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Abstract

In this paper we investigate a unique problem associated
with fusing loops within a High Performance Fortran (HPF)
program. In particular, we discuss the issue of performing
loop fusion in an HPF compiler when compiling Fortran90
array assignment statements for execution on a distributed-
memory machine. During compilation of an HPF program,
Fortran90 array assignment statements must be scalarized
into loop nests. We show how a certain class of these loop
nests, when fused, can cause problems for the compiler’s
distributed-memory code generator. We then present an al-
gorithm which not only prevents the fusion of these loops,
but also increases the amount of useful fusion that can be
performed.

1 Introduction

High-Performance Fortran (HPF)[12], an extension of For-
tran90, has attracted considerable attention as a promis-
ing language for writing portable parallel programs. HPF
offers a simple programming model shielding programmers
from the intricacies of concurrent programming and manag-
ing distributed data. Programmers express data parallelism
using Fortran90 array operations and use data layout di-
rectives to direct partitioning of the data and computation
among the processors of a parallel machine.

One transformation an HPF compiler must address is
the scalarization of the Fortran90 array operations into se-
rial DO-loops. Scalarization is often followed by loop fusion
in an attempt to improve a program’s data locality and data
reuse characteristics. Unfortunately, the fusion of some of
these scalarized loops can produce loops for which it is dif-
ficult to generate an efficient SPMD program. However,
loop fusion is too important of an optimization to simply
disable. To solve this dilemma, we have developed an algo-
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rithm which not only prevents inappropriate fusion but also
enhances the amount of useful fusion.

In the next section we briefly discuss the scalarization
of Fortran90 array operations and the fusion of the result-
ing loops. In Section 3 we discuss some problems that may
be encountered when generating SPMD code for some fused
loops. We present our solution to these problems in Sec-
tion 4. Experimental results are given in Section 5, and in
Section 6 we discuss related works.

2 Scalarization and Loop Fusion

At some point during the compilation of an HPF program,
Fortran90 array assignment statements must be translated
into serial DO-loops. This process is known as scalariza-
tion [4, 24, 31]. The transformation replaces each array
assignment statement with a loop nest containing a single
assignment statement in which all array references contain
only scalar subscripts.
As an example, the array assignment statement

X(1:256) = X(1:256) + 1.0
would be translated into the following loop

DO I =1, 256

X(I) = X(I) + 1.0
ENDDO
which iterates over the specified 256 elements of the array
X.

Unfortunately, the naive translation of array statements
into serial loops is not always safe. The Fortran90 semantics
for an array assignment statement specify that all right-hand
side array elements are read before any left-hand side array
elements are stored. Thus a naive translation of

X(2:255) = X(1:254) + X(2:255)
into the following loop nest

DO I = 2, 255

I
X(I) = X(I-1) + X(I)
ENDDO
is incorrect, since on the second and subsequent iterations
of the I loop the reference X(I-1) accesses the new values
of the array X assigned on the previous iteration.
Fortunately, data dependence information can tell us
when the scalarized loop is correct. Allen and Kennedy [4]
have shown that a scalarized loop is correct if and only if it
does not carry a true dependence. Using this fact, most ad-
vanced compilers perform scalarization by computing data



dependences and then performing code transformations to
either eliminate loop-carried true dependences or change
them into antidependences.

The code transformations that can be applied to handle
the loop carried true dependences include loop reversal, loop
interchange, prefetching, and as a last resort the generation
of array temporaries and copy loops. In the example above,
loop reversal can be used to change the loop-carried true
dependence into a loop-carried antidependence, thus creat-
ing a valid scalarization. The interested reader is referred
to Allen and Kennedy [4] for a complete discussion.

After scalarization, a program will consist of many loop
nests, each containing a single assignment statement. If the
goal of a Fortran90/HPF compiler is to produce code for
array expressions that is competitive with code produce for
scalar programs by Fortran77 compilers, it is critical that
the Fortran90/HPF compiler do a good job of fusing these
loops when possible. Loop fusion [5, 32] not only reduces the
total amount of loop overhead, but more importantly it can
significantly increase the possibility of data reuse in a pro-
gram. The importance of loop fusion in the compilation of
Fortran90 array statements cannot be over emphasized [20].

In previous work on loop fusion for parallel machines [7,
30, 32] two adjacent loops are candidates for fusion if their
headers are conformable and there do not exist any fusion-
preventing dependences. T'wo loop headers are conformable
if they specify the same number of iterations and both loops
are either parallel or sequential. A data dependence between
two loops is fusion-preventing if after fusion the dependence
becomes loop-carried and its direction is reversed [1, 30].

