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Abstract

An important research activity in interior—point methodology for general nonlinear program-
ming is to determine effective path—following strategies and its implementations using merit
function technology. The objective of this work is to present numerical comparisons of several
globalization strategies for the local interior—point Newton’s method described by El-Bakry,
Tapia, Tsuchiya, and Zhang. We conduct a numerical experimentation between three notions
of proximity to the central path or a relaxation of it, with three merit functions to obtain an
optimal solution. We present which strategy works best, as well as some interesting comments
about the rest of the strategies.

Keywords: interior-point method, path-following strategy, merit function.

Abbreviated Title: Numerical Comparisons.

1 Introduction

In 1991, El-Bakry, Tapia, Tsuchiya, and Zhang [5] extended the primal-dual interior-point New-
ton formulation from linear programming to general nonlinear programming, and established local
and Q-quadratic convergence under standard assumptions for Newton’s method. Moreover, they
presented a globalization strategy which consists in a linesearch procedure using the £3-norm resid-
ual function of the Karush-Kuhn-Tucker (KKT) conditions associated to the problem as a merit
function, and as centrality condition a standard measure used in feasible linear programming.

In 1995, Argdez and Tapia [2] proposed a path-following primal-dual interior-point method for
nonlinear programming (NLP) to globalize the strategy of El-Bakry at el [5]. This method intro-
duces a new centrality region, that is a relaxation of the central path, and a new merit function
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which can be classified as a modified augmented Lagrangian function. The new centrality region,
so called quasi central-path, removes the gradient with respect to the primal variables of the La-
grangian function of the perturbed KKT conditions. Therefore the Lagrange multipliers associated
with the equality constraints are neglected as primary variables in their formulation. The new merit
function modifies the augmented Lagrangian function associated with the equality constrained op-
timization problem by adding to its penalty term a potential reduction function utilized in linear
programming to handle the perturbed complementarity condition. Also, they introduced a new
centrality condition that is used as a measure of proximity to the quasi central-path. The method
consists in applying a linesearch strategy that uses the new merit function to reach their centrality
condition for a fixed perturbation parameter.

Due to the promising numerical results of Argdez and Tapia method, Parada and Tapia [11]
defined in 1997 another modified augmented Lagrangian function and a new centrality condition
as a measure of proximity to the quasi central-path. This new merit function differs from the
Argdez—Tapia merit function in the second term of the penalty term by replacing the potential
reduction function with the norm squared of the perturbed complementarity condition, and they
also obtain encouraging numerical results.

The determination of an effective path—following strategy is an open research area in general
nonlinear programming from both the theoretical and computational point of view. Therefore
the objective of this work is to conduct a numerical comparison of different options that can be
taken to reach an optimal solution between three notions of proximity to either the central path
or quasi central-path, with the three merit functions that were used by El-Bakry et al [5], Argdez
and Tapia[2] Parada and Tapia [11] in their work.

We present which centrality condition works best, and which merit function is the best tool to
reach this centrality condition. We also present some important comments about the other options
implemented.

2 Problem Formulation

We consider the general nonlinear program in the form

minimize  f(z) (1)
subject to h(z) =10
z >0,

where A(z) = (h1(z), ..., hpm(2))T and f,h; : IR™ = R, i = 1,..,m, (n > m) are twice continuously
differentiable functions.

A point z € IR™ is said to be strictly feasible for problem (1) if A(z) = 0 and z > 0.

The Lagrangian function associated with problem (1) is

0(2,y,2) = f(2) + h(z)Ty - " (2)

where y € R™ and z > 0 € IR” are Lagrange multipliers associated with the equality and inequality
constraints, respectively.



2.1 Perturbed KKT Conditions
For y > 0, the perturbed KKT conditions associated with problem (1) are

Vf(z)+ Vh(z)y - =
Fﬂ(m7y7z)z XZh('r) :07 (3)
€ — e

(z,2) >0

where X = diag(z), Z = diag(z),e = (1,...,1)T € R™.
The perturbation parameter p only affects the complementarity condition X Ze = 0. For yu = 0,
these conditions are merely the KK'T conditions associated with problem (1).

