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Abstract

Accelerating the Arnoldi Iteration
— Theory and Practice

by

Chao Yang

The Arnoldi iteration is widely used to compute a few eigenvalues of a large sparse
or structured matrix. However, the method may suffer from slow convergence when
the desired eigenvalues are not dominant or well separated. A systematic approach
is taken in this dissertation to address the issue of how to accelerate the convergence
of the Arnoldi algorithm within a subspace of limited size.

The acceleration strategies presented here are grouped into three categories. They
are the method of restarting, the method of spectral transformation and the Newton-
like acceleration.

Simply put, the method of restarting repeats a k-step Arnoldi iteration after im-
proving the starting vector. The method is further divided into polynomial and
rational restarting based on the way the starting vector is modified. We show
that both mechanisms can be implemented in an implicit fashion by relating the
restarted Arnoldi to a truncated QR or the R(Q iteration. The rational restarting
via a Truncated RQ (TRQ) iteration converges extremely fast. However, a linear

system must be solved for each restarting. The possibility of replacing a direct linear



solver with a preconditioned iterative solver while maintaining the rapid convergence
of TRQ is explored in this thesis.

The method of spectral transformation is based on the idea of transforming the
original eigenvalue problem into one that is easier to solve. Again, both polynomial
and rational transformations are possible. Practical issues regarding the design and
implementation of effective spectral transformations are discussed.

Finally, one can treat the eigenvalue problem as a nonlinear equation upon which
Newton-like methods can be applied. The Jacobi-Davidson (JD) algorithm proposed
by Sleijpen and Van der Vorst takes this approach. In JD, the Arnoldi iteration is
merely used as a global searching tool to provide a good starting point for the Newton
iteration. This algorithm shares many similar properties with the TRQ iteration.

Numerical comparisons between these two methods are made in this thesis.
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Chapter 1

Introduction

The Arnoldi method [2] is widely used for computing eigenvalues and eigenvectors of
large sparse and/or structured matrices. This thesis explores various techniques for
improving the convergence of the Arnoldi method. The purpose of this chapter is
to provide some background on large-scale matrix eigenvalue problems as well as the
Arnoldi method.

We begin by pointing out the main sources of large-scale eigenvalue problems and
the context in which an iterative eigenvalue solver is of enormous value. Although
the main theme of this dissertation is how to accelerate the Arnoldi method, we also
wish to emphasize the importance of a much simpler, yet useful algorithm — the power
method. The power method is the driving force for many of the acceleration schemes
to be discussed in this thesis. Despite its primitive nature, it has been a building
block for developing and analyzing modern iterative methods for solving eigenvalue
problems. We will examine the many facets of this method in Section 1.2.

The Arnoldi method is defined in Section 1.3 along with some standard termi-
nologies. In that section, we will also briefly describe the convergence pattern of
the eigenvalue approximation and thus give motivation to the need for developing
acceleration strategies.

Finally, we outline the organization of the remainder of the thesis in Section 1.4

and establish some convention for notation in Section 1.5.



1.1 The Eigenvalue Problem

The algebraic eigenvalue problem
Az = A (1.1)

is one of the fundamental problems in linear algebra. This problem can be found
in many disciplines such as mechanics, system theory, ecology and economics [10,
pp. 111-147] [75, pp. 303-321]. The traditional method for solving (1.1) is the QR
algorithm [22, 23]. This algorithm applies a sequence of unitary similarity transforma-
tions to A € C**" to turn it into an equivalent triangular matrix R with eigenvalues
exposed on the diagonal. The number of floating point operations (FLOPS) required

by the QR algorithm is proportional to n®

. The storage required is proportional to
n?. When n becomes large, the algorithm becomes expensive to use.

Many large-scale eigenvalue problems arise from:

1. Finite dimensional approximations to a continuous model

Lf = M, (1.2)

where L is a linear differential or integral operator and f is a function that

belongs to an appropriate space.

2. The study of a linearly coupled system characterized by the differential equation

du
— A 1.
dl U f7 ( 3)

where u € C"*! represents the states of various components within the system,
A € C™" describes how they are related and f € C**! is usually an external

input.



These problems are often sparse or structured. By that, we mean the matrix A has
very few nonzero elements, or it has a special structure that allows y + Az to be
implemented efficiently in much less than n* FLOPS. (An example of this is the
discrete Fourier transform matrix.) Typically, only a small subset of the spectrum is
of interest. Thus an algorithm like QR will not only be expensive but also wasteful.

Since the 1970’s, Krylov subspace methods such as the Arnoldi iteration have
become popular for solving large-scale eigenvalue problems. These methods seek the

solution to (1.1) from a Krylov subspace:
K(A, vo; k) = {vo, Avo, ---vAk_lvo}-

No unitary transformation is applied. One only needs to provide a matrix vector
multiplication routine to carry out the iteration. The storage requirement of the
method is on the order of kn. Compared to the QR algorithm, this is a much more
efficient way of extracting a few eigenvalues of A provided: (i) k can be kept small
with respect to n; (ii) it is cheap to perform the matrix vector multiplication. The
precise definition of the Arnoldi method will be given in Section 1.3, and the rest of
the thesis will focus on developing techniques to further improve the Arnoldi method.

We shall mention that when (1.2) is discretized by a finite element method, the

algebraic eigenvalue problem takes the form
Kr =AMz, (1.4)

where M is likely to be sparse but not necessarily diagonal. This variation is often
referred to as a generalized eigenvalue problem. In structural mechanics, K is called
a stiffness matrix, and M a mass matrix. Generalized eigenvalue problems also arise

from the following type of ordinary differential equation:

2

du



For small size K and M, the QZ algorithm [49] is usually the method of choice for
computing the full spectrum of the matrix pencil (K, M). In the large-scale setting,
one often transforms (1.4) into a standard eigenvalue problem (1.1) before applying

the Arnoldi method. The computation of generalized eigenvalues and eigenvectors

will be addressed in Chapters 4 and 6.

1.2 The Power Method

The power method described in Figure 1.1 forms the basis of many numerical proce-

dures for eigenvalue computation. The scaling in Step 1.4 of the algorithm is used

Power Method

Input: matrix A, a starting vector v.
Output: an eigenvalue A and the corresponding eigenvector =

1. for 5 = 1,2, ... until convergence
1.1. w « Av;
1.2. ) = 2
1.3. [ + max element of w;
1.4. v + w/;
2. end;
3. T < v

Figure 1.1 The power iteration.

to avoid an eventual overflow or underflow. Notice that this scaling is homogeneous.
That is, if w is multiplied by a scalar a, the power method yields the same v. The
superscript “H” that appears in Step 1.2 denotes the complex conjugate transpose.

We assume for ease of presentation that A has n distinct eigenvalues and they can
be ordered such that

|/\1| < |/\2| < e < |/\n|



With this assumption, we can expand the starting vector v in the eigenvector basis
{xj}?:17
v = Z YiTj.
=1

If 4, # 0, the power method produces a sequence of vectors

n—1
NN
v Tk v Tk"}/n n T E Til,
j=1 Tn A '

where 73, is an accumulated scaling factor. With a proper scaling strategy, v*) con-
verges to x, at the rate of A\,_1/A,. A few interesting observations of the power

method are:

e Step 1.2 in Figure 1.1 can be viewed as the action of projecting A into a 1-
dimensional subspace spanned by v. The power method repeatedly improves
this subspace by applying a polynomial in A to v. This polynomial has the form
p(A) = yA™. Applying p(A) to v “filters” out the unwanted eigen-components

from v.

e If we replace A with (A — pI)™', the shifted and inverted power method (some-
times referred to as the inverse iteration) converges to an eigenvector associated

with the eigenvalue nearest to p.

o If we allow p to change from step to step, a rapid convergence may occur. In
particular, if we let p be the Rayleigh Quotient v” Av/(vfv), the iteration con-
verges quadratically in general, and cubically if A is Hermitian. This modifica-
tion of the power method is often referred to as the Rayleigh Quotient Iteration
(RQI.) Although it is not obvious within the present context, RQI is actually
closely related to applying Newton’s method to solve F(z) = Az — A(z)x = 0,

where \(z) = 2 Az /21 z.



o If the starting vector v does not contain a component in the direction of z,
and 7v,_1 # 0, then the power iteration will converge to x,_; at the rate of
An—2/Au—1. This observation leads to a simple mechanism for computing more
than one eigenpair of A. After obtaining z,,, one may apply the power method

to the deflated matrix (I — z,z)A(I — z,2) to expose the next eigenpair.

These observations lead to some general principles which we will follow to develop
acceleration schemes for the Arnoldi iteration. In particular, the idea of polynomial
filtering is utilized in Chapter 2. Bringing an inverse iteration-like convergence to
the Arnoldi iteration forms the main motivation for the method we will introduce in
Chapter 3. The technique of “shift and invert” is the main subject of Chapter 4, and

acceleration strategies based on Newton correction are examined in Chapter 6.

1.3 The Arnoldi Method

The main drawback of the power method is that it computes only one eigenvalue and
eigenvector at a time. One can easily generalize the power method to a subspace
iteration in which A is repeatedly applied to a basis of a k-dimensional subspace [57].
However, it has been observed that this method often converges slowly, especially
when the gap between A, and Ajyq is small.

Better approximations to the eigenvalues and eigenvectors of A can be drawn from

a Krylov subspace

K(A, vo; k) = {vo, Avo, ---vAk_l”Uo}-

The construction of an orthonormal basis of K(A,vo; k) yields the Arnoldi method

which is often characterized by the matrix equation

AVy = ViHi + fref, ViIIVi =1, Vi fi =0. (1.5)



The columns of V;, € C*** and H, € C*** are generated by the Gram-Schmidt

procedure outlined in Figure 1.2. The matrix Hy is a representation of the projection

Arnoldi Iteration

Input: (A, vo)
Output: (Vi, Hy, fi) such that AVy = Vi Hy + frel, VIV: = I,
and VI f,, = 0.

vy = o1/ |vi[;

w4+ Av; aq = U{qw3

Hy = (a1); Vi = (n); fi & w—viag;
for j =1,2,3,...,k—1

4.1. B; = ||f; vi+1 < f/B;

4.2. Vi = (Vj, vjq); Hj ( [.{].T )3
4.3. z AU]’-}—I;

4.4. b VFz Hipy = (Hj, b);

4.5. f; « z — Viph;

5. end;

W N =

Figure 1.2 The Arnoldi iteration.

of A into X(A,vo; k). Notice that the procedure described in Figure 1.2 does not
transform A in any way, therefore it does not require A to be explicitly stored. One
only needs to provide the operation of a matrix-vector multiplication to carry out the
Arnoldi process.

Approximate eigenpairs (6;, z;), where z; = V;y;, are obtained from the Galerkin
condition:

VI (AViy; — 0;Viy;) = Hyy; — 0;y; = 0.

The eigenvalues of Hj are referred to as Ritz values, and the eigenvector approx-

imations, z; = Vjy; (j = 1,2,..., k), are referred to as Ritz vectors. We call equation



(1.5) an Arnoldi factorization and the columns of Vi Arnoldi vectors. When A is
Hermitian, the matrix Hj becomes tridiagonal, and the Arnoldi process reduces to
the Lanczos method [37]. In this thesis, we will use the term Arnoldi and Lanczos
interchangeably when symmetric eigenvalue problems are considered.

The following identity

[Az —0z]  _ [[AVhy — OViy|]
| All | Al
(Vi Hey + frel)y — 0Viy||
| All

I felllexyl
1Al

indicates that one can check the accuracy of the Ritz approximation without explicitly
calculating the residual r = Az — §z. We will refer to the quantity || f¢|||ely| as the
Ritz error eslimate.

Let us denote the spectrum of A by o(A). It is well known that Ritz values
lie in the convex hull of o(A), and the well separated extremal eigenvalues of A
emerge rapidly in the Arnoldi process [33, 54, 70, 71]. Here, extremal eigenvalues
refer to eigenvalues nearest the vertices of the convex hull of o(A). When the desired
eigenvalues do not coincide with these extremal eigenvalues, a Krylov subspace of
large dimension may be required to provide satisfactory approximations. This often
results in a significant storage for V; and enormous effort to maintain VkHVk = [
numerically. To avoid this overhead, additional strategies for accelerating the Arnoldi

method within a subspace of limited size are required.

1.4 Organization of the Thesis

This thesis is aimed at providing theoretical foundations and practical guidelines for

accelerating the Arnoldi iteration. Several types of acceleration schemes shall be



investigated. The first scheme is based on the idea of modifying the starting vector
vg and repeating the k-step Arnoldi process until Vj eventually converges to a proper
subspace. The starting vector is usually modified by applying a function of A, (A),
to v so that the contribution of the unwanted eigencomponents of A to K(vo, A; k)
is attenuated. Common choices for ¢)()) are polynomials or rational functions. This
approach is known as the method of restarting an Arnoldi iteration. When () is a
polynomial, we call the restarting strategy a polynomial restart. Likewise, if ¢)()) is a
rational function, we used the term rational restart. The second acceleration scheme
transforms the original eigenvalue problem into one whose extreme eigenvalues can be
easily identified and mapped back to the desired eigenvalues of the original problem.
It is often referred to as the method of spectral transformation. One can also treat
the eigenvalue problem as solving a nonlinear equation (in ) upon which Newton
type methods may be applied. The recent successes in this area are highlighted by
the Jacobi-Davidson Method [79].

We will focus on polynomial restarting in Chapter 2, and review the Implicitly
Restarted Arnoldi (IRA) algorithm [81]. Chapter 3 is devoted to the discussion of
a rational restarting strategy which we call the Truncated RQ) (TRQ) iteration [84].
The technique of spectral transformation through LU factorization is examined in
Chapter 4, and efficient polynomial spectral transformations are proposed in Chapter
5. Finally, Newton based acceleration schemes are discussed in Chapter 6. Numerical
examples are provided throughout the thesis to demonstrate the effectiveness of var-

ious acceleration strategies.

1.5 Notation

Throughout this thesis, capital and lower case Latin letters usually denote matrices

and vectors respectively, while lower case Greek letters denote scalars. The j-th
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canonical basis vector is denoted by e;. The Euclidean norm is used exclusively and
is denoted by || - || . The transpose of a matrix A is denoted by AT and conjugate
transpose by A”. Upper Hessenberg matrices will appear frequently and are usually
denoted by the letter H. Elements from the upper triangle of such a matrix will be
denoted by 7;; and the j-th sub-diagonal element will be denoted by 3; = 7v;41,;. The

conjugate of a complex number « is denoted by a.
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Chapter 2

Polynomial Restarting and IRA

In Section 1.3, we pointed out only one aspect of the convergence behavior of the
Arnoldi method, that is, the extremal eigenvalues tend to appear much earlier in
the Arnoldi process than the others. The following lemma illustrates that rapid

convergence occurs if we choose the starting vector vg of the Arnoldi process carefully.

Lemma 2.1 If vy € span{W,}, where S, € C*** and AW, = WG} for

some Gy, € C*** . then
K(A, vo; k) C span{ Wy},

and an Arnoldi process with vy as the starting vector terminates in & or

fewer steps.

Proof Since vy € span{W.}, vy = Wt for some ¢ € C*¥1. It follows that
Alyg = AWt = WkGit = Wig € span{W}},

where g = Git. Thus, X(A, ve; k) C span{W}}.
If the Arnoldi process with the starting vector vy does not terminate in k steps,

then there exist Vi, Hy and f; such that
AVy = Vil + frep, ViV =1, V[ =0,
and the Hessenberg matrix Hj is unreduced. However, since

span{Vi} = K(A, vo; k) C span{ Wi},
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it follows that AV € span{W}}. Therefore f; must lie in span{W}} as well. Since
VIV, = I, and V2 f, = 0. There are k+1 basis vectors for a k-dimensional subspace,
a contradiction. Therefore the Arnoldi factorization must terminate in £ or fewer

steps. (]

If the starting vector vg belongs to a subspace spanned by k desired eigenvectors,

then at least in exact arithmetic the Arnoldi factorization terminates in k steps giving
AV, = Vi H.

The eigenvalues of Hj are exactly the eigenvalues of A and the Ritz vectors are
the eigenvectors of A. However, in practice one rarely finds such a good vy before
the eigenvalue problem is solved. Consequently, one may have to generate a large
Krylov subspace to obtain satisfactory approximations to the desired eigenvalues
and eigenvectors. It is important to keep the Arnoldi vectors mutually orthogonal.
Loss of orthogonality amongst these vectors may result in serious contamination of
the computed eigenvalues. Unfortunately, maintaining orthogonality takes enormous
amount of storage and computational effort when the Krylov subspace generated is
large.

To reduce the cost and thus improve the speed of convergence, one shall avoid
building a large Krylov subspace. The alternative is to initially carry out only & steps
of an Arnoldi iteration, where k is a moderate value. If the k-dimensional Krylov sub-
space fails to provide accurate approximations to the desired eigenpairs, we recompute
a k-step Arnoldi factorization using a modified starting vector. The modification of v
typically takes advantage of the eigenvector approximations obtained in the previous
Arnoldi run and tries to remove the unwanted eigencomponents from vg. This modi-

fication and refactorization procedure forms the basic pattern of a restarted Arnoldi
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iteration. It is repeated until the unwanted the eigencomponents in vg become in-
significant.

There are a number of ways to implement a restart. A simple restarting strategy
is to take vy as a linear combination of Ritz vectors associated with the desired Ritz
values [50]. A more sophisticated approach is to replace vy with ¢)(A)vg, where ()
is a function constructed to filter out the unwanted eigencomponents from vg. In this
chapter, we focus on the case in which ¥ (}) is a polynomial.

Saad [73] proposed restarting the Arnoldi process by explicitly computing
Vg < 77Z}(A)U07

where () is a desired polynomial. If the degree of the polynomial is p, then p
matrix-vector multiplications are required to restart the Arnoldi process in addition
to the & matrix-vector multiplications used in the Arnoldi iteration.

The Implicitly Restarted Arnoldi (IRA) algorithm proposed by Sorensen [81]
avoids computing t(A)vg directly. The new starting vector emerges as a by-product
of a sequence of implicit QR-updates. Besides producing a new starting vector, these
QR updates also construct, implicitly, a new Arnoldi factorization of length & — p.
Only p (p < k) matrix-vector multiplications are needed thereafter to complete a new
Arnoldi sweep.

The theory on the implicitly restarted Arnoldi method is fully developed in [81].
Its relationship with a truncated QR iteration is also exploited in [38]. The best way
to explain TRA is probably to first introduce the implicitly shifted QR iteration, a
“dense” algorithm that requires a full Hessenberg reduction and a sequence of unitary
similarity transformations, then show that IRA is just a clever way of truncating the
QR iteration. The advantage of this approach is that the convergence of IRA can be

investigated in the same way the QR algorithm is analyzed.
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The purpose of restarting is to filter out the unwanted eigencomponents from vy.
The quality of the filter depends on the shifts chosen during the QR updates. We
examine three different shifting strategies in Section 2.4.1. Numerical examples are

presented in Section 2.4 to demonstrate the effectiveness of the polynomial restart.

2.1 The Implicitly Shifted QR Algorithm

The QR algorithm for the dense matrix eigenvalue calculation begins with a full

Hessenberg reduction

AV =V H, (2.1)

where VAV = I and H € C**" is upper Hessenberg. The reduction is followed by
the application of a sequence of unitary similarity transformations to H. That is, we

set
Ho=H, Hjw=QFH;Q;.
This process eventually drives H; into an upper triangular form. Each ); comes from

the QR decomposition of H; — ;I for some shift p;. That is, (); satisfies
Hj — pil = Q;R;.

To simplify our discussion, let’s first examine what happens during one step of the
QR iteration, and drop the subscripts of u, @), R and H for clarity. After rewriting
(2.1) as

(A—p)V =V(H —pl),

we can utilize the QR decomposition of H — I to obtain
(A—pl)V =VQR, (2.2)
Postmultiplying (2.2) by @ yields

(A—=ph)(VQ) = (VQ)(RQ). (2.3)
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We can deduce, after adding the shift back to (2.3) and using the fact

RQ +pl = Q" (H — p)Q + pl = Q"HQ,
that
A(VQ) = (VQ)(QTHQ). (2.4)
Due to the Hessenberg structure of H, Q@ HQ remains upper Hessenberg. If we let
Vi =VQ and H, = QPHQ, then a new Hessenberg reduction

AV+ - V+H+,

follows. It is easy to see from (2.2) that the first column of the updated basis Vj is

related to that of V' through the following equation

(A= pl)vr = v pra,
where vy = Vey, vf = Vie; and py1p = e?Rel. That is, the vector vi" is what we
would have obtained by applying one step of the shifted power iteration to v;.

With a carefully selected set of shifts {x;}, we repeat the procedure described by
equations (2.2)—(2.4) until H becomes upper triangular. It follows from the above
discussion that the QR iteration can be viewed as a sequence of implicitly restarted
Hessenberg reductions. At the end of the p-th QR-iteration, the new starting vector

vi is related to the original starting vector v; via

o = (A, (2.5)
where
P(A) = (A=) (A= p2) -+ (A = pay).

We will refer to (A) as a cumulative polynomial. In practice, the initial Hessenberg
reduction is accomplished by applying a sequence of Householder transformations to
A. The QR updates (2.2)—(2.4) are carried out using a “bulge chase” mechanism
[22, 23].
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2.2 Implicitly Restarted Arnoldi

In the large-scale setting, a full reduction to a Hessenberg form via the Householder
transformation is usually intractable. A partial reduction can be constructed by the

Arnoldi factorization

AV, = Vi Hypy + frel (2.6)

where m = k + p. Since a QR update starts from the upper left corner of H, one can
mimic, within the truncated Hessenberg reduction, the same updating process that
takes place in a full QR iteration.

Given a shift p, one factors H,, — pl into a product

H,, — ,LL[ = QmRmv

where (), is unitary and R,, upper triangular. The same techniques described in

(2.2)—(2.4) can be used to obtain

A(VQO) = (VQO)(QZHQO) + fmeZsz- (2'7)

Note that due to the Hessenberg structure of @),,, only the last two columns of the
matrix f,el Q,, are nonzero. This implies that the first m — 1 columns of (2.7) satisfy
a new Arnoldi factorization implicitly constructed by the previous QR update. After

repeating this process for the next p — 1 shifts, we obtain

AVuQ) = (VuQ)Q" HinQ) + frne,,Q, (2.8)

where () is the accumulation of p unitary factors generated by the previous QR
updates. Again, it follows from the Hessenberg structure of each unitary factor that
the last row of () has only p+1 nonzero. Consequently, the first k(=m —p) columns of
fmel Q remain zero columns, indicating that the first & columns of (2.8) form a new

Arnoldi factorization. One can extend this factorization to length k+ p by performing
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p standard Arnoldi steps. Since m = k + p is kept small, one can afford to use the
Daniel, Gragg, Kaufman and Stewart (DGKS) algorithm [14], which performs the

correction (2.9) if necessary,
c= ‘/j]ilfj+1; fit1 < fis1 = Vipich < h + ¢ (2.9)

to maintain full orthogonality among all Arnoldi vectors. Just like the full QR iter-
ation, the first column of the new Arnoldi basis is related to that of the original one
via

v = (Ao,
where ¥(A) = (A — p1)(A — p2) -+ - (A — pp). Figure 2.1 shows the four stages of an

IRA iteration. We will use the notation IRA(k,p) later to denote an IRA iteration

that computes k eigenvalues and applies p shifts during each sweep.