By using loop fusion, in conjunction with other transfor-
mations such as statement substitution and array contrac-
tion, it is possible for a Fortran90/HPF compiler to generate
code for a block of array assignments that is equivalent to the
code produced by a Fortran77 compiler for a corresponding
hand-coded loop nest.

3 Over Fusing Loops

While the criteria presented in the previous section deter-
mine the safety of loop fusion and attempt to address its
profitability on parallel machines, they are insufficient when
considering loop fusion on distributed-memory architectures.
This is due to the fact that they ignore the distribution and
alignment of the arrays accessed within the loops, as well as
the exact iteration space of the loops.

When the distribution and alignment of the arrays and
the iteration space of the loops is not considered, it is pos-
sible for loops to be over fused. Loops are over fused when
the code produced for the resulting parallel loops exhibits
worse performance than the code for the separate parallel
loops. The poorer performance of the fused loops is not a re-
sult of register pressure or overflowing the instruction cache,
which are common concerns when fusing loops. But rather
the performance degradation is a result of the complications
encountered when generating SPMD code for certain types
of loops.

As an example, consider the simplified program fragment
shown in Figure 1(a) from the SHALLOW weather predic-
tion benchmark code'. In this example all the arrays are
perfectly aligned and distributed. The scalarized loop nests
generated for these two statements are shown in Figure 1(b).
Figure 1(c) shows how the SPMD code generator could use

1 This example taken from Tseng [29].
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REAL, ARRAY(256,256) :: X,Y,Z
'HPF$ DISTRIBUTE (BLOCK,*)::X,Y,Z

X(2:256,1:255) = F (Z(2:256,2:256),7(2:256,1:255))
Y(1:255,2:256) = F(%(2:256,2:256),%(1:255,2:256))

(a) SHALLOW weather prediction code

REAL, ARRAY(256,256) :: X,Y,Z
'HPF$ DISTRIBUTE (BLOCK,*)::X,Y,Z

DO j=1,255
DO i=2,256
X(ij) = F1(Z(1,j+1),2(1)))
ENDDO
ENDDO
DO j=2,256
DO i=1,255
Y(i.j) = F1(Z(1+1.,)),Z(i.j))
ENDDO
ENDDO

(b) After scalarization

REAL, ARRAY(64,256) = X,Y,Z

Ib = max(mypid*64,65)-(mypid*64)+1
DO j=1,255
DO i=lb,64
X(ij) = F1 (2(.5+1),26.0)
ENDDO
ENDDO
ub = min(mypid*64,255)-64*(mypid-1)
DO j=2,256
DO i=1,ub
Y(i,j) = F1(Z(i+1,),2(i,j))
ENDDO
ENDDO

(c) SPMD code for separate loops

REAL, ARRAY(256,256) :: X,Y,Z
'HPF$ DISTRIBUTE (BLOCK,*)::X,Y,Z

DO j=1,255
DO i=1,255
X(i41,j) = F1(Z(+1,j4+1),2(i4+1,)))
Y(i,j+1) = F1(Z(41,i4+1),2(1,i+1))
ENDDO
ENDDO

(d) After scalarization and loop fusion

REAL, ARRAY(64,256) = X,Y,Z

Ib = max(mypid*64,65)-(mypid*64)
ub = min(mypid*64,255)-64*(mypid-1)
DO j=1,255
DO i=lb,ub
IF (i.1t.64) THEN
X(i41,j) = FL(Z(+1,j+1),Z(i4+1,)))
ENDIF
IF (i.gt.0) THEN
Y(i,j41) = FL(Z(i+1,j+1),Z2(1,j+1))
ENDIF
ENDDO
ENDDO

(e) SPMD code for fused loops

Figure 1: Example of over fusing loops due to different iter-
ation spaces.




loop bounds reduction [29] to generate an efficient node pro-
gram for a four processor machine. If on the other hand the
compiler had fused the two loops prior to SPMD code gen-
eration, as shown in Figure 1(d), the compiler can no longer
use loop bounds reduction to instantiate the computation
partition. This is due to the fact that each processor does
not process the same number of elements for each statement.
Instead the compiler inserts guards around each statement,
as is seen in Figure 1(e). This is less efficient since the guard
statements must be evaluated at run-time, once per iteration
of the loop.

