Providing Easier Access to
Remote Objects in Client-Server
Systems

Jonathan Aldrich, James Dooley, Scott
Mandelsohn, and Adam Rifkin

CRPC-TR98735-S
January 1998

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted January 1998; Presented at the 31st Hawaii In-
ternational Conference on System Sciences, January 1998

Providing Easier Access to Remote Objects in Client-Server Systems

Jonathan Aldrich, James Dooley, Scott Mandelsohn, and Adam Rifkin
California Institute of Technology
{jonal, jdooley, scott, adam}@cs.caltech.edu

Abstract

The Java Environment for Distributed Invocation (JEDI)
is efficient, dynamic, and easier to use than dternative
comnunication systems for distributed Java olbeds.
Existing state-of-the-art mechanisms for remote method
calls on Java oljeds, such as RMI, require users to
perform a complicated series of steps. Furthermore, the
compiled static interfaces these systems use limit their
functiondity. This paper presents the design and
implementation o JEDI's smpler approach utilizing
dynamic proxies. We discuss a means of integrating
JEDI with a publicly available CORBAORB, foll owed by
the tests used to ensure the robustnessof the JEDI system.
Comparing this s/stem's performance with that of other
comnunication facilities sich as UDP, TCP, and RMI
demonstrates the dficiency of JEDI. A calenda-
scheduling appication illustrates the flexbility and
usahility tradeoffs of employing JEDI in dstributed
client-server applications.

1. Introduction

Java programs can use the Internet for distributed
computations in many different ways [8]. One such
technique involves message passng [9] between objeds
on different machines, as exemplified by Cated's
Infospheres [4], IBM's Aglets [14], and the iBus multi cast
system [16]. Another technique involves accessng remote
objeds through a request broker adive on a remote
madine using CORBA [17] or DCOM [6]. Some systems
communicate with remote objeds through a gateway to a
Web server using HTTP and CGI [1]. Method cdls on
remote objeds may be made using Open Network
Computing Remote Procedure Calls[29] or Java's Remote
Method Invocation [12]. With ead of these techniques,
the programmer must ded with credaing extra interfaces
(often in a different language) and must do aher setup
work to handle low-level communication details.

This paper explores remote method cdling fadliti es
that automaticdly handle some of the more aumbersome
communication and synchronization responsibiliti es [21].

Many existing systems, including Java's RMI, require a
programmer to run interface ©de through a preprocesor
to crede stub and skeleton objeds. We have developed an
aternative system for remote method cdli ng, offering the
programmer complete mntrol over communication while
simplifying the model of distributed computing. Since our
system uses Java's srialization capabiliti es, a programmer
can automatically send any object to a remote machine.

First, we will discuss and evaluate several existing
systems, including RPC, RMI, CORBA and II1OP,
DCOM, and Infospheres. These systems motivate the
design and implementation of JEDI, a system that allows
dynamic method invocaion (the aility to cdl any method
of aremote objed at runtime without relying on staticdly
compiled interfaces) and requires fewer development
steps than other existing systems. Then we describe how a
developer would use JEDI. Next, we discuss ®verd
experiments in client-server computing to determine the
flexibility, scdeaility, and ease-of-use of the JEDI
system. These eperiments include studying the
integration of JEDI with CORBA, testing the performance
and reliability of JEDI, and using JEDI to develop an
application from scratch. We wnclude with a short
summary of our JEDI findings.

2. Existing Systems

Until recently, Java ladked a native dient-server
method invocdion paradigm [24], but severa
supplementary systems are avalable to provide this
functionality.

In this ®dion, we explore aad compare some of the
current communicaion medanisms in client-server
systems. RPC, RMI, CORBA and I|OP, DCOM, and the
Infospheres Infrastructure.

2.1. ONC Remote Procedure Calls

For yeas, programmers have used ONC's Remote
Procedure Call (RPC) system [29] to automate some of

the communication tasks between client programs and
their servers. Although RPC was one of the first systems
to simplify the development of distributed applications
over the use of plain socket connedions, RPC does not
handle remote procedure cdls automaticdly. The
programmer must first design the interfaces (step 1 in
figure 1) on both the dient side and server side so they
will conned properly when the distributed system is
invoked.

Design
Interface

7

Crede .x
file

Implement Server Implement
Client Stub Server

Figure 1. Although the Remote Procedure Call
system somewhat simplified the job of a client-server
system developer, it still requires running separate
interface files through a preprocessor and filling in
the resulting stub files.

Next, the user credes a .x file (step 2) that spedfies
the designed interface This file is then run through
rpcgen (step 3) to construct client and server stubs. The
programmer then fills in the dient and server stubs
produced by rpcgen with code that implements the
desired behaviors (step 4). This code is then compil ed for
exeadtion (step 5). Some mnsider this s/stem to be more
straightforward than standalone sockets or message
passng, becaise the dient can invoke operations on the
server by using what looks like alocd procedure cdl.
Making retwork communicaions into procedure cdls

meshes well with the top-down design tedhniques of
procedural programming. However, the RPC system
requires that the programmer tedioudy set up al the
remote methods in the interface description file, run the
preprocessor, and implement the resulting stub files.

2.2. Java's Remote Method Invocation

The Remote Method Invocaion (RMI) system
furnished by Java 1.1 allows RPC-like accssto remote
objeds [12]. RMI includes suppart for data serialization,
remote class loading, and socket manipulation.

Design
Interface

< =

=

Implement
Interface

N

w

Implement
Client

Java
Compiler

6 Client
Object

7 Execute
Client

@D

Figure 2. RMI improves the RPC-like access for
remote Java objects, but adds several extra tasks for
the developer.

To use RMI, an application developer credes a Java
interfacefor the objed to be accesd remotely (step 1 o
figure 2), and then writes a server classto implement this
interface (step 2). The Java compiler compiles the server
code (step 3), and the RMI preprocesor rmic uses the
resulting classto crede the server skeleton and client-side
stub (step 4). The dient may be written and compiled any
time dter the server interfaceis written (steps 5 and 6).
Before the dient can access a remote objed on a server
(step 7), the RMI registry must be run (step 8), the server

objed must be aeded in a Java VM (step 9), and the

server must register itself in the RMI registry (step 10).

We believe that the extra preprocessng steps introduce
unrecessary complexity. They add several additional
objea files to the compilation process and restrict the
methods that can be run on remote objeds to those that
are described in a dtatic interface If a server objed is
updated to include new functionality and a new interface
the dient will be unable to use the new interfacewithout
resorting to Javas mewhat awkward refledion
capabilities.

RMI is difficult for developers to use, because it does
not alow client programs to use new functionality in
server programs without first recompiling (and
redistributing) the dient programs or using Javas
refledion to get around this gatic limitation of RMI.
Another cumbersome asped of RMI isits requirement that
programmers must use the rmic preprocesor to generate
code for the server skeletons and client stubs. RMI can
use only a few wire protocols (currently TCP/IP and
HTTP), but some gplicaions would benefit from the use
of custom transport protocols avail able through a generic
message infrastructure. The ACE framework [25][10] and
the iBus projed [16] both provide alayered component-
based Java communicdion system that allows plugin
custom transport protocols to provide different quality of
service facilities to applications.

