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Detection of Edges in Spectral Data
Anne Gelbf Eitan Tadmor!
Abstract
We are interested in the detection of jump discontinuities in piecewise smooth functions which are
realized by their spectral data. Specifically, glvefm the Fourier coefficients, { fk = ag+ibg }_;, we form the
generalized conjugate partial sum S5 1f(z) = k 1 0(£)(ax sin kx — bx cos kz). The classical conjugate
partial sum, Sx[f](z), corresponds to o = 1 and it is known that Tos NSN [f](z) converges to the jump
function [f](z) := f(z+) — f(z—); thus, 5 Sn[f](x) tends to ’concentrate’ near the edges of f. The
convergence, however, is at the unacceptably slow rate of order O(1/log N).
To accelerate the convergence, thereby creating an effective edge detector, we introduce the so called
‘concentration fagtors’, o,y = o(£). Our main result shows that an arbitrary C*[0, 1] non-decreasing
o(z) satisfying 1 "(””)d:c N—) —, leads to the summability kernel which admits the desired concen-
N — 00
tration property. To improve over the slowly convergent conjugate Dirichlet kernel (- corresponding to
the admissible on(z) = ﬁ), we demonstrate the examples of two families of concentration functions
(depending on free parameters p and a): the so-called Fourier factors, o () = Si(ay Sinax, and poly-
nomial factors, o?(z) = —pwz®?. These yield effective detectors of (one or more) edges, where both the
location and the amplitude of the discontinuities are recovered.
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2 A. GELB AND E. TADMOR

1 Introduction

Smooth functions can be accurately represented by their spectral data. For example, given the Fourier
coefficients, fr = ay + ibg, then the N-term truncated Fourier expansion,

N
Snifl(z) = Z'ak cos kz + by sin kz, (1.1)
k=0
provides a highly accurate representation for smooth f’s. The situation is different, however, in case of
piecewise smooth functions, and experience has led to two complementing points of view.

In the first approach, one ’sees’ the smooth pieces of f separated by edges of jump discontinuities. The
straightforward Fourier expansion in this case experiences the Gibbs’ phenomenon: locally, Sy[f](z) "suffers’
O(1) oscillations in the neighborhoods of the jumps, and globally, there is a slow O(+) convergence through-
out the smooth pieces. It is still possible to recover a piecewise smooth f from its spectral coefficients, and
to retain the superior spectral accuracy; such spectrally accurate recovery is obtained by filtering Sy[f](x),
and could be carried out either on the Fourier side, e.g., [13],[17], or in physical space, consult [9],[17],[10]
and the references therein. As an example for the latter, one introduces a C§(—1,1) "bump’ function, B(z),
such that B(0) = 1, and with Dye denoting the usual Dirichlet kernel of degree N?, 6 < 1, we set the
mollifier 1(z) := B(z)Dys(x). Then, replacing Sny[f] with Sn[f] * $1(%) yields a spectrally accurate ap-
proximation of f(z) for all 2’s which are at least d-away from the set of jump discontinuities, [9]. Observe
that 5(x) = %w(%) is a two-sided mollifier supported on (—d,d) with spectrally small moments. In a series
of works, (reviewed in [10]), Gottlieb and Shu used one-sided mollifiers to recover a piecewise smooth f up
to the discontinuous ’edges’. All these recovery procedures require a priori knowledge of the location of the
underlying jump discontinuities. Thus detection of the ’edges’ in this approach remains a critical issue.

In a second approach, one is directly interested in ’seeing’ the edges of f, edges which are viewed as
being ’separated’ by pieces of smoothness. Detection of edges in this context are fundamental in a variety of
computational algorithms, from spectrally-accurate schemes for capturing shock discontinuities, e.g., [16],[12],
to image compression, consult [1],[6] and the references therein. Of course, wavelet expansions are particularly
suitable for edge detection: one traces jump discontinuities by ’zooming’ through the dyadic scales, consult
[15], [5], [14], [6] and the references therein.

In this paper we address the question of edge detection in spectral data. We offer a simple and effective
procedure to detect edges, based on generalized conjugate partial sums of the form

N
& k
S%f(x) = U(N)(ak sin kx — by cos k).
k=1
The starting point is the standard conjugate sum, Sx[f](z), corresponding to o(x) = 1. The classical result

due to Lukécs, e.g., [3, §42],[18, §II Theorem 8.13], asserts that ﬁSN [f](z) converges to the jump function

[fl(@) := fz+) = fa—),
and thus, ﬁg ~[f](z) tends to ’concentrate’ near the edges of f. The convergence, however, is at the unac-
ceptably slow rate of order O(1/log N) (indeed, consult Figure (2.1) below). To accelerate the convergence,

thereby creating an effective edge detector, we introduce the so called 'concentration factors’, oy n = J(%).
Our main result shows that an arbitrary C?[0, 1] non-decreasing o(z) satisfying

/1 @daz — -,

1 x N —oo

is ’admissible’, in the sense that the corresponding generalized conjugate sum satisfies the concentration
property _
SEU() — [f1().
— 00

To demonstrate our above arguments, we consider the following two examples (on [—7,7]):

\ cos(z — Ssgn(fel - 3), = <0,
fol@) = cos(5 (2 +sgne)); o) =
cos(3z + zsgn(|z| — 3)), =z > 0.
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In both cases, f,(z) and f3(z) are recovered from their Fourier coefficients using the Fourier partial sums
Sn[f](z). (both the continuous and the discrete cases are considered) The Gibbs phenomenon is depicted
in Figures 1.1 (- the continuous case) and 1.2 (- the discrete case).
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Figure 1.1: Fourier partial sum, Sso[f](z), of f = fo(z) (on left) and f = fi(z) (on right).
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Figure 1.2: Fourier partial sum of f = f,(z) (on left) and f = f3(z) (on right) using N = 40 discrete Fourier
modes, fr = % j‘v:7 N f(z;)e*®i, which are based on the given gridvalues at the 2N + 1 equidistant

gridpoints ;.

Figure 1.3 shows the reconstruction of a piecewise smooth function using the one-sided mollifier presented
in [11]. Here f,(z) and fy(z) are recovered from their continuous Fourier coefficients (Figure 1.3) and from
their discrete Fourier coefficients (Figure 1.4). The recovery requires the location of the jump discontinuities.
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Figure 1.3: Reconstruction of a piecewise continuous functions, f = f,(z) (on left) and f = f,(z) (on right),
after filtering Syo[f](z) with one-sided mollifier.
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Figure 1.4: Reconstruction of a piecewise continuous functions, f = f,(z) (on left) and f = fy(x) (on right),
after filtering their discrete Fourier interpolant (of degree N = 40) with one-sided mollifier.