Comment 1 Perturbed KKT conditions (3) are equivalent to the necessary conditions for the
logarithmic barrier subproblem associated with problem (1). These conditions keep the iterates away
from the boundaries and are not necessarily an ill-conditioned system of equations. See Sections

2.2 and 2.3 of Argdez [3].

We base our numerical experimentation using the perturbed KKT conditions as a central framework
to promote global convergence.

Definition 2.1 Centrality Region. We define a centrality region associated with problem (1) as
any collection of points that satisfy at least the perturbed complementarity condition with (z,z) > 0,
parameterized by pt.

3 Path—Following Strategies

In this section we present our philosophy of a path-following interior—point Newton’s method
as a globalization strategy to obtain an optimal solution of problem (1).

Definition 3.1 Path-Following Strategy. For u > 0, and working from the interior ((z,z) >
0), apply a linesearch (trust region) Newton’s method to the perturbed KKT conditions (or an
equivalent system) until the iterate arrives to a specified prozimity to the centrality region. Then
decrease u, specify a new proximity, and repeat the process.

Remark 3.1 Under appropriate conditions, an optimal solution will be obtained as p approaches
zero.

To implement this strategy, we need to state three primary issues among others. First a centrality
region, secondly how close we want to move about a centrality region, and third what merit function
needs to be used to obtain the proximity. We address these issues in the next subsections.

3.1 Centrality Regions

The choice of a centrality region plays an important role in the implementation of a path—following
strategy. We present two centrality regions that we implement in the path—following strategy.
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3.1.1 Central Path

In their globalization strategy, El-Bakry et al [5] use the perturbed KKT conditions as a notion of

a centrality region. This notion is defined as the collection of solutions, v}, = (z},y}, z;), of the

n
perturbed KKT conditions parameterized by g > 0, i.e.,

Vf(@)+ Vh(z)y -z
h(z) =0 (4)
XZe — pe

(z,2) > 0.

This notion is an extension of the central path from linear programming to nonlinear programming
that inherits the following advantages:

1. Keeps the iterates away from the boundaries.
2. Promotes global convergence with non ill-conditioned systems of equations.
In nonlinear programming, this notion has the following disadvantages:
1. Far from the solution, a point in the central path for a particular ¢ may not exist.

2. Requiring iterates to be closed to the central path makes the algorithm quite expensive.

3.1.2 Quasi Central-Path

To overcome the disadvantages of the central-path, Argdez and Tapia [2] presented a relaxed notion
of the central path as a centrality region. In their globalization strategy, they defined the notion
of quasi central-path as the collection of points parameterized by g > 0 such that

2, ]

XZe — pe
(z,2) > 0.
Proposition 3.1 The quasi central-path is equivalent to the region of strictly feasible points.

Proof. For pp > 0, h(z) =0, X Ze = pe, and z,z > 0 is trivially equivalent to h(z) =0 and z > 0.
This centrality region has two main advantages:

1. Near the solution, where the central path is well defined, the quasi central-path takes advan-
tage in finding a point in this region since it is less restrictive than the central path.

2. Far from the solution, where we don’t know if the central path is well defined, the quasi
central-path presents a dramatic advantage since by Proposition 3.1 a point on the quasi
central-path is just a strictly feasible point.
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3.2 Proximity to the Centrality Region

Since by following the central path or the quasi central-path to reach an optimal solution can
make the strategy quite expensive, we present some measures of how close an interior-point is from
satisfying these centrality regions. Specifically, we use three different notions of proximity to the
centrality region that El-Bakry et al [5], Argdez and Tapia [2], and Parada and Tapia [11] used in
their globalization strategies.

3.2.1 Proximity to the Central Path

El-Bakry et al [5] used the following inequality

zTz
min(XZe) >0o—, o€ (0,1) (CI)
n

as a measure of proximity to the central path. This inequality is well known in the area of linear
programming. We denote this centrality condition by C1.

