Static Interprocedural
Optimizations in Java

zZoran Budimlic, Ken Kennedy

CRPC-TR98746
August 1998

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted August 1998

August 14,1998

Static I nterprocedural
Optimizationsin Java

Zoran Budimlic
Ken Kennedy

Center for Research on Parallel Computation

Rice University

Abstract

Interprocedural optimizations are important inalbecause the object-oriented program-
ming style encourages the use of pnamall methods. Unfortunatelguch optimizations
are dificult because of the nature of language structure and its security restristjars.
ticular problem is the ditulty of knowing the entire program at yatime prior to &ecu-
tion.

This paper presentswepproaches to cloning and inlining that can be profitably used
even in a single clas¥hese optimizations are of particular interest for concurrert en
ronments, since the correctness of their application is ins@rsitconcurreng Results
from our preliminary implementation are presented aagswo &tend these methods are
describedThese methods can be thought of as graseforalmost whole-prgram analy-
sis and optimization.

1.0 Introduction

Because Ja encourages a programming style that usesynsamall methods, interprocedural
optimizations are important for ackieg high performance. One of the modeefive interproce-
dural optimizations in object-oriented languagemlining of method inocations, in which the
body of the method is substituted for theacation itself. Our &perimental ivestigations hee
shawvn that inlining is particularly éctive onscientificcodes written in 3 [2].

1of18

Introduction

However, there are significant impediments to inlining inalaforemost among these is thefidif
culty of obtaining the entire program so that it can be determined whethemnanggthod imoca-

tion can be safely applie@here are tw issues that must be considered before inlining a method
invocation:

1. At a gven method imocation, it may not be clear which method is beinvgked. This is due
to the dynamic dispatch or virtual function mechanism ra.J&hen a method of a gien
object is ivoked, the run-time system dispatches tleeswn associated with the class in
which that object was originally instantiatedThis means that it is dficult to determine the
exact method imoked for objects passed as parametersivaeted from data structuresvda
shares this problem with all object-oriented languages. In such languages, an interprocedure
type analysis can often precisely determine the instantiation class of an obyesty gicent
of use in the program [1, 7, 11, 18]. \Mever, it is difficult to use such an analysis invda
because the entire program is notwnauntil the JgaVirtual Machine (JVM) is started.

2. Even if the class in which the objectwgroriginally instantiated is kam, it may not be possi-
ble to inline a method of that object without violating the security restrictions ofwh®ija
tual Machine [16]. Br example, if the method accesses its objsgitivate members and the
method into which it is to be inlined is not permitted access to those members, the specific
inlining would be precluded. In another language, where the entire progaanknevn at
compile time, the compiler could simply change the protectioranébles during the code
generation process, making the inlining possible. va,Jaavever, this would open a security
hole because non-final classes might be refined through subtypingn@nup until @ecu-
tion—ary variables whose protectioraw relard to mak inlining possible might be compro-
mised by code added later

These problems are illustrated by th@mple in Figurel belav. In the methodwr k() of class
Foo, methoddec() of classGoo cannot be inlined because ibwd violate encapsulation (prob-
lem 2). On the other hand, we cannot inline methad) of classFoo becausénc() might be
overridden lateras it is in clas§ooFoo.

Static Interprocedural Optimizations in Java 20f18

Introduction

FIGURE 1. Inlining problems in Java

cl ass Foo{
protected int x = 0;

public void inc(){

x++;
}
public void work(){
Goo goo = new Goo();
for(int i = 0; i<10; i++){
goo. dec(); /1 inlining violates encapsul ation
X- -
inc(); /[l inc may be overridden (see FooFo00)
}
}
}
cl ass Goo{
private int y = 0;
public void dec(){
y--
}
}

Potential refinement ¢foo:

cl ass FooFoo extends Foo{
public void inc(){
X--;
}

While it is tempting to wercome these problems byiloling a compiler for whole programs only
this approach wuld severely limit the usefulness of the resulting programs in theadaorld, as

they could never be @en partially etended. On the other hand, it may be tempting to implement
interprocedural analyses and optimizations in the Yatual Machine, gtending &isting JIT
compilation stratgies. Havever, the expense of interprocedural analysis, especially type analysis,
makes it unlilely that this approach will pve practical.