Finally, Figure 1.5 shows the detection of these jump discontinuities using our proposed generalized
conjugate sum. In this case, we use the concentration function o(z) = —wz. Both the location and the
amplitude of the jump discontinuities, [f,](0) = —2 and [f3](£7/2) = +v/2 are clearly identified.
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Figure 1.5: Detection of discontinuous edges using the conjugate sum, S%[f](z) = — > o(£)isgn(k) freite

using N = 20,40 and 80 modes, and based on the first degree polynomial concentration function, o' (x) =
—TT.

The paper is organized as follows. The so called concentration property of the basic conjugate partial sum,
S‘N[ f] is reviewed in §2. In §3 we devise our new, more general approach for locating jump discontinuities
based on the concentration property of the generalized conjugate partial sums, S'j'v[ f]- Here we provide a
systematic study of concentration factors, o(4), and their improved resolution of the limiting jump function
[f](z). Finally, in §4 we extend our theory for the analogous discrete case.

Acknowledgments. The research of E. Tadmor was supported in part by NSF Grant DMS97-06827 and
ONR Grant N00014-91-J-1076.

2 The Conjugate Fourier Partial Sum

Let f(z) be a 2m-periodic piecewise smooth function, with a single jump discontinuity at x = £, whose
associated jump value is defined as

[£1(8) := f(&+) = f(§-)- (2.1)

Given the Fourier coefficients of f(x)

ar | _1 [T £8) coskt | .. 2.2)

br o — sin kt ’ ’
our goal is to identify the jump discontinuities, i.e., to locate the jump discontinuities and to accurately
evaluate their associated jump values. The key to locating the discontinuities lies in the relationship between

the conjugate Fourier partial sum and the jump discontinuities.
The conjugate Fourier partial sum is given by

N
Sn[f](z) == Z ay, sin kxz — by, cos kz. (2.3)

k=1

X
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Equivalently, Sx[f](z) can be written as

- 1 ~ 1 [7 -
Swlflw) =f*Dx== [ f()Dx(e— )i, (24)
where D ~ is the conjugate Dirichlet Kernel
N t 1
cosz —cos (VN + )t
t) = in kt = 2 2. 2.
) Z S 2sin % (2.5)

We recall that the support of the conjugate Fourier partial sum Sy[f](z) approaches the singular support
of f(z) as N — o0, e.g., [3, §42],[18, §II Theorem 8.13]. This will be referred to as the concentration property
of S'N[ fl(z). To illustrate the concentration property of S’N[ fl(z), we offer the specific example of the
saw-tooth function

—"T"'w, —r<z<€

_z—7r’ fgxﬁﬂ'

In this case [f](§) = 7 and the conjugate Fourier partial sum is

Sn[®e)(z) = — ivj %
k=1
The concentration property of Sx[®¢](x) can be deduced from the following:
Assertion 2.1 We have
1 ife=¢

N
1 _

= N}:COS’“(: 8, be(a) = (2.6)
&N =1 0 otherwise.

The proof is immediate. Let Dy (y) denote the usual Dirichlet kernel

N
y) = Z' cos ky. (2.7)
k=0
Summation by parts yields
N N
cosk(xz — &) 1
ZT = ZE (Di(z — €) — Dy_1(z — €))
k=1 k=1
o~ Di(z &) | Dyl —¢)
—_— — N — — —
= 2 kE+1) TN Do( = &).
k=1
1 N ocosk(z—¢) w2 1 1 1
i D < — h — 2 < (= —_— d (2.6) foll f
Since |Dn(y)| < 2sin|3§|’we avez . _(6 +N)251n|$ §| , and (2.6) follows for = # &.

k=1

1 K cos k(x — &)
Of course, for z = £ we have Tog N z A — 1, as asserted. W

This special case of the saw-tooth function can be generalized to any piecewise smooth function, as told
by

Theorem 2.1 (On the concentration property.) Let f(x) be a 2w-periodic piecewise smooth function with a

single discontinuity at x = €. Then
[Fl(z) ==¢
(@) = [fl(2)d () = (2.8)

0 otherwise.
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We shall offer two proofs for this theorem. The first approach is a straightforward extension of the concen-
tration property of the saw-tooth function asserted in (2.6), along the lines of [18, §II Theorem 8.13].

Proof. Consider the function g(z) = f(z)— @@5(13), where ®¢(z) is the saw-tooth function with a 7-jump
at z = £. Consequently, g(z) is a C° function which vanishes at = = £. By (2.4), the conjugate sum of g(z)
equals

Snlgl(@) = & / " o) Dz — bt (2.9)

L "

Applying the standard upper-bounds of Dy (t) in (2.5), |[Dn(t)| < min(N, ‘27'), and the fact that g(x) is a
continuous function with g(£) = 0, we obtain

. 47 .
Sxlgl©) < 2 /E 9| D (€ — 1)|dt

™

£+~ B E+m B
< 2 / l9(t)|| D (€ — 8)]dt + 2 / l9(t)|| D (€ — £)|dt
3 3

T +%

2N [SFF 4 (7 |g(t)]
< / g(t)ldt + = /+w e
= o(1) + o(log N) = o(log N).

By the definition of g(z), Assertion 2.1, and the previous estimate it follows that

Sl = T SMal(e) - S S fede)
= i log N) +/1(©)(z) +o1),
and we are done. H
Theorem 2.1 says that
£ o Do) 2 A0,

We would like to point out that the scaled conjugate Dirichlet kernel, —Z- DN, is just one example for a
broader class of admissible “conjugate” kernels which induce the concentratlon property. This brings us to
the following;:

Definition 2.1 (Admissible kernels) We say that a “conjugate” kernel, Ky, is admissible if it satisfies the
following four properties:

P1: Ky is odd; (2.10)
P2: lim / Ky (z)dz — —1; (2.11)
N—oo Jo
. N+Ht - .
P3: Ky(z)=C- M + Ry(z), ||Bn|lz: < Const (2.12)
2 sin(s)
P4 : lim  sup |Rn(z)| =0, V fizedd > 0. (2.13)