2.3 Choice of shifts

In view of (2.5), the choice of shifts {x;} in IRA plays an important role in the
construction of a polynomial that “filters out” unwanted components from the starting
vector. A number of options are available. One may compute eigenvalues of the
current H,,, and sort them into two disjoint sets €, and €,. The set €, includes
k “wanted” Ritz values, whereas all Ritz values in 2, are regarded as “unwanted”.
The unwanted Ritz values are used as shifts. They are often referred to as the exact
shifts. By placing the zeros of the polynomial at these shifts, one hopes to reduce
the contribution of unwanted eigencomponents to the starting vector. This shifting
scheme is proposed in [81] and implemented in ARPACK [40]. It is optimal in the sense
that it makes the best use of the spectral information obtained from the current

Arnoldi run.
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Other shifting strategies are possible. For example, if all unwanted eigenvalues of
A are contained in an interval [a, 3], it is natural to consider a filtering polynomial

that is damped uniformly within [, 3]. A shifted and scaled Chebyshev polynomial
. B a+ 3 —2\
Cp()‘aavﬁ)—Tp< a—3 _)7

where
cos(pcos™(A)), [N <1
S T o0
cosh(pcosh™ (X)), A >1
satisfies this requirement. The roots of the Chebyshev polynomial are explicitly

known:

(8} —|— B — 2)\]
a—p 7
We will refer to shifts chosen in this fashion as Chebyshev shifts. In practice, the

(2 = )m

A=
J 2p

where X; = cos

}, 7=1,....p.

values of a and  are often estimated from the Ritz values. For example, if the &
smallest eigenvalues of a hermitian matrix A are of interest, one can choose o = 544
and 3 = 0;4,, where

01<02"'<0k+1<"'<9k+p

are Ritz values computed in the current Arnoldi(Lanczos) run.
Another interesting set of shifts are the Leja points. The Leja points {z;} for a

given set K are defined as follows [9]:

Definition 2.1 Let w(z) be a weight function defined on K. Choose
zo € K such that

w(zo0)|z0] = maxw(z)|z|. (2.11)
ZEK

Choose z; € K such that

7—1

w(z; Zi— Zp —maxw Z— 2 2.12
D11z - =l HI - (

£=0
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A sequence of points {z;} satisfying (2.11) and (2.12) are called Leja points
for the set K.

In the context of IRA, one can use the procedure described above to generate Leja
shifts for a set K that contains most of the unwanted eigenvalues. The bounds for
set K are often estimated from the Ritz values. Moreover, one can easily modify
the procedure given above to take into account the Leja points generated during the
previous IRA sweep. It is reported in [9] that this shifting strategy is extremely helpful
when the number of shifts one can apply is limited and the range of the unwanted

eigenvalues is large.

2.4 Numerical Examples

Two numerical examples are presented in this section to demonstrate the effectiveness
of polynomial restarts. The first example involves a rather simple symmetric matrix.
In this case, IRA reduces to the implicitly restarted Lanczos (IRL) algorithm. A few
of the lowest eigenvalues are of interest. We wish to use this example to illustrate the
advantage of IRL over the standard Lanczos run and the effects of different shifting
strategies on the convergence of IRL. Our second example is extracted from the earlier
work [90]. The non-symmetric matrix has both real and complex eigenvalues. The
rightmost eigenvalues are computed. We wish to use this example to show that the
polynomial filtering in IRA can be as effective on the complex plane as on the real
line. All experiments were performed on a SUN-Ultra2 in double precision. The

FORTRAN package ARPACK was called to carry out the IRA iteration.
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2.4.1 One-dimensional Laplacian
Comparison of IRL with Standard Lanczos

The matrix A € R1%9%190 ygsed in this example has the form

It is obtained from the standard central difference discretization of the one-dimensional
Laplacian defined on [0, 1] with a periodic boundary condition.

Computing the smallest eigenvalues of A is difficult with the standard Lanczos
iteration mainly because the eigenvalues of interest are tightly clustered at the low
end of the spectrum. In the meantime, there are many large eigenvalues at the other
end of the spectrum.

To see this phenomenon, we first run 90 steps of standard Lanczos. We enforce
the orthogonality between all Lanczos vectors by explicitly reorthgonalizing the new
Lanczos vector, at each step, against all previously generated Lanczos vectors. The
5 smallest Ritz values are listed in Table 2.1 along with the exact eigenvalues of A.
One can easily see that these Ritz values do not completely agree with the exact
eigenvalues. In particular, the third and the fifth eigenvalues are only accurate up to
the second digit.

To obtain a better approximation, we further increase the number of Lanczos steps.
Unlike the previous run in which we saved all Lanczos vectors and kept them mutu-
ally orthogonal, we now generate these vectors using a three term recurrence. This
approach reduces both storage and the amount of computation needed to complete

the Lanczos run. However, there is no guarantee that the Lanczos vector generated at
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eigenvalue Ritz value
0.0 4.2 x 10716
3.94654 x 1072 | 3.94654 x 1073
3.94654 x 10~ | 3.95503 x 1073
1.57705 x 10~2 | 1.57705 x 10~2
1.57705 x 1072 | 1.59375 x 1072

Table 2.1 Ritz values computed from a 90-step
standard Lanczos run with reorthogonalization.

each step will be orthogonal to the previously generated Lanczos vectors. Moreover,
if eigenvectors are needed, one must run the same Lanczos process again to regenerate
all the Lanczos vectors and to accumulate them to form the Ritz vectors. The Ritz
values computed after 120 steps of this Lanczos run are listed in Table 2.2. Notice
that the second and third eigenvalue approximations are spurious copies of the first
eigenvalue. These spurious copies are caused by the loss of orthogonality between the
Lanczos vectors. Without knowing the multiplicity of each eigenvalue in advance, it
is rather difficult to tell whether a computed eigenvalue is a spurious copy. (Cullumn
and Wilboughby proposed some mechanisms ghost to detect and eliminate the spu-
rious eigenvalues [13]. One may also use a selective reorthogonalization scheme [58]
to avoid introducing the spurious eigenvalues.)

Note that we purposely set the number of Lanczos steps larger than the dimension
of the matrix so that the number of matrix-vector multiplications (120 x 2 = 240)
performed here (to acquire both Ritz values and Ritz vectors) is comparable to what
we will use in an IRL run.

Finally, we apply IRL(5,20) to A. (Recall IRL(5,20) stands for an IRL run with
k =5, p = 20. The dimension of the Krylov subspace constructed is k& + p = 25.)

The convergence threshold is set at 107®. The exact shifting strategy is used. All of



23

eigenvalue Ritz value
0.0 1.3 x 10716
3.94654 x 1072 | 6.8 x 1071°
3.94654 x 1072 | 1.7 x 107
1.57705 x 1072 | 3.94654 x 10~
1.57705 x 1072 | 3.94654 x 10~

Table 2.2 Ritz values computed from a 120-step
standard Lanczos run with no reorthogonalization.

the five smallest eigenvalues are captured in 17 restarts. The entire computation uses
235 matrix-vector multiplications (MATVECs). The reliability and efficiency of IRL

are evident in this experiment.

The Effect of Shifting Strategies

In the next experiment, we show that using a different shifting strategy can affect the
convergence of IRL. The exact, Chebyshev and Leja shifting strategies are considered

and compared. To generate the Chebyshev or Leja shifts, one must provide the

Shifts | MATVECs
exact 235
Chebyshev 380
Leja 285

Table 2.3 Comparison of three shifting strategies

upper () and lower (a) bounds of an interval that contains most of the unwanted
eigenvalues of A. In this experiment, we set 3 = 4.1, an upper bound of the spectrum,
and set a = 041, the (k + 1)st Ritz value obtained in each IRL sweep. We observe
from Table 2.3 that the exact shifting yields the best performance among the three.

The filter polynomial associated with the exact shifts is plotted in Figure 2.2. One



24

clearly sees that the polynomial maps the large eigenvalues to zero, removing the
contribution of the corresponding eigenvector from the starting vector of a Lanczos

iteration. We shall point out that when Chebyshev or Leja points are used, the

16

12F

10

p(lambda)

-2 M| M| M| N

lambda

Figure 2.2 The filtering polynomial produced by IRL with exact shifts.
The circles denote p();), where A; (7 = 2,2,...,100) are eigenvalues of A.

performance of the computation is sensitive to the value of a. One may improve
the performance of an IRL run by making « slightly larger than 6;4,. Table 2.4
illustrates this observation by listing the performance of Chebyshev shifts generated
with different a values. These a’s are set to be the (k4 j)-th (7 = 1,2,...) Ritz values
obtained in each IRL sweep. We observe that for this particular problem, a@ = ;43
provides the best performance.

The performance of the shifting strategy is also affected by the number of shifts
(p) allowed in IRL iteration. We show in the following experiment that when p is
small, Leja shifts can be very effective. Table 2.5 shows the number of MATVECs
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a | MATVECS
Orit 380
Or s 350
Or s 275
Or s 290
Orss 320

Table 2.4 Performance of Chebyshev shifts with different « values.

used in IRL runs associated with all three shifting strategies and different values of

p. Apparently, when p = 5, the Leja shifts perform much better than either the exact

‘ P ‘ exact ‘ Chebyshev ‘ Leja ‘
5 | 409 465 280
6 | 366 497 293
7| 337 390 278
8 | 312 413 285
9 | 301 410 311
10| 284 385 265

Table 2.5 Comparison of matrix-vector multiplications
for three shifting strategies with small p values.

or the Chebyshev shifts. There is a heuristic explanation for this phenomenon. Since
a small value of p results in a low degree filtering polynomial, only a few unwanted
eigencomponents can be removed in each IRL sweep. Consequently, Ritz values do
not vary much from one IRL sweep to another. This causes the roots of the cumulative
filtering polynomial to cluster around a few locations within [a, 3]. This phenomenon
does not occur with Leja shifts because the selection of new Leja points takes into
account the previously generated shifts. The roots of cumulative polynomials are more

uniformly distributed within [a, 3], and thus provide more effective damping. Figure



26

Exact

2.3 demonstrates the difference between these two shifting strategies by plotting the

roots of the cumulative polynomials at each IRL sweep.
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Figure 2.3 Distribution of the roots of the cumulative filtering
polynomials at each IRL sweep. The top plot was generated from the exact
with Leja points.

shifts applied during the IRL iteration. The bottom plot corresponds to IRL
Let us now look at a non-symmetric example that is more interesting and challenging.
The problem arises from the linear stability analysis of crystal growth or dendritic

2.4.2 Crystal Growth
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solidification, a rapid and complicated process that occurs when one places some
crystal of pure substance into an undercooled bath of its liquid phase. The goal of
the analysis is to understand the temperature distribution of the material during the
solidification and the time-dependent movement of the interface between its solid and
liquid phase [30, 51, 52, 36, 47, 8]

It is well known that the temperature distributions in both the liquid and solid

phase, U; and Uy, satisfy the dual diffusion equations

ou; ou, — _,
W—Oév U[, o1 =aV US,

where the constant « is related to thermal diffusivity. At the solid-liquid interface

the displacement of the moving front 7 obeys the conservation law:

o
d—:-ﬁ:a(VUS-ﬁ—VUl-ﬁ).

Here 77 denotes the unit outward normal to the interface pointing from the solid phase
to the liquid phase. The evolution of the solid front also depends on its geometric
properties and other initial and boundary conditions.

For a simple model in which the initial interface is of parabolic shape, one can
write down an exact steady-state solution after making use of some coordinate trans-
formation and change of variables [90].

The time-dependent behavior of the solidification process can be analyzed by
seeking admissible time-dependent perturbations of the form ﬁe”, where U is time-
independent and o represents the growth rate of the perturbation. Interesting pertur-
bations are those associated with a positive growth rate (indicating that the steady-
state solution is unstable.)

A set of new equations for the perturbation can be derived by substituting the
perturbed temperature distribution and interface displacement into the governing dif-

fusion equation (or convection diffusion in the new coordinate system) and linearizing
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the resulting equations at the steady state. After some additional changes of variables

and simplifications, we arrive at an eigenvalue problem

0*U 0*U ou ou
a(x,y)w—l-b(x,y)a—yQ—I—c(;r;,y)a—w—l—d(:v,y)a—y = AU, (2.13)
ou ou

e(wvy)a—x—l_f(may)]v—l_g(xay)a—y = )‘Nv (214)

where U is represents the perturbation of the temperature distribution, N represents
the perturbation of the interface displacement, and the eigenvalue X is proportional
to the growth rate of the perturbation. Because we used some changes of variables
to map the original PDE defined on an infinite domain to a finite box, the eigenvalue
problem is now defined on the unit square [0, 1] x [1,2]. Note that the second equation
(2.14) only applies to the temperature distribution on the initial solid-liquid boundary
(y =1) on which U and N are related through

U = 2pN, where p is a dimensionless Peclet number. (2.15)

Other boundary conditions imposed are:

at x =0 g—g:(),
atz =1 : g—g:(),

aty=2 : U(z,2)=0.

The coefficients a,b, ¢, d, e, f, g in (2.14) are defined as follows:

(1=
a(z,y) = . 27
(=) + (=)
b(x, = (22_ y)! N
(z,y) 4 ﬁ) + 23@/)
(ry) = 21 =)+ 2pe(1 = 2)
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—C0 4 py(2—y)

d(l’,y) = 2 7
(%) + ()

e(:r:,y) = . (&>27
4p* + 2p

f z, = o 2

(z,y) 1+(ﬁ)
(1 —z)?

B G
1+ (r)

Let us choose an appropriate mesh size Az x Ay, and define z; = 1Az, y; = 1Ay,
Uij = U(xi,y;), and N; = N(z;) (1,5 = 1,2,...,n). By using the standard second-
order finite difference discretization, (to be precise, central difference for all derivatives

except U /dy in the second equation for which an upwind difference scheme

1 3 1
~— | —3Vio +2Uin — SU;
Ay( 2Uz,o +2U; 2U,2>

is used) we obtain an algebraic eigenvalue problem Az = Az, where the matrix A is
very sparse. Its structure is shown in Figure 2.4. The eigenvector z consists of the

(scaled) temperature distribution on the grid points (z;,y;). That is,

( 0, Ur,
Us Uy,
z= : where U; =
U, Un_1
Ui/ (2p) Un

Notice the last component of z also represents the interface perturbation N which is
related to the temperature by (2.15).
Since we are interested in perturbations that increase exponentially, eigenvalues

whose real parts are positive are of interest. However, these eigenvalues are neither
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Figure 2.4 The sparsity pattern of A.

well separated from the rest of the spectrum nor dominant as shown in Figure 2.5.
The negative eigenvalues at the left end of the spectrum tend to emerge rapidly in
a standard Arnoldi iteration. They prevent the desired eigenvalues from converging.
The major task of implicit restart is to filter out from the starting vector the eigen-
vector components associated with these eigenvalues. We set & = 20, p = 30, and
use ARPACK to find the 20 eigenvalues with the largest real parts. Exact shifts are
used. That is, we computed 50 Ritz values before each restart, kept 20 Ritz values
that have the largest real parts, and used the rest as the zeros of a filter polynomial.
Since p = 30, a polynomial of degree 30 is applied to the starting vector each time
a restart is issued. Plotted in Figure 2.6 is the polynomial constructed during the
last restart. The polynomial is only shown in the interesting region [0,3.5] x [—2,2]
on the complex plain. The exact eigenvalues are marked with pluses, and the com-
puted with circles. The same polynomial is shown in Figure 2.7 on a different region

[—0.2,1.2] x [-0.5,0.5]. Unfortunately, we are not able to show the entire polynomial
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The full spectrum of a 2500 x 2500 A
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Figure 2.5 The spectrum of A.

on the convex hull of the spectrum since it requires generating too many grid points.
We observe from Figure 2.6 that ARPACK captured all the desired eigenvalues. This
particular IRA run costs 4047 matrix-vector multiplications and 107 CPU seconds.
As the dimension of the matrix becomes larger, acceleration using restarting will be-
come more difficult. Techniques introduced in the subsequent chapters may be used
to improved the convergence rate of the Arnoldi iteration. We refer readers interested

in the computed eigenvalues and eigenvectors to the report [90].
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Figure 2.6 A 30-th degree filtering polynomial
generated just before IRA converged.
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polynomial generated just before IRA converged.
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Chapter 3

Rational Restarting and Truncated RQ-iteration

The Hessenberg structure of the projected matrix H,, and the top-to-bottom bulge
chase strategy made it possible to implement a truncated version of the QR iteration
within the Arnoldi factorization. As shown in Chapter 2, the QR update implicitly
replaces the starting vector vg of an Arnoldi factorization with ¢(A)ve where ¥(A) is
a polynomial designed to filter out the unwanted eigencomponents from vg. The IRA
algorithm has been successfully used in a number of applications [59, 35, 64, 83, 90].
However, there are situations where IRA converges slowly. One particular instance oc-
curs in computational chemistry where the eigenvalues of interest are clustered around
zero. The difficulty is that the spectrum contains many dominant but uninteresting
eigenvalues. In this case, the polynomial constructed by IRA cannot completely elim-
inate the influence of the unwanted eigencomponents from the starting vector within
a reasonable amount of time. In this section, we consider using a rational restarting
strategy that repeatedly modifies the starting vector vy of the Arnoldi iteration by

applying a rational function of A to vy. The rational function has the form

1
A=) (A —p2) - (A= pp)

where p1, f1o, ..., jt,, are shifts to be defined in Section 3.2.2. The implementation of a

P(A) =

rational restart can be done implicitly via a truncated RQ iteration [84]. In Section
3.1, we briefly describe the RQ) iteration, and derive a truncated version that is in
the same spirit as IRA. The truncated RQ iteration requires solving a linear system
with a special structure. This system is defined in Section 3.1. It is referred to

as the TR(Q) equation. Some theoretical issues regarding the properties of the TRQ
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equation are examined there. A mechanism for solving this equation is provided in
Section 3.2.1. Other implementation details are discussed in Section 3.2.2-3.2.3. If
the TRQ equation is solved with a direct method (based on Gauss elimination) the
convergence of the TRQ iteration is swift. (It is quadratic in general and cubic for
symmetric problems.) One would like to know what happens if the direct solver is
replaced by a preconditioned iterative solver. The convergence of such an “inexact
TRQ” scheme is analyzed in Section 3.4. It is shown that the convergence is locally

linear under some appropriate assumptions.

3.1 Truncating an RQ iteration

The RQ iteration differs from the QR iteration only in the way a Hessenberg matrix

is factored. Again, the iteration begins with a reduction to Hessenberg form
AV =VH, (3.1)
and is followed by the actions described in Figure 3.1. Notice that the QR factoriza-
tion employed in (2.2) is replaced by a RQ factorization.
Mathematically, a single R() sweep can be explained as follows. After the initial
reduction, one factors H — ul into a product
H = pl = RQ,
where ) is unitary and R is upper triangular. After subtracting uV from (3.1) and
replacing H — pl with R(), one has
(A= ul)V = V(RQ).
Postmultiplying the above equation by QF yields
(A—pD(VQ") = VR (32)

or (A—uD)(VQ™) = (VQ")(QR).
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Algorithm 1: Implicitly Shifted RQ-iteration

Input: (A,V, H) with AV = VH, VEV = [ and H is upper
Hessenberg.

Output: (V, H) such that AV = VH,VHV = [ and H is upper triangular.

1. for y = 1,2,3, ... until converged,
1.1. Select a shift g« p;;
1.2. Factor H — pl = RQ;
1.3. H « QHQ" ; V «+ VQF,;

2. end;

Figure 3.1 Implicitly Shifted RQ-iteration.

One can further deduce, after adding uVQ* back to (3.3) and using the fact

QR+ pul = Q(H — p)QY + pul = QHQ",
that
AVQ™) = (VQT)(QHQY).
Following the convention used before, let us set V, = VQH, H, = QHQ" and denote

the first column of V and V by v; and v} respectively. It follows from (3.2) that
(A —pl)of =vipry,

where p;; = elTRel. This implies that the first column of V. is what one would
have obtained by applying one step of inverse iteration to vy with the shift p. This
property is preserved in all subsequent RQ sweeps. Thus, one would expect very
rapid convergence of the leading columns of V' to an invariant subspace of A.

In the large-scale setting it is generally impossible to carry out the full iteration
involving n X n orthogonal similarity transformations. It would be desirable to trun-

cate this update procedure after k steps to maintain and update only the leading
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portion of the factorizations occurring in this sequence. However, this cannot be
done directly since the RQ) update starts from the lower right corner of H, and works
its way up towards the (1,1) entry. To complete the last k steps of the update, one

must determine the k + 1-st column of both VQ and HQ, where

. I, 0
0 Q
is the product of Given’s rotations used to drive the lower (n — k) x (n — k) portion
of H to an upper triangular form. The determination of these intermediate vectors
leads to solving a set of equations to be defined below.

A

To be precise, let us partition V = (Vj, V') where V}, denotes the leading k columns

of V and let
T
5k€1€£ H
be partitioned conformally so that
R . H, M
A(Vi, V) = (Vi,, V) X . (3.3)
5k€1€£ H

Let u be some given shift. In a full RQ-iteration, we would begin factoring H — ul

from right to left using Givens method, say, to obtain

H—pl = Hem M . 0
/3k€1€£ R 0 Q

where H — wly_p = ]%Q It follows that

. . Hy—pl, M
(A—uD)(Ve V" =iy | T T, (3.4)
5k€1€£ R

At this point, all one needs to know in order to complete the RQ) factorization is the

first columns of V@, M and E. (See Figure 3.2.) If these vectors can be computed
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Figure 3.2 Truncating the RQ iteration.

without forming and applying Q, then a truncated version of the RQ-iteration is
possible. To determine these vectors, let us examine the first &+ 1 columns of (3.4).

Let v = Ve, vy = VOQHer, h = Mey, and a = elT]%el. It follows from (3.4) that

Hk—,ulk h

ﬁkeg o

(A - :LL[)(‘/IW U+) = (‘/kv U)
From this relationship, it follows that vy must satisfy

(A —plvy = Vih + va, (3.5)

with Vfvy = 0 and ||vy| = 1 since the columns of (V4,vy) must be orthonormal.

These conditions may be expressed succinctly through the TRQ equations

A—pul Vi V4

v
= sl = 1. (3.6)
VE 0 —h 0
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Note that the unknowns in (3.6) are vy, h and a. The conditions Vv, = 0 and
|lv4|l = 1 allow one to solve
A—pul Vi w vy
VE 0 z 0
first for any v # 0 and to normalize w to get vy. Once we have v, premultiplying

(3.5) with V;, and v yields
h = V(A= uly
a = vH(A—pul)v,.

Also, note that the first & columns on both sides of equation (3.4) satisfy a k-step
Arnoldi relationship

(A —p)Vi = Vi(Hy — pli) + freg (3.7)

with fr = v8. This relationship is important for analyzing the properties of (3.6) as
we will show below.

The algorithm we shall develop depends upon the determination of vy, h, and

a directly from equation (3.6) rather than from the RQ factorization procedure.

The fact that the RQ factorization exists assures us that a solution to (3.6) exists

even when the bordered matrix in (3.6) is singular. The following series of lemmas

drawn from [84] characterize how singularity can occur in these equations. They also

establish that the solution to (3.6) is unique in any case. In the next section we show

that the singular case in (3.6) is benign and easily dealt with numerically.

Lemma 3.1 Assume A — u/ is nonsingular (i.e., that u is not an eigen-
value of A) and that equations (3.6) and (3.7) hold as a result of the

partial RQ-factorization described by (3.4). Then the bordered matrix

A—ul v
B= e (3.8)
Vi
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is nonsingular if and only if V¥(A — uI)~'V; is nonsingular. Moreover,
if VA(A — pl)~1V, is singular and z is any nonzero vector such that
VH(A—pl)™ Wiz = 0, then w = —(A—pl)~'V,z is nonzero, and vy = Tl

h = and « = 0 satisfy the TRQ equations.

_HZT||7
Proof Since the RQ-factorization ]%Q = H-— pl always exists, it follows that (3.6)
must hold in any case. The assumption that A — u/ is nonsingular provides the block

factorization

I 0 A—pl Vi
B= . (3.9)
VI(A—p)™ 1 0 V(A -p)'V;
Clearly, B is nonsingular if and only if V(A — uI)~'V} is nonsingular.