Our research has focused oays to get some of the benefits of interprocedural optimization
without gving up on extensibility. The stratgy we are pursuing might be calledlmost whole-
program optimization.The basic idea is to analyze and optimize the portion of the program that is

Static Interprocedural Optimizations in Java 30f18

Code Specialization

known to be fied. In the gtreme, this wuld mean class-by-class analysis. In places where we
cannot see parts of the program, the compiled cadagdancur performance penalties relatio
what was possible with whole-program compilation. In SectidnO we discuss features under
consideration for Ja that might ma& this stratgy more paverful by permitting the desloper to

fix large parts of a code.

We will illustrate the stratgy through tvo code optimizations:

1. code specializatiognwhich is designed tovercome problem 1 described abpand

2. object inlining which orercomes problem 2 in cases where the instantiation of an object
occurs in the same method where a method of that objewblseth

We proposed both of these approaches in owipus paper [2], bt we had not yet implemented
them in a compilern this paper we report onxperience with implementations in thevi&ESoft
optimizer and discussays to &tend their applicability

2.0 Code Specialization

A simple xample illustrating the impact of dynamic dispatch on interprocedural optimization is
given in Figure 2 belg

FIGURE 2. An example for code specialization.

cl ass Foo{
int x = 1;

public void work(){

for (int i = 1; 1<100; i++){
inc();

}

}

public void inc(){
x++;

}
}

In this ekample, the compiler cannot concludeyidaimg about the taet of the method call to
inc() inwork(), since the implementation ofic() is dynamic by defult, i.e., ag subclass of

Static Interprocedural Optimizations in Java 4 0f18

Code Specialization

Foo that overrides nc() but inheritswor k() from Foo would have the call dispatched to thee-
riding method nc() .

If the compiler is restricted to looking at only one class at the time, it museby oonserative
and assume that the callitac() is dynamically dispatched and that it could refer to an umkno
method.Thus, an interprocedural optimization such as inliniogié be precluded.

To overcome this problem, we Y®implemented aersion of procedure cloning, calledde spe-
cialization The main idea behind this optimization is to generate a speciabrsidw of the class
method that assumes static binding between the method calls inside the class and eliminate
dynamic dispatche# run-time test is inserted to distinguish between the cases when the method
is called as a member of theaet class that is compiled, or as a member that some subclass has
inherited from the compiled clagspplying this optimization, thexample from Figure is trans-
formed into the code stm in Figure 3.

FIGURE 3. Class Foo from Figure 2 after Code Specialization

cl ass Foo{
int x = 1;

public void work()({

if (this.getd ass() == Foo.class){
wor k$$SPEC() ;
el se{
for (int i =1; i<100; i++){
inc();
}
}

}

/'l A specialized version of the nethod work()
final private void wor k$$SPEC() {
for (int i = 1; i<100; i++){
inc(); // Static binding can be assumed here
}
}

public void inc(){
X++;

}

Static Interprocedural Optimizations in Java 50f 18

Code Specialization

Here, a specializedevsion of the methodor k() , calledwor k$$SPEC() has been created, and all
calls from this method to other methods of class can be assumed to be statically bound. In
particulay the method call to nc() can be inlined at the calling siteviar k$$SPEC() . Further
more, the call towr k$$SPEC() from withinwor k() can also be inlined along with its contained
call toi nc().

We are also eliminating unnecessary synchronization: speciakzsobus of method do notve

to be synchronized if the original methods are; if hattk() andi nc() are declared to be syn-
chronized on the same object and for some reason (recursioraiople)i nc() cannot be
inlined inwor k$$SPEC() , a call toi nc$$SPEC() is inserted instead, eliminating a double syn-
chronization check.

The run-time test of thexact class type that is performed at thgibeing of the modified method
could be quite xpensve relative to the benefits the kindedge of the static binding of calls may

give to the compilerAn additional speed-up is ackiexl by performing the call only once on the
initialization of the object, and caching the result in an instandgable.Then only an instance
variable lookup is needed to determine if th&aet class type of the class beingecuted is the

type of the class that is specializéthis of course adds spaceerhead of an additional boolean
variable per each object for each superclass that is specialized, which could be significant, so an
appropriate heuristic based on the size of the specialized objeasuhe additional space for test
caches may be needed.

We have implemented code specialization as described/apfmllowed by inlining of the result-

ing static method calls. @&n that this is the only interprocedural optimization weelagplied, it

is not surprising that the performance imgnments are modestoiFmost of the test cases we, the
running time vas unchanged or slightly longer (due to the added run-time tests). Of the rest, most
achiezed a modest speedup of 5-6%, whileesal cases saspeedups of 20-30%.

