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Abstract

Automatic differentiation (AD) is a technique for augmenting computer codes to compute derivatives
of a subset of their outputs with respect to a subset of their inputs. AD has been shown to provide
accurate, but inefficient, sensitivity-enhanced CFD codes for use in aerodynamic shape optimization.
To address the inefficiency problem, several special purpose techniques have been suggested. One such
technique is the incremental iterative (II) method. This report describes and evaluates the use of the I1

method in AD-augmented code for OVERFLOW, a parallel, multigrid CFD code.

1 Introduction

Shape optimization is an important part of modern aerodynamic design. An important component of the
shape optimization process is the computation of derivatives of the aerodynamic outputs of computational
fluid dynamics (CFD) programs with respect to shape parameters. In contrast with finite differences, auto-
matic differentiation (AD), a technique for augmenting computer codes to compute derivatives of a subset of
their outputs with respect to a subset of their inputs (see [4]), has been shown to deliver accurate derivatives
of CFD codes [1, 7, 6]. Unfortunately, CFD codes augmented by AD using the simple “black box” (BB)
approach, tend to take about the same or more time as two-sided finite differences to compute derivatives.
Fortunately, it is often possible to combine AD with mathematical insight to generate efficient derivative
codes. For CFD, one such mathematically-motivated technique is the incremental iterative (I1T) method.
The details of the IT method appear elsewhere in the literature [5, 7]. The salient points, however, are
that IT methods eliminate portions of the AD-generated derivative computations that are not required for
well-converged CFD solutions, and that the methods can be implemented through a combination of AD and
a small amount of human intervention.!

In light of these considerations, the task presented to us by NASA was to construct an II version of
OVERFLOW 1.7r [3] and to compare its accuracy and efficiency to finite differences and to the BB version
of OVERFLOW. OVERFLOW 1.7r is a parallel, multizone, multigrid flow solver being used for shape
optimization at NASA. The use of parallelism and multigrid adds an element of complexity to the application
of the IT method to OVERFLOW.

In this report, we refer to the II version of OVERFLOW as OVERFLOW-ADII, or just ADII when it is
clear that we are referring to OVERFLOW. OVERFLOW-ADBB, or just ADBB, is used to refer to the BB

*This work was supported by the National Aeronautics and Space Administration under Cooperative Agreement No.
NCC 1 236, and by the National Science Foundation, through the Center for Research on Parallel Computation, under Cooper-
ative Agreement No. CCR-9120008. Additional computing resources provided by NASA Ames High Performance Computing
and Communication Program Testbed 1 Cooperative Research Agreement (through IBM P.O. # 835600Z-E1).

1'We are, however, investigating methods to further reduce the amount of human intervention currently required for 1T
construction.



version of OVERFLOW. For symmetry, OVERFLOW-FD, or just FD, is used to refer to the entire sequence
of steps required to use finite differences to approximate derivatives of OVERFLOW.

The target hardware for this effort is the IBM SP2. Most experiments were run on Rice’s 8 node SP2,
but some were run on the SP2 at NASA Langley, and a few confirming runs were conducted on Rice’s
32-processor Hewlett-Packard/Convex SPP-2000 X-Class Exemplar.

For this project, we used two test cases.? The first test case (2Z) consists of two zones with dimensions
271x91x3 and 61x225x3. The second test case (3Z) consists of three zones with grid dimensions 181x61x3,
481x121x3 and 261x61x3. These grids are both “pseudo 3-D” grids, i.e., each zone consists of three identical
2-D planes. For both of our test cases, the provided control files specify 3 levels of multigrid, and the use of
the “full multigrid” feature of OVERFLOW, which we describe next.