3.2.2 Proximity to the Quasi Central-Path

Argdez and Tapia [2] and Parada and Tapia [11] in their globalization strategy present the following
inequality
B (@)]I* + W (X Ze — pe)||* <y, v €(0,1)

as a measure of proximity to the quasi central-path, where the weighting matrix W is given by

W= (XZ)%; Argédez-Tapia (C2)
I; Parada-Tapia (C3).

The Argaez-Tapia is a weighted proximity measure and is denoted as C2, and the Parada-Tapia
proximity measure is an unweighted centrality condition denoted by C3.

3.3 Merit Functions

Now we present some merit functions used as tools to reach centrality conditions C1, C2, and C3.

3.3.1 KKT Residual Function
To obtain centrality condition C1, El-Bakry et al [5] used the KKT residual function given by

a(v) = 5|1 (0)]? (1)

where F'(v) = 0 are the KKT conditions for problem (1). This function is denoted by M1.
This merit function has the following important property:



(P1) For any interior-point v = (z, y, z), the Newton step Awv is a descent direction for the residual
function ®(v) for specific choices of p, i.e.,

IF @)

d(v)TA iff
Vo(v)'Av <0 iff pu< T

Proof. See El-Bakry et al [5].

3.3.2 M, Argaez-Tapia Function

To obtain centrality condition C2, Argdez and Tapia [2] present a modification of the augmented
Lagrangian function as a merit function to be used in their globalization strategy, and is defined
by

Mu(wvz;yap):E('rvyvz)—}—pq)#(‘r?Z) (MQ)

where £ (z,y, z) is the Lagrangian function associated with problem (1), p is a nonnegative penalty
parameter, and ®,(z, z) is the penalty term. The penalty term is given by

1 n
¢, (z,2) = 3 h(x)Th(z)+ 272 — p Z In (z;2),
i=1
which is composed of the square norm of the equality constraints and a known potential reduction
function. This merit function is denoted by M2.

3.3.3 [, Parada-Tapia Function

To obtain centrality condition C3, Parada and Tapia [11] present another modified augmented
Lagrangian function given by

Ly(z,y,z;p) =L (2,y,2)+pCu(z,2)  (M3)

where the penalty term is
Culz,2) = [|h(2)]]” +

The penalty term is composed of the square norm of the equality constraints and the square norm
of the perturbed complementarity condition. Observe that the difference between M2 and M3 is the
second term of its corresponding penalty terms. Merit function M3 replaces the potential reduction
function in M2 with the norm squared of the perturbed complementarity condition.

The modified augmented Lagrangian functions M2 and M3 have two important properties:

X Ze — pel|?.

(P1) For > 0 and fixed. If v} = (2},y},2) satisfies the perturbed KKT conditions, then for

m
sufficiently large p the primal solution z*

M satisfies

* . R *
zy, = argmin M, (z;y;,, 2, p)

zy, = argmin L, (z;y,,2,,p)-

Proof. See Argdez and Tapia [2] and Parada and Tapia [11].
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(P2) For u > 0 and fixed. The Newton step, Av, obtained from the perturbed KKT conditions at
an interior-point v = (z,y, z) is a descent direction for p sufficiently large if and only if the
point v is not on the quasi central-path, i.e.,

VM, (v;p)TAv < 0,

VL, (v;p)TAv < 0.
Proof. See Argdez-Tapia [2] and Parada-Tapia [11].

4 Path—Following Algorithms

In this section we present two global algorithms of the primal-dual interior—point algorithm pre-
sented by El-Bakry et al [5] which is a pure extension of the well known primal-dual interior—point
algorithm for linear programming, presented in 1987 by Kojima, Mizuno and Yoshise [9], to non-
linear programming. Both algorithms are a damped Newton’s method with linesearch applied to
the perturbed KKT conditions. The first one is a linesearch globalization of the local primal-dual
interior—point method for nonlinear programming introduced by El-Bakry et al [5] which we are
implementing using merit functions M1, M2, and M3. The second one is the algorithm presented
by Argdez and Tapia [2] which we are implementing with centrality condition C2 and C3 and
merit functions M1, M2, and M3. Both algorithms are path—following strategies since they satisfy
Definition (3.1).

