

� � � � � � � � � � � 	 �
 � � � � � �

� 	 � � � � � � � �
 � � � � � � � �

� � � � � � � � � � � � � ! " � ! " � � " � #

$ % & $ ' (%) * + , -
. / 0 / 1 2 3)) *

4 5 6 7 5 8 9 : 8 ; 5 < 5 = 8 > ? : 6 @ = 8 = A A 5 A 4 : B C D 7 = 7 E : 6
; E > 5 F 6 E G 5 8 < E 7 H
I J K K L : D 7 ? M = E 6 L 7 8 5 5 7
4 ; @ 4 N M L O J

P : D < 7 : 6 Q R S T T K K U

L D V B E 7 7 5 W X D Y D < 7 J Z Z [

A
\

ugust 14, 1998

1

 of

18

Static Interprocedural
Optimizations in Java

Zoran Budimlic

Ken Kennedy

Center for Research on Parallel Computation

Rice University

Abstract
]

Interprocedural optimizations are important in Java because the object-oriented program-
ming style encourages the use of many small methods. Unfortunately, such optimizations
are difficult because of the nature of language structure and its security restrictions. A par-
ticular problem is the dif

^
ficulty of knowing the entire program at any time prior to execu-

tion.
^

This paper presents new approaches to cloning and inlining that can be profitably used
even in a single class. These optimizations are of particular interest for concurrent envi-
ronments, since the correctness of their application is insensitive to concurrency. Results
from our preliminary implementation are presented and ways to extend these methods are
described. These methods can be thought of as strategies for

almost whole-pr_ ogram

 analy-
sis and optimization.

1.0 Introduction

Because Java encourages a programming style that uses many small methods, interprocedural

optimizations are important for achieving high performance. One of the most effective interproce-

dural optimizations in object-oriented languages is

inlining

 of method invocations, in which the

body of the method is substituted for the in
`

vocation itself. Our experimental investigations have

shown that inlining is particularly effective on

scientifica

 codes written in Java [2].

Introduction

Static Interprocedural Optimizations in Java

2
b

 of

18

However, there are significant impediments to inlining in Java. Foremost among these is the diffi-

culty of obtaining the entire program so that it can be determined whether a given method invoca-

tion can be safely applied.
^

There are two issues that must be considered before inlining a method

invocation:

1.

At a given method invocation, it may not be clear which method is being invoked. This is due
to the dynamic dispatch or virtual function mechanism in Ja

^
va. When a method of a given

object is invoked, the run-time system dispatches the version associated with the class in
which that object wc as originally instantiated. This means that it is difficult to determine the
exact method invoked for objects passed as parameters or extracted from data structures. Java
shares this problem with all object-oriented languages. In such languages, an interprocedural
type analysis can often precisely determine the instantiation class of an object at e

^
very point

of use in the program [1, 7, 11, 18]. However, it is difficult to use such an analysis in Java,
because the entire program is not kno

`
wn until the Java Virtual Machine (JVM) is started.

2.

Even if the class in which the object was originally instantiated is known, it may not be possi-
ble to inline a method of that object without violating the security restrictions of the Ja

`
va Vir-

tual Machine [16]. F
^

or example, if the method accesses its object’s private members and the
method into which it is to be inlined is not permitted access to those members, the specific
inlining would be precluded. In another language, where the entire program was known at
compile time, the compiler could simply change the protection of variables during the code
generation process, making the inlining possible. In Java, however, this would open a security
hole because non-final classes might be refined through subtyping any time up until execu-
tion—an

^
y variables whose protection was relaxed to make inlining possible might be compro-

mised by code added later.

These problems are illustrated by the example in Figure 1 below. In the method

work()

 of class

Foo

, method

dec()

 of class

Goo

 cannot be inlined because it would violate encapsulation (prob-

lem 2). On the other hand, we cannot inline method

inc()

 of class

Foo

 because

inc()

 might be

overridden later, as it is in class

FooFoo

.

