aw
k
fi

k

-1< I <1 w»—w?<w§+ij<w§+wf for all j € V.

w J

If ear — A%y > 0, then zp > 0 and wa = 0. Hence, we only have to check that
zn 1s positive. The proof that zy > 0 follows the same format as the preceding proof
that wy > 0. 0

4.2. Scaled Mehrotra-Ye. We also study the effectiveness of using Gaussian
elimination to solve the linear feasibility problems associated with the optimal pri-
mal and dual faces. We propose a strategy that explicitly incorporates the current
interior-point iterate into the model. The authors proposed column scaling the con-
straint matrix by the current interior-point iterate to potentially bias the Gaussian
elimination so that the columns corresponding to the smallest components of d are
chosen as pivots last. Skeel [47] provided a theoretical basis for column scaling as an
effective tool to achieve numerical stability.

Skeel [47] proved that Gaussian elimination with row pivoting is numerically stable
when the matrix is column scaled by D = diag|¢|, where ¢ is the computed solution
of Av = g. Unfortunately, the value of ¢ is not known when the factorization begins.
The theory assumes that columns of A corresponding to negligible components of ©
are selected as pivots last.

Skeel’s theorem motivated the authors to compute a feasible point on the optimal
primal and dual faces, respectively, by solving the following linear systems

(16) (ApDF)dzs =b— Azl and (D¥AL)dy = D(cs — ALy").

Once again we use D as defined in (9). The authors row scale the dual linear system
by D so that LU factorization of AgD can be used to solve the dual linear system.
Any other scale would necessitate two matrix factorizations in the finite termination
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procedure which would make the procedure twice as expensive as an interior-point
iteration.

We now prove that the solutions of the linear systems just described will result
in strictly positive vectors, zg and zp. First, we define Ag as an arbitrary nonsin-
gular submatrix of Ag with maximal rank. Similarly, Ay denotes the corresponding
submatrix of Ay .

Recall that

i=(z,s) €R™
7= (z,w) € R

THEOREM 4.3. Consider the iteration sequence {(#*,y*, %)} generated by Algo-
rithm 1. 455ume

(1) BF =

(2) Ag, cmd D are nonsingular matrices, where D is defined in (9).

(3) min(dj;) > || A"l [(2“#05*) HE Bl + pOr2ny/2nl| Ay )] ()7 5%).

(4) min(zk) > (2nu°€") 7[5 (1 + [ ATAIAZT 1) [17°]]

+ Anvanradl AR IIAGTI (347 2*)
Then 0 < x5 = :L‘Ig + Ddxp < ug, where dep is the solution of the problem
(17) (ApD)dxp = b— Agxy,

and 0 < sg < ug. Moreover, zy,wn > 0 where zyy — wy = cn —A%y, y =
v* + AyandAy solves

(18) (DAL)Ay = D(cs — ALyY).

Proof. Assume Apg is a nonsingular submatrix of Ag. Let dzg = D~'Azg. Then

|Azg| = |[Ddes||
(19) :HD(AB )~ (b—ABr 5|l
<A I(u 2ng™) =" (€7 Bl + 723/ 2| Ay]]) (25)T 2.

The last inequality holds from an application of (?7). From assumption (3), the
solution x5 is positive. Let dx; = 0, for j € B\ B when column A is linearly
dependent on columns of Ag. Hence the entire vector zp is positive.

We now prove that the dual solution is positive. First, we compute the solution
of the scaled dual Mehrotra-Ye formulation.

Ay = AZT (e — ALY,
If cpy — A% Wy >0, then zp > 0 and wy = 0.

Azl =[INT(y - y’“) — iyl

< INT(y = )||+||7°d I
< ||NT||||Y’“(BTY’“) "eg — BT k)||+||7’dN||
< INTINB=T (es — BT k)||+||7“d|| .

o0 < (2np0€) 71 [BE (L INTINBT) v0ll + 2020 N[ BT[] (%) ).

20

The last inequality follows from (??) and the Feasibility Priority Principle. Hence by

assumption (3), zx > 0.

We similarly prove that wa > 0. O
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4.3. Nonlinear Model. El-Bakry [10] proposed the following function,
8(z,2) = [|(XX)"1*(z - 2)]],

to measure distances in the cone {z € R"” : z > 0}. This function is used by El-
Bakry, Farah, and Tapia [11] in the interior-point steepest descent method. Tt is
a generalization of a central path proximity measure in primal-dual interior-point
methods which was used by Roos, Terlaky, and Jensen [45], Argaez and Tapia [5],
and Nesterov and Todd [40]. Since the distance function ¢(z, z) contains boundary
information, it is the obvious choice to use in a finite termination procedure to bias
the solution away from the boundary.
We now study a nonlinear weighted projection model of the form

min  3||D(xs, vg) (x5 — k)|
(21)

s.t. ABI‘B = b,

where D(zp,2%) = (X;g)(f;)_l/2 to generate a feasible point on the optimal primal
face.