Algorithm 1

Step 1. Select a merit function M1, M2, or M3. Consider an initial interior-point
Vo = (%o, Yo, 20). Choose 3,p, .
Step 2. For k=0,1,2,....until convergence do
ITZ
Step 3. Choose oy, € (0,1), p = Uk(ﬁ—ln ).
Step 4. Solve the linear system
F (vp)Avg = —F),, (vg).

Step 5. (Maintain z and z positive). Choose 1, € (0,1) and set & = min(1, Tp&)
where

-1 -1
a = min - — y o .
min(X;  Azy,—1)  min(Z, Az, —1)

Step 6. (Steplength selection). Compute & € (0, «] such that
x (@)TZ(@))
- .

min(X (&) Z(a)e) 2 v(
‘& where t is the smallest positive integer such that oy,

Step 7. (Sufficient decrease). Find a = p
satisfies

Mj,, (vk + axAvg) < Mj,, (vi) + 0BV Mj,, (vx)T Avg. (See Comment 2)
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Step 8. Set v = vy + apAvg.

Comment 2 For j = 1, the algorithm is the primal-dual interior—point Newton’s method in-
troduced by El-Bakry et al [5]. For j = 2,3 the algorithm is a modification of El-Bakry et al’s
formulation. In these cases the algorithm uses the modified augmented Lagrangian merit functions
presented by Argdez-Tapia and Parada-Tapia, respectively. The choice of the penally parameter p,
used to force a descent direction, is calculated as in Argdez-Tapia [2].

Now we present Algorithm 2 which follows the quasi central-path defined in 3.1.2 as a centrality
region.

Algorithm 2

Step 1. Select a merit function M1, M2 or M3. Select centrality condition C2 or C3.
Consider an initial interior-point v, = (z,, Yo, 2,). Choose 3,p,~.

Step 2. For k=10,1,2,... until convergence do

Step 3. Choose o € (0,1), ur > 0.

Step 4. Repeat

4.1 Solve the linear system F'(0p)Avg = —F,, (vg).
4.2 (Maintain z and z positive). Choose i, € (0,1) and set & = min(1, T,&)
where

o]

-1 -1
= min - — y o .
min(X;  Azy,—1)  min(Z, Az, —1)

4.3 (Force a descent direction). Calculate py to ensure a Newton descent direction for a given
merit function Mj. (See Comment 3).
4.4 (Sufficient decrease). Find oy, = p'ay, where t is the smallest positive integer such that oy
satisfies
Mjy, (vk + 0 Avi; pr) < My, (vk; pi) + cxowBY Mi, (ve) T Avg
4.5 Set vy, = v + apAvy.
Step 5. ( Prozimity to the quasi central-path)

5.1 If vp € Cf, (See Comment 4)
go to Step 3

5.2Flse go to Step 1

Comment 3 Forj = 1, the Newton step is a descent direction for merit function M1, and therefore
Substep 4.3 is not needed. For j = 2,3 the penalty parameter p is chosen as in Argdez—Tapia [2].

Comment 4 The condition vy, & Ci means that the updated point vy, does not satisfy the centrality
condition Ci for ¢ = 2,3.

Remark 4.1 For a p > 0, a fundamental difference between the Algorithm 1 and Algorithm 2 is
that for Algorithm 1 one iteration is enough to reach centrality condition C1, see El-Bakry et al
[5], meanwhile for Algorithm 2 one iteration may not be enough to reach centrality condition C?2,
and C3, see Argdez-Tapia [2], Parada- Tapia[l1].
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5 Numerical Experimentation

The first objective of this work is to analyze which of the nine strategies performs numerically
better in obtaining an optimal solution for a set of test problems. These 9 options are summarized
in the following table.