ObjedSpace Voyager [18] provides remote method
invocetion fadlities much like RMI's, but makes the
development process much simpler and provides
additional fedures. Developers run an existing class
through the Voyager preprocesor to crede astub class
with all the methods the origina class had. This saves
them the work of writing an remote interface file and
changing their code to implement the interface Although
Voyager alows dynamic method cdls, it requires
developers to spedfy methods with the unintelligible

method signature syntax used by the Java virtual machine

2.3. CORBA

The Objed Management Group's (OMG) Common
Objed Request Broker Architedure (CORBA) all ows the
development of distributed applicaions with component
objeds [30]. CORBA's language-independence dlows
objeds written in diff erent languages to communicate with
one awother. All objed interadion is routed through
intermediary Objed Request Brokers (ORBs) which
communicate through the industry-standard 11 OP protocol
(see figure 3). CORBA uses client and server stubs
creded from an interface definition written in the 1SO
Interface Definition Language (IDL).

Dynamic| | cjient IDL Server Object
Method Stubs Skeleton Adapter
Invocétion
v
\ Broker Request ———7
CORBA BUS

Figure 3. Through the CORBA bus, client objects
send requests for method invocations to the remote
ORB, which routes the request through the object
adapter and server skeleton to the server object.

To crede a Javabased client-server applicaion in
CORBA, the programmer first writes a IDL file defining
the signatures of the methods that need to be cdled
remotely. The IDL file is then run through a Java
preprocesoor which credes an interface for the server
objed and a stub classthat will forward method cdls to
that server objed. Then the programmer writes the dient
program and an objed that implements the server's
interface The dient and server can then be compiled and
run.

CORBA has suppat for clients to discover and use
interfaces dynamicdly through its Dynamic Invocaion
Interface(DIl) [17]. When using DI, the dient creaes its
method cdls at runtime, rather than cdling methods in
the stub. A CORBA spedficaion for the Dynamic
Skeleton Interface (DSl), allows wrver objeds to update
their interfaces at runtime [17]. Any method invoked
throughthe DSl is passed through a single upcdl method
(written by the programmer) that is responsible for
chedking the method name and forwarding it to the corred
implementation method.

We looked at two particular ORB implementations.
Xerox PARC's Inter-Languege Unificaion (ILU) system
[11] interoperates with other CORBA ORBs using the
Internet Inter-ORB Protocol (I1OP). Although ILU does
not implement many feaures of the ommercial ORBs [7],
it provides DIl and is fredy avail able. As described in our
sedion "Experiments in Client-Server Computing', we
have worked on an ILU interface that allows CORBA
objects to call methods on JEDI objects.

VisiBroker, Visigenic's implementation of CORBA,
has smilar feaures to ILU but includes more cmplete
functionality. Caffeine, a part of VisiBroker, includes a
compiler that generates IDL code from a Java interface
making the CORBA development process in Java much
like that of RMI.

2.4. DCOM

Microsoft has recetly developed a Java interface to
their Distributed Component Objed Model (DCOM) [6].
DCOM is another system that allows RPC-like cdls on
remote objeds; it uses a DCE-like IDL language to define
interfaces. Note that Microsoft's IDL (MIDL) is compliant
with neither CORBA IDL nor DCE IDL.

Like CORBA, RMI, and RPC, DCOM requires
compili ng interfaces written in its IDL into stub oljeds.
However, DCOM has the added complexity of requiring
that a type library for the objed be aeaed as well. The
server objed must then be written to implement the
defined interface The dient code is fairly straightforward,
but DCOM objeds can only be accssd through an
interface not diredly. Also, both the dient and the server
must register the DCOM objed with the operating system
before the dient may accessit. To use areference to a
locd DCOM objed in Java, a program must first cast the
objea to its corresponding interface before using the
class Although several ports are planned for the future,
DCOM is presently available only on Windows 95 a NT
systems.

DCOM Automation alows clients to make dynamic
method cdls. By expasing one or more dispinterfaces (a
set of methods that can be cdled dynamicdly), an objed
can make methods available to clients that were not
compil ed with DCOM interfacestubs. The dient padkages
up the aguments to the cdl in a variant data type and
combines this with an integer 1D denoting which method
to cdl. These parameters are passd to the Invoke
method o the DCOM interfaceIDispatch . When the
Invoke cdl reades the server, the destination objed
must chedk the ID in order to discover which method is
being cdled before unpadking the variant parameters and
implementing the call.

2.5. Comparing RMI, CORBA, and DCOM

Comparing eadhr of these distributed oljea
communication mechanisms [19], we note that RMI,
CORBA, and DCOM 4l offer somewhat seanless Java
integration, typed parameter suppat, and reasonable
performance. However, al three gproaches suffer from
high setup costs due to programming complexity, ladk of
configuration ease, evolving wire-level seaurity, and
limited dynamic discovery and dynamic dispatch when
compared with systems auch as NeXT's Portable
Distributed Objeds [22]. Furthermore, athough CORBA
was designed to scde to acommodate communication
among many objeds, neither DCOM nor RMI presently
seams giitable for communicaion among more than a
handful of objects [19].

The Infospheres Infrastructure [4] offers a solution to
the scding problem by providing mail boxes that can send
and receve typed messages. With these medhanisms,
developers can set up sesdons of persistent
communicating objeds [3]. JEDI was originaly
constructed as an invocaion layer built on top o the
Infospheres message-passng communication layer. As the
padkage evolved, the Infospheres plumbing was replaced
by a more performant communication layer using UDP.

Work is procealing on the design and implementation
of the second generation of the Infospheres Infrastructure,
which integrates JEDI's invocaion fadlities. With this
design, we hope to make JEDI even easier to use and
provide feaures like seaurity, authenticaion, and an even
more flexible and performant communication layer.

2.6. The Evolution of JEDI

Originally, JEDI was designed to make accss to
remote objeds completely transparent to the programmer,
handling al of the networking and synchronization detail s.
As the padckage developed, we redized that complete
transparency is not aways desirable in distributed
systems. Several unique daraderistics of distributed
systems, including urcertain delays and distributed fail ure,
must be mnsidered when designing such a system [31].
Unfortunately, when the distributed nature of a system is
not hidden, programmers must often ded with low-level
coding isaes and with complicaed development todls
such as RMI. JEDI's focus therefore shifted to making
robust distributed systems easier to implement.