To establish the second part of the lemma, we show that the equation

A—pl Vi w v
= ! (3.10)
0 V(A= pl)Vi 2 V(A= pl)~'v

has a nonzero solution (w, 27 )7 with a = 0 if and only if V; (A—puI)~'V} is singular.
To prove this suppose, first, that o = 0 and (w, z) is a nonzero solution to
(3.10). Then V(A — pl)~'V,, must be singular because A — ul is assumed to be
nonsingular. On the other hand, if we assume V(A — pI)~'V} is singular and z is a
nonzero vector such that V(A — pl)~'V,z = 0, then putting w = —(A — pl)~'Vpz
will provide a nonzero solution to (3.10) with a = 0. Moreover, w must be nonzero

since z is nonzero and (A — pl)~'V, has linearly independent columns. Therefore,

vy = ”L h = —”ZTH, and o = 0 will satisfy the TRQ equations. (]

Lemma 3.1 indicates that the solution to (3.6) will be unique if and only if V7 (A —
pl)~'Vy is either nonsingular or has a one-dimensional null space. The following
lemma establishes this fact and hence the uniqueness of the solution to the TRQ

equations (3.6).
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Lemma 3.2 Assume A —pl is nonsingular and that equations (3.6) and
(3.7) hold as a result of the partial RQ-factorization described by (3.4). If

G = V(A — pul)='V; is singular, then the null space of G is span{ey}.
Proof Lety=V/”(A— ul)™'f; and define H, = Hy — pl}. Then

GH, = %H(A_N[)_IWCHM
= V(A= pu) (A= pD)Vi — fre]

= Iy — ye;. (3.11)
If G is singular, and z is any nonzero vector such that 0 = 2" G| then (3.11) implies
0==z"GH, =" — (z"y)e].

Since x # 0 this equation implies 2™y # 0 which in turn implies that z/(z"y) = e;.

Hence el G = 0 and the null space of G is span{e;}. This concludes the proof. ]

Finally, the following lemma indicates that exact singularity of B rarely occurs.

Lemma 3.3 Assume A —pl is nonsingular and that equations (3.6) and
(3.7) hold as a result of the partial RQ-factorization described by (3.4).
Then a = 0 in (3.6) and V(A — pl)~'V}, is singular if and only if the

shift 1 is an eigenvalue of H in equation (3.3).

Proof It is sufficient to show V;#(A — ul)~'V; is singular if and only if the shift
{1 is an eigenvalue of H in equation (3.3). To this end, note that VI(A — ul)='V} is
singular if and only if V(A — uI)~'V4z = 0 for some z # 0. Since (V4, V) is unitary,

any such z must satisfy

. . [0
Viz=(A—pul)Vg=(A-ul)(Vi,V)

g
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for some nonzero vector g (i.e. (A — puI)"'Viz must be in the range of V). This

implies

R H. —ul M 0
Vie = vy
Brerel  H —pl, g

= ViMg+ V(H = pl,_y)g.

A

Since (Vi, V) is unitary, it follows that

(H — pl,_t)g =0 (3.12)

A

and since g is nonzero this implies the singularity of (H — pl,—x). Clearly this
argument is reversible; i.e., if there is a nonzero g that satisfies (3.12) the reverse
argument may be used to produce a nonzero z such that V;#(A — uI)~'V;z = 0 and

the lemma is proved. (]

The TRQ equations may be used to develop a truncated k-step version of the
Implicitly Shifted RQ iteration. If a k-step Arnoldi factorization (3.7) has been ob-
tained then a k-step TRQ) iteration may be implemented as shown in Algorithm 2
(Figure 3.3).

The key idea here is to determine the k& + 1-st column vy of the updated matrix
V and the k£ + 1-st column of H that would have been produced in the RQ) iteration
by solving the linear system (3.6). Then, the iteration is completed through the
normal RQ iteration. As eigenvalues converge, the standard deflation rules of the RQ
iteration may be applied. Orthogonality of the basis vectors is explicitly maintained
through the accurate solution of the TR() equation. Moreover, even if the accuracy of
this solution is relaxed, orthogonality may be enforced explicitly through the DGKS
mechanism [14]. (Also see Section 2.1.) Potentially, the linear solve indicated at Step

2.2 of Algorithm 2 could be provided by a straightforward block elimination scheme.
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Algorithm 2: (TRQ) Truncated RQ-iteration

Input: (A, Vi, H, fk) with AV, =V, Hy + fkeg, VkHVk =1, Hg
is upper Hessenberg.
Output: (Vj, Hy) such that AV, = Vi Hy, VkHVk = I and Hy is upper
triangular.

1. Put gy = ||fx]| and put v = fi/Bk;
2. for j = 1,2,3, ... until convergence,
2.1. Select a shift p  py;

A—pl Vg vyp \ [ va . L
2.2. Solve < v 0 ) < _h ) = ( 0 ) with ||vg|| = 1;

Hy—ply h\ _ [ Ry r Qr g \.
2.3. RQ Factor < BecT o ) = ( 0 ) < ol 5 )
2.4. Vi « ViQF +viq™;

2.5, [ «— aengek; V4 V0 + Vg
2.6. Hy + QR + puly;
3. end;

Figure 3.3 The Truncated RQ)-iteration.

However, considerable refinements to this scheme are possible due to the existing

k-step Arnoldi relationship (3.7). This will be discussed in the next section.

3.2 Implementation issues in TRQ

In this section, we address some practicalities associated with an efficient implemen-

tation of the TRQ iteration.

3.2.1 Solving the TRQ Equations

The Truncated RQ iteration described in the previous section will only be effective
in the large-scale setting if there is an efficient means for solving the TRQ equations.

Recall that A, Hy, Vi and fr = v are in a k-step Arnoldi relation (3.13) so that

(A—ul)\Vip = Vi(Hy — pli) + frel. (3.13)
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Rescaling the right hand side of the system (3.6) by 3/« leads to

A—pul Vi w fx
- . (3.14)

VH 0 z 0
Recall from the last section that rescaling (3.6) does not change the final solution
since we can always recover vy through the normalization vy = w/||w|. If we put

d=(A—pl)™ fi and y = Vi d, then block Gaussian elimination leads to solving the

equations
LV A=l Vis =y,
2. (A—phw = fr — Vjz.

The first equation implies that one has to solve a block system of k equations to obtain
(A — uI)~'Vj. However, we will show in the following that this block solve is not
necessary. Since Vj satisfies (3.13), one can take advantage of this special property of
Vi to further simplify (3.14) and to derive a solution scheme that requires just a single
linear solve with A — ul as the coefficient matrix. Moreover, this efficient solution
scheme does not depend on determining the singularity of the TRQ equations (3.6)

in any way. The underlying theory is developed with the following lemma.

Lemma 3.4 Assume A — ul is nonsingular and define G = V(A —
pl)™'Vi and H, = (Hy — ply). There is a vector s such that either

(Iy — H,G)s A0 or el Gs #0. (3.15)
For any such s, put

w= (I = ViV A= pl) Vs,
Then w # 0 and a solution vy, h, a to (3.6) is given by

vp = w/llwll, kb= (I = H,G)s/|lwll, a=—FerGs/llwl|.
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Proof If el (Gs = 0 for all vectors s, then the matrix H,( is singular and there must
be a nonzero vector s such that (I — H,(&)s # 0. Therefore, there is a k-dimensional
vector s that satisfies either § = ¢l Gis # 0 or (Iy — H,G)s # 0.

For any such s, put w = (I — V;V;#)(A — ul)~*V,s. Observe that

(A—plhw = (A—pl)(I = ViV (A = pl) Vs
= Vis— (A —pul)ViGs
= Vis — [ViH, + fre}]Gs

= ‘/k([k - HMG)S - fktg (316)

The conditions on s assure that the right hand side of (3.16) is nonzero. It follows
that w # 0 and that
(A—pulvy = Vih +va

where vy = w/||wl||, h = (Ix — H,G)s/||w| , and a = —F,0/||w]|. O
Remark 1 The original motivation for developing Lemma 3.4 was to handle the case

when p is an eigenvalue of Hp. A particular choice of s for this case is to put s = ¢

where ¢" H, = 0, and ¢"'¢ = 1. Then
¢"(Iy = H,G)s = ¢"s = q"q = 1.

The conditions of Lemma 3.4 are clearly satisfied with this choice of s. However, we

do not use this choice in practice.

Remark 2 The most general form of selecting a right hand side for constructing w

is to take

w= (1= VYA = ul)™ Vit + fi)
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where s =t — H,exn is chosen to satisfy the conditions of Lemma 3.4. To see this,

observe that

Vil + fin = Vis + Vil + fiellewn

= Vis+ (A— pl)Viegn.
Hence,
(I = ViViD(A = )™ (Vit + fin) = (I = ViVI)(A — pl) ™ Vs,

Thus, there is no mathematical reason to include the term fin, but the additional
freedom may eventually have some numerical consequences that are not apparent at
the moment. Note that when the shift p is an eigenvalue of Hj, then the combination
of t = 0,n = 1 is prohibited because the corresponding vector s does not satisfy either

of the conditions 3.15 required for constructing the solution in Lemma 3.4.

Remark 3 An alternative to forming A as described in Lemma 3.4 is to form w as
described above and normalize to get vy = w/||w||. Then construct h and « using
the DGKS mechanism [14] to orthogonalized the vector (A — ul)vy against Vj and

[ respectively. Thus

b V(A = oy = Vi Avy, o fE(A = ulyos /1 fell

The formulation just developed is appropriate when a sparse direct factorization
of A—pl is feasible. When this is not the case we must resort to an iterative scheme.

For an iterative scheme, there may be an advantage to solving the projected equation

(1 = ViV (A = ) (T = ViVl = (3.17)
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Algorithm 3: Direct Solution of the TR(Q Equations

IHPUt: (Aa‘/lmHkvfkuu) with A‘/k = ‘/ka + fkega ‘/ICH‘/k =1

and VI i, = 0.
Output: (vy,h,a) such that (A — ulvy = Vih + fra, Vv, =0
and |[vi|| = 1.

Choose t and n and solve (A — pul)w = Vit + fin;
y — Viw;

w ¢ w — Viy;

vy oy a fITHA = phoe /|| fill; b Vi Avy

[l ?

W

Figure 3.4 Direct Solution of the TRQ Equations.

and putting

w
U4 — —
[[o]]

where w = (I — V;V/)i. This is mathematically equivalent to solving the TRQ

equations. The advantage here is that the matrix
(I = ViV (A = pD)(I = ViV

will likely be much better conditioned than A — uI when p is near an eigenvalue of
A. A projected equation of this form plays a key role in the Jacobi-Davidson method
recently developed in [79, 80, 21]. It also provides a means for allowing inaccurate

solutions and preconditioning as we shall discuss later in Section 3.4.

3.2.2 Selection of Shifts

Another important issue regarding the TRQ iteration is the selection of shifts. Various
options are available and they each lead to different convergence behavior. We discuss

only a few of these options below.



47

The simplest strategy we have in mind is to use a fixed shift g throughout the
TRQ iteration. This shift is referred to as the target shift in the following discussion.
In this case, a single matrix factorization of A — ul may be used repeatedly to get
inverse power method type of convergence. However, if the ratio

= izl (3.18)
| Aj+1 — gl
is close to 1, the approximation to A; converges extremely slowly.

At the other extreme, we could adjust the shift at each iteration to enhance the
rate of convergence. Ritz values (eigenvalues of Hj) that have not converged are nat-
ural candidates for the shift. They provide the best approximations to eigenvalues
of A from the subspace spanned by the columns of Vj. Before each TRQ update we
compute the Ritz values and identify those that have not converged as shift candi-
dates. We then choose, from these candidates, a Ritz value nearest to the target as
the next shift. This choice of shift is optimal in the sense that it often leads to a
quadratic or cubic convergence rate. However, the rapid convergence is obtained at
the cost of factoring a matrix at each iteration. It is observed from our experiments
that Ritz values tend to jump around during the early stage of the TR(Q) iteration.
Thus, the target shift may need to be reused during the first few iterations until the
Ritz values settle down.

A reasonable compromise between the first and the second approach is to use a
fixed shift until an eigenvalue has converged. Another possibility is to use each shift
for (at most) a fixed number of iterations. In either case, the best Ritz value that has
not yet converged may be selected as the next shift. Rapid convergence is generally
obtained with this strategy. The cost for matrix factorization is reduced in comparison
with the second approach. It is reported in [84] that this intermittent shifting scheme

is very competitive with the Rational Krylov method of Ruhe [68, 67, 69].
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Finally, the leading k-columns of the Implicitly Shifted R(Q) iteration may be ob-
tained by selecting the same set of shifts as the dense algorithm if desired. For
example, denoting the matrix elements of the upper triangle of H by ~;;, we could
use 717 as the shift. This corresponds to the Rayleigh quotient shift in the RQ algo-
rithm. Another alternative is the Wilkinson shift. This is defined to be the eigenvalue
of the leading 2 x 2 matrix

Y11 M2
B a2

that is the nearest to 41;. These strategies may be used when no target shift is given
in advance, or when the order in which the eigenvalues are computed is not important.

Once the shift is chosen, an RQ update as described in Steps 2.3 through 2.6
of Algorithm 2 is taken. Clearly, it can be done explicitly, but there may be some
advantage to an implicit application. An implicit shift application is straightforward

since

Hy—upl;, h H, h I, 0
Brel « - Brel @& s 0 1 7
where & = o + p. Thus the standard bulge-chase implementation of an RQ sweep
corresponding to the shift g may be applied to the matrix
Hy, h
ﬁkeg o
Finally, when the matrix A is real and non-symmetric, we would like to perform
the TRQ iteration in real arithmetic. However, there seems to be no simple ana-
log to the double shifting strategy used in the full RQ algorithm. Applying double
shifts implicitly in the TRQ iteration is possible. However, the corresponding TRQ
equation involves A = (A — pl)(A — pul), and more work is required to solve this

equation. We include the double shift RQ) algorithm in the appendix. However, it is

still questionable whether the double implicit shifting strategy should be practiced.
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3.2.3 Deflation
As discussed earlier, in each TRQ iteration a defining equation

A—pl Vi vy v
VH 0 h 0

is solved so that a truncated Hessenberg reduction of the form

Hy, h
A(Ve, 04) = (Vi ) (3.19)

Brel o
is maintained. As the TRAQ) iteration proceeds, the leading sub-diagonal elements of

Hj, become small. When the magnitude of a sub-diagonal element 3; falls below some

numerical threshold, the matrix Hj, is split to give

H;, M
Hy = )
0 Hi;
The first j columns of V), form a basis for an invariant subspace of A, and j eigenvalues

of A may be extracted from H;. The deflation technique used in the QR algorithm

can be applied here to obtain subsequent eigenvalues. We rewrite (3.19) as

HJ' — ILL[J' M hl
(A_:LL[)(‘/J'7‘A/IC—J'7U+) = (‘/jaf/]ﬂ—]’av) 0 ]:]k—j _,u[k—j hy > (320)
0 ﬁkeg_j o!
where
hy

Vk:(vjvvk—j) and h = )
by

have been partitioned conformally with V; representing the leading j columns of V;

and hy representing the first 5 components of h.
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An upper triangular matrix R and an orthogonal matrix Q of the form

P Ry r | Q: Q2 ¢
0 p 0'617;_] v

are constructed such that

I;

(A_/“L[)(‘/ﬁ‘}ktjvﬁ-}-):(‘/jvn—jvv) 0 Ry, r )

o
o

P
where \A/,:] = ‘A/k_ij +opgf, by = 5%_jek_j + Yvg, M = MQI + hiq",
and iLl = oMey_; + Yhy. Note that V; and H; are not modified during the deflation.

The next cycle of TRQ iteration starts with the selection of a new shift. The role
of [:]k_j,f/k_j and v are replaced by ]f[,j'_j = Q2Ry + pli—;, ‘A/kt] and vy respectively.
If the sub-diagonal elements of Hjy converge to zero in order (from top to bottom,) a
partial Schur form

AV; = ViR;,

is obtained. Of course, when a subdiagonal 3; approaches zero out of order, then the
splitting described in equation (3.20) above will still yield a partial Schur form since

the Schur form of H;(); = (); R; can be used to make an explicit transformation.

3.3 Numerical Examples

A simple example is shown in this section to illustrate the convergence of the TRQ

iteration. Recall that the rate of convergence of TRQ is exactly the same as that of
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the full RQ iteration if the TRQ equations (3.6) are solved exactly. In this example,
we let the matrix A be a 100 x 100 standard 5-point discrete Laplacian defined on
[0,1] x [0,1] with zero Dirichlet boundary condition. For simplicity, the matrix is
scaled by h%, where h = 1/101 is the mesh size of the discretization. We seek 4
eigenvalues nearest to zero, hence always choose the unconverged Ritz value with the
smallest magnitude as the shift. We set the size of the Arnoldi factorization to be
5 (k = 5), and maintain orthogonality between the Arnoldi vectors using the DGKS
scheme [14]. Table 3.1 lists the sub-diagonal element 3; (5 = 1,2,3,4) of Hy at
each iteration. Once |3;|/(|H; ;| + |Hj+1,j+1|) drops below a prescribed tolerance of
107%, we set 3; to zero and “lock” the first j columns of Hs and V5 as illustrated
in equation (3.20). Clearly, the first eigenvalue converges cubically, and the second
one shows cubic convergence rate after the first one has converged. At the end of the

12-th iteration, all four eigenvalues

A1 = 0.16203
Az = 0.39851
Az = 0.39851
Ay = 0.63499

have been found: The convergence criterion here used a tolerance of 107" in the test
for declaring a sub-diagonal element to be zero. The computed direct residuals for all

converged eigenpairs were on the order of 107'°. The multiplicity of the eigenvalue

0.39851 is detected.

3.4 Inexact TRQ

If the cost of factoring A — ul is moderate, the rational restart of an Arnoldi factor-

ization via the TRQ update provides a clean and efficient way of obtaining accurate
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iteration 7 51 (2 B3 B4
1 0.18638 | 2.31 x 1072 2.18 x 10° 1.91 x 10° 1.58 x 10
2 0.16204 | 2.33 x 10~7 | 6.23 x 107! 1.84 x 10° 2.18 x 10°
3 0.16203 | 1.11 x 10~2" | 2.10 x 107! 1.36 x 10° 1.84 x 10
4 0.44417 0 7.92 %1072 | 1.27 x 107! 1.55 x 109
5 0.39857 0 1.36 x 107° | 3.83 x 1072 | 7.24 x 107!
6 0.39851 0 4.08 x 10717 | 1.36 x 10~ | 9.47 x 10~2
7 0.40410 0 0 1.34 x 1072 | 3.14 x 1072
8 0.39851 0 0 3.84 x 1078 | 4.24 x 1072
9 0.39851 0 0 8.58 x 10721 | 5.71 x 1072
10 0.63614 0 0 0 2.15 x 1073
11 0.63499 0 0 0 1.52 x 10710
12 0.63499 0 0 0 1.88 x 10728

Table 3.1 Convergence history of the 4
computed eigenvalues of a 2-D Laplacian.

approximations to interior and /or clustered eigenvalues. Otherwise, we must resort to
other means of solving the TRQ equation (3.14) or (3.17). A preconditioned iterative
solver is a natural candidate. In the following, we will present an algorithm based on
the idea of incorporating an iterative solver in the TR(Q) iteration, and analyze the

convergence of this method.

3.4.1 The Algorithm

We shall ask the question of whether the TRQ) iteration will still provide accurate
eigenvalue approximations if the accuracy of the solution to the TR equation is
relaxed. If convergence does occur in this inexact scheme, how fast can it be? To
address these questions, let us first examine the consequence of replacing the exact
solution vy of (3.14) with some approximation 0.

The vector v4 can be computed by applying an iterative solver to

(A —plhw = Vs, (3.21)
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for some s # 0, followed by
N H . U4
U4 — ([ — ‘/k‘/k )’U], U4 — M, (322)
Ut
as suggested by Lemma 3.4. We may also apply the solver directly to the projected
equation

(1 = ViV ) (A = ) (T = ViV = v, (3.23)

When g is near an eigenvalue of A, the linear system (3.21) is extremely ill-conditioned.
Solving it by an iterative method may be challenging. On the other hand, although
the projected system (3.23) is generally better conditioned, the matrix vector mul-
tiplication involved is more costly, and the construction of a preconditioner for the
projected matrix (I — ViV, (A — uI)(I — Vi V/T) is not straightforward.

In any case, one must provide an approximation v, such that
Vi'op =0 and [og]| =1
are satisfied. To continue the TRQ iteration, we shall compute h and « such that
(A—pul)oy = Vih + va (3.24)

holds. However, the following lemma indicates that it is generally difficult to find a

perfect match for (3.24).

Lemma 3.5 Suppose we solve (3.21) by a Krylov subspace method with

a zero starting vector and no preconditioner to obtain an approximation

w. If oy = (I — ViV )w # 0, then

(A = )iy & span{Ve, v},
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Proof Recall that V; and v are generated by an Arnoldi process. Thus, if we let

v1 be the first column of Vj, then
Vi = span{vy, Avy, A%vp, ..., A¥" 'y} and v € spanf{vy, Avy, A%y, ..., AFo ).
It follows that
Vis = p(A)vy, (3.25)

for some polynomial p()) of degree at most &k —1. Applying a Krylov subspace solver

to (3.21) yields an approximate solution
w = q(A)Vs,

where g()) is another polynomial associated with the Krylov linear solver. It follows
from (3.25) that w = q(A)p(A)vy. If we put (X) = q(A)p(}), it follows from our as-
sumption that the degree of ¢»(X) must be at least k for otherwise ¢(A)v, € span{V;},
and oy = (I — Vi ViH)w = 0. Now, let z = V(A — ul)w. Since V}, spans a k dimen-
sional Krylov subspace associated with A and vy, the vector V;z can be expressed

as

Viz = r{A)oy,
for some polynomial r(}) of degree at most k — 1. Hence,
(A—pl)oy = (A=ph)(I = ViV w
= (A—phw — (A= pl)Viz
= (A—pl)p(A)vy — (A= pl)r(A)v
= ¢(A)vr,

where ¢(A) = (A—p) {@/}(/\) —r(A)|, a polynomial of degree of at least k+1. Therefore,

we conclude that

vy & spanfvy, Avy, ..., Aoy} = span{Vj, v}.
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O

Consequently, the best one can hope for from (3.24) is a weak solution derived from
v <(A — D)oy — Vi — v&) =0 (3.26)
vH<(A — uD)oy — Vih — v&) =0 (3.27)
or equivalently,
h=VHAb,, and a=v(A—pul)o,.
Due to the error remaining in (3.24), the truncated Hessenberg reduction (3.19)

is now inexact. We can express this inexact reduction by

» Hk — ,u[k fNL T
(A - :LL[)(‘/ka U+) = (‘/kv U) /8 T + ZC€k11s (328)
k€L

Oq

where z is the residual error defined as

o>

z=(A—pul)oy — (Vi,v)

[of}

Recall from (3.26) and (3.27) that V2 = 0 and vz = 0. If we now proceed by
applying a sequence of Given’s rotations from the right to (3.28) to annihilate the

sub-diagonal elements of
H, — ply h
Brel a
the residual error will be mixed into all columns of Vj. Consequently, the updated
basis vectors are no longer valid Arnoldi vectors. However, as we will show in the

next section, the first column v of this updated basis satisfies
(A —pl)of = puvr + 26,

where ¢ is a product of sines associated with the aforementioned Given’s rotations.

This observation reveals that an approximate inverse iteration remains in this inexact
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TRQ update. The error associated with this inverse iteration is likely to be consider-
ably smaller than ||z|| due the factor . Therefore, a simple remedy for correcting the
contaminated Arnoldi basis is to recompute an Arnoldi factorization from the very
first column of the updated V;. An algorithm based on the above discussion is given

in Figure 3.5.

Algorithm 4: (ITRQ) Inexact TRQ iteration

Input: (A, ‘/k, Hk, fk) with A‘/k = ‘/ka + fkeg, ‘/kH‘/k = [,
Hj. is upper Hessenberg.
Output: (V;, Hy) such that AV, = VH,, VEVy = T and Hy is

upper triangular.

1. Put B = | full and put v = fi/ G
2. for j = 1,2,3, ... until converged,
2.1. Select a shift p + p;;
2.2. Solve (I — Vi V(A — ul)(I — Vi VP )w = v approximately;
2.3. w+ (I = Vi,V w, vy < w/||w|);
2.4. h « VI Av,, a+ vH(A—ply ;

Hk—ILL[k h a Ry r Qk q \.
2.5. RQ Factor ( ByeT o ) = < 0 ,O> < sl 5 )

2.6. vy Vngel +wvigfer;
2.7. (Hg,Vi,v,0:) < Arnoldi(A,vq, k);
3. end;

Figure 3.5 Inexact TRQ iteration.