Until the implementation of interprocedural optimizations that wiletakull advantage of the
static information ne available to the compileras well as local optimizations that will &k
adwantage of increased basic-block size and local informatiaibaéle after inlining, the impact
of this optimization cannot be fullwaluated. Our preous eperience with interprocedural opti-
mizations and inlining ges us reason to belethat wverall, this optimization will be quite bene-
ficial.

Static Interprocedural Optimizations in Java 6 of 18

Object Inlining

3.0 Object Inlining

Inlining is one of the simplest and the modeetive interprocedural optimizations. It hasdaw
major positve effects on the compiled code: elimination of subroutine cedttvead andxg@osure
of the method body to further optimization in the cahtd the original inocation, at the cost of
increased code size and the corresponding increase in compilation timevdiyfuitilining
would be most efective for code that has mary subroutine calls and short subroutine3hus,
object oriented languages and programs written in object oriented siyld wrofit the most
from this optimization. May of the current C++ compilers implemenitensve inlining and
achieve significant performance imprements as a result.

Java presents another impediment to inlining, in addition to the wadability of the exact type

that is discussed in the preus section. Under the assumption that tkaat type is determined,
either by interprocedural analysis of the part of the program thagilalale or by ensuring the
exact type of the object using code specialization, inlining could still be precluded, as it is illus-
trated by the sample code fragment in Figure 4.

FIGURE 4. An example for object inlining

cl ass Foo{
public void work()({
Goo goo = new Goo();
for (int i = 1; i<100; i++){
goo.inc();
}
}
}

cl ass Goo{
private int j = 1;
public void inc(){
j+

}

In this hypothetical code, methadr k() of the clas$oo instantiates an object of the typa. It
would be quite easy for the compiler to see thatahablegoo is indeed of the typeoo, and that
all references to its methods (including the oneentq) inside the loop) are statically determin-
able at the compile time. Mever, compiler cannot inline the call taoic() . Unlike C++, a Jea

Static Interprocedural Optimizations in Java 7 of 18

Object Inlining

compiler transforms the source code to bytecodes for lad/irdual Machine, which hae a \very
similar structure to Ja source code, with object instantiations, methedgations and language
rules that directly reflect the rules forvdasource code [16]. In particulabytecodes hee to
respect the pvacy of object fields. In oun@mple, the code from methedr k() cannot directly
access theariablej from the classoo, in either the source or in the bytecodes. Mog Vatual
Machine implementationsauld reject programs that violate thevagy rules.

The idea behind object inlining ie®y simple: instead of simply inlining method calls, we will
inline whole objects, including data and code. By making the whole object local to the calling
procedure, we gain immediate access to itspridata and makit possible to directly inline all

the calls to that object's methodere are multiple benefits ergarg from this approach:

« The variables that were pate to the classoo become local ariables for the procedure
wor k() , thus enabling direct access to them, and enabling inlining of the cal(tp

« In addition to eliminating method calls due to inlining, access to the abjacbles are also
faster Instead of using a field access to an instaac&abe in the inlined method, a simple
reference to a locakviable is used.

« The object itself is eliminated, thugaading the need for dynamic allocation of the space used
by the object, as well as potential garbage collection when the object is not negdectan

The sample code from Figure 4 after object inlining issshon Figure 5.

FIGURE 5. Example from Figure 4 after object inlining

cl ass Foo{
public void work(){

/1l Goo goo = new Goo(); /1 elimnated
goo$$] = 1; /1 replaced the above line
for (int i =1; i<100; i++){

/'l goo.inc(); /1 elimnated

goo$Pj ++; /'l replaced the above line

}
}
}

cl ass Goo{
private int j = 1;
public void inc(){
j ++;

}

Static Interprocedural Optimizations in Java 80f 18

Inlining Arrays of Objects

Performance tests on our implementation of object inlining confirmed the results that are earlier
obtained by performing this optimization by hand [je statistical data is siva on Table 1.

TABLE 1. Performance data for object inlining.