2.7. A Simple, Dynamic, and Global Vision for
Distributed Computing

We ewision a distributed computing model with
billions of objeds satered over the globe, interading
with ead other via the Internet [4]. Becaise objeds in
one Java VM usually communicate with method cdls, we
believe that a ommunicaions g/stem based on remote
method cdls is conceptually more simple than a message-
pasing system. Although message-passng is a more
general communicaion framework, developers are more
comfortable reasoning about and using method cdls to
communicate between objeds. Unfortunately, many
existing remote method cdl systems are quite cmplex
and have many steps to learn and repea. JEDI's primary
goal isto simplify or eliminate & many of these steps as
possible.

JEDI provides a simple axd flexible dynamic
invocation service Conventional RPCs, for the most part,
are based on static interfacedefinition files. RPC requires
a static, compile-time interface and standard CORBA

requires the same. Through the Dynamic Invocdion
Interfacefadliti es, CORBA clients can discover resources
dynamicdly. However, DIl is smewhat difficult to use—
many steps are required to construct a dynamic request
objea [19]. If the dient must query the server for the
interfaceof the method it wants to cdl, performance may
deaesse dramaticdly. DCOM Automation is likewise
complicaed and dfficult to use. With JEDI, cdling a
method dynamicdly is a simple process a dient must
bind to the objea it is cdling, and then it can invoke ay
method by name. Querying the interface of a remote
objed isas smple as cdling getClass() on the objed
(using JEDI) and then finding its public interface using
Java's reflection capabilities.

As the number of objeds running on the Internet
incresses, truly dynamic RPC interfaces will be a
necessty, because it will become impossble to take
tightly-integrated ohjed systems off-line so that they can
be recompiled to produce new static interfaces. With
massve distribution, knowledge of precompiled stubs of
every objed in the network universe just is not pradicd,
becaise massve distribution requires dynamic typing and
construction of messages at runtime. Just as latency and
partial fallure ae inherent aspeds of distributed
computing, coping with dynamicdly changng and
unkrnown interfaces is an inherent asped of massvely
distributed computing. Therefore, JEDI was developed to
allow the programmer to dynamicdly cdl any method m
any Java object at run-time.

3. An Overview of JEDI

We now describe the design of JEDI, and its use in
distributed Java systems.

3.1. The Design of JEDI

The simplicity of using the JEDI systemisill ustrated in
figure 4. Instead of involving a stub compiler, JEDI
provides a software library for making remote method
cdls; as a result, any method can be cdled remotely at
runtime. The development processis identicd to writing
any non-distributed Java program: classes are written,
compiled and run. Any objed can be cdled from another
madhine simply by givingit aname. A client can bind to a
remote objed by creding a proxy with the remote
madine, port, and oljed name. The dient can then cal
any public method d the objed with one simple line of
source code.

; Implement Start conned to
Client ! : L3 .
Side Client e Client emote objeds]

Server Implement Start register
Side Server > Server > Yemote objeds

Figure 4. The JEDI package simplifies a
programmer's task considerably. The user needs
only to implement, compile, and start up the client
and server programs. Servers name their objects in
a registry service so clients can call methods on
them.

Unlike most other RPC schemes, no source ®de
changes must be made to an objed before its methods can
be cdled globally. This means that methods of any objeq,
including the cre library objeds like String, can be cdled
remotely—even if the source mde for the objed's classis
not available. Thus, "legacy” Java objeds not designed for
distribution can neverthelessbe integrated into dstributed
systems without writing the wrapper classes necessary
with other RPC systems.

Since JEDI does not require a precompiler, the
program does not need to know the signature of any
method it will cdl until the cdl is adualy made. An
interesting consequence of this is that JEDI does not
require the shutting down of a distributed oljed to update
its interfacefor new remote cdls. Instead, that objed can
be replacel on-the-fly by an updated version providing
expanded feaures and clients will be ale to access the
additional functionality immediately. By using a dynamic
system like JEDI for remote method cdls, distributed
systems can scale up to more objects.

Becauise JEDI is a library-based system, it fits more
naturaly into the usual program-development cycle than
precompil er-based RPC systems. In general it is easier to
lean to use a software library than to use a new
command-line todl. Also, it iseasier to understand what is
happening inside asoftware library than to understand the
bladk-box code generated by a precompil er—espedally if
the library's source is available.

A potential disadvantage of a dynamic scheme like
JEDI is that there is no static type-chedking. A method
cdl cen fal at runtime if the programmer makes a
mistake and misgells the method a passes the wrong
parameters. However, in a distributed computing system
the programmer must be avare that any method may fail
becaise of a falure in the network or in the remote
madine. No dstributed system can mask the failure of an
arbitrary method cadl. Furthermore, a system like RMI that
provides interfaces to remote objeds gill cannot ensure
that the programmer does not try to make a illegal
method cdl—it just reports the aror as an illegal cast

rather than a nonexistent method. Thus, the dynamic
typing system of JEDI is not a significant potential point
of failure for the application programmer.

Javas sridizaion medanisms smplify programming
for the JEDI system. Any objed that implements
java.io.Serializable may be passd to a method
of a remote object:

public class MyClass
implements java.io.Serializable {
/l ¢l ass definition here

The JEDI system permits the aedion of distributed
systems using the intuitive remote method cdl paradigm
without the complexity of many similar schemes. JEDI
provides smple but dynamic remote method cdls, giving
programmers the ability to make run-time modifications.

3.2. Using JEDI

Consider a simple remote method cdl using JEDI, as
illustrated in figure 5. Before amethod cdl can be made,
the objea on which it ads must be registered under a
name on the server. This is acomplished by getting the
locd repository (use Repository.local()) and
cdli ng the bind method with the new name and the objed
to be registered. Then any client can cdl a method an that
object using JEDI.

The dient begins this process by creding a Proxy
objed with the network address (such as
"www.caltech.edu ") and the name of the obed.
Once aproxy has been creaed, any method can be cdled
on aremote objed by cdli ng function() on the proxy.
There ae several versions of function() ; the most
genera accets a method name and a vedor of arguments
to that method and returns an arbitrary objed. Underneah
it al, the JEDI system will send the method cal
information to the remote machine, which will find the
objed associated with the proxy. It will then look up the
method with the mrred name, invoke the method, and
passthe return value badk to the dient. If any exceptionis
thrown in the method, or the method a objed cannot be
found, or there is a communicaion error, an exception
will be thrown from function() An example
demonstrates these concepts.

Client Server
-method name

-arguments . L
Find oljectin

Proxy proxy = —_— Repository
new Proxy(...) Find method

with Refledion

result = proxy. -return value Call method

function(...) -exception Return result
~— <

Figure 5. JEDI allows a client to set up a Proxy
object through which it makes its remote method
calls. When calling a method through the proxy, the
method name and arguments are sent through
JEDI's communication layer to the server, which
finds the object in its object repository and finds the
proper method using Java reflection. The method is
then called on the object on the server machine, with
the return result shipped over the JEDI wire back to
the client program. New objects on the server can be
plugged in on-the-fly, so dynamic methods can be
invoked at run-time.