3.4.2 Convergence Analysis

This section focuses on analyzing the convergence of this inexact TRQ scheme. In
particular, we are interested in understanding the tradeoff between the accuracy of

the solution to the TR() equation and the rate of convergence in TRQ). For a simple
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case in which Rayleigh quotient shifts are used throughout the TRQ) iteration, we
establish the linear convergence of the first Arnoldi basis vector to an eigenvector of
A. The convergence factor depends on ||dz]|, the magnitude of the damped residual
error in (3.28), and the gap between two consecutive eigenvalues sought.

To begin the analysis, let us assume that an inexact Hessenberg reduction (3.28)

has been obtained, and k — 1 rotations Q, Q¥ .....Q1 | each of the form

I 0

H Vi i 2

have been applied to (3.28) from the right to annihilate the sub-diagonal elements of
Hk — ,LL[k }NL
ﬁkeg a

The first two columns of the new matrix equation satisfy

0 n
(A= pl)(v1,02) = (v1,02) + (0, 26), (3.29)

€ p

where v, = (V4,0,)Q7QY ... QI e5, 6 = 0103+ 031 and ¢ = ||(A — pl)vy||. Now,

let
T =€+ p?, o= B, and v, = <
T T
. Ve Ok . .
Applying to (3.29) from the right yields
—0k Yk

—O0N YEN
0 T

(A - :u[)(vil—v ﬁ;) = (1)1, UQ) + (_Uka-z7 ’Yka-z)a (330)
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where v = yiv1 — 030y and 0 = opvy + YD,

The convergence of the inexact TRQ) iteration will be analyzed by examining the
norm of ry = (A — py v, where py = (vi) Avy. We define the damped residual
error v as

v=|6z|. (3.31)

The following lemma asserts that if the inexact TRQ is converging to an isolated eigen-
value of A, ry must satisfy ||ri|| < ¢ (u,v)||r||, where ¢(u, z) is uniformly bounded if

p is sufficiently close to an isolated eigenvalue of A, and if v is not too large.

Lemma 3.6 Let r = (A — pl)v; and ry = (A — pg)vy, where v; and
v are as defined in (3.30), and yu, puy are Rayleigh quotients of A with
respect to v; and v}, respectively. If A — pl is nonsingular, and g is

convergent to a simple eigenvalue of A. Then

lr I < &, )Irlls (3.32)

where the magnitude of the function 1» depends on p and the size of the
damped error v defined in (3.31). Let V = (Vj, Vn_k) be unitary, where
Vi consists of Arnoldi basis vectors generated by Step 2.7 in Algorithm 4.

A

Repartition V as V = (vy, V,,_1). Let
C =V AV, .y, and ¢=||(C—pl)7"|™".

If v < ¢, then

S [ /| T L L (3.33)

§2—V2 §2—V

where ¢ = ||(A — p)vy|| and 7 = v Av,.
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Proof For clarity, we drop the subscripts of 3, and 4 in the following. Note that

ry = (A—ppl)of
= (A—pl)vf + (4 — py)vf

= (oo + (4 — py vy + (—26)0. (3.34)
The last step of the derivation used the relation
(A — pl)vf = vi(—ow) — 60y 2,

which appears in the first column of (3.30). The distance between p; and p may be

estimated as follows:

py—po= (o) Aof —p
— () (A ot
= (o) (~onv — 260)
= (yv1 + oty) (—onvy — 260)

= —~on—olovllz. (3.35)

The last equality follows from the fact that vz = 0 and v, = 0.
We will transform r to VHr, before checking its norm. (Since VAV = I ||r,| =
IVHr,||.) Recall that V = (v, Vn_l). Put p = Vn}ilﬁz and 2 = anilz We will need

the following formulae to simplify the expression for Vr:

0
VEuE = VH(yu, — 0y) = ! , and V=
—op z
Since V;# 2z = 0 and vz = 0, the first k components of 2 are zeros. Clearly, ||Z|| = ||2]|-

Now, it follows from (3.34) and (3.35) that

VAr, = VH(A - py Dot
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= (—on)V7vi + (u = py ) Vo = (60)VHz

CH gl 0
= (—on)es + |yon + o (0¥ 2)6 —0c
_Up 5 A
1 —~2 0
= (—on) 7 + UZ(ﬁQHZ)& 7 -0
~Yop —op zZo
o? y 0
= (—on) + JQ(f)QHZ)& -0
~op —op zZo
It is easy to verify that ||p|]| = 1 since p = anilﬁg, anilvn_l = I,_; and 99, = 1.
Thus,
o? y 0
el = IVHrell = |l(=omn) +0%(852)6 -0 I
~Yop —op zo
< ofnl+ o?||z8 ]| + o|[25]) (3.36)
= 02|77| + ol + ov. (3.37)

Recall that o is generated to annihilate the sub-diagonal element of

which appears in (3.29). Now, since

i

/62 + p2

€
o] = < =] and el = ||,
p

we conclude that
o]l < ps 2)lIr |l

where
len| ey v

blpz) =+ o+
(k:2) pt Pt pl
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Clearly, the factor ¥ (y, z) can be bounded uniformly if v is not too large, and if
|p| can be bounded away from zero. Of course, one would not know the size of p until
k — 1 rotations )1, Q)2, ..., @x—1 have been applied. The following arguments provide
an a prior lower bound for |p|. It asserts that |p| can be bounded from below if v is

sufficiently small.

Recall from (3.30) that
(A pl)ot = w(—om) + (~026).

This is equivalent to

0
VEA —u)VVHF = VHy (—on) — o ,
Zo
or
0 Rt 0l —on
ee; C—pl —op —06Z ’
where h = vfl AVn_l. It follows that
Rfp = 7, and (3.38)
per —(C —ul)p = —o62. (3.39)

Since e¢I'2 = 0, it follows from (3.39) that

p

A v

gz

where z denotes the vector consisting of the last n — 2 components of z. The as-
sumption that p is convergent to a simple eigenvalue of A ensures that C' — ul is

nonsingular. Thus

p=(C—pny [ "

A v

oz
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A

Recall that p = V,,_105 has unit length. Therefore,

L=|lpll < I(C = pD)THIVe* + &7

z||?.

or

1
— <
(C = p)=H —

Clearly, to establish a lower bound on p, one must prevent v from getting too large.

p? + 12, (3.40)

Let ( = 1/||(C — pu)~!|. Tt follows from the assumption that v < ¢ and equation
(3.40) that

G-t < o ol > -
Consequently, we have

O P (B A — (3.41)

2o (22 Z— 12

O

Remark 1 As p becomes sufficiently close to the desired eigenvalue, we may ignore
the effect of the first two terms of (3.41), and focus on the dominating third term. It

easy to verify that if
<
V2

|t)(p, z)| can be strictly bounded by 1. Monotonic convergence can be expected in

v <

this case.

Remark 2 The above analysis is valid when the TR equation is solved exactly.
One recovers the quadratic (cubic if A is Hermitian) convergence rate of the Rayleigh
quotient iteration. To see this, we replace equations (3.34) and (3.35) with

re = (=om)y, and

iy —p = —yom
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and conclude from (3.37) that
Irll = [V ry|l = a®|n].

Since o = ¢/(€* + p?) and € = |||,

|77| 2 ‘77‘ 2
r = ———|7||” < |=|lr||”.
[ T ,o2H 17 < p 7]

It follows from (3.39) that pe; = (C — pl)p. Thus |p| is bounded below by 1/|/(C —

(3.42)

pI)7H|, and quadratic convergence follows from (3.42). When A is Hermitian, |n| =

|k p| < ||2|l|lpll = |e| = ||7||, and the cubic convergence rate follows.

Remark 3 We should point out that the bound given by (3.41) is not tight. This
is a consequence of using the triangular inequality in (3.36). Thus, in practice, the

requirement ||z]| < ¢ may be relaxed.

Remark 4 For Hermitian problems, ( is approximately the gap between the eigen-
value to which the inexact TRQ is converging to and the eigenvalue nearest it. This
can often be estimated by examining |y — fi|, where [i is the eigenvalue of Hy that is

nearest to p.

3.4.3 Numerical Examples

All computations shown in this section are performed in MATLAB on a SUN-Ultra2.
Two iterative solvers MINRES [55] and GMRES [76] are used in the following exam-
ples. Both solvers construct approximate solutions to a linear system from a Krylov
subspace. The MINRES algorithm is mainly used for solving symmetric indefinite
systems. Since it can be implemented by a short recurrence, only a few vectors

need to be stored. A k-step GMRES algorithm requires an orthogonal basis of a
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k-dimensional Krylov subspace to be saved. To reduce the storage cost, the GMRES
algorithm is often restarted using the approximate solution obtained in the previous
run as a starting guess. We will use the notation GMRES(k,m) to denote a k-step
GMRES with a maximum of m restarts. We set the convergence tolerance in both
solvers to be 107%. We will also use ITRQ(k,m) to denote an inexact TRQ iteration
in which & eigenpairs are to be computed and an m-step Arnoldi factorization is

maintained.

Example 1 - Linear Convergence

The validity of the analysis presented in Section 3.4.2 is verified by a simple numerical
example here. Again, we choose the familiar 100x 100 tridiagonal matrix with 2 on the
diagonal and —1 on the super and sub-diagonals as the test matrix. The gap between
the first two smallest eigenvalues is £ = 2.9 x 1073, To show the local convergence

rate, we choose the starting vector vy of the initial Arnoldi factorization to be
vo =21+ 0.01 - r,

where z; is the eigenvector corresponding to the smallest eigenvalue (A1) of A, and r
is a normally distributed random vector. We apply GMRES(10,5) to (3.23) to obtain
the vector 4 used in (3.24). The residual error associated with the equation (3.24)
and the first sub-diagonal element 3; of the tridiagonal matrix are displayed in Table
3.2. The (1,1)-entry of the matrix, denoted by oy, is also listed. As I'TRQ converges,
we expect to see @ — Ay, v1 = z1, and By = ||Avy — aqvq]| — 0.

We observe from column 4 that (; decreases monotonically in a linear fashion.
This is in agreement with the theory developed in Section 3.4.2 since the residual

error of (3.24) is less than the distance between the first two eigenvalues of A.
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iteration ‘ o ‘ IE| ‘ 34 ‘

1 3.0244 x 1073 - 7.8 x 1073
9.6750 x 1074 | 1.9 x 1073 | 7.3 x 107°
9.6742 x 107* | 2.5 x 1072 | 3.2 x 107
9.6744 x 107* | 5.7 x107™* | 1.5 x 1077
9.6744 x 1074 | 1.6 x 1073 | 6.7 x 107?
9.6744 x 107* [ 9.2 x 107* | 3.2 x 10710
9.6744 x 107* | 1.3 x 1073 | 1.6 x 10~

=1 O Ot = W N

Table 3.2 The convergence of inexact TRQ.

Example 2 - Compute Several Eigenvalues

The following example illustrates that one can use the inexact TR(Q) iteration to
compute more than one eigenpair. We also demonstrate that I'TRQ is superior to
the seemingly equivalent Inverse iteration with Wielandt Deflation [84] (INVWD.)
The matrix used in the example corresponds to a discretized linear operator used in
the stability analysis of the Brusselator wave model (BWM) [6]. Eigenvalues with
the largest real parts are of interest. They help to determine the existence of stable
periodic solutions to the Brusselator wave equation as a certain parameter varies.
The dimension of the matrix is 200 x 200. The 32 rightmost eigenvalues are plotted
in Figure 3.6. We place the target shift at o = 1.0, and use I'TRQ(4,5) to find 4
eigenvalues closest to o. The TRQ equation (3.23) is solved by GMRES(10,5). The
residual norm of each approximate eigenpair is plotted against the number of matrix
vector multiplications (MATVEC) in Figure 3.7.

It appears that the convergence of the four approximate eigenpairs occurs sequen-
tially, i.e., the residual of the 7+ 1st Ritz pair does not show significant decrease until
the j-th eigenpair has been found. Since we have shown in Section 3.4.2 that an ap-

proximate inverse iteration occurs in the inexact TRQ) iteration, it will be interesting
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Figure 3.6 The 32 rightmost eigenvalues of a 200 x 200 BWM matrix.
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Figure 3.7 The convergence history of ITRQ.
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to compare the performance of ITRQ with an accelerated inverse iteration combined
with Schur-Wielandt deflation [75, pp. 117]. The INVWD algorithm computes one
eigenpair at a time by an approximate inverse iteration in which the linear system
(A — pul)w = v is solved by an iterative method. Instead of continuing the inverse
iteration with

vH Av

P d pu=
S el T

we compute an Arnoldi factorization using w as the starting vector, and choose (p, v)
from the Ritz pairs associated with this factorization. This approach can also be
viewed as a sequence of restarted Arnoldi iterations in which the starting vector
is repeatedly enhanced by an approximate inverse iteration. Once some eigenpairs
have converged, we may apply Schur-Wielandt deflation [75, pp. 117] to expose the
subsequent eigenpairs. The detail of the algorithm is presented in Figure 3.8. Unlike
ITRQ, INVWD must solve (A—pl)w = v. Moreover, since there is no error damping,
the equation must be solved rather accurately to guarantee the convergence of the
inverse iteration. In this example, we use GMRES(20,5). To make a fair comparison,
we use a H-step Arnoldi factorization to accelerate the inverse iteration. We observe
from Figure 3.7 that, the residual curve corresponding to INVWD (dotted curve)

remains zigzag around 1.0 and never shows significant decrease.

Example 3 - The Effect of Preconditioning

The previous two examples were presented merely to illustrate that it is possible to
combine an iterative solver with the TRQ iteration. We should point out that in
practice both problems can be solved with an exact TRQ or a shifted and inverted
Arnoldi iteration (to be discussed in the next section,) because the matrices involved

in both examples can be efficiently factored.
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(INVWD) A Schur-Wielandt Deflated Inverse Iteration

Input: (A, p, v, U) such that (p,v) is the current approximation to
the desired eigenpair, and columns of U contain the converged
Schur vectors.
Output: A new approximate eigenpair (p4, v4) that may be used in the
next cycle of an inverse iteration.

Solve (A — ,LL[)UJ
« (I-vUH )w, v/l

f — Av; a = vHw;

Hl—(); = (v); f < [ —va

[ (1= U0y,

for j =1,2,....k

6.1. 3; = || fIl; vis1 < [/Bjs;
I
I}

6.3. z « Avji1; 2 ([— UUH)Z;

6.4. h + V]Hz; Hjt = (Hj, h);

6.5. [« z—Vih;

. end;

Compute an desired Ritz pair (y4,v4) from Hy and Vj to be used in the

next cycle of an inverse iteration.

S Ok WN

0 =

Figure 3.8 Schur-Wielandt Deflated Inverse Iteration.
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As we mentioned before, the inexact TRQ is ideal for problems in which matrix
factorization is prohibitively expensive. The following example carries this charac-
teristic. We will show that with the help of a good preconditioner the speed of
convergence of ITRQ can be drastically improved. The matrix used here arises from
a reactive scattering calculation [59]. Its sparsity pattern is shown in Figure 3.9.

Although the matrix itself has only 6% non-zero elements, a sparse matrix factoriza-

Figure 3.9 The sparsity pattern of the reactive scattering matrix.

tion tends to fill almost the entire matrix with non-zeros, regardless of the ordering
scheme used.

In this application, eigenvalues near zero are of interest. For clarity, we only show
the convergence of the first eigenvalue. The convergence pattern for other eigenvalues
is similar to this one. The solid curve in Figure 3.10 corresponds to the residual norm
of the Ritz pair obtained from running a preconditioned ITRQ(4,5). The equation
(3.21) is solved by MINRES. The preconditioner used here is a matrix consisting of the

dense diagonal blocks of the original matrix. Without a preconditioner, ITRQ(4,5)
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performs equally well at the beginning of the iteration. As the Ritz value approaches
the desired eigenvalue, the linear equation (3.21) becomes extremely difficult to solve.
This explains the zig-zag behavior of its residual curve (dashed curve). We also plot-
ted, in Figure 3.10, the residual of the Ritz approximation obtained from IRA(1,29)

(dotted line.) We observe that IRA converges at a much slower rate in this case.

T
——  preconditioned
—-— - no precondition
IRL B
E
=}
[=4
= 4
=3
]
73
o
/\/\/\VAV/\\/\/ \\\\\\\\\
10’8 | | | | | | |
0 1 2 3 4 5 6 7 8
flops x 10

Figure 3.10 Comparison of (preconditioned) I'TRQ with TRA.
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Chapter 4

Spectral Transformation

In this chapter, we consider using spectral transformation to improve the convergence
of the Arnoldi method. Recall that spectral transformation refers to the technique
of applying the Arnoldi method to t(A), where () is some simple function. The
purpose of this transformation is to convert the interior and clustered eigenvalues of A
to the dominant and well separated eigenvalues of ¢»(A). The spectral transformation

considered in this chapter is the classical one:

where o is a target shift. The corresponding Arnoldi(Lanczos) iteration is often re-
ferred to as a shifted and inverted Arnoldi(Lanczos). Other possibilities are the poly-
nomial transformations to be discussed in the next chapter and the Cayley transform
proposed in [46].

Spectral transformation is also a powerful tool for solving the generalized eigen-

value problem

Kr =AMz,

in which K or M may be singular. The problem is often transformed into

1
A—o

z

(K — O'M)_lMZL' =

before the Arnoldi or Lanczos algorithm is applied. In the first part of this chapter,
we will discuss the practical aspect of the shifted and inverted Lanczos iteration. In
particular, we will focus on problems in which a large number of eigenvalues are of

interest. This is often solved by concatenating several Lanczos runs, each responsible
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for acquiring a subset of the desired spectrum, in an efficient manner. (See the flow
chart in Figure 4.) We provide some heuristics for minimizing the total cost associated
with this technique.

A variation of the shifted and inverted Lanczos iteration is the Rational Krylov
Subspace (RKS) method proposed by Ruhe [66]. The method is also suitable for
applications in which eigenvalues within a wide range must be computed. Properties

of this method will be studied in Section 4.2.

4.1 A Practical Use of the Shifted and Inverted Lanczos

For convenience, we will consider only the symmetric generalized eigenvalue problem
in this section. When a few eigenvalues of the matrix pencil (K, M) are of interest,
the shifted and inverted Lanczos is often the most effective way of solving the problem
assuming one can factor the matrix K — oM efficiently. It is reported in [84] that a
shifted and inverted IRL outperforms the TRQ iteration with a fixed shift. However,
for many applications such as structure analysis [27], it is often desirable to obtain
a large number of eigenvalues within a certain frequency interval, say [w;,ws|. The
frequencies of interest can vary, for example, from 1072 to 10*. A shifted and inverted
Lanczos run with a single-shift often does not provide the efficiency and robustness
essential to a large-scale simulation. This is due to the fact that eigenvalues far
away from the target shift tend to converge slowly. (See Figure 4.2.) To capture
all desired eigenvalues within a single Lanczos run, one must project the shifted and
inverted operator (K — ocM)™'M into a Krylov subspace of large dimension. As a
consequence, the cost for maintaining orthogonality and the Ritz calculation increases
significantly. Performance improvements can be made if we replace a single Lanczos
run with multiple runs. Each run uses its own shift to find a subset of the desired

spectrum. The termination of one particular run is issued when all eigenvalues within
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Figure 4.2 Effect of spectral transformation ¢ () = .

a pre-specified subset of the spectrum have converged, or when the cost of continuing
exceeds that of starting a new run with a better shift. (See Figure 4.3.)

Some care must be exercised to ensure that the union of computed subsets coin-
cides with the portion of the spectrum of interest. With multiple matrix factoriza-
tions, this can be achieved using a few inertia counts [27]. We will say more on this
topic in connection with the choice of the target shifts in Section 4.1.3.

Another important question to keep in mind is the orthogonality between the
eigenvectors computed from different runs. When the eigenvalues are well-separated
or when the eigenvectors are computed to high accuracy, this is usually not a big
concern. This is because eigenvalues nearest to the target usually converge faster than
those that are far away. However, if the eigenvalues to be computed are clustered,
one should pay special attention to maintaining orthogonality between eigenvectors

computed from different Lanczos runs to avoid missing multiple eigenvalues.
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Figure 4.3 Split the spectrum of interest into several subsets and combine
several Lanczos runs with different target shifts to capture all desired
eigenvalues.

Although the advantage of introducing multiple target shifts is apparent from the
standpoint of improving the convergence rate and reducing the cost of maintaining
orthogonality, these shifts carry an additional factorization cost that must be ac-
counted for in the evaluation of the overall computational performance. One must
be very careful in deciding when to replace the current run with a new run. A good
criterion should have the effect of globally minimizing the average cost for computing

one eigenpair.

4.1.1 The Boeing Heuristics

In [27], heuristics are developed to help determine when to terminate the current
shifted and inverted Lanczos run, and to begin a new run. The main goal is to

minimize the average cost for computing one eigenpair. Towards this end, one must:
1. carefully evaluate the total cost associated with a k-step Lanczos process; and

2. accurately predict the number of eigenvalues that would emerge if the Lanczos

process were continued.

The total cost of the Boeing Lanczos code depends on several factors shown in Table
4.1. (These factors are evaluated solely in term of the number of Lanczos steps.)

Since each factor is a function of &k, the number of Lanczos steps executed, one may
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‘ operation ‘ cost ‘
Ritz calculation O(k?)
Gram-Schmidt orthogonalization | O(k?)
selective reorthogonalization O(k?)
back solve O(k)
matrix vector multiplications O(k)
matrix factorization O(1)

Table 4.1 Components of the cost function
associated with a k-step Lanczos run.

express the total cost as
C(]C) = Oéokg + Oélkz + Oégk + as,

and find the coefficients {a;}?_, by constructing a least square fit to the CPU timing
collected at previous Lanczos steps. The constructed C'(k) is evaluated at the next
few k values to predict the future cost of the Lanczos run.

In the meantime, one must also keep track of the number of converged eigenvalues
and predict the ones that are likely to converge if the current Lanczos factorization is
extended. The Boeing code assumes that Ritz values converge in a linear fashion at
a rate 4. This convergence rate is estimated by taking a weighted geometric average
of the change in accuracy of the first unconverged Ritz value over the previous five
steps [27].

Intuitively, the average cost function

number of eigenvalues predicted to converge

should have a minimum. At the beginning of the Lanczos run, factoring K — oM
constitutes a major component of C'(k). However, since this is a one-time cost, it

can be amortized over several rapidly converging eigenvalues near the target shift.
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Therefore, the average cost tends to decrease at the beginning. After the ‘nearby’
eigenvalues have converged, the convergence rate of the subsequent eigenvalues starts
to deteriorate, and the effort required to maintain orthogonality begins to dominate
the computation, causing C’(k) to increase. The Boeing code stops a Lanczos run

when the minimum of C’(k‘) is detected.

4.1.2 Adding Heuristics to IRL

Similar ideas can be adopted in IRL to make it suitable for computing a large number
of eigenvalues within a specified interval. Instead of detecting the local minimum of
the cost curve within a single Lanczos run, we developed a slightly different strategy
to minimize the overall computational cost.

Recall that the IRL algorithm presented in Chapter 2 starts with a (k + p)-step
Lanczos factorization:

AViyp = Vipp Hpgp + fk+pe£+p'

If the number of converged Ritz values at this point is less than k, we apply p implicitly
shifted QR updates using p “unwanted” Ritz values as shifts. This step is often

expressed by

A<Vk+ka+p) = (Vk+ka+p> <Q£I+ka+ka+p> + Fitp sy @itps

where ()14, 1s a product of orthogonal transformations used in the implicitly shifted
QR bulge chase. Note that the term “shift” used here is not to be confused with
the target shift o used in the spectral transformation. Upon the completion of the
implicit QR updates, we have a new Lanczos factorization of length k. To complete
an IRL cycle, we extend the new factorization to a length & 4 p factorization by

performing p additional Gram-Schmidt operations to obtain

+ _y+ g+ + T
Avk+p - Vk+ka+p + fk+pek+p'
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To make IRL cost effective for the task of computing a large number of eigenvalues
within some specified interval, we must modify the basic iteration slightly. In the
following, we assume that eigenvalues within the interval [wy,w;] are computed from
left to right. After the initial target shift (usually o7 = w;) has been selected, we
construct a length £+ p Lanczos factorization. If the number of converged eigenvalues
is less than & , an implicit restart is always carried out. The computation performed
above will be referred to as the initial calculation in the following discussion. No cost
analysis is performed during the initial calculation. Our experiments show that the
initial calculation often captures quite a few eigenvalues. This is mainly because the
distance between oy and the first few eigenvalues within the [w;,ws] is typically very
small, hence the spectral transformation is very effective.