JIT +

Object Object
Benchmark Interpreted Inlining % Gain JIT Inlining % Gain
Max 20.95 12.558 67% 0.951 0.761 25%
Matrix 42.24 19.348 118% 1.843 0.761 142%
Complex 53.787 46.287 16% 13.94 13.540 3%
Iterator 32.937 8.332 295% 1.402 0.25 461%

We performed our tests on the same set of benchmarks as in our earkg2nThe Interpreted,
Object Inlining, JIT and JIT+Object Inlining columns represent the running times in seconds for
interpreted bytecodes, interpreted bytecodes with object inlining performed, bytexedé¢ee

on Symantec JIT 210.063 and bytecodes with object inlining on the Symanteespdctiely.

All tests were done on a 200 MHz Pentium Pro with 64 MB of memory rumdingows NT
Workstation 4.0, with optimization flag -O turned on during compilation.

Note that the only disappointing performance impraent vas on the CompkebenchmarkThis
benchmark mads extensve use of arrays of objects (conmyplgata types), which are not currently
inlined by our implementatiolhe ne&t section contains a discussion of the problems associated
with this form of inlining, which our preous eperiments indicate will be highly successful [2].

4.0 Inlining Arrays of Objects

Additional problems arise when attempting to inline arrays of objects that are locally allocated
inside a methodrlhis case is of particular interest when compiling scientific programs that oper
ate on arrays and matrices of complaumbers. Some of these problems are illustrated in
Figure 6.

Static Interprocedural Optimizations in Java 90f 18

Inlining Arrays of Objects

FIGURE 6. An example for using an array of objects

public void sunParts(){
Conpl ex[] array = new Conpl ex[N ;
for (int i =0; i < array.length; i++){
array[i] = new Conpl ex(i*2, i*3);

}

Conpl ex result = new Conpl ex(0, 0);

for (i =0; i < array.length; i++){
result.setRe(array[i].re() + result.re());
result.setlnm(array[i].im() + result.im());

}

Systemout.printin(result);

}

cl ass Conpl ex{
double re,im
Conpl ex(doubl e re, double in{
this.re = re;
this.im=im
}
Doubl e re(){return this.re;}

Double im){return this.im}

voi d set Re(double re){this.re =re;}

voi d setlIn(double im{this.im=im}

void print(){
Systemout.printin("Real : " + re);
Systemout.printin("lmaginary : " +im;

The goal of inlining in this case is to inline thvtire array of objectsrather than just indidual
objects within the array'his means that weauld replace the instancanables of objects in the
array with arrays ofariables. In thexample from Figuré®, we would replace the instancan-
ablesr e andi mwith arraysarray$re andar r ay$i mto yield the code shken in Figure7 below.
Note that in this &rsion, the compbe objectresul t has been inlined using the standard object
inlining approach described in Section 3.0.

To apply this optimization, we must ensure that tonditions are met:

1. Every array element that is actually used in the body of the procedure where the inlining is to
take place must be initialized to an object of the samewnaelass (e.g., theonpl ex class).
This restriction insures that we can carry out the inlining by creating arrays of the instance
variables and that a single inlinedrsion of each method can be used in loops.

Static Interprocedural Optimizations in Java 10 of 18

Expanding the Range of Applicability

FIGURE 7. Optimized method sunPar t s from Figure 6

public void sunParts(){
doubl e[] array$re = new doubl e[N ;
doubl e[] array$i m = new doubl e[N ;

for (int i =0; i < array$re.length; i++){
array$re[i] = i*2;
array$infi] =i*3;

}

doubl e result$re = 0;

doubl e result$im= 0;

for (i =0; i < array$re.length; i++){
result$re = array$re[i] + result$re;
result$im= array$infi]+ result$im

}
Systemout.printin("Real : " + result$re);
Systemout.printin("Ilmaginary : " + result$in;

}

2. The instantiation and uses of the array must ab fallace within the class and neither the
array nor an object in it may be passed outside the class where inlinirg tallece This
ensures that no attempt will be made to acceg®bject of the array using the defined meth-
ods, which wuld not be possible because we will@einstantiate anobject in the array
Section 5.0 will discuss ays to relax this restriction.

Standard scalar and array datavflanalysis techniques can be used to ensure that these condi-
tions are met. & example the analysis of scalaralues [3,13,17] can permit the determination

that the range of instantiation includes the range of use for the &hiayanalysis is similar to

array kill analysis in parallelization [12}lias analysis is necessary to pedhat parts of the allo-

cated array are not aliased to other arrays that escape the scope of the method where it is bei
inlined. These analyses are widely discussed in the literature and pose no obstacles, aside fro
programming dbrt, to the approach we propose here.