3.3. A Simple Example of Using JEDI

This smple JEDI server alows remote dients to cdl
any method on a String object.

import info.jedi.*;
public class ServerTest

public static void
main(String args][])

String string = "Hello";
Repository.local().bind(string,
"HelloString");
}

}

To expose an objed to remote dients, a user nedls to
creaetheobjed and hind it to anamein the repository. In
this example, we have aeaed the string "Hello" and
bound it to the name "HeloString' in the locd
Repository Under the hood our cdl to
Repository.local() initialized the JEDI system to
listen for incoming remote method cdls on the default
port. Our server is now ready to accet requests from the
following simple client:

import info.jedi.*;

public class ClientTest

public static void main(
String args|[]) throws Exception

Proxy proxy = new Proxy(
"harmonica.cs.caltech.edu",
"HelloString™);

System.out.printin(
"The string’s length is "
+ proxy.function("length™));
}
}

Thisclient creaes a proxy objed to represent the string
on the remote madiine. In our example, the server is
runring on harmonica.cs.caltech.edu , S0 thisis
the network address we pass to the proxy constructor.
Since we registered the objed under "Hell oString," thisis
the objed name we passto the proxy constructor. Once
the proxy has been creaed, we can cdl any function on
the remote objed. In this case, we cal the length()
method o the String . We use a onvenient version of
Proxy.function() that does not take a vedor of
arguments, because the String.length() method has
no arguments. Other versions of Proxy.function()
are provided for cdli ng methods with diff erent numbers of
arguments. The length() method will return an int ,
which will be wrapped in an Integer objed, passd badk
over the network to the dient, and finaly returned by
proxy.function() . It will be mnverted into a string
by the mncatenation operator, and the output of the dient
will be:

The string’s length is 5

3.4. A Tour of the JEDI Architecture

JEDI includes a simple but powerful general messaging
infrastructure. This infrastructure is designed to be bath
efficient and modular, and is implemented in severa
layers with a protocol stadk architedure similar to that of
iBus[16]. One layer can use the services of another; thus
the remote method cdl fadlity uses the reliability layer to
make robust remote method cdls over an urreliable
network connedions. Becauise the layers are loosaly
conneded, a separate messaging service layer could make
use of the reliability layer to provide robust message
passing, as is done with the ACE system [25].

PingHandler

m_»i/. RMCHander
C

= . ReliableHandler

Other Handlers

UDP Pacets

Figure 6. The JEDI MailDaemon sits at a socket,
waiting for UDP packets. Upon receipt of a UDP
packet, it routes the packet accordingly to the
PingHandler the RMCHandler, the
ReliableHandler , or some other packet handler.
The BSD Daemon is copyright 1988 by Marshall Kirk
McKusick.

The center of the JEDI system is the MailDaemon
class illustrated in figure 6. Any program needing to
communicate uses a MailDaemon to forward incoming
UDP pacdkets to the gpropriate padket handler. When a
padket isrecaved, it is converted into an InputPacket
which creaes a DatalnputStream for realing the
contents of the padket. Then the first byte is examined,
this byte indicaes which of up to 256 well-known padket
handlers will process the padket. Each padket handler
must conform to interface PacketHandler , which
defines a method that takes an InputPacket and
returns true if processng of that padcet is complete. If
processng is not complete when the padet handler
returns, the next byte is asauumed to be the next handler.
This provides the layering mecdhanism in JEDI: a padket
can first be processed by a reliability layer and then
pased on to a higher-level layer that uses data from the
padket for computation. The dots that are not yet used are
filled with DefaultPacketHandlers , which simply
ignore any packets they are passed.

A ResourceHandler is creaed for the
MailDaemon , and sets up threads of type
ReceiveThread to handle incoming padets. If thereis
any posshility of a thread suspending during the handling
of a padket, it should cdl
ResourceHandler.threadBusy() followed by
ResourceHandler.threadldle() when its work
is done. These method ensure there ae enough threals to
handle incoming padets, and creade aother
ReceiveThread if there ae not. In this way many
simultaneous padets can be serviced, up to the thread
limit of the virtua machine. For efficiency, the
ResourceHandler also keeps tradk of a pod of 64KB
padkets (which are expensive to crede for ead incoming
packet).

OutputPacket is a mnvenience dassfor creding,
filing, and sending a JEDI packet. It credes a
DataOutputStream that fills up a
ByteArrayOutputStream . It also provides methods
for sending the padket to another host and for resending it
if it gets lost on the way.

As atest for the system, the simplest handler provided
is the PingHandler . This class $mply sends a packet
bad to the original host. The PingHandler classhas a
main() method so a program can test the latency of its
network connedion through JEDI. It also provides a toadl
to compare the overhead of the JEDI messaging structure
with that of a simple UDP ping.

The reliability layer is implemented through the

ReliableHandler class Clients can cdl
ReliableHandler.addReliability(p) to make
paket p reliable. ReliableHandler extends

Thread , and therun() method will periodicdly resend
ead reliable padcket until it times out or is adknowledged
by the remote host. No padket ordering is necessary in a
remote method cdl system, so all avail able padkets will be
sent immediately without waiting for adknowledgments.
When a reliable padket is receved, the
ReliableHandler iscdled. It will ched to make sure
the padket has not been duplicated, and then send an
adknowledge padket so that the sending host knows that
the padket has been recaved. If the remote host cannot be
contacted within a spedfied period, a
TimeoutException will be thrown to the caller.

.
_ Network
- _yp
RMCCal 3 \ >
// RM CCaII
// 2
r Regl stry
RMCHandler Re;mte
AR \1 7//
N N /

Figure 7. The JEDI package automatically handles
the seven steps of a remote method call.

The JEDI remote method cadl fadlity is implemented
through several clases. The Proxy objed asks the
RMCHandler objea assciated with the locd
MailDaemon to send the method cdl out over the
network (step 1 in figure 7). The RMCHandler objed
creaes an RMCCall objed to represent the method cal
(step 2). The RMCCall objed uses the reliability layer to
send a reliable padket to the remote machine (step 3),

which is intercepted by the RMCHandler objed there
(step 4). This handler will creae an equivaent RMCCall
objed on that end of the network, look up the objed's
name in the locd Repository objed (step 5), and
dispatch the method cdl using a method from class
Remote (step 6). Remote.staticCallFunction

takes an objed, a method name, and a vedor of
arguments, and uses Java's refledion fadlity to find and
cdl the gpropriate method (step 7). The RMCCall
objed then sends the return value bad to the origina
client, where it is decoded and passed on to the user.

4. Experiments in Client-Server Computing

To determine the flexibility, reliability, scdeaility,
and ease-of-use of the JEDI system, four key experiments
were performed. We investigated integrating JEDI with
CORBA ORBs, and designed a comprehensive test suite
to demonstrate the reliability of the JEDI system. Later,
we tested and compared the performance of JEDI with
several other systems and compared the implementation of
a simple scheduling applicaion wsing JEDI, RMI, and
Infospheres.