This example shows why it is important to consider the
exact iteration space of the loops, rather than just the it-
eration count, when fusing for distributed-memory architec-
tures. We note that in this simple example, it is true that
loop peeling [5] could have been used during SPMD code
generation to avoid generating the guard statements in the
fused loops. However, more complicated examples exists in
which avoiding loop fusion is preferred due to the multiple
levels of peeling which are required.

As another example, consider the sample code in Fig-
ure 2. In Figure 2(a) we see two simple Fortran90 array
assignment statements which operate on arrays with iden-
tical iteration spaces, but have different distributions. In
Figure 2(b) we see the loops that would result from scalar-
ization. The Rice dHPF compiler [2] generates the code
shown in Figure 2(c) for the two loops from Figure 2(b)
when targeting a four processor machine. Since the scalar-
ized loops have the same number of iterations and do not
have any fusion-preventing dependences, many Fortran90
compilers that support loop fusion would fuse the two loops
into a single loop, such as seen in Figure 2(d). But even
though the loops have the same iteration space, the arrays
upon which they operate have different distributions. This
causes problems for the SPMD code generator of an HPF
compiler. As of March 1998, the Rice dHPF compiler, which
uses a sophisticated code generation algorithm based on the
manipulation of integer sets [3], produces the code seen in
Figure 2(e) when given the fused loops as input. Notice
that three loops were generated, and that the second loop
contains a conditional and an expensive IMOD function. This
does not demonstrate a short-coming of the dHPF code gen-
erator, but is instead indicative of the challenge of generat-
ing efficient code for loop nests which reference arrays with
different distributions.

4 Context Partitioning

To handle the fused loops presented in the previous sec-
tion, Tseng [29] proposes using loop distribution to avoid
the complications of code generation. But this is actually
doing double work: one phase of the HPF compiler fuses
loops only to have a later phase distribute them. The proper
resolution is to avoid such loop fusion in the first place. How-
ever, one cannot just simply disable loop fusion, since it is
critical for obtaining good performance for Fortran90 array
statements [20], even when targeting a distributed-memory
architecture.

Others may claim that this problem can be avoided by
delaying loop fusion until after loop bounds have been re-
duced and SPMD code has been produced. This is dubious
at best. The generation of SPMD code often requires the
creation of symbolic loop bounds which are defined by calls
to run-time library routines. This obfuscation of the code
makes it extremely difficult to detect conformable loop head-
ers at compile-time.
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REAL, ARRAY(100) :: A,B
'HPF$ DISTRIBUTE(BLOCK):: A
'HPF$ DISTRIBUTE(CYCLIC)::B

A(Y)
B(:)

:A() + 1
:B() + 1

(a) Original program

REAL, ARRAY(100) =: A,B
'HPF$ DISTRIBUTE(BLOCK)::A
'HPF$ DISTRIBUTE(CYCLIC)::B

DO i=1,100

AG) = A{) + 1
ENDDO

DO i=1,100

B(i) = B(i) + 1
ENDDO

(b) After scalarization

REAL, ARRAY(25) - A,B

DO i=25*mypid-24,25*mypid
A(i-25%(mypid-1)) = A(i-25%(mypid-1)) + 1
ENDDO
DO i=mypid,mypid+96,4
B((+3)/4) = B((i4+3)/4) + 1
ENDDO

(c) SPMD code generated from separate loops

REAL, ARRAY(100) - A,B
'HPF$ DISTRIBUTE(BLOCK)::A
'HPF$ DISTRIBUTE(CYCLIC)::B

DO i=1,100
A) = A()
B(1) = B(i)

ENDDO

+1
+1
(d) After scalarization and loop fusion

REAL, ARRAY(25) - A,B

DO i=mypid,25*mypid-28,4
B((43)/4) = B((1+3)/4) + 1

ENDDO

DO i=25*mypid-24,25*mypid
A(i-25%(mypid-1)) = A(i-25%(mypid-1)) + 1
IF (imod(i-mypid,4).eq.0) THEN

B((143)/4) = B((1+3)/4) + 1

ENDIF

ENDDO

DO i=25*mypid+4,mypid+96,4
B((43)/4) = B((+3)/4) + 1

ENDDO

(e) SPMD code generated from fused loops

Figure 2: Example of over fusing loops due to different array
distributions.