N—=00|z156>0

Clearly, the scaled conjugate Dirichlet kernel, - oz Nf) ~(z), is admissible: indeed, in this case properties
(P3) and (P4) hold with Ky = Ry = mDN and C = 0. Properties (P3) and (P4) are motivated by the
fact that unlike the scaled Dirichlet kernel, the generalized conjugate kernels we shall meet later on are not
uniformly integrable.
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Our second proof of concentration property applies to general admissible kernels. Of course, the result
applies to piecewise smooth functions with more than just a single discontinuity. We now need to specify
our precise notion of piecewise smoothness, making

Assumption 2.1 [Piecewise smoothness.] f(x) is piecewise smooth in the sense of having finite number
of jump discontinuities where [f](z) # 0, and such that Yz ’s

fo 0= e =0 =6 ¢ o (2.14)

Thus, piecewise smooth f’s with smooth pieces which are Holder of any order a > 0 will suffice. (To be
precise, we may allow appropriate Besov regularity, yet in actual computation we cannot resolve but a finite
number of discontinuities...)

Theorem 2.2 (The concentration property revisited.) Let f(x) be a piecewise-smooth function, (2.14), and
let J = {&} denote the set of its jump discontinuities. Consider the generalized conjugate partial sum

S =fRn= [ ) Rn(e— ),

where Ky is an admissible kernel satisfying properties (P1) — (P4) in (2.10) - (2.13). Then
o [F1€) z=¢eJ
Snlfl(@) = [fl(z)d.(x) = (2.15)
0 otherwise.
Remark. Note that the convergence asserted in (2.15) need not be uniform.

Proof. Since by property (P1) in (2.10) Ky is odd, we can rewrite the corresponding conjugate partial sum
Sn as

SK1f(x) = - / U +) - fz— ) Rn(t)dt. (2.16)

Define the ’local variation’ j(t) := [f](z) — (f(z + t) — f(x —t)), and split (2.16) into four contributions,
K@ = - [ U@+ - f@-nEno

- @) /OW Ron(t)dt + 0/07r ﬁ?(i) cos(N + %)tdt

) T
4 / J(0) Ry ()dt + / J(0) Ry (1)t
0 )
=: In+IIn+IIIN+1Vy.

Property (P2) in (2.11) yields that the first term approaches the jump [f](z),
Iv=-lI@) [ Exdt > [fl0), N oo
0

3(®)
sint/2
§ = 6(e) such that supg 5|7 (t)| < €, and since |Rn||z: is bounded by (P3) in (2.12), it follows that the third
term IIIy can be made as small as we please independently of N,

By piecewise smoothness, € L'[0,7] and by Riemann-Lebesgue ITx N—) 0. Given an g, we can find
— 00

)
TIx|=| / (RN (0)dt] < || Bl - sup(o,g)i(8)] < Const - ¢;
0
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And finally, property (P4) in (2.13) implies that sup |Rn(t)| can be made arbitrarily small for N large
£>6>0
enough, N > Ny(d(¢)), and hence

IVy = / J(O) Ry (t)dt < Const - sup |Rn(t)] — 0.
s £>0>0 N—roo

Thus the convolution of f with any admissible kernel Ky satisfies the concentration property. M

The following example illustrates Theorem 2.2 for the conjugate Fourier partial sum, SP[f](z) = =% e N =TSN [f](x).

In this case, Ky = —L-Dyx corresponds to the “canonical” conjugate kernel given in Theorem 2.1. Clearly,

5m)

implies that Ky = Tog —L-Dy, also satisfies properties (P3) and (P4); indeed with Ry (z) = ﬁf) ~(z) we
find

logN
it is an odd kernel with unit mass over (0,7), so (P1) and (P2) hold. The estimate |Dx (t)| < min(N

|Rn(t)|dt < Const, yielding (P3) in (2.12); and

L e

N
[fef
o i

. / B (t)|dt < 2

2
——|D < ———— | satisfyi 4) in (2.13).
We close this section with
Example 2.1
sinZfr 7 <z <0
f(@) =

Here £ = 0 and [f](§) = —2.

It is clear from Figure 2.1 that SP[f](z) = Tog. NSN[ f1(z) does in fact locate the singularity point and
approximate the jump value there. Furthermore, in agreement with Theorems 2.1 and 2.2, the numerical
convergence rate is (’)(10 ~) — both at the discontinuity point and away from it. In partlcular the slow
convergence is exhlblted in Figure 2.1 where N = 80 modes do not recover the correct amplitude of the
jump, [f](0) = —2. The improvement of this slow logarithmic convergence rate will occupy our discussion in
the remaining sections. Note that naive straightforward smoothing does not improve the convergence rate.
In fact, the resolution of the smoothed conjugate Dirichlet kernel at the discontinuity is less sharp, as shown

N T
in Figure 2.1 where an exponential smoothing filter is used by pre-multiplying fr — emp(%) frx. The
results are similar for other smoothing filters.
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Figure 2.1: The conjugate Fourier partial sum SR[f](z) = b;—’yvgN[f] z) computed with N = 40 modes.
Here, f = f.(z) given in Example 2.1, experiences a single jump, [f](0) = —2. Before smoothing (on the
left) and after smoothing (on the right).

3 Concentration Factors

3.1 Introduction

Consider a piecewise smooth function f(z) with a single discontinuity at z = £&. We introduce a generalized
conjugate partial sum of the form?!

N
S%[f)(z) = Z ok, N (a sin kz — by, cos kz). (3.1)

k=1

Here o = {0y, ~} are free summability parameters to be determined so that the concentration property similar
o (2.8) holds: )
S{f1(@) = [f1(2)d (2). (32)

For example, o, v = 57 corresponds to the canonical conjugate Fourier partial sums S%[fl(z) = ﬁg N[fl(z).
In this case, (3.2) holds in view of Theorem 2.1. It is clear that these ¢’s influence the convergence rate asso-
ciated with the concentration property of S§[f](z). We refer to o as the concentration factors of SE[f](x).

As a preliminary step, we begin by estimating the Fourier coefficients to their leading order. Integration
by parts yields

ax ~ —— (IO sinkE + O(), b~ —[f1(€) cos ke +O(). (33)
Substituting (3.3) into (3.1) yields

. _ ok,N cosk(z — &) 1
S% @) = -1 = — +0(5): (34)

NE

k=1

Therefore, the desired concentration property of S¢[f](z) in (3.2) amounts to:

1We use the notation S’ﬁ and .§'j‘v to indicate the dependence on both the concentration kernel K ~ and the concentration
factor o, n. This ’abuse’ of notation will be clarified in §3.3 below.
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Assertion 3.1 Let 0 = {op n} be the concentration factors with the corresponding generalized conjugate
partial sum SE[f](z) = Eivzl ok, n(ak sin kxz — by coskx). Then the concentration property (3.2) requires

N
-y T8 ), (3.5)

wk
k=1
Before turning to our general discussion on concentration factors, we note the following.

