New Approaches to Large Scale
Eigenanalysis

D.C. Sorensen

CRPC-TR97776
February 1997

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted September 1998; In ” Computational Science for
the 21st Century”, Bristeau, Etgen, Fitzgibbon, Lions, Pe-
riaux and Wheeler, eds., 62-71, John Wiley and Sons Ltd,
Chichester, England, 1977



New Approaches to Large Scale Eigenanalysis

D.C. Sorensen
Rice University

1 INTRODUCTION

The past few years have seen significant advances in numerical techniques to compute partial eigen-
decompositions of large matrices. These new approaches have led to critical advances in several
application areas including computational chemistry, semi-conductor laser design, linear stability
analysis, and reduced basis techniques for large state space control systems.

This paper will survey some of these new techniques. In particular, we shall discuss the implic-
itly restarted Arnoldi method (IRAM) which is the foundation for the eigenvalue software package
ARPACK]J10]. This package has been used extensively in many application areas that require the
solution of large scale symmetric and nonsymmetric (generalized) eigenvalue problems. A brief intro-
duction to Krylov subspace projection is given and the Lanczos/Arnoldi factorization is introduced.
Implicit restarting is presented as a means for controlling computational cost, maintaining numerical
accuracy, avolding ”ghost” eigenvalues, and computing selected eigenvalues of specific interest. The
large scale eigenvalue software ARPACK that is based on this computational framework is discussed.
Finally, new approaches currently under development are presented that promise to address some
of the most difficult challenges that remain in this active research area.

2 PROJECTION METHODS AND THE LANCZOS/ARNOLDI PROCESS

The power method is surely the most basic of methods for eigenvalue calculations but it has severe
limitations. The successive vectors produced by a power method may contain considerable informa-
tion along eigenvector directions other than the dominant one, but the power method systematically
ignores this additional information. Fortunately, more sophisticated techniques may be employed
to extract it.

It is natural to formally consider the linear span of the vectors produced by the power iteration
and to attempt to extract additional information by formulating approximate eigenvectors from this
subspace. This Krylov subspace

Ki(A,v1) = Span {vy, Avy, A?vy, .. .,Ak_lvl}

is central to the theory. Tts elements are of the form p(A)v; where p is a polynomial and this
leads to deep connections with polynomial approximation theory, orthogonal polynomials, theory
of moments and Padé approximation. Optimal approximate eigenpairs, called Ritz pairs, may be
obtained by imposing a Galerkin condition: A vector x € Kx(A,vy) is called a Ritz vector with
corresponding Ritz value 8 if the Galerkin condition

<w,Ax—x0>=0, forall weK;(A,vy)
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is satisfied. Various optimality conditions follow from this definition that are important for un-
derstanding the approximation properties of the Ritz pair (x,6). This definition is equivalent to
projection and many of these properties may be developed with co-ordinate free arguments but it
is convenient to consider a specific basis in a computational setting.

2.1 THE ARNOLDI FACTORIZATION

For computational purposes, there is an efficient way to produce a particular ortho-normal basis for
Kr(A,v1). This takes the form of a truncated orthogonal similarity reduction of A to condensed
form.

Definition : If A € C™*™ then a relation of the form
AVy =V, H; 4 frel (1)

where Vi € C"** has orthonormal columns, V7, = 0 and Hy € C*** is upper Hessenberg with
non-negative subdiagonal elements is called a k-step Arnold: Factorization of A. If A is Hermitian
then Hy is real, symmetric and tridiagonal and the relation is called a k-step Lanczos Factorization
of A. The columns of Vi are referred to as the Arnold: vectors or Lanczos vectors, respectively.

This factorization may be used to obtain approximate eigenvalues and eigenvectors of A. It
is easily shown that the Ritz pairs defined previously by the Galerkin condition are immediately
available from the eigenpairs of the small projected matrix Hy.

If Hys = sf, then the vector x = Vs satisfies
[Ax — x0|| = ||(AVk — Vi Hy)s|| = |Breys|.

The number |Byel's| is called the Ritz estimate for the Ritz pair (x,f) as an approximate eigenpair
for A. When A is Hermitian, the Ritz estimate may be used to provide computable rigorous bounds
on the accuracy of the eigenvalues of Hy as approximations to eigenvalues [12] of A. When A is
non-Hermitian the possibility of non-normality precludes such bounds. However, in either case, if
fi, = 0 these the Ritz pairs become exact eigenpairs of A.