For portions of HPF programs written with Fortran77
syntax, loop fusion is not an important optimization since
Fortran programmers typically put as much computation
into each loop nest as possible. But as noted earlier, loop
fusion is extremely important when compiling Fortran90 ar-
ray statements. Thus this paper concentrates on loop fusion
of scalarized loop nests.

To summarize, an HPF compiler needs to fuse scalarized
loop nests when possible, and it can perform that fusion
either before SPMD code generation or afterward. If per-
formed prior to SPMD code generation it is possible for the
loops to be over fused. If performed after SPMD code gen-
eration then it is likely to have limited success.

The challenge then is to perform useful loop fusion of
scalarized loop nests, while at the same time preventing
loops from being over fused. We present an algorithm, called
context partitioning, that solves this exact problem. Not
only does it solve this problem, but it is also capable of
enhancing the amount of useful loop fusion performed by
rearranging program statements. The algorithm makes fu-
sion decisions prior to SPMD code generation, but does so
while considering the distribution and alignment of the ar-
rays being operated upon. Before describing the algorithm,
we give a brief description of our HPF compilation model.

4.1 Compilation Model

During the compilation of an HPF program, the compiler is
responsible for inserting any necessary communication oper-
ations. These are required to move data so that all operands
of an expression reside on the processor which performs the
computation. For scalar array references, the compiler gen-
erates individual SEND and RECEIVE pairs for non-local data
accesses, and then depends upon later compilation phases to
optimize them [29].

However, Fortran90 array constructs supply additional
information which can allow a compiler to directly recog-
nize and exploit collective communication routines. Ex-
amples of collective communication routines include CSHIFT
and TRANSPOSE. These routines have several features which
provide compelling reasons for an HPF compiler to exploit
them; in particular they provide high performance from spe-
cially tuned library routines, they allow the composition of
operations to handle complex communication patterns, and
they simplify the complexity of the compiler.

For these reasons an HPF compiler should exploit col-
lective communication routines whenever possible. This re-
quires the compiler to recognize applicable patterns in the
array syntax used in assignment statements. Our compiler
uses a variant of the pattern matching techniques proposed
by Li and Chen [19]. This requires an analysis of the array
subscripts that are used, in conjunction with information
about the array’s alignment and distribution.

After the communication operations have been inserted,
all computations reference data that are strictly local to the
associated processors. For example, the array assignment
statement:

X(2:255) = X(1:254) + X(2:255) + X(3:256)

would be changed into the following three statements, where
TMP1 and TMP2 are arrays that match the size and distribu-
tion of X:

TMP1 = CSHIFT(X,SHIFT=-1,DIM=1)
TMP2 = CSHIFT(X,SHIFT=+1,DIM=1)
X(2:255) = TMP1(2:255) + X(2:255) + TMP2(2:255)
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Notice that in the third statement all the operands are “per-
fectly aligned” with each other and that there is no further
communication required to compute the expression or store
the result. This code is equivalent to the code produced by
several other commercial and research compilers [6, 17, 26].

Such perfectly aligned array statements have two distinct
advantageous characteristics. First, this property ensures
that a naive scalarization of array assignment statements is
always correct. Any possible loop-carried true dependences
now exist only in the temporary arrays used by the commu-
nication operations.

Second, no fusion-preventing dependences can exist be-
tween adjacent scalarized loops. Any fusion-preventing de-
pendence that existed prior to communication generation
is now carried through a communication operation and its
compiler temporary. This communication operation pre-
vents the Fortran90 array expressions (and their correspond-
ing scalarized loops) from becoming adjacent and are thus
not considered for loop fusion.

For example, given the following two array assignments

X(2:255)
B(2:255)

X(2:255) + A(2:255)
X(1:254) + B(2:255) + X(3:256)

communication generation would result in

X(2:255) = X(2:255) + A(2:255)
TMP1 = CSHIFT(X,SHIFT=-1,DIM=1)
TMP2 = CSHIFT(X,SHIFT=+1,DIM=1)
B(2:255) = TMP1(2:255) + B(2:255) + TMP2(2:255)

in which the fusion-preventing dependences are now carried
by the temporary arrays. The definitions of the temporary
arrays prevent the scalarized loops for the array assignments
from becoming adjacent.

Due to these two characteristics of perfectly aligned data
within array operations, our compiler can directly generate
a single loop nest for adjacent Fortran90 array statements
if they have identical distributions and cover the same it-
eration space. We call such array statements congruent 2.
This form of scalarization precludes the need for loop fu-
sion. For example, when presented with the following array
statements

X(1:256) = X(1:256) + 1.0
A(1:256) = X(1:256) *x 2.0
B(1:256) = X(1:256) + A(1:256) + B(1:256)

our compiler would directly generate the following loop dur-
ing scalarization.