Intr
d

oduction

Static Interprocedural Optimizations in Java

3
e

 of

18

FIGURE 1.

Inlining problems in Java

While it is tempting to o
f

vercome these problems by building a compiler for whole programs only,

this approach w
^

ould severely limit the usefulness of the resulting programs in the Java world, as

the
^

y could never be even partially extended. On the other hand, it may be tempting to implement

interprocedural analyses and optimizations in the Java Virtual Machine, extending existing JIT

compilation strategies. However, the expense of interprocedural analysis, especially type analysis,

makes it unlikely that this approach will prove practical.

Our research has focused on ways to get some of the benefits of interprocedural optimization

without gic ving up on extensibility. The strategy we are pursuing might be called

almost whole-_
prg ogram

 optimization. The basic idea is to analyze and optimize the portion of the program that is

class Foo{
protected int x = 0;h

public void inc(){h
x++;i

}

public void work(){h
Goo goo = new Goo();
for(int i = 0; i<10; i++){
goo.dec(); // inlining violates encapsulation
x--;i
inc(); // inc may be overridden (see FooFoo)

}
}

}

class Goo{
private int y = 0;h
public void dec(){h

y--;j
}

}

Potential refinement of Foo:

class FooFoo extends Foo{
public void inc(){h

x--;i
}

}

Code Specialization

Static Interprocedural Optimizations in Java

4
k

 of

18

known to be fixed. In the extreme, this would mean class-by-class analysis. In places where we

cannot see parts of the program, the compiled code would incur performance penalties relative to

what wc as possible with whole-program compilation. In Section 5.0 we discuss features under

consideration for Java that might make this strategy more powerful by permitting the developer to

fix large parts of a code.

W
f

e will illustrate the strategy through two code optimizations:

1.

code specialization

, which is designed to overcome problem 1 described above, and

2.

object inlining

, which overcomes problem 2 in cases where the instantiation of an object
occurs in the same method where a method of that object is invoked.

W
f

e proposed both of these approaches in our previous paper [2], but we had not yet implemented

them in a compiler
^

. In this paper we report on experience with implementations in the JavaSoft

optimizer and discuss ways to extend their applicability.

2.0 Code Specialization

A simple example illustrating the impact of dynamic dispatch on interprocedural optimization is

given in Figure 2 below

FIGURE 2.

An e
l

xample for code specialization.

In this example, the compiler cannot conclude anything about the target of the method call to

inc()

 in

work()

, since the implementation of

inc()

 is dynamic by default, i.e., any subclass of

class Foo{
int x = 1;

public void work(){h
for (int i = 1; i<100; i++){
inc();

}
}

public void inc(){h
x++;i

}
}

Code Specialization

Static Interprocedural Optimizations in Java

5
m

 of

18

Foo

 that overrides

inc()

 but inherits

work()

 from

Foo

 would have the call dispatched to the over-

riding method

inc()

.

If the compiler is restricted to looking at only one class at the time, it must be overly conservative

and assume that the call to

inc()

 is dynamically dispatched and that it could refer to an unknown

method. Thus, an interprocedural optimization such as inlining would be precluded.

To overcome this problem, we have implemented a version of procedure cloning, called

code spe-

cialization

. The main idea behind this optimization is to generate a specialized version of the class

method that assumes static binding between the method calls inside the class and eliminates

dynamic dispatches. A run-time test is inserted to distinguish between the cases when the method

is called as a member of the exact class that is compiled, or as a member that some subclass has

inherited from the compiled class. Applying this optimization, the example from Figure 2 is trans-

formed into the code shown in Figure 3.