We should point out that in many applications, the maximum size of the Lanczos
factorization (m = k + p) is typically set based on the amount of memory available
on the user’s computer system. We initially set the number of desired eigenvalues
in each run (k) to m/2. This value is adjusted as IRL proceeds. When convergence
takes place rapidly, we increase the value of k.

Unlike the standard IRL iteration which can only be terminated after a complete
restarting cycle, the modified iteration can be stopped at any point after the initial

calculation. In particular, we shall exit the current IRL when the cost analysis shows

that

e the convergence rate becomes slow, and the average cost for extending the

current Lanczos factorization exceeds that for starting a new IRL run, or

e the polynomial filtering corresponding to the implicit QR update is not making

enough progress, and average cost associated with implicit restart becomes so
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high that it is better off to switch to another target shift and to begin a new
IRL run.

We introduce the following notation for cost analysis:
T. Elapsed time since the beginning of the computation.
T, CPU time required to carry out the next action.
n. The number of converged eigenvalues.
n, The number of eigenvalues predicted to converge.

The main task in the analysis is to estimate the average computational cost asso-

ciated with various actions to be taken. The estimation relies on the simple formula:

L+,

ne + n,

C (4.1)

The decision of whether to continue the current IRL or to start a new run is made in
favor of the action that will yield the least C' value.

In our code, each IRL run will carry out at least £ Lanczos iterations. In addition
to providing the approximations to the desired eigenvalues, the initial calculation also
estimates the cost of various computational components within IRL. In particular, we
collect the CPU timing at the j-th step of the Lanczos process for j = £, (41, ..., k+p,

and find a least square fit to the measured data using a quadratic model:
LJ‘ = a0j2 + Oél,j + 3. (42)

In our numerical experiments we choose ¢ = 10. This approach is different from the
cubic model used in the Boeing heuristics. The cubic term which corresponds to
the Ritz vector calculation is not included here because in IRL the Ritz vectors are

computed after the IRL is terminated.
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Once the coefficients «;’s in (4.2) are determined, we estimate the CPU time
required to extend a length j Lanczos factorization to a length j+4 1 factorization, for

g=L0L+1,...,k+p—1,ie., we compute
Ajpr = Ljpa — Lj.

These values will be used in place of T,, to determine the average cost of extending
the Lanczos factorization. For a similar reason, the CPU time required to carry out
the implicit restart is also measured during the initial calculation.

For cost analysis purposes, our heuristic assumes subsequent IRL runs will always
start with a & + p Lanczos factorization. This is not necessarily true in the actual
computation. (One may terminate the subsequent IRL before a length k& + p Lanczos
factorization is constructed.) Our assumption is made to set a value of T}, associated
with a new IRL run. Based on this assumption 7}, is taken to be Lj4,.

Throughout the computation we will always keep track of the number of converged
eigenvalues n. and the total elapsed time .. Therefore, the only missing piece in (4.1)
is n,, the number of eigenvalues predicted to converge. The estimation of n, is the
most difficult and critical part of the cost analysis.

To predict the number of eigenvalues that will emerge in a new IRL run, we need to
compute a convergence radius during the initial calculation. The convergence radius
R is defined as:

R=X,— o4,

where oy is the initial target shift and A,, is the converged eigenvalue furthest away
from ;. Suppose we have selected a candidate for the next target shift & using the
strategy to be discussed in Section 4.1.3, a reasonable estimate of n, can be obtained

by counting the number of unconverged Ritz values (6’s) that satisfy

1
‘5+a—&‘<3.
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The convergence radius is updated in subsequent IRL runs if the distance between
a target shift and the largest eigenvalue obtained by the first k& + p steps of the
corresponding IRL exceeds the previous R.

Our heuristics for predicting the number of eigenvalues to converge during the
next step of the current IRL is based solely on the Ritz estimates. Recall that for a
J-step Lanczos process, a Ritz estimate associated with a Ritz pair (6, z) is defined

as
T
e = ||filllej l,
where f; is the residual vector associated with the Lanczos factorization currently

available, and y is an eigenvector of H; corresponding to the Ritz value §. We predict

0 to converge in the next step of IRL if

o

}7

e < 67" max{|0|, (machine epsilon)

where 7 is the convergence tolerance set by the user,

if the next step is an implicit restart
")/ =

AW N

if the next step is an extension of the Lanczos factorization

and 4 is a penalty factor initialized to 1. Since the choice of v is purely heuristic,
the above prediction could be incorrect. The penalty factor ¢ is used to correct an
erroneous prediction. It is increased when under-prediction occurs and decreased

when over-prediction is detected.

4.1.3 How to Choose the Target Shift

The choice of target shifts plays an important role in combining several Lanczos runs
together. We want to choose shifts that will yield effective spectral transformations.
The effectiveness of a spectral transformation is measured by the number of eigenval-

ues that emerge in the corresponding shifted and inverted Lanczos.
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In our modified IRL, eigenvalues are computed from left to right, that is to say,
in each TRL we filter out eigenvalues to the left of the target shift ¢ and compute
only the ones that are greater than o. This approach makes our target shift selection
strategy much simpler than the ones presented in [27]. The basic idea is to place
the target shift between the rightmost converged eigenvalue A, and the leftmost Ritz

value # that has not converged. Figure 4.4 illustrates the position of o.

converged 9 not converged

11 N A TR l TRTRTETIN A )
0 A Ar 0

Figure 4.4 The location of the next target shift.

The disadvantage of this approach is that we are only keeping approximately half
of the eigenvalues that would emerge rapidly from a shifted and inverted Lanczos. A
more efficient strategy is to place the shift further to the right so that eigenvalues

from both sides of o can be captured at the same time. (See Figure 4.5.) However, to

converged not converged
! I T A A T N TR B M .
0 Al Ar 0 T A
o

Figure 4.5 Another way of choosing the next target shift.

avoid recomputing the eigenvalues that have converged, one must use either deflation
or implicit shifting to remove the contribution of the converged eigenvalue from the
next IRL run. A more severe difficulty arises when the target shift is placed too far
to the right. If the next IRL is not able to capture all remaining eigenvalues between

the current and the previous shifts, an extra IRL run must be used to find the missing



83

ones. This is the main reason that we choose to use the conservative, but simpler
scheme of putting o adjacent to A,.

If there is large gap between A\, and 6, we try to place the target shift closer to 8 to
make the spectral transformation more effective. To be more specific, we determine

o from the formula
wl)\r + ’Ujge

wy + wa

g =

where w; and w, are some weights. In our experiments, we choose wy = 1 and wy = 5.
This is merely a heuristic. Other combinations of w; and w, are possible.
It is possible that the unconverged Ritz values interlace with the converged ones

as shown in Figure 4.6. In this case, we set ¢ = 6, the leftmost unconverged Ritz

converged

N R N T TR TR AR T A
0 M T/\T A
oc=20

Figure 4.6 Ritz values interlace with converged eigenvalues.

Y

value. Since we do not want to recompute the converged eigenvalues larger than o,
deflation must be used in the next IRL run. That is, we apply IRL to the projected
matrix

(I - 272" K —oM)™"M(I — 2Z"),

where 7 is a matrix consisting of eigenvectors corresponding to the the converged
eigenvalues to the right of . These eigenvectors normally reside on the secondary
storage device (disk), and must be read into the fast memory before deflation can
take place.

If the gap between A, and € is extremely small, the last few converged eigenvalues

are likely to be in a tight cluster. To avoid missing eigenvalues within the cluster,
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we place the shift between the last two converged eigenvalues. This is illustrated in

Figure 4.7. Again, deflation is necessary to remove A, from the next IRL run.

converged not converged

I L YT R T A R
A T/\,, A

g

Y

Figure 4.7 Place the target shift between the last two converged
eigenvalues to avoid missing clustered eigenvalues.

If the cost analysis indicates that it is time to start a new IRL run, we choose a
target shift using the above strategy. We can determine from the Cholesky factoriza-
tion

K—oM=LDLT,

the number of eigenvalues to the left of ¢ by simply counting the negative entries
in the diagonal matrix D. This is often referred to as an inertia count. The inertia
count can be used to verify that there is no eigenvalue missing during the previous
computation. If the number of converged eigenvalue is less than the inertia count, it
is clear that some eigenvalues to the left of ¢ have not been captured. Again, this
typically occurs where some eigenvalues are tightly clustered. These eigenvalues tend
to converge at a slower rate than other eigenvalues including the ones to the right.
When this situation occurs we move o back (towards the left.) This will cost an
additional matrix factorization. An alternative is to change the shifting strategy in
IRL to allow eigenvalues from both sides ¢ to be computed. However, this approach

requires one to deflate all eigenvectors that have been computed, which is also costly.
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4.1.4 Numerical Experiment

In the following, we present an example of combining several IRL runs to extract
the lowest 100 eigenvalues of a vibration model for an ore car. The matrix pair
BCSSTKI11 and BCSSTM11 used are taken from the Harwell-Boeing matrix collection
[17]. The order of these matrices is n = 1473. Eigenvalues of interest lie between
w; = 10.5 and w; = 1.7142 x 10*. The computation is performed on a Silicon
Graphics Power Challenge (R8000) machine in double precision. A tight convergence
tolerance tol = 1.07'° was used.

We will refer to an IRL run with a fixed target shift and a large & + p value
as a single-shift IRL run. In this problem, a single-shift Lanczos run must project
(K —oM)™"M into a Krylov subspace of dimension at least 100 in order to capture
all desired eigenvalues. In ARPACK, this amounts to allocating at least 1473 x 101 X
8 = 1.2 mega bytes for the Lanczos vectors in addition to the storage required for
matrix factorization and other internal work space (25k bytes) needed to carry out
the Lanczos iteration. With multiple target shifts, not only can the storage be saved,
the amount of computational time can be reduced as well.

Table 4.2 compares the performance of a single-shift IRL run with that of con-
catenating several IRL runs with different target shifts. In the single-shift run, we
set k+ p = 120 and p = 20. In the test that allows multiple target shifts, we use
k+p =60 and £ = 40. We observe that the multiple-shift run outperformed the
single-shift run in CPU time by 15%. The multiple-shift run is also designed to take
full advantage large memory space if available. Thus, a large k& + p value will usually
result in less CPU time as indicated in Figure 4.8.

Table 4.3 gives a detailed account of the shifting process that went on during the

entire computation. The leftmost column shows the target shifts used in the compu-



NCV | CPU time (seconds)
single-shift 120 15.2
multiple-shift | 60 13.0

Table 4.2 Comparison of the single-shift
ARPACK run with the multiple-shift variant.

13

12,5 - i

12 - -

CPU time
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11 - S
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Figure 4.8 Increasing the dimension of the Krylov subspace (k + p) lowers
the overall computational cost of the multi-shift Lanczos driver.
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tation. Each shift is associated with a shifted and inverted IRL run consisting of a
number of implicit restarts. To make this example easier to understand, we did not
allow IRL to terminate before a restarting cycle was completed. The number of Ritz
values predicted to converge (column 3) is compared to the number of eigenvalues ac-
tually converged (column 4) in each restart to illustrate the accuracy of our prediction
scheme. Column 5 lists the estimated average cost associated with either a restart
or a new IRL run. The actual cost are shown in Column 6 It is easy to see that the
discrepency between the last two columns is small indicating that our cost analysis

model is quite effective. Since we have limited the dimension of the Krylov subspace

shift restart predicted | actual
number Npredict | Neonverged cost cost

0.0 1 - 24 - 0.056

2 6 6 0.062 0.051

3 2 2 0.060 0.063

4 9 7 0.061 0.061

5 7 1 0.061 0.068

5.1 x 103 1 6 8 0.085 0.087
2 8 1 0.087 0.092

3 3 1 0.098 0.097

4 2 2 0.104 0.100

8.9 x 10° 1 5 9 0.114 0.106
2 9 0 0.103 0.113

3 5 2 0.112 0.114

1.2 x 10* 1 8 8 0.117 0.119
2 8 0 0.117 0.125

1.5 x 10* 1 11 6 0.123 0.133
1.6 x 10* 1 16 10 0.126 0.133
1.7 x 10* 1 13 12 0.131 0.130

Table 4.3 Detailed view of the multi-shift Lanczos process

to k + p = 60. The cost of orthogonalization constitutes only 10% of the total cost.

(See Table 4.4.) This is in sharp constrast with the Boeing sparse eigenvalue solver
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in which the cost of reorthogonalization constitutes 30% of the total cost in general

[27].
‘ operation percent
factorization 29
back solve 41

matrix vector multiplication

eigenvector calculation

reorthogonalization

QR update

4
7
Gram-Schmidt orthogonalization 8
5
6

Table 4.4 Percentage of CPU time spent in
various parts of the computation.

Although the basic idea of spectral transformation is simple. Developing an op-
timal strategy for combining several shift-invert Lanczos runs to achieve the goal of
obtaining a large number of desired eigenvalues within a specific interval is a challeng-
ing task. The design and implementation of the shifting strategy described above is
still preliminary. Further experiments are necessary to refine the cost analysis model
presented earlier.

An alternative to combing several shift-invert Lanczos processes together is to
vary the shift within a single Lanczos run. In this case, the matrix pencil is projected

into a subspace § that can be described as
§ = {wy,wy,...,wy}, where w;y; = (K —o0;) ' Mw;.

Since & is not a Krylov subspace, the algorithm associated with this construction is
not really a standard Lanczos algorithm. This algorithm is first proposed by Ruhe
[66] and is named the Rational Krylov Sequence method. In the next section, we will

present this algorithm for completeness.
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4.2 The Rational Krylov Method

The need for computing several eigenvalues within a large interval (or a large region
within the complex plane) gives motivation to the development of the Rational Krylov
Sequence (RKS) method of Ruhe [66, 68, 67]. The RKS method can also be used as
a tool to construct a reduced order model for a large scale single input single output
(SISO) linear (control) system [25].

Given a sequence of shifts ;, the RKS method mimics the shift-invert Arnoldi

iteration by generating an orthonormal basis of a Rational Krylov Subspace
8§ = {wi,wy, ..., w}, where wjy = (K —a;M)™ Mw;. (4.3)

Each new basis vector is generated by applying (K —o;M)~' M to alinear combination
of several previously generated basis vectors and orthonormalizing the result against
all previous basis vectors. To avoid slow convergence caused by eigenvalues far away
from the initial target, the shift o; used in a RKS iteration is allowed to change
from step to step. To see the consequence of this change, let us examine algebraic
properties these basis vectors must satisfy.

Suppose an orthonormal basis V; € C**/ for a j-dimensional rational Krylov

subspace is available. To generate the next basis vector v;;, one performs
fi & (I=V;VI)(K —o;M)™ M(Vit));
Bi = Al
vit1 < [i/Bi,
where the vector ¢; € 7! can be chosen arbitrarily. If we put
hi = V(K — o M) M(Vity),
it follows from above that

KVihj + Kvip 8 = M(Vjt;) + o, MVih; + o;Mvjy.
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The cumulative result of this procedure can be described by the following matrix

equation
KVigi Hipy = MV Gy, (4.4)
where
h; ohi +1;
lﬁlj+1€i =| 5 and CA?]'HeZ' = Bio;
0 0

The details of the algorithm are given in Figure 4.9.

(RKS) Rational Krylov Sequence Iteration

Input: (A,v;) such that [[v|| = 1. ) )
Output: (Viy1, Hi, Gi) such that AVp Hy = ‘/k+1Gk7‘/I£|I-1‘/k+1 = 1.

1. Choose #; = €] R

2. Vi < (n); Ho=(); Go = ();

3. forj = 1,273,...,]{?.
3.1. Choose a shift u;;
3.2, fiy1 (A - ,f‘j[)_l(yjtﬂ;
3.3. hj « V[ Hj « (H;_1, hy);
3.4. g; + hjp; +15; G+ (G, g5);
3.5. fix1 ¢ fivr = Vil B = || fiall;

. H. A G
3.6. H, « )G ! ;
! ( Bier ) ! ( 1 0;€; )

8.7. vi1 < fi1/Bis Vier < (Vi vjn);
3.8. Choose a vector t;41;
4. end

Figure 4.9 Rational Krylov Sequence Iteration.

There are several possible ways to extract approximate eigenvalues and eigenvec-

tors from the rational Krylov subspace. The original scheme proposed by Ruhe is to



91

compute the generalized eigenpairs of the pencil (H;,G;), where H; and (; consist
of the first j rows of ]ﬁ[j+1 and Gj-i—l respectively. An alternative method suggested
in [39] is to put an approximate eigenvector in the form z = V44 ]:]jsj and to invoke

the Galerkin criterion:
(Vigr ) (M—le . 02) ~0.
Using (4.4), the left hand side of the above equation can be further simplified by

(Vg Hy)" (M_IKVJ‘HEESJ' - 9Vj+1ﬁ181> = "Vl (‘GH@S;‘ —9Vj+1ﬁ13]‘)

a AHA44 AHAll

If
[:]f[[:[jsj = Hﬁj@jsj,

6 is said to be a Ritz value and z = Vj+1[:]j3j is said to be a Ritz vector associated
with the rational Krylov subspace generated. Note that the rational Krylov subspace
S is completely different from the standard Krylov subspace. Its connection with the
Jacobi-Davidson method (to be described in Chapter 6) has been exploited in [69, 39].

Many practical issues are yet to be resolved to make the RKS method reliable and
efficient. For example, it is suggested in [69] that one should use the same shift for
several steps to reduce the factorization cost. However, no heuristic is available to help
decide when to use a new shift. The cost of orthogonalization becomes a significant
part of the computational expense when the rational Krylov subspace becomes large.
Some purging and restart mechanisms have been proposed in [69]. The main idea is to
remove the converged Schur vectors from the rational Krylov subspace and work with

only those vectors that contribute to the calculation of unconverged eigenvalues.
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Chapter 5

Polynomial Spectral Transformation

Although applying the Arnoldi/Lanczos method to (A—pl)~" can be extremely help-
ful for finding the interior eigenvalues of A, one must factor the matrix A — p/ and
solve linear systems directly. When the direct methods for solving the linear sys-
tem become prohibitively expensive, one may consider combining an iterative solver
with the TRQ or the Jacobi-Davidson method (to be discussed in the next chapter)
to tackle the interior eigenvalue problem. In general, both the inexact TR and
Jacobi-Davidson method require good preconditioners to be effective. When these
preconditioners are not available, convergence is often difficult to predict.

Another factorization free alternative is to replace (A — ul)~! with p(A) where
p(A) is a low degree polynomial that retains the spectral enhancing property of the
rational function \%ﬂ

The idea of using polynomial transformations to accelerate the Lanczos type of
algorithm is not new. In fact, Stiefel proposed using Kernel polynomials to accelerate
the calculation of interior eigenvalues in 1953 [85]. Since then, a large amount of work
has been done on constructing polynomial preconditioners for conjugate-gradient-like
iterative solvers [32, 72, 74, 3, 4, 18]. Although these polynomials are used in a
different context, the underlying design principle remains the same.

The main advantages of a polynomial transformation are its simplicity and flexi-
bility. Only matrix-vector multiplications are required to carry out the transforma-
tion. It is especially suitable for vector and/or parallel machines if the matrix-vector
multiplication can be easily vectorized or parallelized. It is also ideal for machines

on which inner product calculation is a bottleneck. This is because the accelerated
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Lanczos typically converges in fewer steps, and thus computes fewer inner products
than the one not being accelerated.

In this Chapter, we will focus on symmetric eigenvalue problems and investigate
various types of polynomial transformations. The presentation will begin with a re-
view of some simple polynomials that can be written in closed form. A well known
example is the Chebyshev polynomial. We then focus on using minmaz and least
squares techniques directly to construct polynomial approximation to the “ideal”
transformation function % These polynomials are very helpful in finding the smallest
eigenvalues of a positive definite matrix. For interior eigenvalue calculation, a poly-
nomial that has a spike near some target shift p is often desirable. These polynomials
can be built by fixing the magnitude of p(¢) and minimizing p(A) over an interval
that encloses the spectrum of A. Again, this can be done using the tools of minmax

or least squares approximation.

5.1 Chebyshev and Kernel polynomials

In this section, we consider the prototype problem of computing a few of the smallest
eigenvalues of a positive definite matrix A. This problem is important in a num-
ber of applications [59]. For convenience, we assume that the matrix A has been
scaled so that its largest eigenvalue is A, = 1. Consequently, the difficulty of the
eigenvalue problem is indicated by the magnitude of the smallest eigenvalues and gap
between them. A well known acceleration scheme is based on a polynomial spectral
transformation of the form

oz—l—ﬁ—QA)7

CnlXi0,8) = T (=
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where T,,(}) is the standard Chebyshev polynomial defined as

cos(mcos™ (X)), |Al <1

Tn() =
cosh(mcosh™' (X)), |A| >1

or recursively as

Tou(N) = 20Tt (A) — Tuea (M),

with To(A) =1 and T1(X) = A

Since the polynomial C,,(\; e, 3) is bounded within [a, 3] and increases rapidly
outside of this region, applying the Lanczos algorithm to C,,(}; o, 3) attenuates the
contribution of the unwanted eigencomponents to the subspace spanned by Vj. (See
Figure 5.1.) Ideally, one should choose @ and 3 so that the interval [«, 5] encloses
most of unwanted eigenvalues of A. However, in practice, optimal a and 3 are not
known a priori since they depend on the spectrum of A. These parameters must
be determined adaptively as more information is gathered about the spectrum of A.
The parameter 3 can often be computed by applying the Lanczos algorithm to A
directly, which returns a good approximation to the largest eigenvalue of A in a few
iterations. There are several ways to estimate a. One could certainly choose it to
be Or41, the k + 1st Ritz value obtained in an f-step (¢ > k) Lanczos run (without
spectral transformation.) However, this simple scheme may not work well if 851, is
too close to other Ritz values, or if 851 is a poor approximation to an eigenvalue.

An alternative way to obtain « is to set
Co(w;a, B) = A,

where w is a lower bound of the spectrum (for example, w = 0,) and A is a large

number (for example, A = 10.0.) The value of a can be determined by solving (5.1).
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Figure 5.1 The solid curve corresponds to a 10-th degree Chebyshev
polynomial with & = 0.02 and § = 1. The dash-dot curve corresponds to a
10-th degree polynomial K(A;0) constructed using Chebyshev polynomials

with @ = 0.01 and § = 1.
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This yields

{1 + cosh(cos}l;ﬁﬂﬁ — 2w

O =

cosh(mh;&) —1

3
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where A > 1.0. By choosing a large A, this approach guarantees that there is enough

separation between the low and high end of the transformed spectrum. However, if

A is too large, the constructed polynomial decreases slowly near the low end of the

spectrum causing the transformed eigenvalues to be clustered also. This is illustrated

in Figure 5.2.
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Figure 5.2 Chebyshev polynomials Cio(}; «, 3), where 3 = 1.0 and « is
determined from (5.1) for various values of A. The vertical dash-dotted line
indicates the location of a.

A related but different class of polynomials that has the same transformation prop-

erty is the Kernel polynomial. Given a sequence of orthogonal polynomials {¢;}7.,
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with respect to some weighted inner product (-,-),, defined on an interval [o, 3]:

B8
(f.gh = / F(N)g(N)w(A)d,

one can express an m-th degree Kernel polynomial as

m

Kn(X€) =Y ¢i(A\)e(6).

=0
The kernel polynomial has many interesting properties [86]. One particularly use-
ful property is that [gfm(/\;f) has large magnitude at A = £. For convenience, we

normalize the polynomial by [&’(f ;€), and define

K A;
K0 = 26

such that K,,(&¢€) = 1. It can be easily shown [85] that among all polynomials
of degree less than or equal to m and having value 1 at the given point A = &, the
polynomial K,,(X; &) yields the least 2-norm, where the 2-norm is defined as

550l = ( [

a

ﬁ 2
Ko (N 5)2w(A)dA) .

A common choice for {¢;(A)} is the Chebyshev polynomial {C;(\; e, 3)}. A kernel
polynomial designed in this fashion is compared with a Chebyshev polynomial in
Figure 5.1.

