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Abstract

This note specializes to linear least squares problems an approach
suggested by Ferris and Mangasarian [4] for solving constrained op-
timization problems on parallel computers. It will be shown here
that this specialization leads to an algorithm which is mathematically
equivalent to an acceleration and convergence forcing modification of
the block Jacobi iteration applied to the normal equations. The result-
ing algorithm is a promising way to speed up a parallel multisplitting
algorithm of Renaut [9] for linear least squares. Renaut’s algorithm
is related to a specialization of part of the Ferris and Mangasarian
approach.
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1 Introduction

This note specializes to linear least squares problems an approach suggested
by Ferris and Mangasarian [4] for solving constrained optimization problems
on parallel computers. It will be shown here that this specialization leads
to an acceleration and convergence forcing mechanism for the block Jacobi
iteration applied to the normal equations. We do not form the full nor-
mal equations, but our numerical results hint that the condition number of
the normal equations affects the number of iterations required for a given
problem.

The target problems are assumed to be large. The technique suggested has for
each iteration two basic stages both of which involve the solution of smaller
linear least squares problems. The first stage is to partition the optimization
variables for the problem and then on separate processors to solve the smaller
least squares problem in which only those variables in a single partition are
allowed to move. The partitioning of the variables is at the discretion of the
user, and hence it can be used to select the size of the problem to be solved
on each processor. The user may make other considerations in partitioning
the variables such as consistent scaling of the partitioned problems.

It is well known that the iteration defined by incrementing each variable by
the amount indicated in this first stage and then updating the residual for the
next iteration is the block Jacobi iteration applied to the normal equations
for the original linear least squares problem. See Bjorck [1] and the references
therein. The classical Jacobi iteration alone may not converge [5, 8].

The second stage of each iteration is to compute a new iterate by a synchro-
nization step that involves solving a least squares problem in a smaller space
of surrogate variables identified by the first stage. If the surrogate variables
are taken only to be the increments produced by solving the subspace least
squares problems, then we will call this the Jacobi method with subspace
correction, and it always converges for full rank problems. It turns out that
this method has already been considered by Renaut [9]. She calls it Optimal
Recombination Least Squares Multisplitting (ORLSMS), and she gives fur-
ther developments based on the multisplitting method of O’Leary and White

[7].
For simplicity, we will restrict ourselves here to the case that at each of the
two stages we accurately solve the smaller minimization problems, but this



is neither necessary to the theory nor even possible in the general setting
considered in [4].

Mangasarian [6] and Ferris and Mangasarian [4] introduced in stage one auxil-
iary variables, which they called ”forget-me-not” variables. The contribution
of this paper is to show how to use the “forget-me-not” variables to make
some very promising reductions in the number of iterations needed if only
the ORLSMS or the Jacobi method with subspace correction is used. Our
results hint that perhaps the choice we advocate for least squares may be
useful back in the general minimization setting considered in [4].

If the size of the problem and the number of processors indicate, the problem
in the surrogate variables can in turn be attacked by the partitioning tech-
nique of the first stage, and this can be continued to reduce the dimension
of the problem to be solved in the synchronization step until the number of
surrogate variables is manageable.

In the next section, we present some preliminaries to set the stage for the
new Jacobi-Ferris-Mangasarian algorithm in Section 3. Section 4 presents
some promising numerical results, and Section 5 is devoted to a discussion
and conclusions concerning this approach.

2 Preliminaries

2.1 The linear least squares problem

Let A be an m x n real matrix, m > n,b € R™. Let M be an m x m positive
definite weighting matrix.

The weighted linear least-squares problem is:

min [[Az —b s, where |ly[l3; = y' My. (1)

Let the columns of A be partitioned into g blocks A = [A4; Ay ... A,],
where A; is m X n;. Further let x be partitioned consistently into blocks

T1,%2,...,%,. The least squares problem (1) is equivalent to
g
min{| Y A —bllw @ € R™i = 1. g}, (2)
i=1



We want to distribute the variables to the available processors and solve a
smaller subproblem on each processor in parallel.