FIGURE 3.
n

Class
o

Foo
p

 from Figure 2 after Code Specialization

class Foo{
int x = 1;

public void work(){h
if (this.getClass() == Foo.class){
work$$SPEC();q

else{
for (int i = 1; i<100; i++){
inc();

}
}

}

// A specialized version of the method work()
final private void work$$SPEC(){
for (int i = 1; i<100; i++){
inc(); // Static binding can be assumed here

}
}

public void inc(){h
x++;i

}
}

Code Specialization

Static Interprocedural Optimizations in Java

6
r

 of

18

Here, a specialized version of the method

work()

, called

work$$SPEC()

 has been created, and all

calls from this method to other methods of class

Foo

 can be assumed to be statically bound. In

particulars , the method call to

inc()

 can be inlined at the calling site in

work$$SPEC()

. Further-

more, the call to

work$$SPEC()

 from within

work()

 can also be inlined along with its contained

call to

inc()

.

W
f

e are also eliminating unnecessary synchronization: specialized versions of method do not have

to be synchronized if the original methods are; if both
^

work()

 and

inc()

 are declared to be syn-

chronized on the same object and for some reason (recursion for example)

inc()

 cannot be

inlined in

work$$SPEC()

, a call to

inc$$SPEC()

 is inserted instead, eliminating a double syn-

chronization check.

The run-time test of the exact class type that is performed at the beginning of the modified method

could be quite expensive relative to the benefits the knowledge of the static binding of calls may

give to the compiler. An additional speed-up is achieved by performing the call only once on the

initialization of the object, and caching the result in an instance variable. Then only an instance

vt ariable lookup is needed to determine if the exact class type of the class being executed is the

type of the class that is specialized.
^

This of course adds space overhead of an additional boolean

vt ariable per each object for each superclass that is specialized, which could be significant, so an

appropriate heuristic based on the size of the specialized object versus the additional space for test

caches may be needed.

W
f

e have implemented code specialization as described above, followed by inlining of the result-

ing static method calls. Given that this is the only interprocedural optimization we have applied, it

is not surprising that the performance improvements are modest. For most of the test cases we, the

running time was unchanged or slightly longer (due to the added run-time tests). Of the rest, most

achieved a modest speedup of 5-6%, while several cases saw speedups of 20-30%.

Until the implementation of interprocedural optimizations that will tak
u

e a full advantage of the

static information now available to the compiler, as well as local optimizations that will take

advantage of increased basic-block size and local information available after inlining, the impact

of this optimization cannot be fully evaluated. Our previous experience with interprocedural opti-

mizations and inlining gives us reason to believe that overall, this optimization will be quite bene-

ficial.

Object Inlining
v

Static Interprocedural Optimizations in Java

7
w

 of

18

3.0 Object Inlining

Inlining is one of the simplest and the most effective interprocedural optimizations. It has two

major positive effects on the compiled code: elimination of subroutine call overhead and exposure

of the method body to further optimization in the context of the original invocation, at the cost of

increased code size and the corresponding increase in compilation time. Intuitively, inlining

wc ould be most effective for code that has many subroutine calls and short subroutines. Thus,

object oriented languages and programs written in object oriented style would profit the most

from this optimization. Many of the current C++ compilers implement extensive inlining and

achieve significant performance improvements as a result.

Ja
x

va presents another impediment to inlining, in addition to the unavailability of the exact type

that is discussed in the pre
^

vious section. Under the assumption that the exact type is determined,

either by interprocedural analysis of the part of the program that is available or by ensuring the

exact type of the object using code specialization, inlining could still be precluded, as it is illus-

trated by the sample code fragment in Figure 4.
^

FIGURE 4.
n

An e
l

xample for object inlining

In this hypothetical code, method

work()

 of the class

Foo

 instantiates an object of the type

Goo. It

wc ould be quite easy for the compiler to see that the variable goo is indeed of the type Goo, and that

all references to its methods (including the one to inc() inside the loop) are statically determin-

able at the compile time. However, compiler cannot inline the call to inc(). Unlike C++, a Java

class Foo{
public void work(){h
Goo goo = new Goo();
for (int i = 1; i<100; i++){
goo.inc();

}
}

}

class Goo{
private int j = 1;h
public void inc(){h
j++;

}
}

Object Inlining

Static Interprocedural Optimizations in Java 8
y

 of 18

compiler transforms the source code to bytecodes for the Java Virtual Machine, which have a very

similar structure to Java source code, with object instantiations, method invocations and language

rules that directly reflect the rules for Java source code [16]. In particular, bytecodes have to

respect the privacy of object fields. In our example, the code from method work() cannot directly

access the variable j from the class Goo, in either the source or in the bytecodes. Most Java Virtual

Machine implementations would reject programs that violate the privacy rules.