Unlike the Chebyshev polynomial C,, (A; e, 8) which oscillates uniformly on [e, 3],
the relative extrema of the Kernel polynomial K(A;€) decreases monotonically as
A — oo. In addition, the magnitude of K(X;¢) appears to be less sensitive to «
than the Chebyshev polynomial with the same degree. In Figure 5.3, we plot several
Kernel polynomials and Chebyshev polynomials with different o’s. It is observed that
the graph of the Kernel polynomial does not vary much as a becomes small, whereas

the Chebyshev polynomial sacrifices the magnitude separation for the steepness near
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zero. We number the relative extrema of each polynomial from left to right by 1.2, ....
It is observed that all but the first relative extrema of the Kernel polynomial are
bounded by 0.2 (dotted horizontal line in the figure). The Chebyshev polynomials
corresponding to a < 0.01 exhibit larger ripple size. Therefore, when it is difficult to

determine an « value, the Kernel polynomial is preferred.

alpha=0.1 alpha = 0.03

0.8
0.6

p(lambda)
p(lambda)

0.4

0.2

—02 - -2 -1 0
10 10 10 10
lambda lambda

o

alpha = 0.01 alpha =0.001

p(lambda)
p(lambda)

lambda lambda

Figure 5.3 Kernel and Chebyshev polynomials on [0.001, 1] with different
a’s. Solid curves correspond to Chebyshev polynomials and dash-dotted
curves correspond to Kernel polynomials. All Chebyshev polynomials are
scaled so that they have the same magnitude as the corresponding Kernel

polynomial at A = 0.001.

5.2 Leja Points and Related Polynomials

In this section, we briefly discuss polynomials associated with Leja points. Given a

positive weight function w(z) defined on a compact set K, the Leja points associated
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with K can be generated recursively as follows (also see Section 2.3 and [41]):

zo < point of largest magnitude of K;
i1 i-
zj @ are chosen such that w(z;) H(z] — z7) = maxw(z) H(z — zp).

zeK

—_

Intuitively, Leja points are uniformly distributed in K with respect to the weight
w(z). Additional properties of Leja points are examined in detail in [41] [62].

One may use Leja points in many different ways to construct a polynomial trans-
formation for accelerating the convergence of the Lanczos process. For example, if
w(z) =1 and [e, B] contains the entire spectrum of A, a polynomial that interpolates
1 at the Leja points of [a, 8] is a good candidate. In [62], Reichel proposed using
this type of polynomial to accelerate conjugate gradient type of methods for solving
a linear system.

One may also use Leja points to construct transformations that have the same
damping effect as that of a Chebyshev polynomial. Suppose [¢/, 3] (¢’ < () contains
most of the unwanted eigenvalues of A. By placing the roots of the polynomial at
the Leja points of [, 3], one obtains a polynomial almost identical to the Chebyshev
polynomial C'(A; o/, 3). We will call this polynomial a Leja damping polynomial. Of
course, one must select a suitable o' to produce an effective damping. An alternative
design which does not require the estimation of an optimal o' uses Leja points associ-
ated with the weight function w(\) = |A—a|. The weight function pushes Leja points
towards 3, yielding a polynomial that filters out the contribution of the large eigen-
values of A. We will refer to this type of polynomial as the weighted Leja damping
polynomial. In Figure 5.4, we display polynomials constructed by three techniques
described above. All polynomials have degree 10. We chose o« = 0.001, g = 1, and
scaled these polynomials so that they have the same magnitude at A = . We ob-

serve that all three polynomials share the same qualitative behavior of having a large



100

magnitude near a = 0.001. The weighted Leja polynomial is steeper near oo = 0.001.
Therefore, it is superior to the other two polynomials when the desired eigenvalues

of A are clustered near o = 0.001.

1000 <=

T ——  weighted Leja damping
~ - - Leja damping
8001 R interpolation
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400 - \

p(lambda)
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Figure 5.4 Polynomials constructed with Leja points. The solid curve
corresponds to a polynomial whose roots are placed at Leja points associated
with the weight function w(A) = |A — 0.001|. The dotted curve is produced
by interpolating % at the Leja points associated with w(A) = 1. The dashed
curve represents a polynomial whose roots are the Leja points of [0.1,1]
associated with the weight function w(X) = 1.0.

5.3 Minmax Approximation and the Remez Algorithm

Before proceeding to discuss other types of polynomial accelerants, we briefly review
the Remez algorithm, a numerical procedure for computing a minmax polynomial
approximation. The method is widely used as a tool for filter design in digital signal
processing [56]. It has also been used successfully in designing polynomial precondi-

tioners for solving linear systems [32, 72, 74, 3, 4, 18].



101

A minmax (uniform) polynomial approximation to a function f(X) is defined as

’\E(avﬁ)m(/\)emeHf( ) = p(A)]|

where || - ||« is defined by

[F(M)]leo = max [F(A)];

a<A<p

and P,, = {polynomials of degree less than or equal to m}. The solution to this ap-
proximation problem can be characterized by the following theorem often known as

the Alternation theorem.

Theorem 5.1 (Alternation) Let {¢o(A), d1(A), ..., dm(X)} be a basis of
the polynomial subspace P,, and f(A) be continuous on [«, 3]. The min-

max polynomial approximation
pr(X) = 765N, (5.1)
7=0

to f(A) from P,, must satisfy the “alternation” criterion, that is, there

must be at least m + 2 points A\g < A} < ... < Ay1 € [, G] such that

f()‘k)_pm()‘k) :(_1)k67 k=0,1,...m+1, (52)
where
k%=£§%U%U—meM- (5.3)

Based on this characterization, Remez [63] devised an iterative procedure that
repeatedly modifies a sequence of “alternation” points {A;} until (5.2) and (5.3) are
satisfied.

The Remez algorithm begins with defining a fine mesh on [a, 8] and arbitrarily

selecting n 4+ 2 distinct reference points from [a,3]. The algorithm enforces the
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alternating condition (5.2) to hold at these points for some unknown e. This amounts

to solving an (m + 2) x (m + 2) linear system

®0,0 bo1  Pom 1 Yo / J(Xo)
b10 b1 Dim -1 T f(A1)
- L (54)
Dm0 Pma o Pmm (=)™ Ym J(Am)
Pmt10 Pmitg 0 Pmgpim  (—1)7F € J(Ams1)

where ¢, ; = ¢(A;). We denote the coefficient matrix, the right hand side and the
solution vector in the above equation by 7', v and w respectively. After solving (5.4),
the first m + 1 components of w are used to assemble the next candidate for p,, ()
using (5.1). The assembled polynomial is evaluated at the all mesh points. Local
extrema are searched to form the next set of reference points. The iteration continues
until the magnitude of the polynomial becomes the same at all reference points. The
construction of the linear system (5.4) ensures that there are at least m 4 2 points at
which the error function alternates in sign. A careful description of the algorithm is
given in Figure 5.5. Some implementation details are addressed below.

Remark 1 The initial choice of reference points is completely arbitrary. The
Remez algorithm tends to self-correct a bad choice of reference points through the
exchange process.

Remark 2 Some choices of reference points may lead to an ill-conditioned T' at
early stage. But this can be overcome by solving T'w = v in a least squares sense.
Again, the exchange process tends to eliminate the ill-conditioning as the iteration
proceeds.

Remark 3 The search for local extrema is often done on the mesh points. If this
is not sufficient (due to a coarse mesh), Newton’s method may be used to produce a

more accurate reference point set.
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Algorithm: Remez

Input: A function f(X) continuous on [e, 3].
Output: Coefficients v;, (7 = 0,1,2,...,m) such that p,(A) = Z;n:o viPi(A)

is the minmax polynomial approximation to f(A) on [«, 3].

converged = false;

Construct a fine mesh on the interval [, §];

Choose an initial reference point set R = {Ag, A1, ..., Ay1} in [a, B];
do

4.1. Evaluate v; = f(\;), for e = 0,1,...,m 4 1, and form v = (v;);
4.2, Form the matrix T = (¢;;), where ¢; ; = ¢;(\;);

4.3. Solve Tw = v, where w = (0,71, s Yn, €)1 ;
4.4. Evaluate p(\) = Z] o Vi®;i(A) at all mesh points;

W =

4.5. Find local extrema of the error function e(A) = f(A) — p(A) on the mesh,

and form a new reference point set R;
4.6. f manGR' (>‘)|

minxe g [e(})]
5. while (not converged);

— 1|< tolerence then converged = true; endif

Figure 5.5 Remez Exchange Algorithm for constructing
a minmax polynomial approximant to f(X).
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Remark 4 The Remez algorithm can be easily modified to solve a weighted
minmax approximation problem

. Nl
o bt ez, 1) =PI

where || - ||, is defined by

ISl = max |F(X)w(A)]

a<A<p

5.4 Minmax Polynomial Acceleration

In this section, we will introduce a polynomial accelerant designed to approximate
% in a (weighted) oo-norm. The first part of the discussion focuses on applying the
Remez algorithm directly to i The asymptotic behavior of the designed polynomial
is illustrated. In Section 5.4.2, we introduce a simplified design procedure that gives

a near minmax solution. Finally, we discuss how to construct a minmax polynomial

that has a sharp derivative near zero.

5.4.1 Minmax Approximation to

S|

Using the Remez algorithm, one can design polynomials that provide sufficient sep-
aration of the spectrum near p. Of course, the approximation must exclude the
singularity point A = 0. For convenience, we restrict ourselves again to the problem
of computing the lowest eigenvalues of a symmetric positive definite matrix. If the
lower bound « of the spectrum is provided, one can solve the approximation problem
on the interval [a, 3], where (3 is the upper bound of the spectrum that is often easy

to obtain. Otherwise one may construct a minmax polynomial approximation to
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for some small ¢ > 0. An important feature of this type of polynomial accelerant is
that asymptotically p,,(X) converges to 1(A) as m — oo. This is shown in Figure
5.6 where two minmax polynomial approximants defined on the interval [1073, 1] are
plotted. The dash-dotted curve corresponds to a polynomial of degree 10, and the

solid curve corresponds to a polynomial of degree 50. Since the minmax polynomial
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— = degree 10
s001- degree 50 |

600 -

400 -

p(lambda)
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Figure 5.6 Minmax polynomial approximation to ¢)(A) = 1/ on the
interval [107°,1]. The dash-dotted curve corresponds to a 10-th degree
polynomial constructed by the Remez algorithm. The solid curve corresponds
to a 50-th degree polynomial. The dotted curve is the function (X)) = 1/A.

approximation provides the maximum error estimation, one can use this information

to determine the appropriate degree of the approximating polynomial to be used in

the eigenvalue calculation.

5.4.2 Near Minmax Approximation

We mentioned earlier that the initial choice of the reference points in the Remez

algorithm is arbitrary. The algorithm tends to correct itself by picking out the correct
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reference points along the way to convergence. However, in many cases, one may
guess the location of the reference points, and further speed up the convergence by
setting up a good starting configuration. In particular, a suitable choice of reference
points consists of the local extrema of the shifted and scaled Chebyshev polynomial

Cm-}-l()‘; a, /6)7

oz—l—ﬁ—Q/N\j ~ VL

, where A; = cos
a—p

This follows from the observation that the coeflicients ; of the minmax approximation

=

},j:Owam+L

m 4+ 1

(5.1) decays rapidly as j gets larger. Thus, the error function must behave very much
like the m + 1st basis polynomial C,,11(A; a, 3). By choosing the reference points at
the extrema of C,,11(); o, 3) (without going through the process of Remez exchange)

we are able to obtain a qualitatively good approximation to The corresponding

1
T
polynomial is sometimes referred to as a near minmaxz approximation [5, pp. 194-201].
Moreover, we can also avoid solving the linear system (5.4). This specific choice of

reference points yields a T' matrix of the form

1 1 1 1
1 cos@® --- cosmb —1

T - ,
1 cosmb --- cosm?0 (—1)"*!

1 =1 1 (=)™ (=1)m2
where 6 = m/(m + 1). After scaling T' by
1/2
Y= I ;
1/2

one can easily deduce, using the following trigonometric identities

1 +cos20 +cosdf+---+cos2(m+1)0 = 0,
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1
1+ cos? 0 + cos®20 + -+ + cos’ m = 7—;7”7

that the matrix W = XT satisfies

m 4+ 1
W' = =5 —lnsa.

Thus the coefficients can be obtained by a few matrix vector multiplications. i.e.,

2
w=—TYv.

m+ 1

We compare a 50-th degree polynomial constructed using this simple procedure with
a 50-th degree minmax approximation in Figure 5.7. We observe that not only is
the method of near minmax approximation simpler, it also renders a qualitatively
better polynomial. On the region away from zero, the ripple-size of the near minmax

polynomial is much smaller than its minmax counterpart.
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Figure 5.7 Approximation 1/X by 50-th degree
minmax and near minmax polynomials on [1072, 1].
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5.4.3 Constrained Minmax Approximation

All of the polynomials constructed above have large magnitudes near zero so that
the smallest eigenvalues of A are transformed to the dominant eigenvalues of p(A).
In addition to this desirable property, we would also like the accelerating polynomial
to be steep near zero. That is, we would like the derivatives of p(A) to be large in
magnitude. This will help to separate those eigenvalues that are tightly clustered. In
order to achieve this goal, we add some interpolative constraints to the approximation

problem. For example, we might solve

. 1
min  max [l —pO),

Pm(A) € P,
(@) =
for some w near a. (One could choose w = a.) The constrained minmax approx-

imation problem can be transformed into an unconstrained problem by writing the

polynomial as
(D) = 1(A) + (A = w0) e (N),

where #4()\) consists the first £ 4 1 terms of the Taylor expansion of 1, and gy—¢(})
is to be determined. We expand ¢,,_, in terms of scaled and shifted Chebyshev
polynomials C;(X; a, 3), and use the Remez algorithm to find the optimal expansion

coefficient of ¢,,—¢(A). After selecting a set of reference points, we enforce

for some unknown ¢. This is equivalent to

(_1)% 1
Gm-t(X;) — O —w) (N —w)
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The unknown € and the expansion coeflicients v;’s can be solved from

0,0 e D0,m—t h(/\o) Yo r(/\O)
o10 e D1t h(/\1) T T()‘l)
¢m—é,0 e ¢m—é,m—€ h(/\m—é) Ym—2£ r(/\m—f)
¢m—é+1,0 s ¢m—é+1,m—é+1 h()\m—z-u) € T()\m—é-u)

where ¢, ; = C;(\i; o, 3),

h()\) = —% and r()) = %

This formulation can also be viewed as a weighted minmax approximation with the
weighting function w(\) = h(A).

Intuitively, adding constraints to (5.3) causes some difficulty. It can be shown [3]
that the maximum error produced by constrained minmax approximation is always
greater than that produced by minmax approximation with no constraints. This is
also demonstrated in Figure 5.8. We plotted both the constrained and unconstrained

minmax polynomial of degree 50. Two constraints

1

1 !
pw) = = and plo)= -

are imposed in the constrained minmax approximation. Although the constrained
minmax polynomial is steeper near w than its unconstrained counterpart, it exhibits
much larger error. Therefore, we shall only use the constrained minmax approxima-

tion when the gaps between the lowest eigenvalues are very small.

5.5 Least Square Approximation

Least squares approximation is a common technique used to minimize a weighted

2-norm of the error between a function and its approximant. We define a w-inner
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Figure 5.8 Constrained and unconstrained minmax polynomial

approximation to ¢(A) = 1 on the interval [107%,1]. The solid curve

corresponds to a 50-th degree constrained minmax polynomial. The dashed
curve corresponds to a 50-th degree unconstrained minmax polynomial. The

dotted curve is the function ¥(X) = 1.

product (-, -),, as: ,
(f:9)w = / FA) - gMw(X)dA,

where w(\) is a continuous function satisfying w(A) > 0 on [a, 5]. The corresponding

8
1w = \// FO)2w(N)dA.

To accelerate the Lanczos process for computing the smallest eigenvalues of a positive

w-norm 1s

definite matrix, we shall find the best polynomial p,,(A) € P, such that

e = 115 = (V)
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is minimized. The least squares problem is closely related to the subject of orthogonal
polynomials. Suppose {¢do(A), d1(A), ..., &n(A)} is an orthonormal basis of P,,, i.e,

1 1=y

0 it

Then the least squares solution must have the form

(6i(X), 6 (A))w =

pn(A) = 7N, (5.5)
7=0
where the coefficients v; can be derived from the integral

%= 5 (W = / LRV

It is well known that the orthonormal basis {¢o(}), ¢1(A), ..., ¢.(A)} may be generated

via a three-term recurrence (Stieltjes procedure [86],)

Biv10j41 = (A — @;); + Bidj-1, aj = (Adj, bj)w, Bi = (M), di1)uw- (5.6)

There are a variety choices for w(A). For example, the simplest is w(A) = 1. This
produces a set of {¢;(A)} known as the Legendre polynomial. If @« = —1 and 3 =1,

the three-term recurrence in (5.6) becomes

(7 4+ Dot (A) = (25 + DAG (X)) + 51 (X) = 0,

With ¢o(A) =1 and ¢1(X) = A, {¢;(A)} can be easily computed recursively. Another
frequently used weight function is w(A) = 1/v/1 — A2, With o = —1 and 8 = 1, this

w(A) leads to the well known Chebyshev basis whose recurrence formula

Pe+1(A) = 22 (A) — b1 (A)

was shown in Section 2. In Figure 5.9, we compare a 10-th degree Chebyshev least

squares polynomial defined on [0.001, 1] with a Legendre least squares polynomial
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of the same degree. It appears that the Chebyshev least squares polynomial drops
faster than the Legendre least squares polynomial at the left end of the interval
[a, B]. However, its ripple-size is larger away from «. Therefore, the Chebyshev least
squares polynomial is more suitable for separating eigenvalue clusters near o while
the Legendre least squares polynomial is very effective in reducing the contribution

of the unwanted eigencomponents of A to the Lanczos subspace.
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Figure 5.9 The solid curve corresponds to a 10-th degree Chebyshev least
squares polynomial approximation to % constructed on [0.001, 1]. The
dash-dot curve corresponds to a Legend least squares polynomial
approximant of the same degree.

Just like the minmax approximation discussed earlier, one must prepare the lower
and upper bound (a and () of the spectrum for the least squares approximation
discussed above. The least squares procedure minimizes the w-norm of the error
function e(A) on [a, B]. Although a polynomial designed in this manner converges to
the ideal spectral transformation asymptotically (as n — o0), it is not optimal in the

sense that a fair amount of work is done to minimized the approximation error on
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subintervals that do not necessarily contain any eigenvalue. That is, such a design
does not take into account the eigenvalue distribution of A. An ideal least squares
approximation shall emphasize the minimization of the error on the discrete set of all
eigenvalues.

Since eigenvalues of A are unknown, the best one can hope for is to devise a least
squares design that takes advantage of an estimated eigenvalue distribution. As usual,
the eigenvalue estimation may be accomplished by applying an m-step Lanczos to A
directly. Given a starting vector vy that contains all eigencomponents of A, an m-step

Lanczos procedure produces

m?

It is well known [89] that associated with the Lanczos process is a sequence of orthogo-
nal polynomials {¢;} whose three-term recurrence can be read off from the tridiagonal

matrix

aq BQ 0 e 0
B2

A1 /Bm

0 ... Om  Qpy

These polynomials are orthogonal with respect to a discrete inner product completely

determined by the eigenvalues and eigenvectors of 7),.
Let T,, = SDST be an eigendecomposition of T,,, where D = diag(#;,0,---0,,).
It can be verified [57, pp. 125-129] that

do(1)  @oll2) - @o(0m)
o1(61)  dil2) o di(0n)

bm—1(01) bm—1(02) - Pu—1(bn)
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The orthogonal polynomials generated by the Lanczos process are orthogonal with

respect to the inner product
{9y =Y _ [(0;)9(0;)7},

where 7; = ¢o(6;).
Using this inner product and the orthogonal polynomials {¢;(A)}, we can solve

the least squares problem by evaluating the coefficients in (5.5) using

Vi = /\7¢] Z gb] 2

We will call the polynomial constructed in this manner a Ritz polynomial. We mention

in passing that this polynomial is equivalent to the polynomial produced implicitly
by the conjugate gradient algorithm for solving Az = b.

To give an example, we apply a 10-step Lanczos run to the 100 x 100 tridiag-
onal matrix with 2 on the diagonal and —1 on the super and sub-diagonals. The
corresponding least squares polynomial approximation to % is shown in Figure 5.10.
The circles in the graph correspond to transformed eigenvalues of A. In Figure 5.11,
we demonstrate the asymptotic behavior of such a least squares design by plotting
both a 50-th degree least squares polynomial and the corresponding error function
e(A) = + — pso(A). It is seen that as more Ritz values 6; converge to eigenvalues of

A, the least squares polynomial indeed minimizes error on the spectrum of A.

5.6 Polynomial Accelerants for Computing Interior Eigenvalues

Many of the techniques introduced above can be adopted to construct polynomial
accelerants for interior eigenvalue calculation. Suppose eigenvalues near p are of
interest, an ideal polynomial must have large magnitude near the target shift A = p

and small magnitude elsewhere. We will refer to this type of polynomial as the
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Figure 5.10 The solid curve corresponds to a 10-th degree Ritz least
squares polynomial implicitly constructed by applying a 10-step Lanczos run
to A. The transformed eigenvalues are plotted in circles.

bandpass polynomial. Following the terminology used in digital filter design, we will
call the interval that contains only the wanted eigenvalues a passband, and the interval
that does not contain desired eigenvalues a stopband. The ratio between the passband
and stopband magnitude and the width of the passband determines the quality of the

constructed polynomial.

5.6.1 Chebyshev and Kernel Polynomials

If a sequence of orthogonal polynomials {¢;(A)} are generated on a interval [« 3] that
contains the point A = u, the Kernel polynomial K (A;u) corresponding to {¢;(A)}
yields the graph shown in Figure 5.12. The polynomial indeed has large magnitude
at the shift A = p, and its relative extrema decrease monotonically as A moves away
from p. A similar but different polynomial can be built from a Chebyshev polynomial

alone. Since the Chebyshev polynomial 7,,(A; «, 3) has large magnitude outside of
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error €(A) = + — p(A) of the approximation.
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the interval [a, 8], the polynomial

must have large magnitude near . It is bounded uniformly by 1 on [(x—3)?, (1 —a)?]
and [(g + @)% (g — B)*. A 20-th degree polynomial designed by this method is

compared with a 20-th degree Kernel polynomial in Figure 5.12.

5.6.2 Minmax Polynomials

Polynomials that bump up at g can also be constructed by the minmax approximation

procedure. One can write the polynomial to be constructed as
Pr(A) =14 (A = 11)*Gm-a(}),

where ¢,,—2() is to be found iteratively by the Remez algorithm. There are two ways
to compute ¢,,_o. A direct approach is to specify two cutoff points w; and wy such
that the magnitude of p,,(A) is minimized within [e, w;] and [wy, 3]. This is equivalent
to the Grear residual polynomial defined in [26, 3]. In this case, the intervals [a, wy]
and [wy, ] are treated as stopbands and the interval [wy,w,] is treated as a passband.

The second way of constructing ¢,,_2(A) is to prescribe the maximum magnitude
of the stopband, and use a Remez-like algorithm to minimize the bandwidth of the
passband. This technique is successfully used in digital filter design [78], and is incor-
porated in SPEIG - a MATLAB implementation of the implicitly restarted Arnoldi
method [61]. (SPEIG has evolved into EIGS in MATLAB 5.1.) In the Lanczos setting,
the second approach is preferred because it is much easier to specify the magnitude
bound of the stopband than estimating optimal cutoff points py and py. Figure 5.13
shows two 10-th degree bandpass polynomials constructed on the interval [—1, 1] and

[—1,10] respectively. They are compared with g19 = T5(A\*) where T5()) is a shifted
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and scaled Chebyshev polynomial. In the symmetric case (the interval [—1,1] being
symmetric about zero), these two polynomials are almost identical. When the interval
is not symmetric about 0, the bandpass polynomial designed by a minmax procedure

produces a much narrower passband.