Problem (21) incorporates information about the solution of the projection prob-
lem into the model as well as the nonnegativity constraints, which is desired. However,
because of the nonlinearity of the weighting matrix D(zs, 2f;), we can not use a direct
method to solve the model. Therefore, the solution of problem (21) cannot be labeled
an exact solution.

Solving the first order conditions of (21) directly, yields

(22)z5 = X(X5) " %e + X3(X5) ™ AR (As X (X5) ™ AB) ™" (b — As X (X5) %e).
If in (22), we replace Xp on the right-hand side with X%, then
(23) i = v + (X5)* A (As(X5)2AB) ™" (b — Ape),

which is the solution of Ye’s primal weighted projection problem; see Ye [59].
The corresponding dual model is

min  1|[D(zs, %)~ (cs — AFy)|%.

Let ¢(y) = 1||D(zp, %) " (cs — AL y)||?. Then Vo(y) = —2ApXsX§(cs — Afy).
The formulation of V¢(y) would suggest first solving for zg, updating the matrix
D(zg, z%), and then solving the Vé(y) = 0 for Ay. Recall that y = y* +Ay. However,
numerically, this would require two matrix factorizations to find feasible points on the
optimal primal and dual faces. Instead we reuse the matrix factorization from (23).

5. Computational Results. The numerical experiments were conducted on a
Sparcworkstation with application hardware Sun4. We used the LIPSOL - Linear
programming Interior-Point SOLver- package developed under the MATLAB! envi-
ronment. The software package, written by Zhang [61], implements an infeasible
primal-dual predictor-corrector interior point method. The netlib suite of linear pro-
gramming problems comprises the test set.

The initial matrix is scaled in an attempt to achieve row/column equilibration.
Preprocessing deletes fixed variables; deletes zero rows and columns from the matrix

IMATLAB is a registered trademark of The MathWorks, Inc.
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A, solves equations of one variable, and shifts nonzero lower bounds to zero. For
problem greenbea, preprocessing deletes fixed variables, deletes zero columns from
the matrix A, and shifts nonzero lower bounds to zero. No other preprocessing is
performed.

5.1. Projections. We implemented the following optimal face identification pro-
cedure.

PROCEDURE 1 (Optimal Face Identification - Finite Termination Procedure).
Step 0 Set attempt = 0.
Step 1 Use an interior-point algorithm to generate the iteration sequence (a:k, yF, 28 sk, wk)‘
Step 2 While

T 2% — (BT — uTwh)|
1+ [bTyF — uTwh|

< 1078 and attempt < 6,

set
BF=1{j: zf <le—14 or |Apxk|/:b§ < |Apzk|/z;?},

Here variables and the relative change of variables are used to identify the
optimal partition.

Step 3 Solve the optimal primal and dual face identification problems by the modified
weighted projection models described in Section 3.1.

Step 4 Update,

. l‘?—l—Al‘j JEB
0 JEN
andy = y* + Ay. Set s=u—x and § = c— ATy, then

zj:{o Zf5j<0 andwj:{aéj Zf5j<0

d;  else else

Step 5 Set dual infeasibility (dbi) = max(0, —zn,—zp). If the computed solution is
complementary and satisfies

(Lo ATy + 2 —w—c e <bTy—uTw)l) <107
) IR B R T LR

we terminate the algorithm with a solution. If not, we repeat the finite ter-
mination procedure at the next interior-point iteration.

In Step 2, the transformed linear systems that define the optimal face are solved
in the least squares sense. If the linear system is underdetermined, we factor the
matrix ABDzAg, where D is as proposed in previous sections. Likewise, if the linear
system is overdetermined, we factor the matrix A5 Ag. The update formula for the
dual variables was first used by Resende, et al in [43, 44] and Portugal [41] to generate
feasible dual variables.

We now compare three projection models. The first one is the orthogonal pro-
jection model where D = I, the second is Ye’s weighted projection method with
D = Xg, and the third is the modified weighted projection. The first two models
were developed by Ye [57, 59].

We tested 35 problems with upper bounds from netlib. Column 1 gives the num-
ber of failed calls to the finite termination procedure the optimal face identification



12 P. J. WILLTIAMS, A. S. EL-BAKRY, AND R. A. TAPIA

Subproblems
# of misses OP | WP | MWP
0 13 15 19
1 13 12 11
2 2 2 4
3 2 3 1
4 2 0 0
5 1 1 0
more than 5 2 2 0
TOTAL misses | 46 40 22
TABLE 1

Problems with upper bound constraints

problem was solved to the desired accuracy. We consider a call a failure if the proce-
dure does not generate a positive solution that satisfies the optimality and feasibility
tolerances. The second column gives the number of problems solved by the orthogo-
nal projection model for the given number of misses. The third column contains the
computational results of Ye’s weighted projection model and the fourth column the
modified weighted projection.

With the modified weighting matrix, we are able to compute interior points on
the optimal face for all problems in the test set. The other two models fail to deliver
a solution for two problems, greenbea and nesm. If we weight the constraint matrix
of problem greenbea by the modified weighting matrix, we can compute an interior
point on the optimal face in one projection attempt. The solution agrees to thirteen
digits with the CPLEX? reoptimized objective function value reported in Table II of
[7]. The most accurate solutions are obtained when we weight by the matrix D.