Remarks.

1. The scaled conjugate Fourier partial sum ﬁg N[fl(z) = fx ﬁﬁ N~ corresponds to the concentration

factors oy, v = ﬁ. We thus denote
D _ -
Or N = ——
kBN = log N’
as the Dirichlet concentration factors, and note that they are independent of k. In this case, Assertion
2.1 states that (3.5) holds with an error term of order O(ﬁ), yielding the concentration statement
of Theorem 2.1 and in agreement with Assertion 3.1.

(3.6)

2. As a consequence of the leading order expansion in (3.3), the highest accuracy that can be obtained in
(3.5) for locating the jump discontinuity = = ¢ is first order, O(+). Faster convergence of (3.5) may be
achieved by further expanding the Fourier coefficients in terms of higher derivatives. This is considered
for the particular methods examined in [2] and [7], and is also suitable for our general method. Here,
we are concerned with improving the first order convergence rate, and we note that higher orders can
be handled in a similar manner.

3. The concentration factors to be determined, o, must show an overall improved accuracy for (3.2).
More specifically, we seek concentration factors which, beyond improving the convergence rate, will
lead to S%[f](z) having better resolution of the singular support of f(x). This will be clarified by the
differences between the various concentration factors outlined below.

4. Although only functions with a single point of discontinuity are considered here, our results are easily
extended to include any piecewise smooth functions (along the lines of Theorem 2.2), as will be seen
in Example 3.1 below.

3.2 Concentration factors determined by regularization

One possible approach to improving the convergence rate of (3.2) is to (weakly) regularize the partial sums
in (3.5) by defining the regularized indicator function, §¢(z),

€ — 1’ |$_‘£| <e
Og(w) := { 0, e<lz=¢ <. (3.7)

Observe that J¢(z) has an even Fourier expansion in (z — £), whose Fourier partial sum is given by

N
SN[ (@)](z) = % +3 2sin PRCGLiC it )

2 > (3.8)

Compared with Assertion 3.1, we can identify the summation on the right of (3.8) with concentration factors

of the form oy v = csin ken; here we consider vanishing ey = § which depends on a fixed free parameter

a. The scaling coefficient, ¢, should be determined so that the concentration characterization in (3.5) holds,

xz

N
_ Z Uk,]i\f- — 1. Tt follows that ¢ = —m/Si(a) with Si(a) denoting the usual Si(a) = an sing g,
T

In summary, we arrive at the family of concentration factors (depending on «)

—T . . g
Si(a) sin ke, EN = —. (3.94)

F
Uk,Nz N
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We refer to these as the Fourier concentration factors, denoted {0,1; N}, since they are in fact, (proportional
to) the Fourier coefficients of d¢(z). For this choice of Fourier concentration factors (3.5) holds with a
convergence rate of order O(ey).

The results for Example 2.1 using the Fourier concentration factors, a}z N> are shown in Figure 3.1.
Compared with the ’concentration-free’ conjugate Dirichlet kernel in Figure 2.1, the improved resolution of
the discontinuity at x = 0 is evident.

T

0.5

-0.5

-15

\\\\l\\\\l\\\\M\\\\l\\\\l\\\\lx
-2 -1 0 1 2 3

N
GEF T T T T T T T T T T T T

Figure 3.1: Jump value obtained by applying the Fourier concentration factors, (3.9,), @ = 1, to Example
2.1. The exact jump is [f](0) = —2.

In this context, we recall an alternative approach to locating jump discontinuities as suggested in Banerjee
and Geer [2]. As described below, the method in [2] is based on estimating the Gibbs’ overshoots which
occur exactly at the points of discontinuity. We shall see that the method in [2] in fact leads to a particular
set of “Fourier” concentration factors.

We briefly describe the method given in [2]. Starting with Fourier partial sum
Snfl(z) = Zg:olak cos kx + by, sin kx, it yields the familiar Gibbs’ overshoot at z = &, of size

ZSz( )

dm [Sh[f](E+) = SnfI(§-)] = [£ (),

25i(m) _ 2 [ sinu gy 117898 accounts for 18% Gibbs overshoot. It follows that

where 0
u

Swlfle + %) = Snlfie =) [ IO fore=¢ (3.10)

2 .
==L () 0 otherwise.

Thus, the (scaled) difference of the Gibbs’ picks at  + & “concentrate” at the discontinuity. In [2], the
location of ¢ and an approximation of [f](£) were recovered by direct evaluation of (3.10).

How can this procedure based on (3.10) be interpreted within our general framework? Inserting the
leading order terms of the Fourier coefficients in (3.3), it follows that

Swlfi@+ &) = Snlfle - &) i o ThcomkE ) (3.11)

2 8i(m) wk

Compared with the characterization of the concentration property in (3.5), one recognizes the summation on
the right of (3.11) as a generalized conjugate Fourier partial sum associated with the concentration factors
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Op,N = % sink%. In fact, these fall into the special category of Fourier concentration factors in (3.9,),

corresponding to @ = w. Thus the approach in [2] given in (3.10), concurs with the so-called “Gibbs”
concentration factors, Ug N> given by

sin —. (3.12)

The results are depicted in Figure 3.2.

i{eV)]
05

-0.5

-1.5

N
LN B s Sy B S S B B

[ I ST ERVEIIN ENRVININES SRVIAVIS SAVINITE SVETITI B
-3 2 -1 0 1 2 3

Figure 3.2: Jump value obtained by applying the Gibbs concentration factors to Example 2.1 with N =
20,40 and 80 modes. The exact jump is [f](0) = —2.

3.3 Concentration factors revisited

Bearing in mind the concentration factors o determined thus far, we revisit (3.1) to determine general
criteria that will guarantee the concentration property (3.2). We start by considering the concentration
factors o,y = 0(%), where o(z) = on(z) is a concentration function which is yet to be determined. Note
that we still allow o(z) = on(z) to depend on N. In the generic case, however, o(x) is independent of N,
(e.g., oF(z) ~ sin(azx) for the Fourier concentration factors in (3.9,)), and so we omit the sub-index N.