D0 I =1, 256
X(I) = X(I) + 1.0
A(I) = X(I) *x 2.0
B(I) = X(I) + A(I) + B(I)
ENDDO

The compiler is able to determine if array statements are
congruent by analyzing the array subscripts along with the
declared distribution and alignment of the arrays. This in-
formation is all available at compile time. It is not necessary
for the compiler to know the exact computation partitioning
that will be used at run time. It is sufficient to only know
that the statements will receive the same computation par-
titioning.

4.2 Context Partitioning Algorithm

As explained above, our compilation model generates a sin-
gle loop nest for adjacent Fortran90 array statements which

2 Congruence is a stronger restriction than conformance, which just
considers shape (rank) and size (extent).



are congruent. This eliminates the need for a separate loop
fusion optimization and prevents the problems of over fusing
loops. However, unless an effort is made to make congruent
array statements adjacent, many small loops may still be
generated. In order to alleviate this problem, our compiler
uses the following context partitioning algorithm to reorder
statements within a basic block. The reordering attempts
to create separate partitions of congruent array statements,
scalar statements, and communication statements.

To accomplish context partitioning, we use an algorithm
proposed by Kennedy and M¢Kinley [15]. While they were
concerned with partitioning parallel and serial loops into
fusible groups, we are partitioning Fortran90 statements into
congruence classes. The algorithm works on the data depen-
dence graph (DDG) which must be acyclic. Since we apply
the algorithm to a set of statements within a basic block,
our dependence graph contains only loop-independent de-
pendences and thus meets that criterion. Besides the DDG,
the algorithm takes two other arguments: the set of congru-
ence classes contained in the DDG, and a priority ordering
of the congruence classes. We create a congruence class for
each set of congruent array statements and then add sepa-
rate classes for scalar statements and communication state-
ments.

The context partitioning algorithm is shown in Figure 3.
For each congruence class in priority order, the algorithm
makes a pass over the DDG. During the pass it greedily
merges statements for the given class. Two statements from
the same class may be merged into the same partition if
there does not exist a bad path between them. A bad path
for a congruence class ¢ is defined to be a path that be-
gins with a statement from class ¢ and either contains a
fusion-preventing edge between two statements from class
¢, or a statement from a class different than ¢. Due to our
compilation model presented in the preceding subsection,
all fusion-preventing dependences are carried by temporary
arrays defined by communication operations. Since com-
munication statements are in their own congruence class,
it is sufficient to define a bad path as a path containing a
statement from a different class. When two statements are
merged into a partition, the DDG is updated to reflect it.

The strength of the algorithm comes in its ability to
choose in constant time the correct partition x with which
to merge the given statement n of the selected congruency
class. Intuitively, n can merge with any of its ancestors
from which there does not exist a bad path, but it cannot
bypass any predecessor to merge with an ancestor. It can
also merge with partitions which are neither ancestors nor
descendants. As statements are processed for a given class,
the algorithm determines the highest numbered partition m
of class ¢ from which there exists a bad path to n. State-
ment n cannot merge with m or any partition with a lower
number, where partitions are numbered breadth-first in the
congruency class.

To compute the partition with which n is to be merged,
the algorithm takes the number of the next partition of class
¢ that occurs after partition m, the highest numbered par-
tition for which a bad path exists. If this number is 0, then
n i1s placed in a new partition and is given the next unas-
signed number. Alternatively, n is merged with the lowest-
numbered partition of class ¢ from which there is no bad
path to n.

Assigning a priority ordering to the congruence classes
is required to handle class conflicts. A class conflict occurs
when there exist dependences such that a pair of statements
from one class may be merged during partitioning or a pair

129

Procedure Context_Partitioning

Input:
Stmts, the set of statements to be partitioned.
Classes, the set of congruence classes.
Priority, the priority ordering for Classes.
DDG, the data dependence graph for Stmts.

Output:
A linear list of Stmts that has been partitioned.

Intermediate:

num(n), the number of the first visit to node n of class c.

lastnum, the most recently assigned number.

maxrBadPrev(n) is maz(num(z)|class of xis ¢ and 3 a bad path
for class ¢ from x to n).

node(t), an array that maps numbers to nodes such that
node(num(z)) = =z.

visited, the number of the first node of class ¢ in the DDG.

next(i), maps the i'" node to the number of the next node
of the same class.