Full multigrid, for 3 levels of multigrid, first executes a series of degenerate V-cycle solution steps on the
coarse grid and interpolates the resulting coarse resolution flow field to the medium grid. It then executes
a series of V-cycle steps on the medium and coarse grids and interpolates the resulting medium resolution
flow field to the fine grid. Tt then executes all of the remaining V-cycles on the fine, medium and coarse
grids. In this report, we refer to the coarse and medium grid preliminary V-cycle steps as the multigrid
“prefix.” In the rest of this report, we use the OVERFLOW 1.7r variable names FMG and NSTEPS to
describe multigrid solution protocols. For example, a test case using a 3-level full multigrid protocol with a
prefix consisting of 50 coarse grid steps and 50 medium grid steps, followed by 200 fine grid steps for a total
of 300 steps, would be indicated as “FMG = 50,50, NSTEPS=200."” We use FMG=0 to indicate a multigrid
solution protocol that does not use the full multigrid feature, i.e., all steps are V-cycles on the finest grid.

This report is organized as follows: Section 2 reviews the mathematics underlying the IT method and
describes our approach to producing OVERFLOW-ADII from OVERFLOW 1.7r. Section 3 gives the results
of our derivative validation study. Section 4 compares the performance of FD, ADBB, and ADII. Section 5
summarizes our conclusions.

2 The IT Method

The IT method can be used to compute derivatives for programs that solve equations by iterating a recurrence
until some associated residual quantity is “small enough.” Many scientific programs fall into this category.
In the following discussion, we give an overview of the IT method. A more complete (and rigorous) discussion
can be found in [5] or [7].

A prototypical recurrence iteration, expressed mathematically is

where f, is a current solution estimate, R, is a residual difference between current and desired aspects of
the solution, and L,, is the current linearization of the problem operator. The n-th iteration computes both
the residual R, and the linear operator L, , and then solves the linear system for Af,. This Af, is added
to the current solution f,, to yield the new solution candidate. This process normally terminates when Af,
is “small enough.”

Differentiating the iterative process yields another iterative process whose iteration is

LoAf, + L Af, = R,

Now suppose that we have iterated a number of times, and f has essentially converged. Under this
condition, Af will be “small.” Furthermore, L, will change “very little” once f has converged. If Af is
“very small” relative to L! , then the second term in the sum is close to 0, and may be dropped from the
calculation. Likewise, L, is nearly constant, so the derivative recurrence can be simplified to

L.Af, =R,

where L, indicates the value of L when f has converged. Note the similarity of this simplified recurrence to
the original undifferentiated recurrence.

2We extend special thanks to Pieter Buning for building the grids and providing the control files, and to Ray Gomez for
suggesting the 3 zone case.



This simplified method for computing derivatives has several advantages. First, since there is no need to
compute L} Af,, the simplified recurrence calculation should be more efficient than the original derivative
recurrence. Second, the code in the original program that is used to solve LA f can be used to solve L. Af .
Since the original solver may have been hand tuned, reusing the original solver for derivative calculations
may have a significant impact on the performance of the derivative code.

Original Iteration BB Iteration II Iteration
read inputs [ read inputs I,I’ Given f., f;
initialize fo initialize fo,fo read inputs 7,1’
don=20 ... don=0 ... don=0 ...
R, = residual(!, f,) ‘ R., R, = R., R, =
Afn = solver(I, fn, Rn) gresidual(, I', fu, fr) gresidual(l, I', fx, fr)
fnt1 = fa+Afn Afn,AfL = for eelichvin]
enddo ' / ] Af, (U) =
A _SOIVG ]7[7 ) n7Rﬂ7Rn n \ s
compute outputs D(I, fx) fn—l—% > fn(-l- Aff J ) solver(I', fv, R (v))
fiol = fh+Af endfor
enddo+1 fT/L+1 =fa+Af
compute outputs enddo
D(I, 1), compute outputs
D'(I,1", fu, 1) b g,
D/(I7]/7.f*7f»/<)

Figure 1: Code Templates for IT Processing.