We start by summing

N N
1
= Zo )(ay sin kz — by, cos kz) = f —Za )sin k(z — t)dt, (3.13)
7r
=1 k=1
which leads to generalized conjugate kernels of the form
SISk

We ask ourselves when such kernels are admissible in the sense of satisfying the four properties outlined in
Definition 2.1, so that by Theorem 2.2 the concentration property holds:

S%f(@) = [+ K% = [f1(2)d¢ (). (3.15)
In the language of Assertion 3.1, one focuses here at f(x) = 1, where (3.15) boils down to (3.5)

) =
> o)
Sn[)(z) =1+ Kf==>" Wfl: cosk(z — &) — ¢ (x). (3.16)
k=1
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Clearly, the K%(t) are odd so property (P1) holds; moreover, with the minimal requirement of bounded

concentration factors, |Za sin kt| < Const - N and hence ||K'j’v||L1(0’,r) is bounded if ||I~('J‘{,||L1(1/N,,,) is.

(%)
Namely we start with

Corollary 3.1 Consider the conjugate kernel

X
ZO’ ) sin kt,

k=1

associated with bounded concentration factors, O’(%). Then Kj‘v is an admissible kernel (and hence the

concentration property (3.15) holds), if the following conditions are fulfilled:

o ‘7(%) k
L : _(_ —
P2 Jim Z: (1= (-1) )] = —m; (3.17)
- N+Ly . L

Py R =c WD a0 / \B% (8)|dt < Const.; (3.18)

27 sin(3) 1
P4 lim sup |R%(t)| =0, V fizedd > 0. (3.19)

N—=00¢>6>0

Next, we provide easily checkable characterizations of properties (P2')—(P4'). We summarize our results
(adding minimal requirements on the smoothness of the concentration function o(x)) in the following two
assertions. The first deals with the total mass of the concentration kernel, K§;.

Assertion 3.2 Assume that the concentration function o(x) = aN(m) € C'[0,1] satisfies
/ LICIPA Z '” (3.20)
% T N—)oo

Then property (P2') and hence (P2) hold, i.e, hm K% (t)dt = —1.

—>OOO

Remark. If ’gf) is integrable then the summation encountered in property (P2') is in fact the Riemann sum
of

N k N/2 2541 1
(%) X o(<5F) 2 o(x)
Z (1—(-1k) = =~ [ —da.
k=1 JZ:;J % N o T
And thus we find that if o(z) € L'([0,1], 42) satisfies
1
/ oN@) gy (3.21)
0o T

then property (P2') in (3.17) holds. The (slight) refinement asserted in (3.20) extends to L!-weak kernels
which are excluded by (3.21).

Proof. Set z; := 4. By continuity, f“”ll 2(®@) gy = [o(z2j-1) + O(F)] - f“’“ Ldx. Summing such terms
we find
1 N/2 s
/ on(z) dr = / —U(m) dr =
iz ; . T
~ j=1"YT2j-1
N/2
= o) O x o2 0 A =
P I N 2j —1 52
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and the result follows. W

Our next assertion, dealing with properties (P3')—(P4'), provides a sharp upper-bound on the amplitude

- N+ .t
of the conjugate kernel, K% (z) — o (1) cos( 2)

2rsin(L)
X
Assertion 3.3 Consider the conjugate kernel K% (t Z o(=) sin kt, with concentration function o(x) €
k=1
C?[0,1]. Then the following estimate holds
_ cos(N + 3)t 1 1 1
Kn(t) —o(l) —————F— Const. — —|o(D)|| - 3.22
Rn(t) = o) =5 b < [||U||c2 + Const.] 1 [|a< 3+ Fle Ol (3:22)

Remark. Thus, (3.22) shows that if |0(4)| < Const.;-25 then both properties (P3') and (P4') hold.

Proof. Twice summation by parts leads to the 1dent1ty (recall the notation zj := £)

N N-1
4sin2(%) o(zy)sinkt = — [a(mkﬂ) - a(xk)] [sin(k + 1)t — sin kt] +
k=1 k=1
+20(1) sin ! cos(N + 1)t — 20(z1)sin ! cos r_
2 2 2 2
N—-2
= ¥ [a(xk_,_g) — 20(zpp1) — a(a:k)] sin(k + 1)t + (3.23)

B

=1

+ [0(1) - U(mN_l)] sin Nt — [a(xg) - 0($1)] sint

t 1 t t
+20(1) sin 2 cos(N + i)t — 20(x1) sin 508 5

By the C? smoothness of o(z) we find

1

mt (3.24)

N 1 1
K — 1
IR5(0] < lollor 57 + [lo(p)1 + lo]|
To conclude the proof we consider the special example of o(z) = x: the corresponding conjugate kernel (with
or,N = L) reads K%(t) = =t Z + sin kt and it coincides with the differentiated Dirichlet kernel in (2.7),
1 D/ ( )
N + 1 cos(N + 3)t 1 cosisin(N + 1)t

1k +5)t
= — sinkt = . — - 27, (3.25)
™ ; N 2rN  2msin(%) A7 N sin®(2)

Now we decompose
K% (t) = [K3(0) = o(WEE (0] + o()EE (0).

The first difference on the right is a conjugate kernel associated with concentration function u(z) := o(z) —

o(1)z. Application of (3.24) to K (t) implies the upperbound asserted in (3.22). Also, by (3.25), K% (t) —

N+1 cos(N+3)t
27N 3rsin(l) does not exceed Nt2’ and the result follows. W

We summarize our last two assertions, by stating our main

Theorem 3.1 (Admissible kernels) Consider the conjugate kernel K (t ) ==t Eiv o(£)sinkt associated

with a C?[0,1] concentration function o(z), such that |o(4)| < Const. g N L. Assume
1
/ UN—(m)dm — -, (3.26)
1z
N A
3 ol (3.27)
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Then K%(t) is an admissible kernel, so that S%[f](x) = f * K% satisfies the concentration property,
S f1(e) — [F)(@)3% a).