\ \ C1 \ C2 \ C3 |
M1 TR92 — 40 | Present Work | Present Work
M2 | Present Work TR95 — 29 | Present Work
M3 | Present Work | Present Work TRI7 — 12

The ordered couple (Mi, Cj) represents a path-following strategy to reach an optimal solution for
problem (1). It is important to remark that even though the strategies (M1, C1), (M2, C2), and
(M3, C3) are presented in technical reports [5],[2],[11], we have done our own implementation. The
strategies (M2,C1), (M3,C1), (M1,C2), (M3,C2), (M1,C3) and (M2,C3) are studied for the first
time in this work.

The second objective is to compare the numerical behavior of centrality conditions C1, C2 and C3
as measures of proximity to either the central path or quasi central-path.

The numerical experiments were performed on a set of test problems of Hock and Schittkowski [8],
and Schittkowski [12] used by El-Bakry et al [5]. [8] and [12]. The numerical results are presented
in Tables 1-3 and summarized in Graphs 1 and 2.

5.1 Implementation of the Algorithms

The numerical experiments are done on a SPARC station 4 running the SOLARIS Operating-
System with 64 Megabytes of memory. The programs are written in MATLAB version 5a. We
use a finite difference approximation to the Hessian of the Lagrangian function. In all cases, the
number of Newton iterations reported are the number of times each algorithm solves the linear
system associated with the problem until it generates a point that satisfies the following stopping

criterion »
1Pl s
L+ |lvg]l2

In the implementation of the algorithms, the critical parameters are 75 (percentage of movement
to the boundary), oy (centering parameter), and puj (perturbation parameter). The parameters 73
and o, that depend on the choice of a merit function, are updated and initialized as follow:

e For merit function M1:
7, = max(.8,1 — 10027 2;), o, = min(.2, 10021 2), k= 0,1, .. ...

e [or merit function M2:
7 =.99995, o) = min(.2, 100z} 2;), k= 0,1,....

e [or merit function M3:
7, = max(.8,1— 10027 2;), o) = min(.2,100272), k= 0,1,....
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The perturbation parameter py is initialized and updated depending on which centrality con-
dition is implemented:

e Centrality condition C1:

szk
pr=op—t—=k=0,1,....

e Centrality condition C2:
T
Initialize p, = 0,72*2, and set W = (XZ)3.
it (Ia(@)[1* + [|(W) "1 (X Ze — pe)||?) < (Hug),

e = 1072y,
else
He+1 = M-

e Centrality condition C3:
Initialize p, = L % min(.5,||F(v,)||) * ||F(v,)|| where v, is the initial point, and w is the
dimension of the problem.

it (12(2)]1? + (| X Ze — pell?) < (Bps),
L.
per = —xmin(.5, [ (or)[) * (| F(or) ],

else
HE+1 = Mk

5.2 Table Notation and Graphs

In Tables 1-3, we present the numerical results obtained for solving the 72 problems tested from [8]
and [12]. We denote the merit functions and centrality conditions by the following abbreviations:

e M1 : /y-norm residual function,

e M2 : Argiez-Tapia modified augmented Lagrangian function,
e M3 : Parada-Tapia modified augmented Lagrangian function,
e (1 : Centrality condition number 1,

e (C2: Centrality condition number 2,

e (C3: Centrality condition number 3.
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In each table, the central heading identifies the merit function used with the three different centrality
conditions. The first column contains the problem number tested of [8] and [12], and the next three
columns contain the number of Newton iterations necessary to obtain an optimal solution of the
problem using centrality conditions C1, C2, and C3, respectively. Each solution obtained from the
different strategies was verified, and it agrees with the solution reported in Hock and Schitwoski
and Schitwoski books. The symbol (-) means that the problem tested did not converge within
100 iterations. We summarize the numerical results presented in Tables 1-3 in Graph 1 by adding
the number of Newton iterations needed to solve the set of problems tested for each of the nine
strategies. This is done only for problems that converge in all the options.