Algorithm:

for each ¢ € Classes in decreasing priority do
/* Initialization */
lastnum = 0; count(*) = 0; visited = 0; node(x)
for each edge e = (m, n) € DDG do count(n)
for each node n € DDG do
mazBadPrev(n) = 0; num(n) = 0; next(n) = 0;
if count(n) is 0 then add n to Worklist
endfor

= 0;
= count(n)+ 1;

/* Tterate over Worklist, visiting nodes and */
/* fusing nodes from class ¢ */
while Worklist # ¢ do
remove arbitrary node n from Worklist
if class(n) = ¢ then
/* Compute node to fuse with. If none, */
/* assign a new number and add to visited. */
if marBadPrev(n) = 0 then

p = visited
else

p = nexst(marBadPrev(n))
endif
if p # 0 then

r = node(p)

num(n) = num(z)
marBadPrev(n) = maz(marBadPrev(n), marBadPrev(z))
fuse z and n, and call the result n
else /* a new node */
lastnum = lastnum + 1
num(n) = lastnum
node(num(n)) = n
/* append node n to end of visited */
if lastnum = 1 then visited = lastnum
else next(lastnum — 1) = num(n) endif
endif
endif

/* Update maxrBadPrev for successors of n and add to */
/*Worklist as appropriate */
for each edge (n,m) € DDG do
count(m) = count(m) — 1
if count(m) = 0 then add m to Worklist endif
if class(n) # ¢ then
mazBadPrev(m) = maxz(mazBadPrev(m), marBadPrev(n))
else /* class(n) = ¢ */
if class(m) = ¢ then
mazBadPrev(m) = max(mazBadPrev(m
else /* different class */
mazBadPrev(m) = max(mazBadPrev(m
endif
endif
endfor
endwhile
endfor

), mazBadPrev(n))

), num(n))

topologically sort DDG to produce the final order of Stmts

end Context_Partitioning

Figure 3: The Context Partitioning algorithm.




1a: X(1:256) = X(1:256) + 1.0
2p: Z(1:100) = Z(1:100) + W(1:100)
34: V(1:256) = X(1:256) *x 2
4p: W(1:100) = X(1:100) + Z(1:100)
5p : U(1:100) = Z(1:100) + SCALAR1
65 : SCALAR1 = SCALAR1 % V(I)
7a X(1:256) = W(1:256) * SCALAR1
85 7Z(1:100) = SQRT(W(1:100))
(a) Source code
1a: X(1:256) = X(1:256) + 1.0
34 V(1:256) = X(1:256) *x 2
2p: Z(1:100) = Z(1:100) + W(1:100)
4p: W(1:100) = X(1:100) + Z(1:100)
55 : U(1:100) = Z(1:100) + SCALAR1
8p : Z(1:100) = SQRT(W(1:100))
65 SCALAR1 = SCALAR1 * V(I)
7a X(1:256) = W(1:256) * SCALAR1

(b) Modified code

Figure 4: Context partitioning example.

from another class, but not both since that would introduce
a cycle in the pDG and thus make it unschedulable. The
priority ordering is used to determine which pair should be
merged. The algorithm merges pairs with a higher prior-
ity before those with a lower priority. Choosing an optimal
ordering of classes is NP-hard in the number of classes. How-
ever, since class conflicts are considered rare, a good heuris-
tic for choosing an order should be effective. The heuristic
that we have chosen is to order the array statement congru-
ence classes by their size, largest to smallest for the given ba-
sic block, and to give the scalar and communication classes
the lowest priority.

Given the chosen priority ordering, the context partition-
ing algorithm is incrementally optimal; i.e., for each class c,
given a partitioning of classes with higher priority, the parti-
tioning of ¢ results in a minimal number of partitions. In the
absence of class conflicts, maximal fusion is obtained, sans
fusion that leads to SPMD code generation problems. The
algorithm makes two passes over the DDG for each class, and
thus partitions the statements in O((N + E)C) time, where
N is the number of statements, E is the number of depen-
dence edges, and C is the number of congruence classes.

During subgrid loop generation, all array statements in a
partition are placed in the same subgrid loop. The number
of subgrid loops which operate on congruent array state-
ments is thus minimal, given the chosen priority ordering.
In addition, the problem of over fusing loops has been com-
pletely avoided.