The idea behind object inlining is very simple: instead of simply inlining method calls, we will

inline whole objects, including data and code. By making the whole object local to the calling

procedure, we gain immediate access to its pris vate data and make it possible to directly inline all

the calls to that object's methods.
^

There are multiple benefits emerging from this approach:

• The variables that were private to the class Goo become local variables for the procedure
work(), thus enabling direct access to them, and enabling inlining of the call to inc()

• In addition to eliminating method calls due to inlining, access to the object’s variables are also
faster. Instead of using a field access to an instance variable in the inlined method, a simple
reference to a local variable is used.

• The object itself is eliminated, thus avoiding the need for dynamic allocation of the space used
by the object, as well as potential garbage collection when the object is not needed an

`
ymore.

The sample code from Figure 4 after object inlining is shown on Figure 5.

FIGURE 5. Example from Figure 4 after object inlining

class Foo{
public void work(){h
// Goo goo = new Goo(); // eliminated
goo$$j = 1; // replaced the above line
for (int i = 1; i<100; i++){
// goo.inc(); // eliminated
goo$$j ++; // replaced the above line

}
}

}
class Goo{

private int j = 1;h
public void inc(){h
j++;

}
}

Inlining Arrays of Objects

Static Interprocedural Optimizations in Java 9
z

 of 18

Performance tests on our implementation of object inlining confirmed the results that are earlier

obtained by performing this optimization by hand [2]. The statistical data is shown on Table 1.

W
f

e performed our tests on the same set of benchmarks as in our earlier work [2]. The Interpreted,

Object Inlining, JIT and JIT+Object Inlining columns represent the running times in seconds for

interpreted bytecodes, interpreted bytecodes with object inlining performed, bytecodes executed

on Symantec JIT 210.063 and bytecodes with object inlining on the Symantec JIT, respectively.

All tests were done on a 200 MHz Pentium Pro with 64 MB of memory running Windows NT

W
f

orkstation 4.0, with optimization flag -O turned on during compilation.

Note that the only disappointing performance impro
{

vement was on the Complex benchmark. This

benchmark mak
`

es extensive use of arrays of objects (complex data types), which are not currently

inlined by our implementation. The next section contains a discussion of the problems associated

with this form of inlining, which our prec vious experiments indicate will be highly successful [2].

4.0 Inlining Arrays of Objects

Additional problems arise when attempting to inline arrays of objects that are locally allocated

inside a method. This case is of particular interest when compiling scientific programs that oper-

ate on arrays and matrices of complex numbers. Some of these problems are illustrated in

Figure 6.

TABLE 1. Performance data for object inlining.

Benchmark Interpreted
Object
Inlining % Gain JIT

JIT +
|

Object
v
Inlining % Gain

Max 20.95
}

12.558 67% 0.951 0.761 25%

Matrix 42.24
~

19.348 118% 1.843 0.761 142%

Complex 53.787
�

46.287 16% 13.94 13.540 3%

Iterator 32.937
�

8.332 295% 1.402 0.25 461%

Inlining Arrays of Objects

Static Interprocedural Optimizations in Java 10 of 18

FIGURE 6. An e
l

xample for using an array of objects

The goal of inlining in this case is to inline the entire array of objects, rather than just individual

objects within the array. This means that we would replace the instance variables of objects in the

array with arrays of variables. In the example from Figure 6, we would replace the instance vari-

ables re and im with arrays array$re and array$im to yield the code shown in Figure 7 below.