4.1. Flexibility: Interactions with ILU/CORBA

We experimented with creaing a CORBA objed that
would allow remote invocaion of JEDI objeds. The
testbed chosen was ILU becaise it is free ad openly
available from Xerox. To make aJEDI objed accessble
to CORBA ORBs using IIOP, we aeaed the following
CORBA IDL file to expose an interfaceto the Remote
class:

module jedi {
interface ILURMCCall {
exception JediException{};

typedef sequence < any > Arguments;

any RemoteCallFunction (
in string object_name,
in string function_name,
inout Arguments arguments)
raises (JediException);

Through this interface CORBA objeds can access
JEDI objeds through a method similar to the DIl
interface as ill ustrated in figure 8. A CORBA cdl comes
into the ILU system (step 1), where it is decded and
mapped to the ILURMCCall objed (step 2+3). ILU then
cdls the implementation, ILURMCCallimpl (step 4),

which accesses the JEDI registry to find the requested
objed (step 5. We then invoke afunction in the JEDI
Remote library to cdl the requested method (step 6).
Remote then cdls the method and passes badk any result
or exception information that was generated (step 7). This
information is then returned to the original cdler through
ILU.

< aaner [
v/ N

1
CORBA 2 ILURMCCall
call ‘
\‘ 4
5 .
...y ILURMCCall
Registry / implementation
6

Method g—— Remote
Call e
7

Figure 8. The JEDI system can be integrated with a
CORBA-compliant object request broker such as
ILU.

4.2. Reliability

To ensure a high-confidence robust system, we
devised a mmprehensive test suite for JED to test all
portions of the info.jedi.net and info.jedi
padkages. The mmplete source ®de for the test suite is
avail able with the JEDI distribution at our web site in the
info.j edi.testsuite padkage. In addition to testing JEDI, this
code provides many examples of the different ways to use
JEDI.

The simplest part of the test suite cdl s remote methods
with diff erent signatures and return types. We cdl remote
methods with no parameters, and with String , int , and
boolean argument types. A cdl to a method with a
seriadlizable user-defined treelike structured data type
parameter chedked for the proper use of Java serialization.
Finaly, we cdl a static method and a method with one
argument of each of the above types.

To ensure that performance scades up with the number
of method cdl s, our test suite sends a user-defined number
of method cdls, reporting the time per message dter eath
10% of the messages have been sent. This part of the test

suite has been tested with 1,000,000 method cdls with no
observed performance degradation.

To test multiple concurrent JEDI cdls, we aede 100
threads, ead of which cdled a remote semaphore method.
This g/nchronized method implements a 100-thread
barrier. None of the method cdls may return urtil al of
them have entered the barrier method.

Next, to make sure that proxies can be sent to remote
methods as parameters and used succesdully, our test
client cdls amethod o the server, recaving a proxy from
the return value of the method. This proxy is then used to
cdl a server method that is pased a count of 100 and
another proxy to the dient. The server method reaursively
cdls the same method o the dient with a count of 99 and
proxy to the server. This processcontinues until reaursive
method cdls had been made 100 levels deg between
client and server, after which they all return.

Finally, we test the eror-handling cgpabiliti es of JEDI.
This includes caching exceptions thrown by remote
methods and ensuring that they print out stack traces with
methods from both the locd and remote macdhines,
caching "not serializable" exceptions for parameters and
return values that do not implement Serializable ,
caching time-out exceptions when a remote host does not
respond within a spedfied time period, and catching
exceptions where the spedfied remote objed or method
does not exist.

The successul completion of our test suite gives us
confidence that our JEDI infrastructure is reliable. Its
reliability has been further demonstrated as we have begun
to build the next generation of Caltedr's Infospheres
Infrastructure on this solid JEDI foundation.

4.3. Performance and Scaleability

We tested the JEDI pacdkage on Sun's JDK 1.1.3 virtual
madine, runrning on Solaris 2.5.1 on two 143 MHz
UltraSparc 140s with 64M of RAM and 10 Mbit ethernet
connedions. Although performance numbers can vary
from one madine to another, we exped that the relative
performance of JEDI to the other Java-based systems will
remain approximately the same.

We repeded tests 5 times ead and reported the best
times achieved for ead technology, to filter out the
random effeds of other users and programs on the two
testing madhines. As sown in figure 9, ead test set up a
connedion from a dient to the test server and sent data
badk and forth between the machines 100 times, and
smaller numbers are better. Notice that both ping and cdl
times are reported for JEDI; the cdl time includes all of
the overhead incurred by passng method names and
parameters, looking W the right method, and maintaining
cdl reliability. The JEDI ping time given measures the

time required to send an urreliable padet to a server and
back.

14001
12(1)4
10001 B UDP
8001 B TCP/IP
6001 W JEDI ping
4001 0JEDI call
2001 BRMI
04
milli-
seconds

Figure 9. The performance of JEDI pings and actual
JEDI remote method calls, in milliseconds, compares
well with the performances of pings using UDP, RMI,
and TCP/IP.

Althoughwe mnsidered using TCP/IP to send method
cdl data, we were mncerned that its sdeability would be
restricted by the limited number of sockets the operating
system is able to creae. Our ealy (incorred) tests also
implied that the Java VM implementation of TCP/IP
sockets was very slow, since the default Java TCP/IP
strean does not do any data buffering. While it is dill
relatively expensive to crege a TCP/IP strean for eadh
method cdl, accetable performance may be atainable by
reusing asingle strean for multi ple method cdls. We plan
to provide the option of using this transport in future
versions of JEDI.

Becaise of the Infospheres work being done here &
Caltech, we initially used the info.net library of the
Infospheres Infrastructure [5] as our communicaions
protocol. However, this g/stem provides rich feaures that
dow its performance, such as ensured ordered messages.
Performance tuning has not yet begun in eanest for the
info.net library, so using it incurs a @nsiderable
performance penalty (100 kadk-and-forth messages took
5.0 seonds). As a result, we deded to huild a more
simple subsystem for JEDI communication.

This new JEDI messaging system is quite dficient.
Sending 100 short UDP ping messages took 182
milli semnds on the machines we tested. Using the
underlying JEDI infrastructure diredly, a ping took 321
milli seconds, mainly becaise several convenience objeds
are aeded for ead ping. On a slow, interpreted system,
1.39 ms per ping (139 ms over 100 pngs) represents a
fairly low overhead.

JEDI's remote method cdl fadlity also compares well
with RMI in the performance domain. Testing simple

10

functions that return a string, we found that RMI made
100remote method cdlsin 1.29 seamnds, while JEDI was
able to acomplish the same task in only 0.85 semnds.
This is remarkable, considering that RMI uses hard-coded
method names and signatures that are fixed at compile
time, whereas JEDI can cdl any method an any objed at
runtime using reflegion. However, JEDI till lacks some
functionality provided by RMI, including suppat for
method cdls involving more than 64K of data passd as
parameters.