2.2 Variable distribution

To solve the weighted linear least squares problem (2) we distribute the
variables among the available processors. In this section we will assume that
each group is assigned to its own processor.

Let z* be an approximation to the solution z* to (1), and partition x* into

E ok k
L, L5, Ty

Parallelization: : =1,2,... ,g¢

g
Solve for ;L’,f»C+1 € R™: min |Aiz; — (b— Z Aﬂ:f)HM . (3)

r; ER™ — .
1=5#2

Following the notation and derivation in [3], we introduce the direction d¥ =

J:f“ — zk

7, and note that successive residuals satisfy

g g
P =N At b =R ) A
J J

Then the ith least squares subproblem (3) is:
Solve for d¥ € R™ : d%iﬁi{”Aidi + ¥t =1,2,... 9, (4)
and the sth block of the new approximate solution is
e =af g dbi=1,2,... 4. (5)

For d; € R™ introduce the vector d; € R” which is obtained by starting
with a zero vector and placing the nonzero entries of d; in the positions
corresponding to the column indices in A of A;. Define the direction d*:

d* = zg: db.
j=1



Then (5) can be written as z**! = z* 4 d*. This is [1] the classical block
Jacobi method on the normal equations

ATM Az = AT M. (6)
Assume that A has full rank. Then the following result says that the block
Jacobi method converges if AT M A is sufficiently ‘block diagonally dominant’.

Theorem 1 Let A have full rank, and let C' be a block diagonal matriz with
ith block ATM A;. The corresponding block Jacobi method will converge to
z*, a solution of (1) if 2 C — AT M A is positive definite.

Proof: Corollary 2.1 of [5].

Even when 2 C' — AT M A is not positive definite, we can force convergence
by the following two small modifications of the block Jacobi method.

Let f: R"” — R be defined by
f(z) = ||Az = b||3; = 2" AT M Az — 2(A"Mb)"z — " Mb . (7)

We can force convergence by introducing a simple linesearch:

o = argmin, f(z* + od¥) . (8)

Theorem 2 Let A have full rank. Given z*, choose
= b 4t
where oy is defined by (8). Then limy_ooz* = z* .

Proof: Chapter 6 of [2].

Of course, this linesearch functions as a synchronization step, and so the
attractive parallelism in the Jacobi iteration is compromised.

Note that o is the easy solution of the 1-dimensional least squares problem to
solve for o in ||(Ad®)oy, +1r*||amr. We will introduce a more general linesearch
in the next section.

Finally, we end this section with a simple convergence result that follows from
the application of a degenerate form of the Ferris-Mangasarian 2nd stage.
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Theorem 3 Let A have full rank. Given x*, choose

gjk+1 = argmin{f(:l:k + dk), f(l’k + Jf),@ = 17 cee 79} ) (9>

then limy_yoox® = x*, where x* is the unique solution of (1).

Proof: Since A is full rank, f is strongly convex and the result follows from
Theorem 2.3 of [4] or Theorem 5 of the next section.

3 The Ferris-Mangasarian Correction Step

In the last section, we saw that the Jacobi iteration converges when the block
cross terms in the coefficient matrix AT M A are weak enough to be neglected.
This section will introduce simple techniques for incorporating the influence
of these cross terms into the iteration. Unfortunately, these all will take the
form of a synchronization step and so parallelism will be compromised.
Mangasarian [6] and Ferris and Mangasarian [4] introduced a synchronization
step in which the step Az* = %+ —z* is chosen by approximately minimizing
f(z*F + Az) in the subspace spanned by d; i = 1,...,g. In the following, we
call this a subspace-correction step.