5.2. Scaled Mehrotra-Ye. We compare the effectiveness of the Mehrotra-Ye
method and scaled Mehrotra-Ye in finding an interior point on the optimal face. We
use a dense implementation of the Gaussian elimination routine; therefore, our test
set was restricted to problems where the matrix Ag had approximately 500 rows and
columns. Consequently, our test set consisted of 55 problems from the netlib suite.
The three largest problems tested were maros with 835 rows and 1921 columns, scsd§
with 397 rows and 2750 columns, and ship08l with 688 rows and 4339 columns. The
removal of columns corresponding to zero variables combined with the elimination of
zero rows reduced the original matrix A to the desired dimensions.

If a negligible pivot was encountered, the column was removed from the matrix.
The pivot tolerance was

max(m, |B]) * || Ag||1 * 10716,

which is the same default tolerance used in MATLAB to determine the numerical rank
of a matrix. We did not pivot to minimize fill-in of the triangular factors, L and U.
Zero rows were removed before the Gaussian elimination subroutine started. At the
completion of the factorization any remaining zero rows were deleted. Components
of the solution vector (Az, Ay) corresponding to dependent rows and columns were
set to zero.

2CPLEX is a trademark of CPLEX Optimization, Inc.
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Techniques
7t of misses Mehrotra-Ye | Scaled
0 44 47

O | Lo DN —
=[O =N~
=l Bl Rl H e e

TOTAL MISSES 19 1
TABLE 2
The number of misses per technique

Table 4.2 shows the results of our numerical experiments. Column 1 gives the
number of calls to the finite termination procedure. Columns 2 through 3 give the
number of problems solved by the two variants of the Mehrotra-Ye procedure.

Column scaling saved one interior-point iteration for problems, boeing2, kb2, and
seba. Two interior-point iterations are saved for problems etamacro, finnis and stair.
When we implemented the standard Mehrotra-Ye approach, six tries were needed to
find feasible primal and dual points for problem etamacro. However, the standard
Mehrotra-Ye procedure generates the most accurate solutions. For 91 percent of the
problems, the objective function value agrees to thirteen digits with the reoptimized
CPLEX objective function value that was reported in [7]. The thirteen digit agreement
is 89 percent for scaled Mehrotra-Ye.

When the matrices were scaled, the modified weighted projection method needed
one more projection attempt than did scaled Mehrotra-Ye for problems boeing2 and
finnus.

5.3. Nonlinear Weighted Projections. Finally we discuss our solution tech-
nique for the nonlinear projection model. The major difference in the solution tech-
nique for the nonlinear weighted projection method when compared to the one for
the modified weighted projection is that we iteratively compute (z,y, z, s, w).

We modify Procedure 1 by replacing Step 3 with the following

PROCEDURE 2 (Nonlinear Model Embedded in a Finite Termination Procedure).

Step 3 Setl = 0 and (a:(l), MONFIONFON w(l)) = (2F yF, 25 s wh).
Step 4 (Inner Loop) While | < 2 and mazrerror® > 1.0e — 11
Step 4.1 Solve
AsXP Awp = (b— Apzl)) for Aug.
Step 4.2 Solve
(A5 (X)) AR) Ay = As(X5))* (e — AGy") for Ay,
Step 4.3 Update,

2+ — { ) +Az; jeB
0 JEN

y(l+1) = y(l) + Ay and Z(H'l) = c — ATy(H'l)‘
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Problem | Weighted Projection | Nonlinear Projection
boeing1 3/4 3/8
bore3d 3/4 3/8
finnis 5/6 3/6
fit1d 3/4 3/6
ganges 3/4 1/4
grow22 3/4 3/6
pilotja 3/4 3/8
pilotwe 3/4 3/6
standgub 3/4 3/6
TOTAL 29/38 25/58
TABLE 3

Number of matriz factorizations and back substitutions required to reach desired accuracy

Step 4.4 If upper bounds exist, set st =y — z(+1) § = ¢ — AT y(+1)

z(l+1) _ { 0 ifd <0 and w(H_l) _ { -0 ifd<0

0 else 0 else

Step4.5 [« 1+1
Step 4.6 If mazrerror®) > maxrerrort="), then attempt < attempt + 1,
k +— k+1, and goto Step 1.
Step 4.7 If max(zg) > min(zy), then attempt « attempt + 1 , k « k +
1,and goto Step 1.
Step 4.8 Set dual bound infeasibility (dbi) = max(O,—zJ(\lf),—zg))‘ If the
computed solution is complementary and satisfies mazrerror®t) < 1.0e—
11 as well as dbi < 1.0e — 09, we terminate the algorithm with a solution.
Otherwise, goto Step 4.
The primal and dual updates have the flavor of simplified Newton’s method since
we reuse our initial matrix factorization each time we recompute Axzg and Ay.
Notice that while the number of matrix factorizations decrease with the addition
of the nonlinear weighted projection model, the back substitutions increase by more
than 50 percent.

6. Concluding Remarks.
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