When testing JEDI and RMI without including setup
time, RMI takes 3.1 milli seaonds per cdl while JEDI
takes 3.4 milli seconds per cdl. Since JEDI is faster when
setup time is included, we cnclude that conneding to a
remote objed is an expensive operation urder RMI. Thus
RMI may be better for extensive communicaion (more
than 100 method cdls) with a spedfic objed, while JEDI
may perform better when interading with many different
objects at the same time.

Reseach has down the importance of measuring rot
only two-way ping latency in distributed oljed oriented
systems, but also throughput and latency for sending
different kinds of data structures [27]. We tested JEDI and
RMI by passng a 35 Kb, richly typed, treelike data
structure in a remote method cdl. In this case RMI sent
the structure in 0.85 semnds, while JEDI took 1.56
seoonds. Since both figures are significantly longer than
the time required for communication, we theorize that the
delay is mostly due to Javas <ridizaion. Tests of
serializaion confirm that just serializing the data structure
can explain most of this time delay. Becaise the
communication layer of JEDI sends al of its data in one
padket, while the TCP/IP implementation in RMI sends
data asit is produced, we believe that RMI is able to begin
deading the serialized data on the remote machine while
it is dill being encoded on the originating madine. This
acounts for RMI's performance alvantage in sending
large, structured data. We plan to add the caability to
send structured data more dficiently in a future release of
JEDI.

During our performance eperiments, we did not
compare our JEDI mechanisms with CORBA invocations,
becaise significant reseach is being conducted to make
CORBA more performant and scdeable over high-speed
networks [26], resulting in severa tedhniques for
optimizing 11 OP performance [28]. We note that using the
dynamic cagabilities of CORBA comparable to those
provided by JEDI can result in a performance degradation
of more than an order of magnitude in some ORB
implementations [20]. JEDI's niche is in low-end
distributed system development as an efficient, easier-to-
use dternative to RMI in Java programs. An example of
this use is the calendar application we describe next.

4.4. Comparing Implementations of a Simple
Distributed Application

As illustrated in figure 10, a cdendar scheduling
applicaion [4] is an example of distributed resource
management [23]. For comparison of the gplication of
different techniques for distributed program development,
we implemented this cdendar applicaion using Java with
simple locd method cdls, after which we distributed the
program using RMI, Infospheres, and JEDI. We used a
responsibility-driven design [15] to coordinate the
scheduling adivities of multiple distributed cadendar

programs for each port of the system.
P Mani
‘(Group # \?,
Leade

.

¢—3p Croup#l

- - Group #2

<> Group #3
Figure 10. Jonathan, Scott, Mani, and Adam are in
group 1; Scott, James, and Mani are in group 2; and
Mani, Jonathan, Adam, and James are in group 3.
Each person has a single calendar application that
handles the scheduling of the social calendar for that
person; for example, Mani's calendar application
handles the scheduling of his meetings with groups
1, 2, and 3. When a group leader decides to hold a
meeting, he queries the other group members in a
peer-to-peer session [3] to determine an appropriate
meeting time. The calendar application then locks in
the appropriate slots for the group meeting in each of
the respective group members' schedules.

Becaise of the request-response nature of the
scheduling algorithm we used, this applicaion maps
naturally to remote method cdl semantics. As a result,
using the Infospheres Infrastructure's message-passng
system required more work than the remote method cal
systems. For example, locking the cdendar objeds for
each member of a group requires the following code:

for (i=0; i < numMembers; i++) {
sendBox.bind (
new Place(memberAddresses]i]));
sendBox.send (
new CalendarMessage(REQUEST_LOCK));
CalendarMessage response =

11

(CalendarMessage)
receiveBox.receive();

On the recaving end, a thread must be spedficdly set
up to wait for incoming messages at a mailbox, attempt to
lock the cdendar, and send a response badk to the process
that requested the lock. If the locking operation could
block, the user must creae another thread to handle other
incoming messages while the thread is blocking.

The avantage of a RPC-based system like JEDI or
RMI for this application is that many aspeds are handled
manually. For example, the user does not need to write the
CalendarMessage class(athoughin the cae of RMI,
the user will have to write a new remote interface
definition file instead!). Also, the run-time library handles
creding enough threads to service incoming requests (in
case awy method cdls block). In addition, the RPC-like
syntax is more @nvenient for the programmer becaise it
matches the method cdl paradigm common to ohed-
oriented programming systems. Other projeds,
particularly ones that do not require a synchronous
response to every network message, are better suited to
the message-passng scheme such as the Infospheres
info.net package.

Using RMI for communication made the code highly
readable (since remote method cdls look just like locd
ones). However, RMI's multiple implementation steps
were time-consuming, because an extra interfacehad to be
developed for every objed that was accesed remotely.
For example, we developed a Semaphore objed to guard
accessto eat user's cdendar. To allow remote users to
lock and unlock the semaphore, we nealed to crede the
following interface:

package jedi.calendar.remote;
import java.rmi.*;

public interface Semaphorelnterface
extends Remote

{
public void lock()
throws InterruptedException,
RemoteException;
public void unlock()
throws RemoteException;

}

This additional interfacewas not a useful part of our
overall design, as the Semaphore dassdefinition includes
a complete spedfication of the interfaceto our Semaphore
objed. Although coding such a simple interface is not
difficult, it would be time @mnsuming and error prone to
develop an interfacefor every classin alarge olledion of
distributed oljeds. In a world with billi ons of different

interading objeds, maintaining a separate remote
interface for each one is not a scaleable solution.

Using JEDI did not result in code & pretty as RMI,
becaise remote method cdl s are made through the generic
library fadlity, rather than to a remote interface with a
stub hidden behind it. However, developing the JEDI
version was much quicker, smpler, and easier than the
RMI version, because no separate interfacefiles had to be
layered on top d the existing objeds, no preprocessor had
to be run, no separate registry program had to started, and
we did not neal to ke tradk of stub and skeleton class
files.

Locking the semaphore for ead goup member's
cdendar provides an example ill ustrating how RMI cdls
and JEDI cdls are made. In RMI, this processlooks like a
simple procedure cdl due to the stub/skeleton system and
the remote interface:

for (i = 0; i < numMembers; i++) {
Memberinterface member =
(Memberinterface)
members.elementAt(i);
Semaphorelnterface semaphore =
member.semaphore()
semaphore.lock();

}

With JEDI, the cdl is conceptualy similar, but
syntadicdly more cmplex becaise there is no magic
preprocesor to crede a Java objed with the @rred
interface:

for(i = 0; i < numMembers; i++) {
Proxy member =
(Proxy) members.elementAt(i);
Proxy semaphore = (Proxy)
member.function("semaphore");
semaphore.function("lock™);

}

At the same time, the Semaphore class being
accessd through JEDI was not modified in any way from
a locd Semaphore class This demonstrates that JEDI
can cdl methods on objeds even when the source ®de
cannot be dhanged. A protocol such as RMI that depends
on changing the source ®de to implement a remote
interface ca never be used with libraries that are not
designed with distributed computing in mind. In contrast,
JEDI dlows objeds of any class to be fully network-
capable.