Note that in this v
{

ersion, the complex object result has been inlined using the standard object

inlining approach described in Section 3.0.

To apply this optimization, we must ensure that two conditions are met:

1. Every array element that is actually used in the body of the procedure where the inlining is to
tak

^
e place must be initialized to an object of the same known class (e.g., the Complex class).

This restriction insures that we can carry out the inlining by creating arrays of the instance
vt ariables and that a single inlined version of each method can be used in loops.

public void sumParts(){h
 Complex[] array = new Complex[N];

 for (int i = 0; i < array.length; i++){
array[i] = new Complex(i*2, i*3);

 }
 Complex result = new Complex(0,0);
 for (i = 0; i < array.length; i++){
 result.setRe(array[i].re() + result.re());

result.setIm(array[i].im() + result.im());
 }
 System.out.println(result);
}

class Complex{
 double re,im;
 Complex(double re, double im){

this.re = re;
�

 this.im = im;
}
Double re(){return this.re;}

�
Double im(){return this.im;}

�
void setRe(double re){this.re = re;}�
void setIm(double im){this.im = im;}�
void print(){�

System.out.println("Real : " + re);
System.out.println("Imaginary : " + im);

}
}

Expanding the Range of Applicability

Static Interprocedural Optimizations in Java 11 of 18

FIGURE 7. Optimiz
�

ed method sumParts from Figure 6

2. The instantiation and uses of the array must all take place within the class and neither the
array nor any object in it may be passed outside the class where inlining takes place. This
ensures that no attempt will be made to access any object of the array using the defined meth-
ods, which would not be possible because we will never instantiate any object in the array.
Section 5.0 will discuss ways to relax this restriction.

Standard scalar and array data flow analysis techniques can be used to ensure that these condi-

tions are met. F
^

or example the analysis of scalar values [3,13,17] can permit the determination

that the range of instantiation includes the range of use for the array
^

. This analysis is similar to

array kill analysis in parallelization [12]. Alias analysis is necessary to prove that parts of the allo-

cated array are not aliased to other arrays that escape the scope of the method where it is being

inlined. These analyses are widely discussed in the literature and pose no obstacles, aside from

programming efs fort, to the approach we propose here.

5.0 Expanding the Range of Applicability

5.1 Object Reconstruction

Object inlining, as described, could be applied only to the objects that are instantiated locally

inside the method. If the method passes a reference to the inlined object to some other method

public void sumParts(){h
 double[] array$re = new double[N];
 double[] array$im = new double[N];

 for (int i = 0; i < array$re.length; i++){
array$re[i] = i*2;

 array$im[i] = i*3;
 }
 double result$re = 0;
 double result$im = 0;
 for (i = 0; i < array$re.length; i++){
 result$re = array$re[i] + result$re;

result$im = array$im[i]+ result$im;
 }
 System.out.println("Real : " + result$re);
 System.out.println("Imaginary : " + result$im);
}

Expanding the Range of Applicability

Static Interprocedural Optimizations in Java 12 of 18

(either by invoking it directly or via a return statement), the object could not be inlined with the

proposed methodologys . This is a serious restriction, because it is quite common to construct an

object inside a method, work on it, and return it. Can we extend the method to handle those cases

as well?

An obvious approach to this problem would be to reconstruct the object at the end of the method,

before returning it.
`

This could be accomplished in either of two ways: one would be to analyze the

inlined object’s constructors and determine if any of them (or any combination of them) is suit-

able for setting all of the object’s fields to the desired values. Although this would not work in

every case, we expect that most small objects could be reconstructed in this way. Another problem

is presented by the profitability of such a scheme—the cost of reconstructing objects might out-

weigh the benefits of the inlining.c

Alternatively, we could add an extra constructor to the class that is object-inlined, which would

tak
^

e arguments for all the fields of the object and set them to the desired values. This raises some

security considerations: Under the current security model in Java, a compiler is not allowed to add

publicly-accessible methods or fields to the class that is being compiled. It is easy to imagine as
scenario where the internal consistency of the object is maintained by the implementation of the

class’s methods (for example, complex object for some performance reasons may have both

orthogonal and radial representation internally, that are kept in consistency by the implementation

of the methods that the class implements). Although the constructor is not a “regular” method, in

the sense that it is not possible to call it directly
^

, adding a constructor that would allow someone to

create object with arbitrary and thus possibly inconsistent state may violate security.