Thus, the block Jacobi iteration can be seen as choosing adaptively a single
surrogate variable d¥ to represent the subspace spanned by the ith block of
variables ¥ in the correction step. The subspace-correction iteration step is
then chosen to be the step that provides approximately the most decrease
from z* for f in the space of Jacobi-surrogate variables. This sort of dimen-
sional reduction is common in engineering design through so-called surrogate
variable or reduced basis techniques. The difference here is that the surrogate
variables are being chosen adaptively by the Jacobi iteration rather than to
be chosen a priori by engineering judgement.

3.1 Supplementary variables

The subspaces spanned by the column blocks A; can be supplemented by
what Ferris and Mangasarian call “forget-me-not” variables. For our setting,
a more appropriate name would be “look-ahead” variables. Thus, we will
use the more neutral designation “supplementary variables”.



Beginning with a single full space vector, the procedures of the previous sec-
tion are used to obtain supplementary variables to expand each subspace.
Unfortunately, this requires us to introduce still more complicated notation,
which we will give now. Then we will discuss strategies for choosing supple-
mentary variables that we have found to be so advantageous as to justify the

added fuss.
Let I; be the n; xn; identity matrix and let I; b§ the n xn; matrix formed from
columns of the n x n identity matrix so that Al; = A;. Let the supplementary
vector p € R™ be partitioned accordingly and define the nx (g—1+4n;) matrix
P;

P = []31"'[52'—1 I; ﬁi+1"'ﬁg] . (10)
For n; = n; + g — 1, define the m x n; matrix

/_L = AP, = [Aﬁl---Aﬁiq A; Aﬁi+1"'Aﬁg]' (11)

For a given supplementary vector p* € R” the g subproblems (3) are replaced
by

Solve for d¥ € R™ : m}n{”gfcz + %) ar} (12)
d;
where /le is defined in (11) for the given vector p*. The step d* € R" is

g
d* =" Prd: (13)
=1

Of course, the inclusion of p in the algorithmic mix raises the question of
how to choose an ideal p for the iteration. That question turns out to have a
simple answer, which we give in the following theorem and then follow with
some algorithmic modifications aimed at approximating the ideal p.

k

Theorem 4 Let zF € R” be arbitrary, and set p* = €* = 2* — 2%, Then,

each Pidf = ek, and z* = % + édk.

Proof: To simplify notation, we will consider the case 1 = 1. Let v =
(e’fT, 1,1,---,1)T € R™. First we will show that d¥ = v solves (12).

7



Notice that
Av]f — API = [Al Ageg---Age]; 5
and Pyv = €*. Thus,
%Nllfv—l—rk = APjv +r* = Ae* + rF = Ax"—b,

and if c?’f is any other solution, then it must give the same residual. Thus,
by the unicity of x*,

Plcflvlf:PﬂJ:@k

is unique.

So, if we could choose p* = z* — z* = €, then each Pigf would be ef. Of
course, if we knew e*. we would be finished, but this points to taking p*
to be our best estimate of €. The best way we have thought to do this
at a particular iteration is by taking p* = 2% — zF~!
approximation to e leads to a significant reduction in iterations.

, and even this crude

However, a more elaborate scheme is reasonable because if p* does not depend
on k, and if the subproblems are solved using a Cholesky factorization of the
n; X n; matrix AZ»TMAZ', then the Cholesky factors are saved and solving
the subproblems require only a back substitution (forward and backward
substitution).

This suggests that we might profitably exploit the linear algebra savings
to try a predictor/corrector scheme defined by keeping p = p*~! fixed for

several predictor iterations to obtain say 2Pred without having to redo any
factorizations. The sole purpose of these predictor iterations is to obtain a

cpred _ .k

better approximation — 2" & € to use as p* in a corrector iteration to

obtain z*+'. We will give numerical results supporting this procedure.

3.2 The complete algorithm

At this point, we have obtained the full set of supplementary variables from
the block Jacobi subproblems supplemented by the projections of p. To finish
specializing the Ferris-Mangasarian technique to linear least squares, we will



explain the subspace-correction step, and then we will give the complete
algorithm.