One we&ness in our design becane gparent during
this implementation: two Java Virtual Machines (VMs)
cannot share aJEDI port. In our testing if we wanted two
cdendars to reside on one madiine, we had to set up the
cdendar application using a different port for ead
member, rather than looking Y the member's name in

some sort of machine-global index. This demonstrates that
if two JEDI objeds are on different Java VMs in one
madine, any processthat needs to conned to them must
keep track of their respedive ports. Since RMI depends
on a separate registry process running on ead macaine,
we were ale to look up cdendars in the RMI system by
name, rather than by port. In the future, we may add a
madine-global diredory service so that more than one
JEDI VM can be run on one madiine without forcing
developers to deal with port numbers.

4.5. Comparing JEDI with RMI and CORBA

Table 1
Feature JEDI RMI CORBA
Ease of use easy difficult difficult
Dynamic yes no yes
invocation
Pass object yes yes no
by value (proposed
for future)
Pass object yes yes yes
by reference
Steps few many many
involved
Inter- through no yes
language CORBA
interface
Dynamic yes limited to yes
discovery Remote
interfaces
Forces no yes yes
interface
creation
Java yes requires requires
integration rmic stub stub
compiler compiler
Security only native | special RMI| CORBA
Java security services
mechanismg manager
Transaction no no CORBA
capabilities services

12

This table shows that JEDI is most suitable for projeds
requiring a Javabased RPC system with conceptual
simplicity, ese of use, accetable performance and
dynamic invocaion cgpabilities. Although JEDI is
presently less siitable for applications that require inter-
language mmunicdion or advanced seaurity and
transadion capabiliti es, these feaures may be alded to the
JEDI system in the future.

The JEDI padkage can be etended in many
compelling ways; some of the planned future extensions
include:

1. Adding the aility to make method cdls with large
(more than 64K of data) arguments.

2. Enabling developers to make remote method cdls
without waiting for a return value (or retrieving the
return value later.)

3. Adding a machine-global diredory service so multiple
JEDI virtual machine servers can exist on one machine
without having to remember particular ports.

4. Further integrating JEDI with CORBA.

5. Allowing searre transadions on JEDI objeds,

including rollback and two-phase commit capabilities.

6. Allowing persistent objeds that are woken up when a
remote method cdl i s made on them, as is permitted by
Infospheres Djinns [5].

7. Providing a seaurity filter medhanism for incoming
JEDI method cdls, perhaps allowing for trust-signed
method invocation chains [13].

As a medanism for dynamic method invocdions,
JEDI has become the oommunication substrate used with
Caltedh's current work on Infospheres 2.0, allowing the
development of location-independent mobil e objeds with
RPCs [2]. In the future, this g/stem will be integrated
with both events and the Infospheres mail box and message
padkages, creding a JavaBeans-based infrastructure that
suppats RPCs and messges. New integrated system
feaures will i nclude asynchronous method cdls (with the
option of recdving a return value later), a genera
compasition framework, fault-tolerant mobil e objeds, and
a server-side threal control library that enables objeds to
determine when to process incoming method calls.

5. Summary

The JEDI system gives a developer flexibility with its
dynamic dispatch of remote method cadls and the potential
for dynamic discovery of remote objed methods through
refledion. The JEDI approach is <deale, in that its
communication layer provides efficient communication
among many Java objeds over the Internet. The eae of
using the JEDI padkage was demonstrated with the rapid
conversion of a cdendar scheduling applicdion from a
singe macine @plication to a robust client-server
system. Many possbiliti es exist for extending the JEDI
padkage to provide arich but simple axd dynamic RPC-
like mechanism for Java programmers.

13

Appendix: JEDI method APIs
Repository methods

e static LocalRepository local()
« Object lookup(String name)

LocalRepository methods

e void bind(String
object)

e void unbind(String newName)

¢« MailDaemon mailDaemon()

newName, Object

Proxy methods

¢ Proxy(String machineName, int port,
String objectName) throws
UnknownHostException

¢ Proxy(String machineName, String
objectName) throws

UnknownHostException *Proxy(String
objectName) throws
UnknownHostException

¢ Object function(String methodName,

Vector args) throws Exception

¢ Object function(String methodName)
throws Exception

¢ Object function(String methodName,

Object firstArg) throws Exception

*Object function(String methodName,
Object firstArg, Object secondArg)
throws Exception

MailDaemon methods

* MailDaemon() throws SocketException

e MailDaemon(int port) throws
SocketException

e InputPacket
receivePacket(DatagramSocket socket,
int TYPE_TO_CATCH) throws
IOException

e void handle(InputPacket packet)
throws |IOException

« void send(DatagramPacket packet)
throws |IOException

e void addHandler(
handler, int index)

e PacketHandler handlers(int index)

« ResourceHandler resourceHandler()
« DatagramSocket socket()

e PingHandler getPingHandler()

PacketHandler

ReliableHandler getReliableHandler()

RMCHandler getRMCHandler()

InputPacket fields

InputPacket(DatagramPacket packet)
DatalnputStream stream
DatagramPacket packet

ResourceHandler methods

DatagramPacket getPacket()

void returnPacket(DatagramPacket
packet)

void threadBusy()
void threadldle()
DatagramSocket getSocket() throws
SocketException

void returnSocket(DatagramSocket
socket)

ReceiveThread methods

ReceiveThread(MailDaemon md)
void run()

OutputPacket fields

OutputPacket(MailDaemon md)

void send(InetAddress address, int
port) throws IOException

void resend() throws IOException
DatagramSocket socket
DataOutputStream stream

PingHandler methods

boolean handle(InputPacket packet)
throws IOException

void ping(InetAddress address, int
port) throws IOException

static void main(String args|])
throws IOException

ReliableHandler methods

void addReliability(OutputPacket
packet) throws IOException

boolean handle(InputPacket packet)
throws IOException

14

e void run()
RMCHandler methods

¢ boolean handle(InputPacket packet)
throws |OException

* Object call(InetAddress address, int
port, String objectName, String
methodName, Vector args) throws
Exception

e static RMCHandler getHandler()
RMCCall methods

< RMCCall(MailDaemon md, InetAddress
address, int port, String
objectName, String methodName,
Vector args)

e RMCCall(MailDaemon md, InputPacket

packet) throws IOException

e void send() throws IOException

e Object getResponse() throws
Exception

* void execute()

* void respond() throws IOException

Remote methods

e static Object
staticCallFunction(Object callee,
String methodName, Vector arguments)
throws NoSuchMethodException,
SecurityException,
lllegalArgumentException,
InvocationTargetException,
NullPointerException,
lllegalAccessException

Acknowledgments

Thiswork was supparted under the Caltech Infospheres
Projed. The Infospheres Projed is onsored by the Air
Force Office of Scientific Reseach urder grant AFOSR
F4962094-1-0244 by the CISE diredorate of the
National Science Foundation urder Problem Solving
Environments grant CCR-9527130 by the NSF Center for
Reseach on Paralel Computation urder Cooperative
Agreement Number CCR-9120008 and by the Parasoft
and Novell Corporations. The BSD Daemon is copyright
1988 ly Marshal Kirk McKusick. He has given the
daamon a temporary lease from his BSD duties to study
this paper on networking in Java. We would also like to
thank K. Mani Chandy, Mark Baker, Ron Resnick, Joseph
Kiniry, Dan Zimmerman, Rohit Khare, Eve Schodler, Paul
Sivilotti, and the aconymous referees for their helpful
suggestions to improve this paper. The JEDI padages are
available for download from the JEDI home page, at
http:// www.ugcs.caltech.edu/ ~jedi A
more @mplete version of this paper is avalable &
Cdlifornia Institute of Technology Computer Science
Technical Report 97-20.