5.2 Signed Archive Files

The impediments to optimization due to security are already recognized by JavaSoft, and they are

in process of developing a somewhat relaxed security model, that would be based on J
�
AR (Jav-

aARc_ hive) packages. Under this scheme, classes would be packaged into JAR files, where the

security mechanisms would be loosened. A JAR file can be signed, so no one can add or delete

classes or methods from it. This model would help the implementation of many interprocedural

optimizations, not only object inlining. Although this model still doesn’t solve the problem in

general (only a model where the whole program would be available at the compile time would

allow full range of interprocedural optimizations), we expect that for a significant number of sci-

entific programs much better optimization could be achieved for programs that were almost com-

Expanding the Range of Applicability

Static Interprocedural Optimizations in Java 13 of 18

plete. s The extensions discussed in the following subsections are based upon our speculations

about an ideal relaxed security model for signed JAR files.

5.2.1
m

Extending Code Specialization

Let us examine how some of the methods we have described here could be improved if we had

substantially more of the program available for analysis. Classes that are defined locally in the

same file as the class that uses them could be modified freely, since they are not accessible outside

the file where the
^

y are defined. If the entire program can be packaged into a single file, standard

whole-program analysis techniques can be used to optimize these procedures. Let us bec gin by

considering the case of code specialization. If no class in the tree is known outside the file, code

specialization takes a particularly simple form, illustrated in Figure 8:

FIGURE 8. Gr
�

aphic view of extended code specialization.

1. First preprocess the class definition where inlining is desired and the definition of all classes
that e

^
xtend it, connecting each definition of a method at a level in the derivation tree with

every use of that method in the same class or in one that it is derived from. Note that a method
definition inc() can be used in another method work() only if work() is associated with a
class above or in the class containing the definition of inc() in the hierarchy tree and no inter-
mediate class contains an overriding definition of work().

work�

Foo

FooFoo

work� inc

work

Foo

FooFoo

inc

inc work inc

Expanding the Range of Applicability

Static Interprocedural Optimizations in Java 14 of 18

2. Starting at the top of the hierarchy tree, at each point where inlining is desired, see if more
than one definition of the method to be inlined might actually be used due to dynamic dis-

^
patch. Suppose one definition is at the same les vel and all others are at lower levels.

3. Insert a copy of the method in which inlining is desired into each class at a lower level con-
taining a definition that might ha

^
ve been used. Then inline each definition in the copy at the

same level.

In the example above, method inc() is defined in both class Foo and an extension, FooFoo. There

is only a single definition of method work(). If inc() is to be inlined, method work() must be

cloned. In this case however, we do not need to insert a test of any kind, as each class will get its

own specialized version of work().

This extended version of code specialization fails to work if some class in the hierarchy is known

outside the file being optimized. In this case, we can use the procedure described above and then

apply the version of code specialization described in Section 2.0 for all classes that may be

extended by code outside the JAR file.

5.2.2
m

Extending Object Inlining

If we know the entire program, global type analysis combined with cloning can often be used to

substitute static invocation for dynamic invocation, permitting inlining everywhere. When the

program consists of more than one file, tws o problems can arise:

1. The class of the object is defined in a different file from the one in which it is used, a common
organizational practice in object-oriented languages. This problem can be overcome by an
extended form of object inlining for objects of the class that are instantiated and used entirely
in one file. In the case of a file that contains more than a single class definition, a copy of the
original class definition can be inserted in file where the usage occurs and all reference to
objects of the original class can be changed to reference the new class. Now methods from this
class can be freely inlined in the file. Even if the object is passed out of the file, it may be pos-
sible to construct an object of the original class by field copying as described in Section 5.1.