4.3 Context Partitioning Examples

Figure 4 displays how context partitioning would handle
a block of eight statements. The statements are numbered
to represent their textual order. The subscripts represent
their congruence class. In this example, there are three con-
gruence classes: class A with iteration space 1:256, class B
with iteration space 1:100, and a separate class S for the
scalar statement appearing in statement 6. In this example,
all arrays have identical distributions. Figure 4(a) shows the
original source code. Naive code generation would create six
loops for these statements (only statements 4 and 5 would
be fused into the same loop). Figure 4(b) shows the code
after context partitioning. The modified code requires only
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RIP = CSHIFT(U,SHIFT=+1,DIM=1)
RIN = CSHIFT(U,SHIFT=-1,DIM=1)
T = U + RIP + RIN
T = T + CSHIFT(U,SHIFT=-1,DIM=2)
T = T + CSHIFT(U,SHIFT=+1,DIM=2)
T = T + CSHIFT(RIP,SHIFT=-1,DIM=2)
T = T + CSHIFT(RIP,SHIFT=+1,DIM=2)
T = T + CSHIFT(RIN,SHIFT=-1,DIM=2)
T = T + CSHIFT(RIN,SHIFT=+1,DIM=2)

Figure 5: Problem 9 from the Purdue Set.
RIP = CSHIFT(U,SHIFT=+1,DIM=1)
RIN = CSHIFT(U,SHIFT=-1,DIM=1)
T = U + RIP + RIN
TMP1 = CSHIFT(U,SHIFT=-1,DIM=2)
T =T + TMP1
TMP2 = CSHIFT(U,SHIFT=+1,DIM=2)
T =T + TMP2
TMP3 = CSHIFT(RIP,SHIFT=-1,DIM=2)
T =T + TMP3
TMP4 = CSHIFT(RIP,SHIFT=+1,DIM=2)
T = + TMP4
TMP5 = CSHIFT(RIN,SHIFT=-1,DIM=2)
T = + TMP5
TMP6 = CSHIFT(RIN,SHIFT=+1,DIM=2)
T =T + TMP6

Figure 6: Problem 9 after communication generation.
RIP = CSHIFT(U,SHIFT=+1,DIM=1)
RIN = CSHIFT(U,SHIFT=-1,DIM=1)
TMP1 = CSHIFT(U,SHIFT=-1,DIM=2)
TMP2 = CSHIFT(U,SHIFT=+1,DIM=2)
TMP3 = CSHIFT(RIP,SHIFT=-1,DIM=2)
TMP4 = CSHIFT(RIP,SHIFT=+1,DIM=2)
TMP5 = CSHIFT(RIN,SHIFT=-1,DIM=2)
TMP6 = CSHIFT(RIN,SHIFT=+1,DIM=2)
T = U + RIP + RIN
T =T + TMP1
T =T + TMP2
T =T + TMP3
T =T + TMP4
T =T + TMP5
T =T + TMP6
Figure 7: Problem 9 after context partitioning.

three loops to be generated, and these loops exhibit signif-
icantly improved data locality and reuse compared to the
loops generated for the original code.

As a second example, consider the code shown in Fig-
ure 5. This example, which computes a standard 9-point
stencil, was taken from Problem 9 of the Purdue Set [22]
as adapted for Fortran D benchmarking by Thomas Haupt
of NPAC [21]. The arrays T, U, RIP, and RIN are all two-
dimensional and have been distributed in a (BLOCK,BLOCK)
fashion.

The compilation model described in Section 4.1 will hoist
the explicit calls to the CSHIFT intrinsics out of the array
statements and assign them to temporary arrays. This re-
sults in the code shown in Figure 6. If no effort is made by
the compiler to rearrange these statements, the final code
will contain seven loop nests each separated from the others
by communication operations.

In this example there are only two congruence classes:
the array statements, which are all congruent, and the com-
munication statements. There are also only two types of
dependences that exist in the code: true dependences from
the CSHIFT operations to the expressions that use the TMP
arrays, and the true and anti-dependences that exist be-
tween the multiple occurrences of the array T. Since all the



dependences between the two classes are from statements
in the communication class to statements in the congruent
array class, the context partitioning algorithm is able to par-
tition the statements perfectly into two groups. The result
is shown in Figure 7. Since the array statements are now
adjacent, scalarization will be able to fuse them into a single
loop nest which exhibits a tremendous amount of data reuse.
Similarly, the communication statements are now adjacent
and can be easily optimized [14, 23].