In particular, we present the number of Newton iterations that are needed to solve problem 13 from
[8] in Graph 2. We compare the numerical results obtained using merit functions M1, M2 and M3
combined with centrality conditions C2 and C3.

5.3 Summary of Numerical Results

Now we present our interpretation of the numerical results shown in Graphs 1 and 2 for solving the
set of test problems.
First, Graph 1 shows that C2, the weighted proximity measure to the quasi central-path, is the best
centrality condition with any choice of merit function since it is more robust and requires fewer
number of Newton iterations than C1 and C3. Centrality condition C3 has a better numerical
behavior than centrality condition C1 in terms of number of problems that converge, but it requires
more Newton iterations for solving the test problems. We observe that some problems do not
converge with option C1, the proximity measure to the central path, because it takes shorter steps
exceeding the allowable number of iterations (e.g. prob. 45,106), or when close to the solution
the matrix becomes ill-conditioned (prob. 13). In the contrary, option C2 takes longer steps, and
none of the problems failed due to an ill-conditioned matrix. Option C3, the unweighted proximity
measure to the quasi central-path, has a similar behavior in robustness than option C2, but is quite
expensive as option C1. This observations show that following the quasi central-path is an effective
choice as centrality region for solving nonlinear programming problems.
Second, merit function M2 has an outstanding numerical behavior in terms of the number of Newton
iterations than merit function M1 and M3. We also observe that merit function M1 is a more robust
choice than the other two options. We investigated further why some of the problems failed with
options M2 and M3. In the case of merit function M2, the starting point makes a difference because
this function involves a logarithmic function. We observe that with a starting point that is not
interior, any strategy using this merit function has problems to converge (prob. 74, 75). This
difficulty is overcomed using an initial interior-point. This is not an issue for merit functions M1
and M3. For merit function M3, some of the problems did not converge because of large values
of the penalty parameter p (prob. 2,26). We observe this is not a problem for merit function M2
because the range of values of this parameter is between 0 and 3.6.
Finally, Graph 1 shows that the best path-following strategy is (M2,C2) since it has a better
numerically performance for solving the test problems in fewer number of Newton iterations. In
terms of robustness, the strategy (M1,C2) represents a better choice, but strategy (M2,C2) becomes
a competitive choice once some of the starting points are changed to be interior-points.
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Now for problem 13, where strict complementarity does not hold, (i.e. the Jacobian is singular at
the solution) Graph 2 shows that merit functions M2 and M3 with centrality condition C2 and
C3 have an outstanding behavior in terms of number of Newton iterations necessary to reach an
optimal solution. El-Bakry et al [5] stopped their algorithm in 100 iterations without reaching a
solution of the problem. Yamashita [13] in 172 iterations reported a good approximation to the
primal and dual solutions, but the norm of the KKT conditions associated to the problem was not
close to zero.

6 Concluding Remarks

In this work we have implemented nine globalization strategies for solving nonlinear programming
problems by combining any of the merit functions and centrality conditions presented by El-Bakry
et al, Argdez-Tapia and Parada-Tapia (see [5], [2], [11]). Six of these strategies are presented and
compared for the first time in this study. A general MATLAB code was written to solve nonlinear
programming problems by using each of the nine strategies. Our numerical experimentation was
done on the set of test problems presented by El-Bakry et al[5].

From our numerical experimentation, the best option to solve nonlinear programming problems
using a path-following strategy given by Definition 3.1 is the strategy (M2,C2). Merit function M2
promotes good numerical behavior by making progress to the quasi central-path and by expecting
a decrease in the objective function with moderate values of the penalty parameter. Furthermore,
centrality condition C2 performs numerically better than the other two options with any combina-
tion of merit function in terms of robustness and total number of Newton iterations. Also, from our
numerical results we observe that centrality conditions C2 and C3 have better numerical perfor-
mance than centrality condition C1. Therefore we recommend to choose the quasi central-path as
a centrality region and centrality condition C2 as an effective measure of proximity to this region.
It is important to mention that using centrality condition C2, none of the problems failed due an
ill-conditioned matrix, and we conjecture it should be used to avoid the boundaries close to the
solution.