In Figure 2, we present code templates for use in applying the II method to a CFD code. In the original
iteration, the independent variables I are used to construct the initial flow field fy, which is then iteratively
updated to the final flow field f.. The dependent variables D are then computed using the final flow field
f«. Applying AD to the original iteration generates the BB version of the iteration which computes both D
and D’. To create the II iteration from the BB version, assuming that we are provided with the converged
solution f, computed by the original iteration, f§, an initial starting point for the iteration computing f7, we
delete the f, update and then we replace the call to g_solve with an explicit loop over each of the independent
variables. The challenge for multigrid is to identify the f, updates and interpolation steps for each level of
the grid. The loop invokes the original solver on each component of R! to compute the derivative update
component.

We used Adifor 2.0 [2] to differentiate OVERFLOW to create ADBB, and then modified the source code
for the ADBB iteration to create the code for the II iteration. We then constructed ADII using the original
OVERFLOW code to compute f,, ADBB to create the initial values for f, and the code for the II iteration
to compute f, from f. and fj. ADII consists of the following three step sequence of operations:

Step 1. Use ADBB to execute the full multigrid prefix, and 1 additional fine grid V-cycle to generate the
flow field fpreﬁx and its derivative fI’) fpreﬁx will be used as fy in Step 2. f}l)reﬁx will be used

as f§ in Step 3.

refix’

Step 2. Using OVERFLOW s restart facility, run OVERFLOW on the remaining fine grid V-cycles starting
with fy, and converge to the final flow field f..

Step 3. Run the II iteration with fi, f{ to compute f..

3 Validation

We began our evaluation of ADII by looking at the derivatives computed by ADII, ADBB and FD. We
considered two sets of derivatives: derivatives with respect to angle of attack (alpha variable in OVER-~
FLOW), and derivatives with respect to geometric variables (x,y,z grid variables in OVERFLOW). For the
geometric derivative study, we simply perturbed the location of a single “X” coordinate in the input grid.
Of the 13 aerodynamic outputs computed by OVERFLOW, our test case providers suggested we monitor



cmp, the pitching moment coefficient most closely.® Hence, all the plots shown are derivatives of cmp (with
respect to either alpha or the chosen coordinate). We performed all of these validations on the 27 test case.
For the 37 test case, we limited our validation to angle of attack derivatives, and only compared the ADII
and ADBB results.

3.1 Comparison of ADBB and FD

The comparison of ADBB and FD, shows good agreement for both angle of attack and geometric derivatives.
We give a sample of our results here. The results not shown are similar.

Comparison of ADBB and FD, angle of attack, 2Z. Figure 2 shows the agreement of ADBB with
FD for the derivative of cmp with respect to alpha, using 1.0E-04 as the finite difference perturbation. In
this case, FMG=50,50, NSTEPS=600 for ADBB and for each OVERFLOW run for FD. The finite difference

approximations were computed using one-sided forward differences.

Comparison of ADBB and FD, geometric, 2Z. Figure 3 shows the agreement of ADBB and FD
for the derivative of cmp with respect to the location of a single “X” coordinate, using 1.0E-06 as the finite
difference perturbation. For this case, FMG=50,50, NSTEPS=600. Finite difference approximations are one-
sided forward differences. We note in passing that geometric derivatives done this way are quite sensitive to
perturbation size. A number of perturbations did not work. Caveat finite differencor.

3.2 Comparison of ADBB and ADII

The accuracy of the IIM derivative calculation is not so clear, partly because there are so many different
degrees of freedom in the IIM protocol. The three most obvious (to us) protocol parameters are:

1. The number of steps taken to converge the starting flow field.
2. The number of steps of ADBB to use as a “baseline.”
3. The number of ADII steps taken to converge the IIM derivatives.

In our studies, we chose to take the number of steps to converge the function value as our choice of ADBB
baseline, eliminating one degree of freedom. The remainder of this section details our experiments.

Comparison of ADBB and ADII, angle of attack, 2Z, experiment 1. Our initial choice for baseline
function convergence was provided to us with the grids. For the 2Z case, we had FMG=50,50, NSTEPS=200.
Figure 5 shows the derivative of cmp with respect to alpha. The figure shows that the convergence of ADII,
even after 300 steps is not especially good. Furthermore, taking more than 300 steps has badly divergent
behavior, as shown in Figure 6. This divergence suggested that perhaps the flow field might not have been as
converged as we thought. Figure 4 shows the behavior of cmp for the first 300 steps. In spite of the apparent
convergence, the poor behavior of ADIT mandated a second experiment, using a flow field that had been run
for more steps.