5 Experimental Results

Context partitioning enhances the performance of HPF pro-
grams in two distinct ways. First, by blocking the fusion
of noncongruent array statements, it prevents the perfor-
mance degradation caused by over fusing loops. Second, by
rearranging array statements into larger blocks of congruent
statements, it increases the amount of useful fusion thus re-
sulting in better data locality, reduced loop overhead, and
improved performance. We have gathered experimental re-
sults to illustrate both of these aspects.

The second example in Section 3 presented code pro-
duced by Rice’s dHPF compiler. When executed on an
IBM SP-2, the performance of the code generated for the
fused loops is 22% worse than for the code where the loops
were not fused. This is due to the existence of the con-
ditional and IMOD function within the second loop. This
demonstrates that the performance degradation caused by
over fusing loops is real and can be quite significant.

We have also included context partitioning as a compo-
nent of our stencil compilation strategy [25]. In that work,
context partitioning was responsible for a 31% reduction in
execution time for the Problem 9 test case described in the
example of the preceding section when executed on a four
processor SP-2. Additionally, in early experiments on SIMD
machines [16], context partitioning reduced the execution
time of a section of the ARPS weather prediction code [9]
by 35% when executed on a MasPar MP-2. In that section
of code, it was able to reduce the number of loop nests from
eight down to two. These demonstrate the utility of context
partitioning for improving data locality and reducing loop
overhead by enhancing the amount of fusion performed.

6 Related Work

Many people have recognized the need to fuse loops gener-
ated by the scalarization of Fortran90 array statements [4, 8,
28, 32]. However, in all of these cases, only adjacent scalar-
ized loops are fused and no code motion is performed to
increase the chances of fusion.

The ZPL compiler [18] is an exception in that it aggres-
sively rearranges array statements to promote loop fusion for
the purpose of array contraction. The compiler performs de-
pendence analysis at the array statement level and includes
an advanced scalarization algorithm, similar to the analysis
and transformations we presented in an earlier paper [24].
They limit fusion to array statements that operate under the
same ZPL region, which is similar to our congruence classes,
and thus they avoid the problem of over fusing loops. Their
algorithm, however, performs no fusion for statements not
containing contractible arrays, thus losing out on the data
locality and reuse benefits of fusion. Conversely, since our
algorithm strives for maximum beneficial fusion, array con-
traction analysis could subsequently be performed on each
context partition. Such a strategy would likely be just as
successful in contracting arrays.
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IBM’s pHPF compiler [11] will avoid the problem of over
fusing loops since it attempts loop fusion after SPMD loop
generation. However, this requires that their compiler per-
form sophisticated symbolic analysis of the parameterized
SPMD loop bounds to identify conformable loops. This is
likely to limit their success of fusing loops to only the sim-
plest cases.

Hwang et al. [13] propose optimizing array operations by
synthesizing consecutive array operations or expressions into
a single composite mathematical function. Such a synthesis
is able to fuse loops and eliminate array temporaries, but is
limited to arrays whose live range does not extend beyond
the basic block.

Kennedy and M¢Kinley [15], as well as Gao et al. [10],
investigate rearranging Fortran77 loop nests to increase fu-
sion so as to improve parallelism and data locality, or to pro-
mote array contraction. However, their work targets shared-
memory parallel processors, and thus they do not have to
consider the problem of over fusing loops as addressed in
this paper.

While giving some optimization hints for the Slicewise
CM Fortran compiler, Sabot describes the need for code
motion to increase the size of elemental code blocks (blocks
of Fortran90 array statements for which a single loop can
be generated) [28]. He goes on to state that the compiler
does not perform this code motion on user code, and thus
it is up to the programmer to make the code blocks as large
as possible. In a later paper describing the internals of the
compiler, he describes how it attempts to perform limited
code motion so that loops may become adjacent and thus
fused [27]. However, the code motion performed is limited
to only moving compiler-generated scalar code from between
loops, not in moving the loops themselves.

7 Conclusion

In this paper, we introduced a problem with loop fusion
which is unique to distributed-memory architectures. Loops
become over fused if the arrays they operate on have differ-
ent distributions or iteration spaces. The SPMD code gen-
erated for such loops often executes slower than the code
generated for the separate loops. To address this problem,
we presented our context partitioning algorithm, which not
only prevents loops from being over fused, but also increases
useful loop fusion. Our experimental results have shown
that this optimization can have a significant impact on the
performance of HPF programs.
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