5.0 Expanding the Range of Applicability

5.1 Object Reconstruction

Object inlining, as described, could be applied only to the objects that are instantiated locally
inside the method. If the method passes a reference to the inlined object to some other methc

Static Interprocedural Optimizations in Java 11 0f 18

Expanding the Range of Applicability

(either by ivoking it directly or via a return statement), the object could not be inlined with the
proposed methodolog¥his is a serious restriction, because it is quite common to construct an
object inside a method,afk on it, and return it. Can wetend the method to handle those cases
as well?

An obvious approach to this problenowuld be to reconstruct the object at the end of the method,
before returning itThis could be accomplished in either obtways: one wuld be to analyze the
inlined objects constructors and determine ifyaof them (or ap combination of them) is suit-

able for setting all of the objestfields to the desiredalues.Although this would not work in

every case, wexpect that most small objects could be reconstructed in #yisAnother problem

is presented by the profitability of such a scheme—the cost of reconstructing objects might out-
weigh the benefits of the inlining.

Alternatively, we could add anxé&ra constructor to the class that is object-inlined, whiolld

take aguments for all the fields of the object and set them to the desateds/This raises some
security considerations: Under the current security modelay dacompiler is not aleed to add
publicly-accessible methods or fields to the class that is being compiled. It is easy to imagine ¢
scenario where the internal consisten€ the object is maintained by the implementation of the
classs methods (for >ample, compbe object for some performance reasons maye Hath
orthogonal and radial representation internahigt are kpt in consistencby the implementation

of the methods that the class implemerfifthough the constructor is not a g@ar” method, in

the sense that it is not possible to call it dire@tiding a constructor thabuld allov someone to
create object with arbitrary and thus possibly inconsistent state may violate security

5.2 Signed Archive Files

The impediments to optimization due to security are already recognizeddS8ofia and theare

in process of deeloping a somehat relaxed security model, thatauld be based c#AR (Jav-
aARdhive) packages. Under this scheme, classesldvbe packaged intdAR files, where the
security mechanismsauld be loosened JAR file can be signed, so no one can add or delete
classes or methods from Tthis model vauld help the implementation of mamterprocedural
optimizations, not only object inliningAlthough this model still doesnsolve the problem in
general (only a model where the whole prograouldl be &ailable at the compile time auld
allow full range of interprocedural optimizations), weect that for a significant number of sci-
entific programs much better optimization could be agliidor programs that were almost com-

Static Interprocedural Optimizations in Java 12 0f 18

Expanding the Range of Applicability

plete. The extensions discussed in the foling subsections are based upon our speculations
about an ideal relad security model for signedR files.

5.2.1 Extending Code Specialization

Let us &amine hav some of the methods wevsadescribed here could be impeal if we had
substantially more of the progranaadlable for analysis. Classes that are defined locally in the
same file as the class that uses them could be modified Bieeky thg are not accessible outside
the file where theare defined. If the entire program can be packaged into a single file, standard
whole-program analysis techniques can be used to optimize these procedures. igat bg be
considering the case obde specializatianf no class in the tree is kwn outside the file, code
specialization taés a particularly simple form, illustrated in Figure 8:

FIGURE 8. Graphic view of extended code specialization.

4 4

Foo Foo

=

wor inc wor inc

1. First preprocess the class definition where inlining is desired and the definition of all classes
that extend it, connecting each definition of a method at avel in the derivation tree with
every use of that method in the same class or in one that itvedérom. Note that a method
definitioni nc() can be used in another methad k() only if work() is associated with a
class abwee or in the class containing the definition @t () in the hierarchy tree and no inter
mediate class contains aveoriding definition ofwor k() .

Static Interprocedural Optimizations in Java 13 0f 18

Expanding the Range of Applicability

2. Starting at the top of the hierarchy tree, at each point where inlining is desired, see if more
than one definition of the method to be inlined might actually be used due to dynamic dis-
patch. Suppose one definition is at the sawed End all others are aver levels.

3. Insert a cop of the method in which inlining is desired into each class aivarltevel con-
taining a definition that might kka been usedThen inline each definition in the copat the
same leel.

In the xample abwe, method nc() is defined in both clas®o and an gtensionFooFoo. There
is only a single definition of methaar k(). If i nc() is to be inlined, methodor k() must be
cloned. In this case @ver, we do not need to insert a test oy &ind, as each class will get its
own specialized ersion ofwor k() .