Further numerical and theoretical research is needed to establish the role that the quasi central-path
and the centrality condition C2 play for solving nonlinear programming problems.
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M1 vs C1, C2, C3

Prob | C1 | C2 | C3 || Prob | C1 | C2 | C3 || Prob | C1 | C2 | C3
1 49 | 22 | 68 32 13 | 13 | 13 76 11 | 11 | 10
2 38 | 17 | 65 33 12 | 25 | 22 80 7 7 7
3 6 5 5 34 11 | 11 | 12 81 12 | 11 | 12
4 9 7 7 35 11 | 11 | 10 83 19 | 21 | 24
5 11110 | 9 36 14 | 12 | 15 84 31 | 31 | 130
10 10 | 8 8 37 14 | 12 | 15 86 21 | 22 | 24
11 8 6 6 38 - | 16 | 24 93 13| 14 | 15
12 14 | 11 | 12 41 7 7 7 100 | 15 | 15 | 17
14 6 5 5 42 12 | 11 | 11 104 | 12 | 14 | 13
15 15 | 15 | 18 43 16 | 15 | 16 || 106 - | 32| 32
16 22 | 22 | 25 44 13 | 13 | 12 226 | 10 | 10 9
17 13 | 14 | 14 45 - 9 8 227 9 9 8
18 | 30 | 30 | 30 53 11 [ 10 | 10 || 231 | 42 | 39 | 95
19 13 | 15 | 24 60 12 | 12 | 11 233 | 45 | 29 | 62
20 13 | 13 | 15 62 10 | 10 | 14 250 | 14 | 13 | 15
21 14 | 16 | 17 63 12 | 12 | 12 251 14 | 12 | 15
22 5 5 5 64 24 | 23 | 36 262 | 11 | 12 | 11
23 21 | 22 | 22 65 24 | 25 | 24 325 | 11 | 11 | 10
24 8 8 7 66 10 [ 11 | 12 | 339 | 13 | 13 | 13
25 7 7T 7 71 1311315 340 | 9 7 7
26 15 | 16 | 13 72 12 | 19 | 27 341 12 | 11 | 10
29 10 | 10 | 11 73 18 | 18 | 21 342 | 24 | 23 | 43
30 12 | 17 | 16 74 20| 19 | 21 353 | 13 | 13 | 14
31 13 | 13 | 14 75 21 | 18 | 20 354 | 16 | 15 | 19

Table 1:
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M2 vs C1, C2, C3

Prob | C1 | C2 | C3 || Prob | C1 | C2 | C3 || Prob | C1 | C2 | C3
1 22 | 13 | 43 32 1119 9 76 8 8 8
2 16| 9 | 29 33 14 | 16 | 52 80 5 5 5
3 4 2 2 34 8 7 81 8 7 7
4 6 4 13 35 10| 7 7 83 18 | 18 | 19
5 9 77 36 10 10 84 | 27 | 22 | 26
10 9 8 8 37 9 7 8 86 16 | 20 | 38
11 9 6 6 38 18 | 32 | 35 93 - | 12 ] 13
12 6 7T 7 41 5 5 5 100 | 10 | 13 | 13
14 5 5 5 42 11 | 11 | 43 104 8 11 | 10
15 121 9 | 13 43 | 23| 9 | 12 106 | 35 | 33 | 33
16 18 | 14 | 14 44 8 8 9 226 | 10 | 9 8
17 9 |10 | 10 45 - 7 - 227 | 5 7 6
18 26 | 42 | 42 53 7 4 5 231 | 21 | 20 | 37
19 - | 11 | 16 60 101 9 9 233 |21 | 16 | 17
20 w719 62 716 | 16 250 | 9 9 | 10
21 13| 15 | 14 63 16 | 23 | 19 251 | 9 8 8
22 3 3 3 64 | 22| 18 | 30 262 | 8 9 8
23 | 22| 18 | 18 65 | 24 | 41 | 40 325 | 9 7 7
24 5 5 5 66 8 7 7 339 | 16 | 10 | 10
25 8 9 7 71 9 12 340 | 5 5 5
26 19 | 16 | 43 72 13 | 11 | 12 341 9 7 7
29 8 8 8 73 16 | 14 | 14 342 | 16 | 13 | 21
30 10 | 12 | 11 74 43 | 65 | 155 || 353 | 11 | 10 | 11
31 9 9 6 713239 | - 354 | 11 | 12 | 14