Remark. If o(z) is non-decreasing, then necessarily, |o(+)| < Const. -2+ oz L for (3.17) to hold, and in this case

(3.27) is fulfilled. If also Z ( ) et [0,1], then admissibility requires only the scaling condition

1
o(z
/ Qdm = —. (3.28)
0o T
It is easy to see from the above discussion that a,ff N a,li y (and in particular, a,?, n) are admissible
concentration factors: in the first case, the Fourier concentration factors oy (z) = g Satisfy (3.27) (and

note that in this case @ is only weak-L! so that we need the refinement of (3.20)); in the second case of
Fourier concentration factors, o (z) = Siay Sin or satisfies (3.28).

3.4 Polynomial concentration factors

Guided by the results of Theorem 3.1 we define a family of what we refer to as “polynomial” concentration

factors, based on concentration functions, o?(x) = —pwzP. The first two members in this family yield
e First degree polynomial concentration factors (o(z) = —7x)
k
pno=_T0 3.29
Uk,N - N ( )
e Second degree polynomial concentration factors (o(x) = —27z?)
2mk?
P i (3.30)

BN =T NINT 1)

Clearly oP(z) = —pmaP are admissible by Theorem 3.1 and hence the concentration property holds. We
note in passing that the generalized conjugate sums associated with the polynomial concentration factors,
oP, coincide with the differentiated Fourier partial sums,

7(2p+ 1) d?r*!

2P +1 7r(2p + 1)
N2p+1 d.732p+1 N[f] ('Z-) °

N
S5 (@) = ~ TN Z E*P*(ay, sin kz — by, cos kx) = (—1)?
k=1

The corresponding concentration property then reads

(1p 2D 501 f1(2) - [£](x). (3.31,)

The special case p = 0 was already referred to in the proof of Assertion 3.3, where we made use of the
identity K% (t) = —1-D/\(t), and the corresponding concentration property, (3.31,) with p = 0 goes back to
Fejér, [18, §IIT Theorem 9.3].

To gain better insight into their overall improved accuracy, we analyze the behavior of S§ [1](z) =
1% Kg (z) for 2’s away from the assumed jump discontinuity at = = ¢, consult (3.5). To this end, we let
p =z — & and rewrite the sum (3.5) corresponding to o7’y as

(N+1)p

N Np
» 1 sin cos
S 1(x) —E coskp = p=x—¢&.

N Nsmfz’ ’

Substituting in the discrete values p; = @ forl=1,---,2N — 1, yields

sin ”(lgN) cos (NH%’]({(FN) B { 0 l is even

N sin "CN) 0 74 odd.

S @) =
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Figure 3.3: Jump value obtained by applying the first order polynomial concentration factors, o?? (%), to
Example 2.1 with N = 20,40 and 80 modes. The exact jump is [f](0) = —2.

The uniform convergence is clearly depicted in Figure 3.3 by the oscillatory behavior between the odd
and even gridpoints. It is important to clarify that the convergence at x away from the point of discontinuity
does not depend on the value of x — &, but rather on its distance from an z; with an odd or even index. It
follows that the convergence rate for (3.2) corresponding to the first order polynomial factors, o7 (&), is the
same for all odd (even) z;, regardless of proximity to the points of discontinuity.

For the second order polynomial factors, o?2(£), we rewrite (3.5) as

(k+1)p

S [M(a) = Y, 2k coskp _ 2 g:smk”cos +—Zcosk
= 1N(N+1)_ N(N+1)k_1 sin 2 P

= COt Zs1nkp+ Zsm —+—Zcoskp, p=x—E&

Using the closed formulas

1 N
sin %2 cog (EtLe ) cos2  cos(N+1)p
E coskp——p , E sinkp = —2% — — 7
sin 5 2sin 5 2 sin 5
= k=1

w(I=N)
N

we substitute the discrete values p; = and apply a fair amount of algebra to obtain

o (ﬁlg) if [ even
S (@) = i
% (=) { O(%)_Fo(c"]tv_fl) if [ odd.
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Figure 3.4: Jump value obtained by applying the second order polynomial concentration factors to Example
2.1 with N = 20,40 and 80 modes. The exact jump is [f](0) = —2.

Thus the second degree polynomial factors attain second order convergence (but only at the even dis-

201
cretization points). It is also oscillatory, and due to the added error term O(Cofvf ) at the odd points, it is

dependent on the proximity of the jump discontinuity & to the discretized value of ;. This error implies that
the convergence is worse near the points of discontinuity and the lack of uniform convergence is depicted in
Figure 3.4. On a positive note, S *[f](x) — 0 more rapidly outside the immediate proximity of the discon-
tinuity point, which may be helpful in identifying jump discontinuities for functions with stronger variation,
as will be seen in Example 3.1. We note that there are higher order polynomial factors corresponding to
admissible kernels K¢ that may work as well.

Table 3.1 compares different concentration factors for Example 2.1, with the first row showing the mag-
nitude of error for [f](0) and the second row comparing the average error for [f](z # 0).

[f1(z) UI?,N o-lf:N Ul(c’:N Ui,lN Ug?N
at £ =0 | 0.168 | 2.0E-02 | 6.5E-03 | 2.4E-02 | 1.1E-02
at x #0 | 0.326 | 5.9E-02 | 0.11 5.5E-02 | 6.7E-02

Table 3.1: Error comparison for Example 2.1 with N = 40 modes. First row: Absolute error for [f](0) = —2.
Second row: average error for [f](z # 0) = 0.

As expected, the worst case is with the Dirichlet concentration factors. The results are comparable for
a,ﬁ N and ag - Overall, the polynomial concentration factors work better than the Fourier concentration
factors, and it is not surprising that afc’,zN produces a slower convergence rate averaged over x’s # 0, due to

2 £1
the contribution of order O(Cojtw2 ) which prevents uniform convergence near the point of discontinuity.

Until now we have only discussed functions with one discontinuity. Example 3.1 demonstrates the detec-
tion of edges for a function with two discontinuities.
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Example 3.1 We consider

cos 3, T<z<—3F
fl@)=1% cos¥, —ZT<ax<Z
cos%x, s<z<mw

Here & = —%, & = §, and [f](&) = —[fl(&) = V2.

Figure 3.5 displays the results for Example 3.1 using different concentration factors. The polynomial
concentration factors work better than the Fourier concentration factors, and the fast convergence of S [f](x)
for {07y} is more evident than in the first example.

[fC] [fC]

1.5 15

1F 1F

osf osf

I I irst order

0 0

05| 05|

e e

el vV b X el v 1 X
15 -3 -2 -1 0 1 2 3 15 -3 -2 -1 0 1 2 3

k k

Figure 3.5: Jump value obtained by different values of of (£) with @ = 1 and a = 7 (on the left) and o?(£)
with p =1 and p = 2 (on the right), when applied to Example 3.1 with N = 40 modes. The exact solution

is [f](£2) = £VZ, and [f](x # £%) = 0.