Comparison of ADBB and ADII, angle of attack, 27, experiment 2. For our second ADII study,
we ran the function and ADBB as FMG=50,50, NSTEPS=600. In this case, the convergence appears to be
somewhat better than the convergence exhibited in experiment 1. Furthermore, derivatives of fair accuracy
can be obtained in far less than 700 ADII steps. Table 1 shows the relative accuracy of various derivative
outputs as a function of the number of ADII steps. The relative accuracies in the table are expressed as
the percentage of the ADBB value at step 700. Unshown aerodynamic derivatives have small magnitudes
(less than 1.0 x 10718). The numerical column headings indicate the number of ADII steps taken. The table
indicates that the convergence is not uniformly strong Figure 7 compares the ADII and ADBB behavior of
the cmp output for alpha derivatives.

3 Again, thanks to Ray Gomez, Pieter Buning, and Larry Green for their sharing their expertise.



ADII Steps
200 300 400 500 600 700
clp | 0.079 | 0.024 | 0.004 | 0.014 | 0.018 | 0.075
cdp 1.06 | 0.984 | 0.932 | 0.892 | 0.821 | 0.358
clf 7.63 | 8.457 | 8.935 9.41 9.94 | 104
cdf | 0.577 | 3.082 | 7.03 12.6 204 | 304
cmp | 0.0299 | 0.128 | 0.0632 | 0.0462 | 0.118 | 0.278

Table 1: Relative accuracy (percent) of ADII derivatives with respect to alpha

Comparison of ADBB and ADII, geometric, 2Z. Since ADII showed better behavior for FMG=50,50,
NSTEPS=600 on the alpha case, our next verification exercise examined the geometric derivatives. Again,
based on our examination of the table, we rate the convergence as “fair.” As in the previous table, Table 2
shows the relative accuracies for this exercise.

ADII Steps
200 | 300 | 400 | 500 | 600 | 700
clp [ 207|218 209|195 | 1.77 | 2.01
cdp | 7.67 | 8.35 | 9.16 | 10.3 | 11.8 | 8.06
clf | 596|552 596 | 700915 | 13.1
cdf | 15.9 | 15.1 | 13.5 | 12.1 | 10.1 | 0.355
cmp | 2.04 | 2.15 | 2.08 | 1.95 | 1.80 | 1.77

Table 2: Relative accuracy (percent) of ADII geometric derivatives

Figure 8 compares the ADIT and ADBB behavior of the cmp output for geometric derivatives.

Comparison of ADBB and ADII, angle of attack, 3Z. A comparison of ADIT and ADBB for the
37 test case behaves much like the 27 case. For this test case, we used FMG=50,50, NSTEPS=400 for the
derivative protocol Figure 10 compares cmp derivatives with respect to alpha, as computed by both ADII
and ADBB. Again, we rate the convergence as “fair.”

One more anomaly. While the behavior of the FMG=50,50, NSTEPS=600 run is “fair,” we were still
concerned that we did not have a sufficiently converged flow field to yield good answers. Consequently, we
made one ADBB run of FMG=50,50, NSTEPS=3000. Figure 9 shows the behavior of the cmp derivative
with respect to alpha. As the figure shows, there are two distinct plateaus — either one of which might be
a presumed stationary point. We have no explanation for this anomaly. Our best guess is that the problem
itself has some unsteadiness.*

4 Performance

In light of our insecurity about the accuracy of the ADIT method for the provided test case, we conducted
only limited timing studies. The results in this section are based on the FMG=50,50, NSTEPS=200 angle of
attack results. For illustrative purposes, we have extrapolated some timing numbers for different protocols.