5.6.3 Least Square Polynomials

Saad proposed using least squares techniques to construct a bandpass polynomial
Pm(A) =1 = Agm—1(X) that has the least f3-norm [72]. The crux of this type of least
squares approximation is the generation of polynomials that are orthogonal over two
disjoint intervals [aq, £1] and [ag, B2]. Given two weight functions wq(A) and wy(X),
the inner product associated with these polynomials is defined as
B1 B2
(f.9) = fgwi(AN)dA + [ fgwa(A)dA

o] a2

<f7.q>1 + <f7g>2

In [72], Saad presented a mechanism for generating orthogonal polynomials asso-

ciated with two Chebyshev weights

2 1 2 1
— 5 UJQ/\ = — .
Y e R ST

A general procedure for generating orthogonal polynomials on several disjoint inter-

wi(A) =

vals is described in [19] and [20].

5.7 Numerical Examples

We apply polynomial transformations presented earlier to two particular eigenvalue
problems. The first problem was shown before in Section 3.4.3. FEigenvalues of a
reactive scattering Schrodinger operator are of interest. The matrix representation

of the operator is positive definite but very ill-conditioned. Smallest eigenvalues
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Figure 5.13 Symmetric and Non-symmetric Bandpass polynomials. The
polynomials shown in the left graph are define on an interval that is
symmetric about zero. The polynomial generated by a direct Remez

procedure gives a narrow passband bandwidth on a non-symmetric interval.

are difficult to obtain because the spectrum of A contains many uninteresting but
dominant eigenvalues. Our second example is related to the analysis of metal insulator
transition in disordered material (the Anderson Model) [48, 1]. The corresponding
matrix is indefinite. Eigenvalues nearest to zero are of interest.

These problems are solved using ARPACK [40]. All computations described in this
section are performed on a SUN Ultra2 in double precision. The convergence of a Ritz

pair (6;,y;) is declared when the relative Ritz error estimate falls below a tolerance

of 1078.

Example 1

The matrix A we choose to experiment with here is of dimension 1024 x 1024. The
problem is not particularly large, hence we can find the smallest eigenvalues of A
by running ARPACK directly on A although this is less efficient. We will refer to this

calculation as the direct calculation in the following discussion. When the dimension of
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the problem becomes larger, it will be more difficult to obtain the smallest eigenvalues
through the direct computation.

From the direct calculation, we observe that smallest eigenvalue of A 1s Ay =
3.4234 x 10%. Tt has multiplicity 2. The largest eigenvalue is Ajg24 = 2.5369 x 10'°.

In Table 5.1, we compare the performance of various polynomial spectral trans-
formations p,, () by counting the number of matrix vector multiplications and CPU
time used by ARPACK when it is applied to p,,(A). All polynomials constructed have
degree 10. Of course, pio(A) is never explicitly formed. We supply only the action of
the matrix-vector multiplication w ¢ pjo(A)v. We seek 10 smallest eigenvalues, and

set the dimension of the Krylov subspace to be 40.

‘ polynomial ‘ MATVECs ‘ CPU time (sec) ‘
Minmax 5240 32.4
Chebyshev 5230 35.6
Leja 6790 41.8
Kernel 6760 42.0
Chebyshev least squares 6770 42.2
Ritz least squares 6100 42.4
Near Minmax 6770 42.8
Legendre least squares 7290 50.8

| Direct (Identity) | 7392 | 78.9

Table 5.1 Comparison of polynomial transformations

The Chebyshev polynomial requires two cutoff parameters o and 3 as discussed in
Section 5.1. We choose a = 3.4x107 and 8 = 2.5x10'°. The Kernel polynomial is not
as sensitive to the value of a as the Chebyshev polynomial. Typically, one can choose
a value near the low end of the spectrum. We set o = 3.4 x 10° in our experiment.
The Minmax, Near minmax, Chebyshev and Legendre least squares polynomial all

require estimations of the upper (3) and lower («) bound of the spectrum. In the
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experiment, we use a = 3.4 x 10* and 8 = 2.54 x 10'°. The Ritz least squares
polynomial is a parameter free polynomial. The graphs of all these polynomials are

drawn in Figure 5.14.

‘ polynomial ‘ MATVECs ‘ CPU time (sec) ‘

Chebyshev 89,180 1677
Kernel 155,600 2640
Minmax 117,880 1842

Table 5.2 Comparison of bandpass polynomial transformations

From Table 5.1, we observe that all polynomial accelerated Lanczos calculations
perform better than the direct calculation. The minmax approximation appears to be
the best among all polynomials constructed in this experiment. It reduces CPU time
of the direct Lanczos calculation by a factor of two. The parameter-free polynomial
acceleration based on the Ritz least squares approximation is almost as good as the

minmax polynomial transformation.

Example 2

The Anderson model is developed to describe a quantum-mechanical electron in a

crystal with impurities [34]. Eigenvalues of the Schrodinger operator

1
Hcr = §A + O'V,
which consists of both a Hamiltonian A and a random potential term V., are of
interest. The parameter o is called the disorder. The spectrum of H, is known to
include both positive and negative eigenvalues. The computations presented below

are performed on a matrix obtained from a discretization of a 3-dimensional H, [48].

The dimension of the matrix is 15,626 x 15,625. Using direct calculation, we observe
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that the algebraically smallest and largest eigenvalues of A are
/\1 - —1814, /\15625 - 1851

respectively. The structure of the matrix is shown in Figure 5.15. Just like the
reactive scattering example, a sparse factorization tends to destroy the sparsity of

the matrix A.

0 20 40 60 80 100 120
nz = 875

Figure 5.15 The sparsity pattern of the Anderson matrix.

In Table 5.2, we compare the performance of the Chebyshev, Minmax and Kernel
polynomial by listing the total number of matrix vector multiplications and CPU
time required by each method. The corresponding polynomials are plotted in Figure
5.16. All polynomials constructed are of degree 20. We seek 10 eigenvalues nearest
to 0, and set the dimension of the Krylov subspace to be 100.

The computed eigenvalues are listed in Table 5.3.
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Figure 5.16 Comparison of various polynomial transformations
applied to the Anderson model eigenvalue calculation.
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A | —9.2371 x 1073
Ay | —3.2661 x 1073
A3 | 5.1842 x 1074
Ay | 1.8468 x 1073
As | 2.7786 x 1073
e | 3.4986 x 1073
A7 | 5.6559 x 1073
g | 6.2122 x 1073
g | 6.9863 x 1073
Ao | 1.0086 x 1072

Table 5.3 Computed eigenvalues of the Anderson model

It appears that the Chebyshev polynomial gives the best performance. But it
does require some nontrivial estimation of the cutoff parameters a and . In the
experiment, we choose a = 7.0 and § = 18.75. The Kernel and Minmax polynomials
require slightly more matrix vector multiplications. However, they only require the
lower and upper bound of the spectrum which are readily available from a direct
Lanczos calculation.

In this section, we have provided a survey on techniques for constructing poly-
nomial accelerants for the Lanczos iteration. Most of these techniques are not new.
Some are well known in the approximation theory literature. However, they have
not been used extensively in the eigenvalue computation. The previous numerical
examples have demonstrated that polynomial transformation can be very effective in
capturing the clustered and interior eigenvalues.

The construction of these polynomials often requires some knowledge of the spec-
trum a priori. This information can usually be provided by applying a few steps of

Lanczos directly to A. However, a few questions remain as to which polynomial one
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should use for a particular problem and how to set the degree of the polynomial to
achieve optimal performance.

We have only considered symmetric eigenvalue problems here. Constructing poly-
nomial spectral transformations for nonsymmetric eigenvalue problems is more chal-
lenging. In particular, the idea of approximating % by some polynomial does not
extend to the complex plane because the maximum value of any analytic function
cannot occur in the interior of any domain. A commonly used technique is to define
an ellipse that encloses most of the unwanted eigenvalues and construct a shifted and
scaled Chebyshev polynomial that is bounded inside the ellipse and increases rapidly
(in magnitude) outside that region [43, 73, 29, 77].

We shall emphasize that although polynomial spectral transformation is a power-
ful tool for accelerating the Arnoldi/Lanczos iteration, it should only be used when
factoring A — o[ is prohibitively expensive or when there is no obvious precondi-
tioner for the linear system (A — ol)xz = b. If those are not the cases, one should
consider using rational transformations discussed in the last chapter, the rational
restarting technique through the TRQ iteration, or the Jacobi Davidson algorithm to

be discussed in the next Chapter.
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Chapter 6

Newton-like Acceleration

A number of people [88, 65, 11, 60, 87] have treated the algebraic eigenvalue problem

as a problem of solving the nonlinear equation
Az — Mz)z =0, (6.1)

where A(z) = I;{—Af. Under this framework, a Newton-like of method may be applied
to find the zeros of (6.1). The recently proposed Jacobi-Davidson (JD) method [79]
can be motivated by this approach. Since Newton’s method is only locally convergent,
a global search strategy must be developed to provide a reasonable starting guess. In
JD, this is often accomplished by a k-step Arnoldi iteration. Therefore, in some sense,
JD can be viewed as a means to accelerate the Arnoldi method. However, we wish
to emphasize that the JD algorithm itself does not belong to the family of Krylov
subspace methods. It is also important to note that the updating strategy used in
JD is slightly different from the traditional Newton update in which the Newton
correction is added directly to the previous approximation. We will come back to
this observation in the Section 6.2. In Section 6.1, we derive the basic JD iteration
for computing a single eigenpair. This is followed by the discussion of a more general
approach that is capable of producing an orthonormal basis of an invariant subspace
of A. In either case, one must solve a linear system to obtain a Newton correction
vector. Section 6.3 addresses issues related to solving this linear system, especially
when a preconditioned iteration solver is used. A numerical example is provided
in Section 6.4 to compare the performance of JD with the inexact TRQ algorithm

presented in Chapter 3.
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6.1 Basic Formulation
6.1.1 Eigenvector Correction

Suppose # is an approximation to a desired eigenvalue and wu is the corresponding
eigenvector approximation with unit length. They may, for example, be a Ritz pair
obtained from a k-step Arnoldi iteration. We can improve the approximation by

seeking a correction pair (v, z) such that
Alu+2) = (04+7)(u+2) =0 and u"2=0. (6.2)
If w is sufficiently close to z, we drop the second order term ~z, and solve
(A—00)z—yu=—r and uz=0, (6.3)

where r = Au — fu. The above equations may also be expressed in the following
bordered form
A—-01 u z —r
= . (6.4)
ul? 0 — 0

If A — 61 is nonsingular (i.e., # has not converged,) we may perform a block Gauss

elimination to obtain

I 0 A—-01 u z —r
ut(A—pul)™t 1 0 u(A—0)"tu — 0

Back substitution yields the correction vector

z = yA—-0D"'u—(A-00)""r (6.5)
= y(A—-00)"u—u, (6.6)
where
ut(A—00)1r 1
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After updating u by adding the correction z, we have
=u-4+z :fy(A—HI)_lu, (6.7)

a vector that appears in an inverse iteration.

As pointed out in [79], the idea of eigenvector correction dates back to 1845
when Jacobi considered a special correction scheme for improving an approximate
eigenpair of a diagonally dominant matrix [31]. (Of course, Jacobi did not formulate
the problem in modern linear algebra parlance since the notation of matrix was not
available then.) The JD algorithm to be developed below was motivated in part by
his correction scheme.

The connection between the inverse iteration and the method of eigenvector cor-
rection was expounded in [60]. However the emphasis there was on how to compute
the inverse iteration more accurately.

Notice that we did not follow the standard definition of Newton’s method in
deriving the correction vector. However, the method described is essentially a Newton
iteration in the sense that equation (6.3) is a first order approximation to (6.2). If 8 is
taken to be the Rayleigh quotient uf Au, it is not difficult to show that the standard
definition of Newton’s method gives rise to the same equation as given in (6.4).

If 0 = u Au, it is sometimes convenient to rewrite the bordered system (6.4) in

the following form:

(I — uuH)(A —01)(I — uuH)Z = —7. (6.8)

This equation can be derived directly from (6.3) by multiplying I — uuf? from the left
and using the fact

ufr =0 and vz =0.
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The advantage of this representation is that it reveals the relationship between z and
r under the mapping

Azl cut ot
where ut denotes the orthogonal complement of u, and AZ . is defined as

AZL = (I - uuH)(A— 011 — uuH)

A Krylov subspace solver applied to (6.8) (with a starting vector that is orthogonal to
u) provides an approximation that lies in the subspace u* whereas a Krylov subspace

generated by the border matrix
B = (6.9)

lacks this consistency property. That is, if (2,4)7 is an approximation produced by
applying a Krylov subspace solver to (6.9), the vector 2 is unlikely to be in ut. We
will reiterate this observation in Section 6.3.

Notice the structural similarity between (6.4) and (3.6), and also between (6.8)
and (3.17). This similarity is even more pronounced in Section 6.2 where the vector
u is replaced by an n x k matrix.

We note that the orthogonality condition uf’z = 0 used in (6.2) is not unique. In

principle, one can impose %z = 0 for any @ not orthogonal to z. Thus, the most

general form of (6.4) is:

However, in practice, &« = u seems to be the most natural and convenient choice.
If, in addition, one computes an approximation eigenvalue from the Petrov-Galerkin

criterion:

wH(A—HI)u:()
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to obtain 0 = wwiﬁ“, it follows from (6.3) that
uw? ut
(1= )a—on(1-=5)z = .

This is the most general form of (6.8).

6.1.2 Subspace Augmentation

It will be less exciting if we update u by simply adding the correction vector z to
arrive at an inverse iteration. A more interesting approach taken by Davidson in [15]
is to normalize z and make it a basis vector of an augmented subspace § = span{u, z }
from which new eigenvalue and eigenvector approximations are extracted. If we set
V = (u, z), the new approximating pair can be computed by imposing the Galerkin

condition:

VE(AVYy —0Vy) = 0.

Notice that in this scheme u and z are combined in a “best possible” way to provide
an improved approximation to the desired eigenvector. We will later show that this
mechanism also allows some flexibility in computing z since a Newton update is not
strictly enforced. All one cares to do is to augment the previous subspace with a
vector pointing roughly in the direction of a Newton correction.

If the new approximation is still not accurate enough, we repeat the correction
process and use the correction vector z to further expand § after orthogonalizing it
against V. The advantage of JD over a single vector inverse iteration is apparent:
Besides providing an approximation to a single eigenpair of A, the JD iteration also
produces a subspace from which approximations to other eigenpairs can be obtained.
We will postpone the discussion on how to compute several eigenpairs until Section

6.2. A simple version of the JD algorithm is outlined in Figure 6.1.
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Algorithm: Jacobi Davidson

Input: a matrix A, a starting vector vy
Output: eigenpair approximation (4, u) such that ||Au — Qul| is small.

1. v ¢ vg/||vo|, @ ¢ v Av, u < v; converged < FALSE;
2. V& (v); H <« (0);
3. while not converged do
3.1for j=1,2,3,....m—1
3.1.1 Solve (approximately)

(a8 (5)=(7);

3.1.2 z + (I = VVH)z
313V « (V,2); H+ VHEAV,
3.1.4 Compute all eigenpairs of H, and select a desired pair (6, s);
3.1.5 Put v < V's;
3.1.6 if || Au — ful| < some tolerance, converged <~ TRUE;
3.2 end for;

3.3 if (not converged) Restart: put V < (u), H < (0); go to 3; end if;

4. end while;

Figure 6.1 The Jacobi-Davidson Iteration.
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6.1.3 Inexact Newton Correction

A number of researchers have analyzed the convergence rate of Newton’s method
when the Newton step is computed approximately by an iterative solver. Under
some appropriate assumptions on the error associated with the approximate Newton
correction, one can show that the inexact Newton method converges super-linearly.

The idea of inexact Newton calculation fits naturally in the JD algorithm. Although
no rigorous analysis has been done to characterize the convergence, numerical evi-
dence has been provided in [79] to indicate the success of this approach.

In [79], Sleijpen and Van der Vorst proposed taking
u M~1r
ul M1y

z=yMu — M~'r, where = (6.10)

The matrix M ~! shall be viewed as an approximate inverse of A—#1I, and the formula

H, — 0. Tt is assumed that

for the coefficient v follows directly from the condition u
M~ is much easier to compute than (A — #I)~'. In practice, M~'r and M~'u are
typically computed by solving Mz = r and Mz = u iteratively. It is easy to see that
Equation (6.10) can be deduced from (6.5) by simply replacing (A —61)~" with M.

While it is possible to use (6.6), which yields a correction vector

z=~yM'u —u, where v = qu\zi—lu’
it is reported in [79] that this vector may lie in almost the same direction as u. Thus
computing an orthogonal correction z « (I — VVH)z may be difficult in floating
point arithmetic.

It is interesting to note that the original Davidson’s method can be derived from
(6.10) by taking M to be the the diagonal of A — 81 and setting v = 0. The Olsen
method [53] can be derived in a similar way. Numerical experiments are shown in [79]

to demonstrate that the JD algorithm is superior to Davidson’s method, especially

when A is not diagonally dominant.
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6.1.4 Termination and Restart

If the correction equation (6.4) is solved exactly, the subspace generated by the JD
algorithm
§ = {vo,v1,...,vx}, where v; = (A —0;1)""v;_,

is equivalent to (4.3). Since § is expanded with Newton’s directions, the JD iteration
converges rapidly (typically cubic for symmetric problems and quadratic for non-
symmetric problems.) Therefore, the dimension of the subspace required to provide
eigenvalue and eigenvector approximation is often small. However, if (6.4) is solved
with some error, one may need a larger subspace to assemble an accurate eigen-
approximation. To avoid expanding the subspace over the storage limit, the idea of
restarting may be adopted. One can run JD for a finite number of (say k) steps, then
retain ¢ (¢ < k) vectors from the constructed subspace, and restart the JD iteration
by augmenting the remaining subspace (spanned by the retained vectors) with new

correction vectors.

6.1.5 Generalized Eigenvalue Problems

The basic formulation introduced above applies to a generalized eigenvalue problem
Kz =AMz
also. The analog to (6.2) is
Ku+z)—(@+y)M(u+2)=0 and ufz =0.
After dropping the second order term yMu, one has

(K —0M)z —yMu = —r, where r = Ku — §Mu.
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If we replace the orthogonal scaling uf’z = 0 with @z = 0 for some @ ¢ u*, the

correction equation can be expressed in the following bordered form:

K—-—0M Mu z —r
= . (6.11)
nd 0 — 0

If 6 is computed by imposing the Petrov-Galerkin condition:
w? (K —0M)u =0,

one can also rewrite (6.11) as

ww '

WK — 0M)(I —

(/-

ﬁHu)Z -

wHw
where w = Mu. From this point, a JD algorithm for a generalized eigenvalue problem

can be developed in the same way a standard JD algorithm is concocted.

6.2 JDQR and JDQZ

The earlier version (Figure 6.1) of the JD algorithm is presented merely to illustrate
the most important aspects of the method. In this section, we modify that algorithm
to make it suitable for computing several eigenpairs. To promote numerical stability,

we seek a partial Schur form
AQr = Qr Rk,

where Q; € C™* satisfies QFQy = I and Ry € C*** is upper triangular. The
columns of (), are often called Schur vectors. They form an orthonormal basis for a

k-dimensional invariant subspace of A. The diagonal of Rj consists of £ eigenvalues
of A.

Suppose we have computed

AQr—1 = Qr—1Rp—1.
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Our next step is to extend the invariant subspace from @Q;_; to @J; by finding the
next Schur vector ¢; that will bring in the desired spectral information.

Given an initial guess G, the algorithm to be described below generates a sequence
of vectors z; (1 = 1,2,...) which, together with ¢, form a subspace § from which a
better approximation to ¢r can be extracted. We will first demonstrate how one
particular z; is generated. For simplicity, we omit the subscript of z; in the following
discussion. Each z is generated to correct the approximate Schur vector g;. In fact,

we need a correction pair (z,7) that satisfies

A(Qr-1,Gr + 2) = (Qr-1,Gx + 2) , (6.12)

where 0 = G Ay and h = Qi1 A(Ge + 2).
The k-th column of (6.12) reads
Al +2) = Quorh + (G + 2)(0 + 7).
As before, we drop the second order term vz to arrive at a correction equation
(A—00)z— Qp_rh — Gy = —(A — 01)G.

Let’s put r = (A — 61)qy, Qr = (Qk-1,qx) and g = (fAL,fy)T. With the orthogonality

constraint Q¥ z = 0, we can now express the correction equation succinctly by

A—0I O z —r
e _ , (6.13)
QF 0 —g 0

or equivalently by
(1= Q@i )(A = 01)(I - QrQi1)z = —r. (6.14)

As in the earlier version of the JD algorithm, one can solve the correction equation by

either a direct or an iterative method to complete the “Jacobi” phase of the algorithm.
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The solution z is added into a search space § which initially consists of only Gp. We
follow the Rayleigh-Ritz procedure and approximate ¢; from 8§ by first computing
a Schur decomposition of G = VH AV where V = (G, z). Suppose y is the Schur

vector of (G corresponding to the desired Ritz value §. We then form

@ =Vy,
to fulfill the “Davidson” part of the job. If the residual

r=(I- Qk—ng—J(A - HI)QN;CI—

is sufficiently small, we declare §;" as converged. Otherwise, we set

G — Gty Qr — (Qr1,dr),

and return to equation (6.13) for a new correction. The correction vector will be
used to expand § from which further improvements to ¢, can be made. To maintain
numerical stability, we orthogonalize z against all columns of V' and normalize it to
have unit length before setting V' « (V 2).

This JD process is continued until all desired eigenvalues have been found or when
the dimension of § has reached the storage limit. In the latter case, we may discard
part of V, retain j,,;, basis vectors and restart the JDQR process. The details are
explained in Step 3.3 of the algorithm given in Figure 6.2. In that description, we
use the MATLAB notation U(:, 1 : jmn) to denote the first ji, columns of U.

Since the Schur decomposition for the projected problem
G=Vv"AV

is computed by the conventional QR algorithm, the modified JD algorithm is referred
to as JDQR. We outline the basic structure of the algorithm in Figure 6.2 and refer

the interested reader to [21] for implementation details.
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Algorithm: JDQR

Input: a matrix A, a starting vector vg
Output: A partial Schur form AQ; = Qy Ry, where QY Q = I, and
Ry is upper triangular. The diagonal of Ry consists eigenvalues of A.

1. v < vo/||vol|, O + v Av;
2.V (v); H(0); Q  (); Q = (v);j « 1
3. while (not all converged) do
3.1 while j < j,.0s
3.1.1 Solve (approximately)

(" 9)(5)-(7):

3.1.2z ¢« (I -VVH
3.1.3V « (V,2); H « VIAV;
3.1.4 Compute the Schur decomposition of H = USU";
3.1.5 Choose the desired Schur vector s, and Ritz value 6;
3.1.6 Put g < V's;
3.1.7 If (§ has converged to an Schur vector of A) then
3.1.7.1 Set Q «+ (Q, q);
3.1.7.2V « VU(:,2: j);
3.1.8 else
3.1.8.1 Set Q « (Q, q);
3.1.9 endif
3.1.10 j « j + 1;
3.2 end while;
3.3 if (not all converged) then
331V =VU(,1: juin);
3.3.2 j & Jmin:
3.4 endif
4. end while;

Figure 6.2 The Jacobi-Davidson QR Iteration
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For a generalized eigenvalue problem
Kx =AMz,
it is desirable to compute a generalized Schur form:
KQr = WiSy, MQr = Wi Tk, (6.15)
where Qy, W), € C***. Matrices Q; and W), satisfy
QFQr =1, and WIW, = I,.

Columns of @) and W are often referred to as the right and left Schur vectors
respectively. Both S, € C*** and T, € C*** are upper triangular. The diagonals of
Sy and T}, form k generalized eigenvalue pairs (o, 3;) (7 = 1,2,...,k.) Notice that if
a; # 0 then \; = 3;/a;.

In the following, we will illustrate the steps required to extend the generalize

partial Schur form from
KQr-1 = Wi_155-1, MQp-1 = Wi1Tin

to (6.15). We will focus on computing the right Schur vector g such that Q) =

(Qk-1,qx). Once we have g, the corresponding left Schur vector can be easily calcu-

lated by

w o« (- Wk_lwlil)[(qk and wy L

[l

w

or w ¢+ ([—Wk_lwlil)qu and wy ol
w

The strategy given below for computing gx is in the same spirit as the correction

scheme used in JDQR. Since the generalized eigenpair (a, 3) associated with the right
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Schur vector ¢, must satisfy
Kagy = Wy_1s+wpa and Mgy = Wi_1t + wi3,
for some s and ¢, it is easy to deduce from above that
a= (I =Wia WL )Kaqll, 8=(—-WiaW/L)Ma].