For a given d € R”, define the n x g matrix
D=d--d,]. (14)
Consider the m x g matrix
A=AD = [Ady--- Ad,).

Then the columns of A are the full set of surrogate variables. We solve the
least squares problem in this set of variables to get the subspace corrected
step, which is given by

Solve for s* € RY : min H/—Alsk + rk||M ) (15)

We use the vector d* defined by (13), and the new iterate is z*+! = z* 4 D*s*
where D is defined in (14).

Before we give the Ferris-Mangasarian convergence theorem for the more
general nonlinear optimization algorithm, we pause to sum up all the spe-
cializations we have suggested in the following

Algorithm: Jacobi-Ferris-Mangasarian

Subdivide A into ¢ blocks.
Choose z°.
Compute r® = Az® — b.
for &£ = 0 step 1 until convergence do
Choose vector p*. This may involve several predictor iterations
for =1, ..., g in parallel
Compute PF in (10).
Let AF = AP}
Solve for d* : mm{HAvfgf + 7| ar}
Compute d* = 377, Pfcflvf
Compute D* in (14) and AF = ADF,
Solve for s* : mime/l\ks]C + rkHM.
oFtl = gk 4 Dkgk,
rktl = pk 4 Ak gk,

Check for convergence.



Algorithm: Predictor iterations

Let A; = APV and P, = PF ' fori=1,2,... ,g.
Let 20 = 2% — :z;k_l, v = rkF 4+ A0
for j=0,1,...,[—1do

for =1, ..., g in parallel

Solve for Jf : mm{”/—NLJZ + v7||ar}-

Compute & = 7_, PZJZ

Compute D’ and Al = ADI,

Solve for s/ : minH//l\jsj + vj]\M.

23t — i 4 Digd,

vitl = i + A\jsj.

Let pf = 2!

The following result follows from Ferris and Mangasarian [4] Theorem 2.3 by
noticing that if A has full rank then the function f in (7) is strongly convex.

Theorem 5 Assume that {p*} is bounded independent of k. If A has full

rank, then limy_,, ¥ = x*, where =* is the unique solution of (1).

4 Numerical results

The convergence of the methods will be illustrated on a class of randomly
generated least squares problems (1). The m x n coefficient matrix A =
QD + ¢ R where () is m x n with orthonormal columns, D is a n X n diagonal
matrix and R is a m x n matrix. The elements in R and on the diagonal
of D are randomly distributed. For small values of ¢ the matrix ATA is
diagonally dominated. The elements in the m vector b in the least squares
problem (1) are either random (for 'non-zero’ residual case problems) or the
vector is chosen to be b = A¢ where ¢ is a random n vector for 'zero residual’
problems. The weight matrix M is the identity matrix.

All tests are run on a SPARC with Sun-4 floating-point using Matlab.

In Table 1, variations of the Ferris and Mangasarian technique are compared
to the Gauss-Seidel iteration and the Jacobi iteration with the subspace-
corrected step on the normal equations (6). For this problem D =0, ¢ =1,
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and the elements in R are uniformly distributed in [-1,1]. Note that this
problem gets more diagonally dominant as m increases. For the particular
case reported here m = 280, n = 256. The condition number (the square of
the ratio of largest and smallest singular values of A) is 1403.5. The block
Jacobi method does not converge without a linesearch or subspace correction
for the reported values of g.

The stopping criterion is that the /5 difference between the exact and ap-
proximate solutions is not more than 107°.