2. Some objects may be instantiated in one file and passed into another file. Object inlining can
again be used if, as above, we define a copy of the object’s class that would be known only
internally within the file where the object is used and if we can find some way to construct an
object of the new class from one of the original class. In this case, we insert constructors at
each point where an object of the original class is passed in and we have reduced the problem
to single-file inlining.

^

Related Work

Static Interprocedural Optimizations in Java 15 of 18

Clearly these extended versions of code specialization and object inlining could be extremely

effective in large JAR files. It remains to be seen, however, whether some of the object construc-

tion and reconstruction techniques can be widely applied.
^

6.0 Related Work

The term “object inlining” was introduced simultaneously by Dolby [9] and Budimlic and

Kennedy [2]. They both present a similar idea: inlining whole objects to eliminate indirection and

improve the performance of the generated code. There are some major differences, however.

Dolby focuses on whole program optimization, which is a significant restriction for Java pro-

grams in a given context. Additionally, Dolby only inlines objects inside other objects, reducing

heap allocation cost since only one allocation for the resulting object is required instead of sepa-

rate allocations for all contained objects, while our technique converts objects into local variables,

essentially changing heap to stack allocation.

There has been a significant amount of work in functional languages community done on unbox-

ing. Leroy [15] introduces new constructs to core ML language: wr� ap and unwrap, which are

inserted in the code to handle boxing and unboxing of the objects. Our technique is similar to his,

with the main difc ference being that we are applying it to an object oriented language (Java) and

we are not introducing anc y new constructs to the language itself.

Cooper, Hall and Kennedy [6] pioneered the work on prg ocedure cloning, that laid the grounds for

code specialization. Their approach uses procedure cloning to make copies of chosen procedures

based on the v
`

alues of their parameters. Call sites are partitioned and created copies of procedures

are then individually optimized based on the restricted number of possible call sites for those pro-

cedures and the known value of some of their parameters.

Chambers et al. [5] and Dean et al. [8] extended this idea further to clone procedures based on the

type of the parameter(s) passed, thus creating a more precise call graph information in the pres-

ence of polymorphism. This has enabled them to apply more traditional compiler optimizations

(such as inlining). Our approach in code specialization is similar to theirs, main difference being

that we do not require kno
^

wledge of the whole program to perform our optimization, though the

main benefits of our optimization can be experienced if the code that is available at the compile

time is indeed the major portion of the code that is being e
^

xecuted.

Conclusions and Future Research

Static Interprocedural Optimizations in Java 16 of 18

7.0 Conclusions and Future Research

W
f

e have described two optimization strategies:

1. code specialization, a variant of method cloning, and

2. object inlining, a general analogue of method inlining that also inlines instance variables.

These two strategies are used to overcome barriers to interprocedural optimizations, especially

inlining, that are caused by dynamic dispatch and the security features of Java. Both strategies

have been implemented in an optimizing compiler that is developed at JavaSoft, and is largely

based on the JDK 1.1
`

javac compiler. Preliminary experiments have shown results that are at

wc orst promising and at best spectacular.

The main problem with these methods are the limits of their applicability. In this paper, we have

shown how object inlining can be safely extended to arrays of objects and to objects that are

passed to methods of other classes. In addition, we has ve described how to generalize these meth-

ods to take advantage of forthcoming features of the Java environment, specifically JAR files, that

wc ould permit classes to be collected into signed files within which security restrictions were

relaxed. We plan to implement these extensions and show their efficacy for large codes written in

Ja
x

va, particularly scientific codes.

The Java language presents both opportunities and challenges to the compiler optimizer. The

opportunity is to work with a clean, pointer-free language that should be much easier to analyze.

The challenge is to structure the compiler and optimizations so that Java security and extensibility

features, treasured aspects of the language, need not be compromised. Interprocedural optimiza-

tions of
^

fer the most promise for improvement while presenting the greatest challenges to main-

taining security and e
^

xtensibility. The methods described here represent a small first step toward

meeting those challenges.