Timings for the computation of the derivative of cmp with respect to alpha for 27 test case ADBB, ADII
and (one-sided) FD are shown in Table 3. These numbers indicate that ADIT does perform better than

4We also considered the possibility that we had not correctly implemented the ADIT method. We validated our implementa-
tion in three separate ways. First, we implemented the ADII using two distinct algorithms and verified that both gave the same
answers. Second, we verified that the flow field and its partial derivatives remained constant for each ADII iteration. Finally,
we iterated the derivative term excluded from the ADII, and discovered that the excluded term was behaving like the ADII,
but with opposite sign. All of these results suggest a correct ADII implementation.



Program | Total time (seconds)
ADBB 7960

ADII 5102

FD 2293.47

Table 3: Timings for computation of the derivative of cmp with respect to alpha for 27 test case.

ADBB, but it still performs rather poorly compared to FD. We also generated ADBB and ADII code using
a feature of Adifor 2.0 that generates derivative codes that compute a single derivative at a time. Adifor
normally generates derivative code that accommodates more than one derivative per run. By default, these
derivatives are stored in an array and computed by looping over each of the entries in the array. To compute
a single derivative, it is sufficient to replace the arrays with scalars and then eliminate the loops. We refer to
the scalar versions of ADBB and ADII, as ADSBB and ADSII, respectively. As shown in Table 4, the scalar
versions significantly outperform their vector counterparts. Unfortunately, ADSII performs more poorly

than ADSBB.

Program | Total time (seconds)
ADSBB | 2605
ADSIIT 3457

Table 4: Additional timings for computation of derivative of cmp with respect to alpha for 27 test case.

The timings indicated, however, reflect total time for an ADII computation. That is, the time for the
prefix, the function convergence, and the IIM steps themselves are all included in the total timing for ADSII.
Just looking at the cost of an ADSII step versus ADSBB gives:

Program | Average step time (seconds)
ADSBB | 11.748
ADSIIT 10.296

So, an ADSII portion is still marginally faster than an ADSBB.

If we amortize the cost of computing the converged flow field, then SII iteration can be better than
SBB but is still slower than FD. When the process requires more than one derivative, the computation of
the converged flow field needs to be done once per set of derivatives, since the same converged flow field is
required for each SII derivative computation. Hence, the cost of the function evaluation can be amortized
over the cost of multiple derivatives.

Real improvements over FD, however, will require taking fewer steps. To illustrate the potential benefit of
stopping early, we extrapolate the timing for experiment 2 of Section 3. Using our timing results, we estimate
that total ADSBB time for FMG=50,50, NSTEPS=600 would be 267 (prefix) +599 x 11.748 (ADBB steps) =
7304 seconds. Using the FD value from Table 3, we estimate FD time for this case to be 6869 seconds. Table 5
shows the estimated time (in seconds) and maximum relative error (in percent) as a function of the number
of II iterations. In light of these estimates, if ADII can be stopped after 200 or 300 steps, then it will take
less total time than FD.5

ADII Steps
200 300 400 500 600
time(seconds) 5750.4 | 6780.0 | 7809.6 | 8839.2 | 9868.8
max rel error(%) 7.63 8.457 | 8.935 12.6 20.4

Table 5: Estimated performance and accuracy for ADSII

5We are aware that our FD algorithm is naive. FD in practice would probably use restarts to further reduce the computation
time. We intend to examine more sophisticated FD techniques in future work.



5 Conclusions

Our main concern in this study was accuracy. As detailed in Section 3, the ADII method does not exhibit
strong convergence for the test cases we had. A (presumably) more converged flow field did seem to have a
positive effect on ADII convergence, but the favorable effect was not overwhelming. Furthermore, running
too many steps of ADII results in divergence. On the positive side, the ADII does appear to reach its
“quasi-converged” plateau in fewer steps than ADBB.

Our timing results indicate that ADII by itself does not lead to any significant improvement in the speed
of derivative calculation. The ADII steps themselves are marginally faster, but are still not competitive
with finite differences. If, however, the accelerated convergence can be consistently realized, then the ADII
method can be competitive with finite differences.
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Figure 3: Comparison of ADBB and FD geometric derivatives of cmp, 27.
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