Table 3.2 compares the different concentration factors for [f](£1), while Table 3.3 compares the average
error of [f](z # &1,&2). The tables indicate that the polynomial concentration factors yield better results
than their Fourier counterparts. Here we see that ang yields better average accuracy away from the points
of discontinuity than ag’lN. In this case, the smooth ’pieces’ in Example 3.1, exhibit stronger variation than
before and the faster convergence of S % [f](z) corresponding to ang away from the discontinuities plays a
more dominant role.

D F el D1 P2
N Ok,N Ok N Ok,N Ok,N Ok N

20 | 0.453 | 9.2E-03 | 7.0E-02 | 5.4E-02 | .150
40 | 0372 | 1.0E-02 | 1.6E-02 | 3.1E-02 | 6.0E-02
80 | 0.315 | 6.5E-03 | 4.0E-03 | 1.7TE-03 | 2.5E-02

Table 3.2: Absolute error for Example 3.1 at = —7.
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N UkD,N ‘TII:,N UI%:N Ug,lN Uz,ZN
20 | 0.466 .195 319 188 119
40 | 0.382 | 9.6E-02 | .171 9.2E-02 | 4.8E-02
80 | 0.327 | 4.8E-02 | 8.9E-02 | 4.5E-02 | 2.1E-02

Table 3.3: Average error for Example 3.1 away from the discontinuities.

We mention again that while the estimates above are at best first order, they can be improved to O(%)
by substituting the results of [f](£) back into (3.3) and applying another integration by parts. Finally we
emphasize that the possibilities for ¢ are not exhausted, and that other concentration factors may provide
better results.

4 Discrete Fourier Expansion

Suppose we are given the discrete gridvalues f(x;) defined at the 2N + 1 equidistant points, z; := —7 + (j +
N)Az, with Az := 213% The discrete Fourier expansion approximation is given by

N
Tn[fl(z) = Z'Ozk coskx + B sin kzx,
k=0

where the corresponding 2N + 1 discrete Fourier coeflicients based on those 2N + 1 equidistant gridvalues
are defined as

Az &
ar = 72 f(zj)coskzj, 0<k<N
j=—N
Ar &
By = = > flzj)sinkz;, 1<k<N. (4.1)
T

The discrete conjugate Fourier partial sum is therefore

N
Tn[fl(z) = Z ay sin kx — B cos kx. (4.2)
k=1

In the discrete case, every gridvalue experiences a jump discontinuity. The jumps that are of order
O(Ax) are acceptable, but the O(1) jumps indicate a jump discontinuity in the underlying function f(x).
Hence, in the discrete case we identify a jump discontinuity at £ by its enclosed gridcell, [z;, z;41], which is
characterized by the asymptotic statement (

[f1(§) + O(Az) for j = je: & € [z, 2j41]
f@jt1) — f(z5) = (4.3)
O(Ax) for other j's # je.

Of course, this asymptotic statement, (4.3), may serve as an edge detector based the given gridvalues,
{f (a:])}ﬁv:_ ~- We now seek alternative edge detectors based the the discrete Fourier coefficients, {ax, B¢ }o;,
analogue to our study of the continuous case in §3.

As a starting point, we point out the inadequacy of the concentration factors studied in §3, a(%), in
the present context of discrete Fourier expansion (4.2). Figure 4.1 shows the results for the discrete data
of Example 3.1. The discrepancy in Figures 3.5 and 4.1 clearly indicates that the concentration factors
determined in §3 are not applicable here. A separate (but closely related) study is required for discrete
concentration factors.
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Figure 4.1: Jump values obtained by applying different “continuous” concentration factors to the dis-
crete Fourier coefficients for Example 3.1 with N = 40 modes. The exact solution experiences two jumps

[Fl(E5) = +v2.

To analyze the discrete case, we follow our framework in §3. We introduce concentration factors 7 n
and consider the (discrete) generalized conjugate sums

N
TX () == Z T, N (o sin kx — By cos k). (4.4)

k=1

Summing by parts the discrete Fourier coeflicients we find

Az al
w = o S sinkayg [f@) - f@i)],

: Az
21 sin k=5 Pay®

Az

N
B = > coskayyy [flzi) = £z5)]-
-N

27 sin k% )
J:

Let &1 = ;.1 denote the midpoint of the cell [%je,2j41] which encloses the discontinuity at = = &.
Applying (4.3) to the discrete Fourier coefficients in (4.1) gives

A :
o = gl (€ lsinke+ O(A),
A
Be = P ——. v sin:l;c% [f (&4 1)] cos k§ + O(Az), (4.5)
and substituting (4.5) into (4.4) leads to
- Az -1
Tulila) = -0 3 2z k(@ = 6iyp) +O(8a). (4.6)
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Observe that as Az — 0, the discrete conjugate sum TN~[ f](z) approaches the corresponding continuous
conjugate sum S%[f](z). In fact, by comparing (4.6) with S [f](z) in (3.4),

S%11) = 1) Z—cosk (o -6+0(x),

we see that the concentration property of the discrete conjugate Fourier partial sum is a direct analogue of
the continuous case. Of course, in the discrete case, we do not identify the exact location of the underlying
discontinuity at = £, but rather the location of the discrete cell which encloses this discontinuity which is
realized here in terms of its midpoint at z = §;, 1

We arrive at the following discrete analogue of2 our Theorem 3.1 for detecting edges in spectral of piecewise
smooth functions. In this discrete context, piecewise smoothness refers to piecewise C? functions, i.e., we
refer to f’s with finite number of jump discontinuities where [f](z) # 0, such that (2.14) is strengthened into

fla+1) = fz —t) = [fl(z) € C?[0,7]. (4.7)

Theorem 4.1 Let f(x) be a piecewise smooth function, (4.7), and let J = {£} denote the set of its jump
discontinuities. Given the discrete Fourier coefficients, {ax + iBk}Y_,, we consider the generalized discrete

conjugate partial sum
N

TR () = Z T, N (o sin kx — By, cos k) (4.8)
k=1
corresponding to the discrete concentration factors T = {ri,n} = 7(&). If Ti,n are are related to admissible
continuous concentration factors oy, n in (3.1)
sin(k%) 2w