References

[1] T. Berners-Lee R. Cailliau, J. Groff and B. Pollermann,
“World Wide Web: The Information Universe”, Eledronic
Networking: Research, Applications, and Policy, Volume 1,
Number 2, 1992.

[2] K. Mani Chandy, Jonathan Aldrich, and Dan Zimmerman,
“The Infospheres Infrastructure 2.0 Spedfication,” Cadlifornia
Ingtitute of Techndogy Computer Science Technicd Report,
1997. To appear.

[3] K. Mani Chandy and Adam Rifkin, “Systematic
Composition d Objeds in Distributed Internet Applications:
Processes And Sessons’, Conference Procealings of the
Thirtieth Hawaii Internationa Conference on System Sciences
(HICSS) Maui, Volume 1, January 1997, pp. 395-404.

[4] K. Mani Chandy, Adam Rifkin, Paolo A.G. Sivilotti, Jamb
Mandelson, Matthew Richardson, Wesley Tanaka, and Luke
Weisman, “A World-Wide Distributed System Using Java and
the Internet”, IEEE Internationd Symposium on High
Performance Distributed Computing (HPDC-5), Syraause, New
York, August 1996.

[5] K. Mani Chandy, Joe Kiniry, Adam Rifkin, and Dan
Zimmerman, “A Framework for Structured Distributed Objed
Computing”,Parallel Computing1998. To appear.

[6] David Chappell,
Microsoft Press, 1996.

Understandng ActiveX and OLE,

15

Feaure Matrix”,

, 1997.

[7] Ben Eng, “ORB Core
http://www.vex.net/~ben/orbmatrix.html

[8] James Godling, Bill Joy, and Guy Stede, The Java Language
Spedfication, Addison-Wesley Developers Press Sunsoft Java
Series, 1996.

[9] C.A.R. Hoare, “Communicaing Sequential Processs’,
Comnunications of the ACM, Volume 21, Number 8, Pages
666-677, 1978.

[10] Prashant Jain and Douglas C. Schmidt, “Experiences
Converting a C++ Communicaion Software Framework to
Java”,The C++ ReportJanuary 1997.

[11] Bill Janssen and Mike Spreitzer, ILU Reference Manud.
Xerox PARC, 1997.

[12] Javasoft Java RMI Team, Java Remote Method Invocation
Specification Sun Microsystems, 1997.

[13] Rohit Khare and Adam Rifkin, “Weaving a Web of Trust”,
World Wide Web Journal speda issue on seaurity, Volume 2,
Number 3, pages 77-112, summer 1997.

[14] D.B. Lange and M. Oshima, Programning Mobhile Agents
in Java With the Java Aglet ARBM Research, 1997

[15] Doug Lea “Design for Open Systems in Java’,
Procealings of the Sewnd Internationd Conference on
Coordination Models and Languagd®erlin, September 1997.

[16] Silvano Méffeis, “iBus. The Java Internet Software Bus”’,
available ahttp://www.olsen.ch/export/ftp/
users/maffeis/ibus/ibus_overview.ps.gz
& Associates, Zurich, 1997.

, Olsen

[17] Objed Management Group, The Comnon Objed Request
Broker: Architedure and Sgdfication (CORBA), revision 20,
1995.

[18] ObjedSpace Voyager Development Team, “ObjedSpace
Voyager Core Padkage Technicd Overview”, avalable &
http://www.objectspace.com/voyager/VoyagerT

echOviewNEWTAGLINE.pdf , ObjectSpace, Dallas, 1997.

[19] Robert Orfali and Dan Harkey, Client/Server Programmning
with Java and CORBA John Wiley & Sons, Inc., New York,
1997.

[20] Robert Orfali, Dan Harkey, and Jeri Edward, The Esential
Distributed Objeds Suvival Guide, John Wiley & Sons, Inc.,
New York, 1996.

[2]] L.L. Peterson and B.S. Davie, Computer Networks: A
Systems ApproacMorganKaufmann, 1996.

[22] Ernest N. Prabhakar, “Implementing Distributed Objeds:
Doing It the Easy Way with NeXT's Portable Distributed
Objects”,Dr. Dobb's Journal August 1995.

[23] Ravi Ramamoorthi, Adam Rifkin, Boris Dimitrov, and K.
Mani Chandy, “A General Resource Reservation Framework for
Scientific Computing”, Proceedings of the First Internationd
Scientific Computing in Objed-Oriented Parallel Environments
(ISCOPE) ConferencéMarinadel Rey, December 1997.

[24] Ron Resnick, “Bringing Distributed Objeds to the World
Wide Web”,http:// www.interlog.com/ ~resnick/
javacorb.html , 1996 Excerpted in Dr. Dobbs Soucebodk
special issue on distributed objecisinuary 1997.

[25 Douglas C. Schmidt, “ACE: an Objed-Oriented
Framework for Developing Distributed Applicaions’,
Procealings of the Sxth USENIX C++ Technical Conference,
Cambridge, April 1994.

[26] Douglas C. Schmidt and Andy Gokhale, “Evaluating
CORBA Latency and Scdeaility Over High-Speed ATM
Networks’, IEEE 17th Internationd Conference on Distributed
Systems (ICDCS 97Baltimore, May 1997.

[27] Douglas C. Schmidt and Andy Gokhale, “Measuring the
Performance of Communicaion Middleware on High-Speel
Networks’, SIGCOMM Conference, Stanford University,
August 1996.

[28] Douglas C. Schmidt and Andy Gokhale, “Principles for
Optimizing CORBA Internet Inter-ORB Protocol Performance”,
Thirty-first Hawaii Internationad Conferenceon System Sciences
(HICSS) January 1998.

[29] R. Srinivasan, RFC 1831- Open Network Computing RPC:
Remote Procedure Call Protocol Spedfication, Version 2
August 1995.

[30] Steve Vinaski, “CORBA: Integrating Diverse Applicaions
Within Distributed Heterogeneous Environments’, |EEE
Communications Magazine, Volume 14, Number 2, February
1997.

[31] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall,
“A Note on Distributed Computing”, Sun Technicd Report TR-
94-29, November 1994.

16