References

Static Interprocedural Optimizations in Java 17 of 18

8.0 References

[1] O. Agesen. Concrete type inference: delivering object-oriented applications. Ph.D. thesis,
Stanford University, 1995.

[2] Z. Budimlic and K. Kennedy. Optimizing Java: theory and practice. Concurrency: Practice
and Experience 9(6), 445-463, 1997.

[3] P. Briggs, K. Cooper, and L. T. Simpson. Value numbering. Technical report CRPC-
TR95517-S, Center for Research on Parallel Computation, Rice University, November 1994.

[4] D. Callahan and K. Kennedy. Analysis of interprocedural side effects in a parallel program-
ming en� vironment. In Proceedings of the First International Conference on Supercomputing.
Springer-Verlag, Athens, Greece, June 1987.

[5] C. Chambers and D. Ungar. Customization: Optimizing Compiler Technology for Self, a
Dynamically-Typed Object-Oriented programming language. In Proceedings of the ACM
SIGPLAN '89 Conference on PLDI, 24(7):146-160, July 1989.

[6] K. Cooper, M. Hall and K. Kennedy. Procedure cloning. Proceedings of the 1992 Interna-
tional Conference on Computer Languages, Oakland, California, 96-105,

^
April 1992.

[7] J. A.
x

Dean. Whole program optimization of object-oriented languages. Ph.D. thesis, Univer-
sity of Washington, 1996.

[8] J. Dean, C. Chambers, and D. Gro
x

ve. Selective specialization for object-oriented langua
�

ges.
In Proceedings of the ACM SIGPLAN '95 Conference on PLDI, pages 93-102, June 1995.

[9] J. Dolby
x

. Automatic Inline Allocation of Objects. In Proceedings of ACM SIGPLAN confer-
ence on POPL, Las Vegas, Nevada, June 1997.

[10] K. Driesen, U. Hölzle and J. Vitek. Message dispatch on pipelined processors. In Proceed-
ings ECOOP’95, Aarhus, Denmark. Springer-Verlag, August 1995.

[11] C. Flanagan and M. Felleisen. Modular and polymorphic set-based analysis: theory and
prg actice. Technical Report TR96-266, Rice University, 1996.

[12] M. W. Hall, B. R. Murphy, and S. P. Amarasinghe. Interprocedural analysis for paralleliza-
tion: A case study. In Proceedings of the Seventh SIAM Conference on Parallel Processing
for Scientific Computing, San Francisco, CA, February 1995.

[13] P. Havlak. Interprocedural symbolic analysis. Ph.D. thesis, Rice University, Dept. of Com-
puter Science, May 1994.s

[14] P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular section
analysis_ . IEEE Transactions on Parallel and Distributed Systems, 2(3):350 360, July 1991.

[15] X. Leroy. Unboxed Objects and Polymorphic Typing. In Conference Record of the Nine-
teenth

^
Annual ACM SIGPLAN-SIGACT Symposium on POPL, 177-188, Albequerque,

Ne
{

w Mexico, January 1992.

References

Static Interprocedural Optimizations in Java 18 of 18

[16] T. Lindholm and F. Yellin. The JavaTM Virtual Machine Specification. Reading, Mass., Add-
ison-Wesley, 1996.

[17] R. Metzger and S. Stroud. Interprocedural constant propagation: an empirical study. ACM
Letters on Programming Languages and Systems, 1(3), December 1992.

[18] J. Ple
x

vyak and A. Chien. Precise concrete type inference for object-oriented languages. In
Proceedings of the Ninth Annual ACM Conference on OOPSLA, 324-340, 1994.

[19] R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of call statements. In Proceed-
ings of the SIGPLAN '86 Symposium on Compiler Construction, SIGPLAN Notices 21(7),
pages 176-185. s ACM, July 1986.