Some of the optimality conditions alluded to in the previous section are revealed through this
factorization. A particularly useful fact for establishing error estimates and asymptotic behavior is

£, = Pk(A)V1
llps—1(A)v1]]

and p = px minimizes |[p(A)v1|| over all monic polynomials p of degree k [15, 17].

where pg(A) = det(AI — Hy) (2)

The k-step factorization may be advanced one step at the cost of a (sparse) matrix-vector product
involving A and two dense matrix vector products involving VI and V. The explicit steps needed
to form a k-Step Arnoldi Factorization are listed in Algorithm 2 shown in Figure 1. In exact
arithmetic, the columns of V; form an orthonormal basis for the Krylov subspace and H; is the
orthogonal projection of A onto this space. In finite precision arithmetic, care must be taken to
assure that the computed vectors are orthogonal to working precision. The method proposed by
Daniel, Gragg, Kaufman and Stewart (DGKS) in [1] provides an excellent means to construct a
vector £, that is numerically orthogonal to V1.

Step (3.4) in Algorithm 1 is nothing more than Classical Gram Schmidt (CGS) orthogonalization
of the vector Av;4; with respect to the columns of V;i;. The dense matrix-vector products for
this step may be formulated using Level 2 BLAS. This allows a very efficient and portable parallel
implementation [11] with far better performance than is possible with Level 1 BLAS [3, 4]. In
the Arnoldi process, a modified Gram-Schmidt algorithm (MGS) is often recommended for this
calculation. However, in the Arnoldi context, MGS cannot be formulated with Level 2 BLAS
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Algorithm 1: The k-Step Arnoldi Factorization

Input: (A, v;)

Output: (Vi, Hg, ;) such that AV, = V Hy + fkeg,
Vka =1, fok = 0 and Hy upper Hessenberg.

L. Put vi = v/||vi|; w=Avy; a; =viw;
2. Put f; « w—viay; Vi (vy); Hy « (a1);
3. forj=1,2,---,k—1,
3.1 By = Iflls vier < £5/85
. H.
32 Vi (Vy,vip ) Hy | 5 00 )5
ﬂje
33. 2 Av;yq;
3.4. h + Vﬁl_lz; fi11 < 2z—V;ih;

3.5. Hj_|_1 — (I:Ij,h);
4. end;

Figure 1: The k-Step Arnoldi Factorization

and does not attain the required level of numerical orthogonality that CGS with DGKS correction
achieves. This is particularly important with respect to restarting.

3 IMPLICIT RESTARTING

The Arnoldi process becomes prohibitively expensive as soon as k& becomes large. However, in prac-
tice, many steps may be required before accurate approximations appear. Restarting was proposed
very early as a means to overcome these problems [15]. One idea is to fix the length of the factor-
ization at m steps say, and repeatedly replace the starting vector vy < 1)(A)v; after every m steps.
The polynomial ¢ is constructed to filter out “unwanted” components in the eigenvector expansion
of vi based upon information learned about the spectrum of A as the iteration proceeds.

There is another approach to restarting that offers a more efficient and numerically stable for-
mulation. This approach, called implicit restarting, is a technique for combining the implicitly
shifted QR-mechanism with an m-step Arnoldi or Lanczos factorization to obtain a truncated form
of the implicitly shifted QR-iteration [17]. The numerical difficulties and storage problems normally
associated with Arnoldi and Lanczos processes are avoided. There are no problems with “ghost”
eigenvalue approximations since the basis vectors are maintained to full numerical orthogonality.
The algorithm is capable of computing a few (k < m) eigenvalues with user specified features such
as largest real part or largest magnitude using m - n + O(m?)storage. No auxiliary storage is re-
quired. The computed Schur basis vectors for the desired k-dimensional eigen-space are numerically
orthogonal to working precision. The suitability of this method for the development of mathemat-
ical software stems from this concise and automatic treatment of the primary difficulties with the
Arnoldi/Lanczos process.