This extended ersion of code specializatioails to work if some class in the hierarchy is ko
outside the file being optimized. In this case, we can use the procedure descnigezhdltben
apply the ersion of code specialization described in Se@iénfor all classes that may be
extended by code outside th&Rfile.

5.2.2 Extending Object Inlining

If we knaw the entire program, global type analysis combined with cloning can often be used to
substitute static wocation for dynamic wocation, permitting inlining \e&erywhere.When the
program consists of more than one fileg fproblems can arise:

1. The class of the object is defined in datiént file from the one in which it is used, a common
organizational practice in object-oriented languadéss problem can bevercome by an
extended form of object inlining for objects of the class that are instantiated and used entirely
in one file. In the case of a file that contains more than a single class definitiog,ad thogp
original class definition can be inserted in file where the usage occurs and all reference tc
objects of the original class can be changed to referencevhdass. Nav methods from this
class can be freely inlined in the file.devif the object is passed out of the file, it may be pos-
sible to construct an object of the original class by fiel¢/iogpas described in Section 5.1.

2. Some objects may be instantiated in one file and passed into another file. Object inlining car
again be used if, as alm we define a cgpof the object class that auld be knan only
internally within the file where the object is used and if we can find sapdoaconstruct an
object of the n& class from one of the original class. In this case, we insert constructors at
each point where an object of the original class is passed in and/ewvetiaced the problem
to single-file inlining.

Static Interprocedural Optimizations in Java 14 of 18

Related Work

Clearly these x@ended ersions of code specialization and object inlining could Xissmely
effective in large AR files. It remains to be seenvimver, whether some of the object construc-
tion and reconstruction techniques can be widely applied.

6.0 Related Work

The term “object inlining” vas introduced simultaneously by Dolby [9] and Budimlic and
Kennedy [2] They both present a similar idea: inlining whole objects to eliminate indirection and
improve the performance of the generated colleere are some major tfences, hwever.

Dolby focuses on whole program optimization, which is a significant restriction Varpiae-

grams in a gien contgt. Additionally, Dolby only inlines objects inside other objects, reducing
heap allocation cost since only one allocation for the resulting object is required instead of sepa
rate allocations for all contained objects, while our techniqueectsnobjects into localariables,
essentially changing heap to stack allocation.

There has been a significant amount ofknin functional languages community doneusibox-

ing. Leroy [15] introduces n& constructs to core ML languagerap and unwrap, which are
inserted in the code to handle boxing and unboxing of the objects. Our technique is similar to his
with the main diference being that we are applying it to an object oriented language)dand

we are not introducing gmew constructs to the language itself.

Cooper Hall and kennedy [6] pioneered theank onprocedue cloning that laid the grounds for

code specializatioheir approach uses procedure cloning to enadpies of chosen procedures
based on thealues of their parameters. Call sites are partitioned and created copies of procedure
are then indiidually optimized based on the restricted number of possible call sites for those pro-
cedures and the knm value of some of their parameters.

Chambers et al. [5] and Dean et al. [8jemded this idea further to clone procedures based on the
type of the parameter(s) passed, thus creating a more precise call graph information in the pres
ence of polymorphisniThis has enabled them to apply more traditional compiler optimizations
(such as inlining). Our approach in code specialization is similar to theirs, nferedde being

that we do not require kmdedge of the whole program to perform our optimization, though the
main benefits of our optimization can bgerienced if the code that igaalable at the compile

time is indeed the major portion of the code that is bexegiged.

Static Interprocedural Optimizations in Java 150f 18

Conclusions and Future Research

7.0 Conclusions and Future Research

We have described tw optimization stratges:

1. code specializatigra variant of method cloning, and
2. object inlining a general analogue of method inlining that also inlines instan@bies.

These tw stratgies are used tovercome barriers to interprocedural optimizations, especially
inlining, that are caused by dynamic dispatch and the security featuresaoBd#h stratgies
have been implemented in an optimizing compiler that igettgped at JaaSoft, and is layely
based on the JDK 1jlavac compiler Preliminary experiments hae shown results that are at
worst promising and at best spectacular

The main problem with these methods are the limits of their applicalilithis paperwe hae
shavn how object inlining can be safelyxiended to arrays of objects and to objects that are
passed to methods of other classes. In addition, weedescribed ha to generalize these meth-
ods to tak adwantage of forthcoming features of th@aarvironment, specificallyAR files, that
would permit classes to be collected into signed files within which security restrictions were
relaxed.We plan to implement thesextensions and shwotheir eficagy for large codes written in
Java, particularly scientific codes.