Az = 4.
Ok,N, z 2N+17 ( 9)

Tk,N
LAz

then T [f](z) satisfies the concentration property
TR[f1(z) = [£1(€)d(2). (4.10)
Furthermore, the direct analogue to the continuous case offers a more general result:

Theorem 4.2 Consider a C?[0,1] discrete concentration function 7(z) such that |7(&)| < Const.ﬁ

Then T, N = T(%) are admissible and the concentration property is fulfilled,

TR[f1(z) = [£1(€)d,(2),

if the following conditions are met:

1
@) g, (4.11)
1 2sin7g N—>oo
N
N o\ d
S j'T(_JQV” — 0. (4.12)
= ] N—oo

All of the continuous concentration factors ¢ = {oy n} from §3 can therefore be ’converted’ into discrete
concentration factors 7 = {7, n} up to a scaling factor of sin (k52)/(k52):

1. Dirichlet concentration factors

-2 Az
D = qi -
T8 = As g N sin k 5 (4.13)
2. Fourier concentration factors 9 A
F - . T . @
= —  sink— k—); 4.14,
Tk kAzSi(a) SET sin N)7 ( )
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3. Gibbs concentration factors

-2 Az | 7wk
G _ . .
= ————sink—sin —; 4.15
Tk kAxSi(m) R ( )
4. First order polynomial concentration factors
2 . . Ax
ll;l = AzN sin k‘T, (416)
5. Second order polynomial concentration factors
—4kmw Az
P = sink——; 4.17
e = ANN+1) (4.17)
[f(3)] [f(x)]
| 1.5 r
05| .
| » 1k
| bs |
of i
I os|
05| ;
I of
aF i bs
i -0.5 -
-1.5 :— -1 :_
2;|\\\\|\\\\|\\\\\\\\I\\\\I\\\\IX _15:I\\\\|\\\\I\\\\I\\\\I\\\\I\\\\IX
-3 2 -1 0 1 2 3 3 -2 -1 0 1 2 3

Figure 4.2: Jump value obtained by applying discrete Fourier and Gibbs concentration factors, 7 (%)

(corresponding to & = 1 and @ = 7) with N = 40 modes. The exact solutions exhibit the jump discontinuities
[£a](0) = —2 (on left) [fo](£%) = +v/2 (on the right).
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Figure 4.3: Jump value obtained by applying discrete first and second degree polynomial concentration
factors with N = 40 modes. The exact solutions exhibit the jump discontinuities [f,](0) = —2 (on left)

[£5](£%) = £v/2 (on the right).

1

2

3

[f(

Z

15

0.5

=
LN IS [ |

-0.5

irst order

econd order

_1.5I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I

-3

-2

N [P i o s T

19 | .86 | 4.3E-02 | 2.3E-02 | 9.8E-02 | 8.8E-02
39 | .90 | 2.3E-02 | 1.9E-02 | 5.0E-02 | 3.7TE-02
79 | .92 | 1.2E-02 | 1.1E-02 | 2.5E-02 | 1.6E-02
Table 4.1: Absolute error for Example 2.1 at z = 0.
N | 7P T e T T

19 | 0.20 0.19 21 A1 13

39 | 0.16 | 5.9E-02 | .11 5.5E-02 | 6.7E-02
79 | 0.14 | 2.9E-02 | 5.4E-02 | 2.7TE-02 | 3.5E-02

Table 4.2: Average error for Example 2.1 away from the discontinuity, x # 0.

We close this section noting that in the case of f = f,(x) in Example 2.1, Tables 4.1 and 4.2 indicate
a comparable order of resolution for the different concentration factors, 7§ ,T,?,T,fl and 7;°, both at the
value at the point of discontinuity as well as the average convergence away from the point of discontinuity.
For f = fi(z) in Example 3.1, however, 7' produces best average errors outside the discontinuities (at
z # +v/2), and Figure 4.4 shows faster convergence for 7 = {77*}, T%[f](z) — 0 away the immediate

proximity of these points of discontinuity.

-1

0

1

2

3

X



-0.5

DETECTION OF EDGES IN SPECTRAL DATA 25

[f( [f(x)]

Z

15 15
1k 1
o5 05

-0.5

o
||%|||
—

_1'5I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\I X _15I\\\\I\\\\I\\\\I\\\\I\\\\I\\\\

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2

Figure 4.4: Jump value for Example 3.1 obtained by applying the first order polynomial factors, (4.16) (on

the 1

eft) and second order polynomial concentration factors, (4.17), (on the right), using N = 20,40, 80

modes. The exact solution ’jumps’ at [f](+Z) = £v/2.
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Concluding remarks

theorems provided in §3 and §4 enable us to determine concentration factors for both continuous and
ete Fourier expansion coefficients that improve the overall accuracy of the concentration property of the

conjugate Fourier partial sum.
It is important to mention that the choice of an appropriate concentration factor depends on various

factors. Consider the following cases:

For the one-sided mollifier proposed in [11], only the approximate jump location is required to re-
construct a piecewise continuous function, making o> and 7,° appealing choices due to their rapid

convergence away from the discontinuities.

Reconstruction methods in [2] and [7] require exact knowledge of the jump locations, but in [7], for
example, knowledge of the jump locations and the Fourier coefficients are enough to determine the jump
discontinuities, implying that locating the jump discontinuities is more important than determining
their corresponding amplitudes. This makes o> and 71> poor choices because of the strong oscillations
they cause near the discontinuities.

For highly varying functions, we have seen that o}> and 7> display better results due to their rapid
convergence away from the discontinuities.

In case of several discontinuities, then %> and 7;* produce too many oscillations between the points
of discontinuities unless there are sufficiently many modes to 'resolve’ the smooth pieces of f.

Finally we note that the results for the Fourier concentration factors, o, 7L (with o = 1) and the
first degree concentration function, o}', 75", bear close similarity which is not shared by the Gibbs’
concentration factors, a,?,TkG (corresponding to 04,7, with @ = 7). Indeed, the sensitivity of the
Fourier concentration factors on the free parameter « is clearly depicted in Figure 5.1 and deserves a
further study in the future.
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Figure 5.1: Jump value obtained by generalized conjugate partial sum, S§,[fs](z) using various Fourier
concentration functions of (z) = Si(ay Sin @z, with a = 1,1.5 (top) and @ = 2,3 (bottom). The exact
solutions exhibit the jump discontinuity [f,](0) = —2.
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