We assume an approximate Schur vector g is available. An approximation to (o, 3)

can be formed by
&= [|(1 = Wi WEDKGell, 8= II(1 = Wieea W) M.

We are interested in finding the correction triplet (z, Aa, A3) such that

) St 8
K(Qr—1,Gx +2) = (W1, wy) : (6.16)
0 a4+ A«
Tes i
M(Qr-1,Ge +2) = (Wio1,wy) . ) (6.17)
0 [B+ApB

where § = WH K(Gy + 2), t = WH M(G, + z) and wy is a left Schur vector that
can be easily determined once we know z. Too many unknowns appear in the last

columns of the above equations:

K(Gr+2z) = Wis1s8+ wi(a+ Aa) (6.18)

MGy +2) = Wil +wp(3 + AB) (6.19)

To eliminate the term involving wg, we multiply (6.18) by 8 + Afg and (6.19) by

o + Aa to obtain

(B+AB)K(Gr+2) — (a+ Aa)M(Gr, + z) = Wi_q |3(6 + AB) — f(oz + Aa)|. (6.20)
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It follows from (6.16) and (6.17) that Wjy_q € span{ K Qx—1, MQx_1}. Thus, if we

put Qr = (Qx—1,Gx), it is easy to verify that
ABK G — AaMi, — Wi_y |3(8 + AB) —i(a+ Aa)| = (uK + vM)Qrg,

for some p, v and g € C*1. (We will define z and v shortly.) Based on this

simplification, we can now rewrite (6.20), after dropping the second order terms

AaKz and AGMz, as
(aK — BM)Z — (K + I/M)ng = —r,

where r = (&K — /éM)qu Together with the orthogonality constraint @Ez =0, we

can formulate the correction equation as

aK —BM Y, 2 —r
oM - , (6.21)
on 0 —q 0

where Y;, = (uK + VM)Qk An equivalent representation is the projected equation:
(1= VI GK — AMY(T — QuQlf)z = —r.

We have purposely neglected to comment on the choice of p and v to avoid clut-
tering the derivation of the correction equation. The exact values of these parameters
are not important as long as the approximation to the left Schur vector wy is well
represented in Yj; as Q converges to Qy, so should span{Y;} approach to span{W;}.

It is suggested in [21] that one should choose p and v so that
0= H(I — Wi W) (nK G + VM(?k)H

is maximized. If G is near ¢, it is reasonable to use

Oul

and v = 8

SV P Jalz + 13

(6.22)
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because in this case
o~ H([ — Wk_1W]£1)(/,L[X’C]k + Vqu)H = |pa + vf|

will be maximal if g and v are defined as in (6.22). If g is not accurate enough, one
could use
a 1

R .
Y i = P P

where o is a target shift.
Once the correction z is computed, one can use it to augment the search space
V' = span{qg, z} from which the next approximation to ¢ is drawn. In the meantime,

one obtains a correction to the approximate left Schur vector

(1 = Waed W) (K i + vMai)
(7 = Werd W) (K G+ v M|

Wi =

by
[ (I = Y (puKz+vMz).

Now put L = (@, f). New Schur approximations can be computed by invoking the

Petrov-Galerkin condition:
LH(aK — BM)Vy = 0.

We omit the implementation details here and refer the interested reader to [21] for a

complete JDQZ algorithm.

6.3 Solving the Correction Equation

We hinted earlier that the convergence rate of JDQR and JDQZ depends, to a large

extent, on how efficiently and accurately the correction equation can be solved. To
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keep our discussion uncomplicated, we will focus only on issues related to solving the

correction equation

A—-01 @ z —r
] * — (6.23)
QF 0 —g 0
that appears in a JDQR iteration.

If one can afford to factor A — 81, direct methods based on Gauss elimination are

usually the best choice for solving (6.23). It follows from the block factorization

A—0I O I 0 A—01 Qx
QF 0 QE(A—0n~" 1 0 —Q(A-01)"Qx
that
= (A—=0D)7"r — (A—0D)7 QG i,

where Gy = @fj(A — (9])_1@k and y; = QE(A — 6I)~'r. This implies that & + 1
linear systems with the same coefficient matrix A — #1 must be solved to produce a
correction vector z. Notice that this is in sharp contrast to the solution of the TRQ
equation which requires solving only one linear equation associated with A — 61.

Solving (6.13) using direct methods usually results in rapid convergence of the
approximating Schur vectors. In terms of number of iterations, it is typical to see
quadratic convergence for non-symmetric problems and cubic convergence for sym-
metric problems. However, the original intent for developing JD type of algorithm
is to allow preconditioned iterative solvers to be used to produce inexact Newton
directions.

Iterative solvers of the Krylov type (such as GMRES[76], QMR[24], BiCG-STAB[16],
SYMMLQ[55] etc.) can be easily applied to the alternative representation of the cor-

rection equation

(T — 0xOM)(A - 01)(T — QrOM)z = —r-.
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The difficulty is to construct a reasonable preconditioner for this projected equation.
By a preconditioner, we mean a matrix that approximates the coefficient of the linear
system in some sense. If the eigenvalue problem originates from a discretization of
some differential operator, one often has a good preconditioner for the matrix A or
A — 01, say P. We would like to take advantage of this preconditioner to construct

an approximate inverse for the projected matrix
B = (I = QuQi")(A - 0D)(I = QkQy).
It is suggested in [21] that a reasonable preconditioner takes the form
P = (1-QuQi) P(I — Q:Qy)). (6.24)

The following lemma gives two explicit formulae for an inverse of p. (Note that the

inverse of P is not unique since P is singular.)

Lemma 6.1 An inverse of P = (I — Qka)P([ - Qk()f) can be ex-

pressed as
P o= -GN P
or P71 = p! {[ — Qnglﬁf}a
where (G}, = QEP_IQk, Y, = P_lc?k and U, = P_HC?k.
Proof o reveal the structure of the ]5_1, we examine how the equation
Pz =b, where z,b¢ Qr (6.25)
can be solved. After rewriting (6.25) in its border form

QY 0 g 0
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we apply block LU factorization to get

I 0 P Qs x b
QUp-— 1 0 —QFP1Q, g 0
It is easy to deduce, after back substitution, that
g = (AP0 QEP =G QP
z = P‘1<b—QkG;1QfP‘lb>
- P‘1<[—QkG;1QfP‘1>b (6.26)

- (1 . P‘lc?kG;le> P~1b (6.27)

Using the definition U7; = P~7Q; and Y, = P~'Qp, we conclude from (6.26) and
(6.27) that

Pt {[—%G;@ﬂP‘l,

or P = PTUI—QuG O
O

With this preconditioner, we can now apply a Krylov subspace solver to the precon-

ditioned equation

P 'Bz=—P 1y

Notice that
pPT'B =P [1 - QGO } (1 = Q@i N(A =011 - QxQ1). (6.28)
Using the fact that

[ — QG U (1 - QiQF ) =T - QG UF,
( ) )
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we can further simplify (6.28) to obtain
(= QuG Ol (A - 011 - QuQ1)

YA =01 - QxQF)

= [1= VG QE | P (A — 011 - QiQlY).

pP-
p_

Since we seek a correction vector z € Qlf,
2= (1 - @k@g)z - (1 - m;@gf)z.

Thus, we can also express the preconditioned correction equation as

(1 - Yka;l@f) P~Y(A — 01 (1 - Y/,CG;Q;‘I)Z 3
where

F= Pl = ([ — }N/;CGI;IQQT)?“.
A Krylov solver applied to this equation generates an orthonormal basis
{v1,v9, ..oy g}

for JC(p_lB,vl;k). To calculate v;, one need not form (I — }N/jG;le)vj_l since
@flvj = 0 has already been enforced by the previous calculation. More implementa-
tion details can be found in [21].

We shall mention that the TRQ equation (3.6) developed in Chapter 3 has the
same pattern as correction equation (6.13). However, since the matrix V; in the TRQ

equation satisfies an Arnoldi relation
AVy = Vi Hy + [ref,

the TRQ equation can be further simplified to reduce the amount of work for solving

(3.6) to essentially that of solving a single equation of the form (A — 81)w = v. (See



148

Lemma 3.4.) This simplification is not possible for the correction equation (6.13). As
to an iterative solver, one can use a preconditioner developed for A — 01 directly in

TRQ without further projections.

6.4 Comparison with ITRQ

In this section, we compare JDQR with ITRQ through a numerical example. Both
methods are applied to the matrix CK656 [6] to extract four eigenvalues nearest the
target shift o = 5.0.

In ITRQ, the dimension of the Krylov subspace is set to & = 5. In JDQR,
the maximum number of basis vectors generated (that is, the maximum number of
columns of V' in Figure 6.2) is jnq: = 8. If convergence does not occur after all jux
basis vectors have been generated, the first j,,;,, = 4 columns of V' are retained and
JDQR restarts from the fifth column of V. Both methods used unpreconditioned
GMRES to solve the linear system. The maximum number of GMRES steps allowed
is set to 10. The GMRES convergence tolerance is set to 107¢. Convergence a Ritz
pair is declared when its residual norm falls below tol = 107°.

We plot the convergence history of each Ritz pair in Figure 6.3. The residual norm
of each Ritz pair is plotted against the number of flops used to obtain the pair. The
residual norms are monitored one at a time, that is, the residual curve of the j + 1st
Ritz pair is shown only after the j-th Ritz pair has converged.

We observe that the overall performance of both method are almost the same.
However, the inexact TR(Q) was able to capture the first eigenpair much quicker than
JDQR. But Figure 6.3 also shows that after the initial construction of a proper sub-
space, JDQR convergence rapidly. In particular, the second and third eigenvalue

converge at almost the same time.
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Figure 6.3 The convergence history of
JDQR and ITRQ for the CK656 matrix.
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Chapter 7

Thesis Summary and Future Work

The main purpose of this thesis is to investigate various ways of accelerating the
Arnoldi iteration, a method widely used to compute eigenvalues and eigenvectors of
a large sparse and/or structured matrix. The acceleration strategies discussed fall

roughly into the following three groups:
e the method of restarting;
e the method of spectral transformation;
e the method of eigenvector or Schur vector correction;

The first two strategies are applied within the Arnoldi iteration itself. They are de-
vised to enhance either the starting vector or the distribution of the eigenvalues, two
major factors that determine the convergence of the Arnoldi process. The third strat-
egy accelerates the eigenvalue calculation using a different approach. The iteration
is not carried out within a Krylov subspace. Instead it takes an eigenvector or Schur
vector approximation obtained from an Arnoldi iteration and further improves it by
adding orthogonal corrections.

The first two methods both have a polynomial and a rational version. The ad-
vantage of the polynomial version is apparent. It only requires matrix vector mul-
tiplications during the accelerated Arnoldi iteration, whereas a rational acceleration
must, in one way or another, accurately solve a sequence of linear systems accurately.
The method of restarting is elegant in the sense that it can be viewed as a truncated

version of the full QR or RQ-iteration about which we have a good understanding
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both in theory and in practice. The method of spectral transformation is concep-
tually simple, yet it is often the method of choice when a large number of interior
eigenvalues are requested. It must be implemented with care to be cost-effective.
The method of rational restarting (via TRQ) and the method of Newton correction
(via JDQR) are derived from two rather different contexts. However, they share many
similar properties and difficulties. In particular, both method must solve a bordered

system
A—-01 X, z r
= . (7.1)
X 0 g 0
In TRQ, X}, € C*** consists of the Arnoldi vectors. This allows the bordered equation
to be simplified. The simplification reduces the amount of work to essentially that of
solving a single linear system of the form (A — 61)w = v. Since the Arnoldi structure
is absent in JDQR, it is not possible to make such a simplification. If a direct linear
solver is used, the amount of work required is equivalent to solving & linear systems
with the same coefficient A — 1.

It is possible, in both TRQ and JDQR, to solve (7.1) iteratively. In fact, one of
the motivations for developing these methods is to incorporate a preconditioned iter-
ative solver into the eigenvalue calculation so that rapid convergence can be achieved
without factoring matrices. In TRQ, one can apply the iterative solver directly to
the simplified equation (A — 01)w = v, whereas in JDQR, it is preferable to apply an

iterative solver to the alternative form of (7.1):
(I = Xo XA —-0D)(1 — Xp X[z = 7. (7.2)

The main advantage of this approach is that the approximate solution is produced
within the subspace Xi-.
The construction of a good preconditioner is difficult in both algorithms, especially

when 6 is near an eigenvalue of A. In Chapter 6, we have demonstrated how to
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construct a preconditioner for the projected system (7.2) given a good preconditioner
of A—401I.

In TRQ, the error produced during the process of solving the TR(Q) equation prop-
agates into the Arnoldi basis by the rotations used to complete an implicit RQ update.
As a consequence, one must rebuild the Arnoldi factorization from the very first col-
umn each time a TRQ equation is solved. However, since the error is also damped by
those rotations, the first Arnoldi basis vector still converges to an eigenvector of A
under some appropriate assumptions. It has been shown in Chapter 3 that the con-
vergence is locally linear. In JDQR, the relaxation of the solution accuracy results in
an inexact Newton scheme for correcting the Schur vector approximation. The con-
vergence of the eigenvalue calculation can be explained by the standard arguments
for the inexact Newton method.

The JDQR algorithm can be generalized to the JDQZ algorithm for solving a
generalized eigenvalue problem. Unfortunately, it is difficult to make such a general-
ization for TRQ. Recently, Sorensen has developed some iterative schemes for solving
generalized eigenvalue problems based on a truncated QZ iteration [82]. Just like
JDQZ, these algorithms do not belong to the family of Krylov subspace methods.

The numerical examples presented in this thesis have indicated that the difficulties

in large scale eigenvalue calculation can be characterized as the following:

1. In the symmetric case, computing interior eigenvalues without factoring matri-
ces poses a major challenge. Inexact TRQ, JDQR and IRL with polynomial
spectral transformation are all possible candidates to use, but none of these
has an apparent advantage over the others. For inexact TRQ and JDQR, con-
structing an effective preconditioner is the most crucial part of the algorithm.
Good preconditioners are likely to be problem dependent. Future research in

this direction requires a thorough understanding of the application from which
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the eigenvalue problem arises in addition to the algebraic properties of the lin-
ear system. As to polynomial spectral transformation, heuristics are yet to be
developed to help determine the type of polynomial to use and the optimal

degree that one should choose.

. Non-symmetric eigenvalue problems share the same difficulty with the symmet-
ric problems. In addition, the problem of computing the rightmost eigenvalues
requires special attention. Even when one can afford to factor the matrix A—ol
or K — oM, computing the spectral abscissa (eigenvalue with the largest real
part) can be rather difficult. This is because the desired eigenvalue can lie in
any part of the complex plane, making it difficult for one to choose a target
shift in advance. One particular example in which this difficulty arises is the
work of Cox and Zuazua [12]. They tried to identify the minimum rate at which
energy decays in a damped string. This rate can be characterized as the spectral

abscissa of the operator

0 I
d*/dz* —2a(x)

A =

where a(x) represents the damping coefficient. The spectrum of the discretized
operator corresponding to the damping a(x) = 2 + cos(z) is shown in Figure
7.1. (we omit the discretization details here to illustrate the main point of the
problem.) The real parts of all eigenvalues lie between —3 and —2.75 while the
imaginary parts vary from —210 to 210. It is difficult to use IRA to separate
the rightmost eigenvalue from the rest of the spectrum because eigenvalues are
clustered in the real axis direction. Unless one knows approximately where the
spectral abscissa is a priori, it is difficult to guess where to place a target shift

for a shift-invert Arnoldi iteration.
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Figure 7.1 The spectrum of a discretized damped string operator

The acceleration strategies considered in this thesis are purely algebraic. That is, we
have ignored the nature of the original problem and focused only on the algebraic
properties of the matrices we are handed. Since many eigenvalue problems arise from
the discretization of linear differential or integral operators, one can benefit a great
deal from a thorough understanding of the properties of these operators in developing
acceleration schemes for the Arnoldi iteration. In particular, it is possible to develop
some multilevel acceleration schemes which first solve the continuous model on a
coarse grid, then interpolate the approximate eigenvectors on a finer grid to form a
starting guess for the next level Arnoldi iteration. Methods of this type have been
investigated in [28, 44, 7, 42, 45], but the approach taken there is based on a (single
vector) inverse iteration in which the linear equation solved by a multi-grid method.

One shall expect a better convergence rate from a multilevel Arnoldi iteration.
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Appendix

Double-shift TRQ for Real Nonsymmetric Matrices

A real nonsymmetric matrix may have eigenvalues that are complex conjugate pairs.
The single shift selection strategy discussed above will produce complex matrices Hy,
and Vi in the TRQ iteration. However, it is usually desirable to work within real
arithmetic just as in the standard double shift QR algorithm [22, 23]. To avoid the

complex arithmetic introduced by a complex shift, one may choose to work with

A

A= (A—pl)(A—pul)rather than A — pl alone. It follows from the full Hessenberg
reduction AV = VH that AV = VH, where H = (H — ul)(H — ul). Clearly, both
A and H are real. We let H = RQ be an RQ factorization of ]:[, and postmultiply
AV =V H by Q¥ to get AV, = V. H,, where V., = VQ and H, = QHQ". 1t is
easy to see that Vi and V are also related by AV_|_ = V R. The first column of V,
satisfies an inverse power relation with respect to A and the first column of V. It
is well known that the update of the Hessenberg matrix H, = QHQ" can be done
implicitly through a bulge chase process that keeps H, in an upper Hessenberg form.

In the large scale setting, we would like to develop the a truncated form of bulge
chase process associated with a double shift application. Again, our motivation is to
update and maintain only the leading portion of AV, = V, H,. To be more specific,

A

we put V = (V;, V), and let

A

~ Hll H12
H21 H22
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be partitioned conformally so that

Ay =y [0 73
Hyy Ha

Note that H is no longer upper Hessenberg. It has two subdiagonals. The RQ
factorization of H can be produced by applying a sequence of Householder reflectors
from the right to left. The first n — & — 2 reflectors @1, Q2,....Q0,—r_o effect only
the last n — k columns of H and V. Since these columns will not be retained in
the truncated version of the double shifted RQ algorithm, we do not need to know
Q1, Q2y--,Qn_k—o explicitly. However, after applying these reflectors, a set of well
defined linear equations emerge. The solutions of these equations help to determine
the remaining reflectors needed to construct the first k& columns of V; and H,. In the
following, we discuss how these equations are derived and how the partial RQ update

may be completed without forming ()1, Q2,...,Q0_x—2-

Suppose H has been partially factored such that

]:] _ ]i{ll ]\:4 [k (3 ’
Hyy R 0 @
Y11 Y12 7”1T
where C? is the accumulation of the first n — k — 2 reflectors, R= Vo1 v22 TE |
0 0 Ry
and Rj is an (n —k —2) x (n— k — 2) upper triangular matrix. Multiplying (7.3)
: Iy 0 : o
from the right by R and equating the first k£ + 2 columns give rise to the
0 Q7
equation
]:]11 g1 g2
AV, Uk++17 Uk++2) = (Vk, k41, Vky2) iL£+1 Y11 Y1z | o (7.4)

A

h{H Y1 V22
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where
+ _vAHH,. T _ Tjj o . o Th,. o
Vpyj = VQ%ej, hyy, =€ Hun, gj=Me;, and vi; =¢; Rej, 4,5 =1,2.

The same sequence of reflectors may be used to partially update the Hessenberg
reduction form AV = V H such that

. . H MQH
AV, V™) = (Vi,, vQ™) o QA : (7.5)
BrQerer QH,_xQ"

where
T
912 913 (&
T
922 923 Cy

5k©€1 = (911, 921, 931,0, ---,O)T, QHn—kQT = >

T
O35 0Os3 C3

0 0 4

and the trailing submatrix (4 is upper Hessenberg. At this point, the first & + 3
columns of (7.5) satisfy

Hy  hy Ry
91165 012 043

T T R I
A(%vvk+1vvk+2vvk+3) = (Vkvvk+1avk+2avk+3) T ) (7.6)
921€k Oz2 023

T
031 €L O35 033

where h; = MQHej and vk++]- = vp QF (j =1,2,3.) Assuming that v, and 6;; are
available, we may complete the RQ factorization by first constructing a reflector )4

to annihilate the off diagonal entries on the last row of
/ Hy, hi hy
911€£ 012 b1

T
921€k Os2 0Oy

T
031 €L O35 0Os3
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and then use the bulge chase scheme to keep the leading (k + 1) x (k + 1) portion

of H in an upper Hessenberg form. It may be verified that Q; also zeros out the

A

Hin g1 g2
off-diagonal entries on the last row of H = hg_H y1 2 |, thus it may be

T
hk+2 Y1 V22

constructed from izgﬂek, ~o1 and 799 directly. Hence vk+_|_3 and #3; do not need to be
determined explicitly. It remains to show how U;C:_Z» and 0;; (+ = 1,2, 7 =1,2,3) may

be determined. Let

N A Y11 Y12
U = (Vk41, Vk42), Ut = (U;j+1av1g++2)a G = (g1, g2), and I' =
Y21 Y22

The equation (7.4) and the condition VkHU = 0 may be expressed by the equation:

A

A W U+ Ur
VE 0 e 0

If I' is nonsingular, we may solve U+ and T from the above equation as follows.

A

AV, W U
1. Solve =
0

VE 0 Z
2. QR factor W = UT R, where (O"’)HU‘F = [, and R is upper triangular.

3. T« R~! (This matrix is never actually used or computed).

Once U7 is available, the values of h; and 6;; (1 = 1,2, j = 1,2,3) are determined by

(7.6). They can be computed by
h; = VkHAv,;"_I_Z», and 0;; = v,iiAv,;:j_l.
In the meantime, a reflector (J; may be generated such that

(07 "'7577217722)62{{ = (07 "'77-)7
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where ¢ = fAL£+2€k and 7 = /€2 + v%, + v3,. This reflector is used to initiate the bulge
chase process that completes the update of Hj.
The bulge chase process starts from applying Q¥ from the right and Q; from the

left to the matrix
H., hi he

G = 911€£ 012 b1

92165 Oz2 0Oy
The next reflector Q)2 is constructed to annihilate the (k + 2,k — 1) and (k + 2, k)
entries of G. Subsequent reflectors are generated and applied to G such that bulges
introduced by the previous reflector is pushed towards the upper left corner of H.

We summarize the above discussion in Algorithm 5.



Algorithm 5: (DBTRQ) Doubly shifted Truncated RQ-iteration

Input: (A, Vigr, Heprs fen) with AVig = Vign Hen + frpefy,
V,fHVkH = I, Hy upper Hessenberg.
Output: (Vi, Hy) such that AV, = VH, ViV, =1

L. Put Beg1 = || fetills Be = Hirr k)5 Vb ¢ Frt/Brs Vrr < Vigr€ryn
2. for y = 1,2,3, ... until convergence,
2.1. Select a shift p  p;;

2.2. Put A = (A— al)(A—ul), U

«(
AV, W\ _ (U
2.3.Solve<VkH 0 ><Z>_<O ;
2.4. QR factor W such that W = U+R, ((AJWL)HIJWL =/l and R is

upper triangular.
25. 0« R7Y by VkHAka; 01 v,ﬂiAvk; ;41 < vﬁ_iAvk;
Hy  hy  hy
2.7. Put H = | 0,ef 015 01y
92165 Oz2 0Oy
2.8. Let & = (ifr41; Construct a reflector ()1 such that
(57 Y21, ’722)@{[ = (07 07 T)7
2.9. Put H — Q1GQ{I, (‘/k‘jvlj__i_l?vlj—-l—Z) ﬁ (‘/1671)2_-}-171)2_-1—2) {I;
2.10. Bulge chase H ¢+ Qp_3Qp_3---Q:HQI ... g_SQg_Q;
(Vk, Uk+1, Uk+2) — (‘/]ﬁv];:_p ULg)Q? T g—z?
2.11. Put g8, = egﬂHkHek; frr1 & Avpyr;

Jrr1 < Jrp1 — sz1fk+1§ Br1 ka+1H§
3. end;

?

Figure 7.2 Doubly shifted TRQ iteration
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