The Jaa language presents both opportunities and challenges to the compiler opfithezer
opportunity is to wrk with a clean, pointdiree language that should be much easier to analyze.
The challenge is to structure the compiler and optimizations so teegelaurity anddensibility
features, treasured aspects of the language, need not be compromised. Interprocedural optimiz
tions ofer the most promise for impneement while presenting the greatest challenges to main-
taining security andxtensibility. The methods described here represent a small first stegartb
meeting those challenges.

Static Interprocedural Optimizations in Java 16 of 18

References

8.0 References

[1] O. AgesenConcete type infagnce: delivering object-oriented applicatio®.D. thesis,
Stanford Unversity, 1995.

[2] Z.Budimlic and K. knnedyOptimizing &va: theory and m@ctice Concurreng: Practice
and Experience 9(6), 445-463, 1997.

3] P Briggs, K. Cooperand L.T. SimpsonValue numberingTechnical report CRPC-
TR95517-S, Center for Research @rdlel Computation, Rice Uversity, November 1994.

[4] D. Callahan and K. &nnedyAnalysis of interpscedunl side efflects in a paallel program-
ming ewironment In Proceedings of the First International Conference on Supercomputing.
SpringerVerlag,Athens, Greece, June 1987.

[5] C.Chambers and D. Ung&ustomization: Optimizing Compil&echnolagy for Selfa
Dynamically-ped Object-Oriented pgramming languge. In Proceedings of th&@CM
SIGPLAN '89 Conference on PLDI, 24(7):146-160, July 1989.

[6] K. CooperM. Hall and K. kennedyProcedue cloning Proceedings of the 1992 Interna-
tional Conference on Computer Languages, Oakland, California, 9&051992.

[71 J. A.Dean.Whole pogram optimization of object-oriented langyes.Ph.D. thesis, Uner-
sity of Washington, 1996.

8] J. Dean, C. Chambers, and D. GzdBelective specialization for object-oriented langgsa
In Proceedings of th@CM SIGPLAN '95 Conference on PLDI, pages 93-102, June 1995.

[9] J. Dolby Automatic InlineAllocation of Objectsin Proceedings &XCM SIGPLAN confer
ence on POPL, Lagegas, Ngada, June 1997.

[10] K. Driesen, U. Holzle and ¥Yitek. Messa@e dispatt on pipelined prcessaos. In Proceed-
ings ECOOP’95Aarhus, Denmark. Spring&ferlag,August 1995.

[11] C. Flanagan and M. Felleiseviodular and polymorphic set-based analysis: theory and
practice Technical ReporTR96-266, Rice Unersity, 1996.

[12] M. W. Hall, B. R. Murphyand S. PAmarasinghelnterprocedual analysis for paalleliza-
tion: A case studyin Proceedings of the @enth SIAM Conference onakallel Processing
for Scientific Computing, San Francisco, CA, February 1995.

[13] P. Havlak. Interprocedual symbolic analysisPh.D. thesis, Rice Uversity, Dept. of Com-
puter Science, May 1994.

[14] P Havlak and K. kennedyAn implementation of interpcedual bounded egular section
analysis IEEE Transactions ondallel and Distribted Systems, 2(3):350 360, July 1991.

[15] X. Leroy. Unboxed Objects andoB/morphicTyping In Conference Record of the Nine-
teenthAnnualACM SIGPLAN-SIGACT Symposium on POPL, 177-188bequerque,
New Mexico, January 1992.

Static Interprocedural Optimizations in Java 17 of 18

References

[16] T.Lindholm and EYellin. TheJava'™ Virtual Machine SpecificatiorReading, MassAdd-
ison-Wesley, 1996.

[17] R. Metzger and S. Stroubhterprocedual constant pppagation: an empirical studyACM
Letters on Programming Languages and Systems, 1(3), December 1992.

[18] J. Pleyak andA. Chien.Precise conate type infeance for object-oriented langges.In
Proceedings of the NinthnnualACM Conference on OOPSLA, 324-340, 1994.

[19] R.Triolet, E Irigoin, and PFeautrierDirect pagllelization of call statement$n Proceed-
ings of the SIGPLAN '86 Symposium on Compiler Construction, SIGPLAN Notices 21(7),
pages 176-18RACM, July 1986.

Static Interprocedural Optimizations in Java 18 of 18