Implicit restarting provides a means to extract interesting information from large Krylov sub-
spaces while avoiding the storage and numerical difficulties associated with the standard approach.
It does this by continually compressing the interesting information into a fixed size k-dimensional
subspace. This is accomplished through the implicitly shifted QR-mechanism. An Arnoldi factor-
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ization of length m =k +p
AV,, = V,,H,, + fel (3)

is compressed to a factorization of length & that retains the eigen-information of interest. This is
accomplished using QR-steps to apply p shifts implicitly. The first stage of this shift process results
in

AV}, = VEHS, +£,¢0.Q, (4)

where VI = Vv,,Q, H} = Q"H,,Q, and Q = Q1Qz---Q,, with Q; the orthogonal matrix
associated with the shift 4;. Because of the Hessenerg structure of the matrices Q;, it turns out
that the first £ — 1 entries of the vector el Q are zero (i.e. el Q = (vel,q) ). This implies that
the leading k columns in equation ( 4) remain in an Arnoldi relation. Equating the first k& columns
on both sides of ( 4) provides an updated k—step Arnoldi factorization

AV = ViH} + el (5)

with an updated residual of the form fk+ = V,‘;ek{_l/}k + f,y. Using this as a starting point it is
possible to apply p additional steps of the Arnoldi process to return to the original m-step form.
Each m-step factorization is obtained at a cost of only p additional matrix-vector products involving
A together with the the arithmetic required to form VI =V, Q.

Each of these shift cycles results in the implicit application of a polynomial in A of degree p to

the starting vector.
P

vi e P(A)vy with ¥(\) = [[(A = ). (6)

The roots of this polynomial are thle shifts used in the QR-process and these may be selected to
filter unwanted information from the starting vector and hence from the Arnoldi factorization. Full
details including a convergence analysis may be found in [17]. Further implementation details and
development of appropriate deflation techniques may be found in [9].

This repeated updating of the starting vector v through implicit restarting is designed to enhance
the components of this vector in the directions of the wanted eigenvectors and damp its components

in the unwanted directions. If vi = Z;L

vectors {x;} of A, the polynomial restart vector v; satisfies

_1 X;7; has an expansion as a linear combination of eigen-

vi=y(A)v, = ijl/)()\j)'yj.
j=1

If 4 is repeatedly constructed to take large values at the “wanted” eigenvalues {A1, Ag, -+, Ag} and
relatively small values (in magnitude) on the remaining “unwanted” then eventually all unwanted
components are damped to zero and the desired eigenvalues will be found.

This final statement is justified by the fact that if the starting vector vi = Z?:l X;7v; where
Ax; = x;);, then fy = 0. This follows easily from the optimality condition (2). Moreover, in
this event AV, = Vi H;. Hence, Vi will provide an orthonormal basis for the invariant subspace

S = Range(Vg). and again from (2), o(Hg) = {A1, A2, -, Ax }.

4 IRA and ARPACK

A large scale eigenvalue software package called ARPACK [10] has been developed in Fortran 77
based upon TRAM for nonsymmetric problems and TRLM for symmetric (Hermition) problems.
The package is designed to compute a few eigenvalues and corresponding eigenvectors of a general
n x n matrix A. It i1s most appropriate for large sparse or structured matrices A, where structured
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Algorithm 2: (TIRAM) Implicitly Restarted Arnoldi Method

Input: (A, V,H, f) with AV,,, = V,,H,, + f,el  an m-Step Arnoldi Factorization;

m)

Output: (Vi, H) such that AV = Vka,VI?Vk =T and Hy is upper triangular.

1. for £ =1,2,3, ... until convergence
1.1. Compute o(H,,) and select set of p shifts p1, pa, ... 1p
based upon o(H,,) or perhaps other information;
1.2. qT — e%;
1.3. for j = 1,2, ..., p,
1.3.1. Factor [Q,R] = qr(H,, — y;I);
1.3.2. H, « Q"H,,Q ;V,, « V,Q;
1.33. q « q7Q;
1.4 end;
1.5. f, « vk+1/;’k +Eny; VeV (l:in1:k); Hy «Hp(1:k 1:k);

1.6. Beginning with the k-step Arnoldi factorization
AV = Vi Hy +fref
apply p additional Arnoldi steps to get a new m-step Arnoldi factorization
AV,, =V, H,, +f,el.
2. end;

Figure 2:  An Implicitly Restarted Arnoldi Method.

means that a matrix-vector product w < Av requires order n rather than the usual order n? floating
point operations. For many standard problems, a matrix factorization is not required. Only the
action of the matrix on a vector is needed.