In all numerical experiments the columns of the matrix are partioned into ¢
groups based on the natural order: the 1st n/g columns form the first group,
the 2nd n/g columns form the next group, etc. The starting point is z° = 0.

g | Gauss- | Jacobi with sub- Jacobi-Ferris-Mangasarian
Seidel | space correction p=1 ‘ F&M ‘ p=Ds ‘ Pred

Zero residual:

4 1891 5532 4919 4499 | 1835 | 676

8 2222 7157 11250 13411 | 1073 | 478
32 2486 6812 | >20000 | >20000 322 | 2955
Non zero residual:

4 1881 5223 5473 4275 | 1843 | 561

8 2244 6681 12249 12808 950 | 447
32 2522 6947 | >20000 | >20000 395 | 3000

Table 1: Number of iterations

The columns in Table 1 give the number of iterations to achieve the desired
accuracy. The Guass-Seidel method is applied to the normal equations with-
out forming the normal equations (see for example [1, 3]). For the Jacobi
method we use the subspace corrected step (15) to guarantee convergence.

The column marked "p=1" are the iterations using the supplementary vari-

ables defined by p* = (1,...,1)T € R".
Ferris and Mangasarian [4] suggest using the vector p* to be
[pi); = 1
VSRt e) = V()
1
- [ATM Ajei);

fory=1,2,... ,n;,1=1,2,... ,g (16)
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where e; € R™ is a vector with all ones and [ - |; denotes the jth component
of a n; vector. Note that this p* does not depend on the iteration index
k. The column marked "F&M” are the iterations using the supplementary
variables defined by (16). All tests indicate very little difference between the
Ferris and Mangasarian choice of p* and p* = (1,...,1)T.

The number of iterations for the algorithm that uses supplementary variables
defined by choosing p* = 2% — %=1 = D*s* is in the column marked "p=Ds".
In the column marked ”Pred” the supplementary variables are determined

using one predictor step to compute the new P,

All tests indicate very small variations between zero and non-zero residual
cases. This small difference indicates that the governing condition number
for the methods is the condition number of the normal equation (6).

k' 2k~ the number of iterations does not increase with the

For p* = z
number of groups g on most problems. However, for the method that uses one
predictor step, we see that the number of iterations in some cases increases
with the number of groups. This is investigated further in Table 2. Here we
have chosen ¢ = 1, the diagonal elements in D are uniformly distributed in
[1,2] and the elements of R are in the interval [0,1]. Further m = 26 and

n = 24.

g | p=Ds Predictor iterations [
[=1|1=2|1=3|1=4
2 897 | 381 7 80 53
4| 2424 | 879 | 185 | 397 95
6| 1488 | 343 | 176 | 450 | 135
8| 1421 | 478 | 257 | 567 95
12 336 | 2603 | 217 | 313 | 104

Table 2: Number of iterations and predictor iterations

A predictor iteration has the same cost in terms of arithmetic operations as
one iteration of the algorithm with p* independent of the iteration index.
If the cost of computing the QR factorizations of the smaller systems is
neglected, then using [ predictor iterations has the same cost as [+1 iterations
using "p=DS". If we consider g = 8 in Table 2 we see that it is more efficient

ko ket

to use 2 or 3 predictor iterations than use p* = z . If we use [ =2
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predictor iterations and compare with the results in Table 1 for "Pred” (I = 1)
the number of iterations decreases from 2955 to 306 for the zero residual case
and g = 32. For the non zero residual case the number of iterations decreased
from 3000 to 444 when [ = 2.

5 Conclusions

This paper raises more questions than it answers, and we hope to pursue
some of these questions soon. We believe that we have found a valuable
choice of the “forget-me-not” variables of Ferris and Mangasarian, and the
behavior of the predictor/corrector fairly cries out for an adaptive way to
decide when how many predictor iterations to do. At this point, we can only
say that more groups means more predictor iterations.

It would be also interesting to know whether our choice would be useful in
the general nonlinear optimization case. We suspect it would.

These questions will have to wait in order that we can make the deadline
to have our paper considered for the issue to honor Olvi Mangasarian on
his 65th birthday. We join all of Olvi’s friends, not just contributers to this
volume, in wishing Olvi and Claire many more happy and healthy years.
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