Table 2:
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M3 vs C1, C2, C3

Prob | C1 | C2 | C3 || Prob | C1 | C2 | C3 || Prob | C1 | C2 | C3
1 16 | 21 | 29 32 9 9 9 76 6 77
2 - 21 | 24 33 26 | 21 | 24 80 5 7 7
3 2 2 34 7 110 | 10 81 6 77
4 3 14| 3 35 | 27| 6 | 53 83 16 | 18 | 19
5 516 | 6 36 719 9 84 | 19 | 22 | 30
10 8 |15 ] 15 37 6 8 8 86 | 38 | 36 | 25
11 6 | 7|7 38 111 9 |10 93 - - -
12 10 | 10 | 10 41 5 5 5 100 | 10 | 12 | 13
14 4 | 5 |5 42 5 6 6 104 | 7 10| 9
15 8 13 | 14 43 12 | 14 | 12 106 | 30 | 21 | 21
16 12 | 14 | 15 44 6 8 7 226 6 7 6
17 8 |10 | 10 45 - | 13| - 227 | 6 716
18 | 20 | 27 | 27 53 4 15 5 231 | 34 | 44 | 60
19 - - - 60 13 | 14 | 12 233 | 13 | 38 | 42
20 71819 62 5 719 250 | 7 9 9
21 10 | 16 | 16 63 12 | 11 | 18 251 6 8 8
22 51 6 | 6 64 | 27 | 20 | 45 || 262 | 7 9 8
23 | 20 | 20 | 20 65 17119 [ 19| 325 |10 | 9 9
24 4 | 6 | 4 66 718 8 339 | 13 | 8 9
25 23 | 47 | 15 71 9 12 | 15 340 | 17 | 44 | 8
26 - - - 72 8 12 | 12 341 6 7 7
29 5 7 7 73 11 | 14 | 15 342 | 12 | 16 | 20
30 6 | 43 | 43 74 |15 | 18 | 16 || 353 | 10 | 12 | 12
31 6 |99 75 12 113 | 13 || 354 | 9 | 12 | 14

Table 3:
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No. of Newton
Iterations

1100
1006

M1

1000
900
800
700
600
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1197

500
C1

No. of Newton
Iterations
1100

1000
900 835

M2

800
700
600

C2

721

C3  Centrality Conditions.

1019

500
C1

No. of Newton
Iterations

1100
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1000

M3

900
800
700
600

C2

961

C3  Centrality Conditions.

974

500
C1

c2

C3 Centrality Conditions

C1

c2

C3

C1

c2

C3

C1

Cc2

C3

FAILS

Problems

38,45, 106

19, 45, 93

74,75

45,74, 75

2,19, 26, 45, 93

19, 26, 93

19,26,45,93

Figure 1: Graph 1
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Problem 13

Cc2 | C3

M1

65 | 64

M2

13| 15

M3

13 | 16

Table 4:

Problem 13 (A Difficult Problem)

Strict Complementarity does not hold

M1
No. of Newton 65 64

Iterations

Centrality 02 C3

Conditions

M2

13 15

B

M3

16

g

Cc2 C3

C2 C3

Figure 2: Graph 2
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