ARPACK software 1s capable of solving large scale symmetric, nonsymmetric, and generalized
eigenproblems from significant application areas. The software is designed to compute a few (k)
eigenvalues with user specified features such as those of largest real part or largest magnitude.
Storage requirements are on the order of n - k locations. No auxiliary storage is required. A set
of Schur basis vectors for the desired k-dimensional eigen-space is computed which is numerically
orthogonal to working precision. Numerically accurate eigenvectors are available on request.

Important Features:

e Reverse Communication Interface.

e Single and Double Precision Real or Complex Arithmetic Versions for Hermitian, Non-Hermitian,
Standard or Generalized Problems.

e Routines for Banded Matrices - Standard or Generalized Problems.
e Routines for The Singular Value Decomposition.

e Example driver routines that may be used as templates to implement numerous Shift-Invert
strategies for all problem types, data types and precision.

A comparitive computational study of software available for large scale non-symmetric eigenvalue
calculation was done by Lehoucq and Scott in [8]. They found ARPACK to be highly competitive
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with all available software. In some cases it outperformed the other codes by orders of magnitude
(fewer matrix-vector operations and/or cpu time).

There is also an efficient parallel version of the ARPACK called P_.ARPACK. This parallel im-
plementation is portable across a wide range of distributed memory platforms and only involves
minimal changes to the serial code. The communication layers used for message passing are the Ba-
sic Linear Algebra Communication Subprograms (BLACS) developed for the ScaLAPACK project
and Message Passing Interface(MPT). The parallelization paradigm found to be most effective for
ARPACK on distributed memory machines was to provide the user with a Single Program Multiple
Data (SPMD) template. The CGS orthogonalization process is parallelized by distributing the rows
of V in a straightforward way across processors and using a distributed parallel DGEMYV operation.
The projected matrix H and associated operations are replicated on each processor. The reverse
communication interface is one of the most important aspects in the design of ARPACK and this fea-
ture lends itself to a simplified SPMD parallelization strategy. It is relatively straightforward for the
the user adapt the parellel template to a particular application. The reverse communication inter-
face feature of ARPACK allows the P.ARPACK codes to be parallelized internally without imposing
a fixed parallel decomposition on the matrix or the user supplied matrix-vector product. Memory
and communication management for the matrix-vector product can be optimized independent of
P_ARPACK . This feature enables the use of various matrix storage formats as well as calculation of
the matrix elements on the fly.

The calling sequence to ARPACK remains unchanged except for the addition of the BLACS
context (or MPT communicator ). Inclusion of the context (or communicator) is necessary for global
communication as well as managing /0. The addition of the context is new to this implementation
and reflects the improvements and standardizations being made in message passing [6, 2]. The
parallel code has been tested on IBM SP2, CRAY T3D, SGI Cluster, Intel Paragon. For details see
[11].

5 SPECTRAL TRANSFORMATIONS

Implicit restarting can be very effective at computing extremal eigenvalues. However, convergence
is often slow and the method can even fail to converge when eigenvalues are clustered or when
interior eigenvalues are sought. Convergence may be enhanced dramatically through a spectral
transformation. For a generalized problem, this is required. If our problem is to find the generalized
eigenvalues of Ax = MxA then it is far more effective to find eigenpairs (x,v) of the shift invert
operator

S=(A-oM)"'M

and then the pairs (x,A) where A = o + % will be generalized eigenpairs for the original problem.
Convergence is usually very rapid towards eigenvalues v of S that are of largest magnitude and
these transform to eigenvalues A that are nearest the selected point . The details and nuances of
this technique are far beyond the scope of this paper but they are discussed in [18]. M = I in the
remainder of this discussion.

Current research is involved with improved use and implementation of the spectral transformation.
One the most pressing problems in the area of large scale eigenvalue computations is to devise a
method to get effect of a rational spectral transformation without solving shift-invert equations
accurately. Three methods are discussed here: The Rational Krylov, Jacobi-Davidson, and truncated

RQ methods.

One of the most effective and promising methods for making better use of the spectral transfor-
mation is the Rational Krylov Method (RKS) introduced by Ruhe [13], [14]. The basic recursion
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involved in RKS may be characterized by the equation [13]
AV, Hy = Vi Gy,

where V41 isn by k+ 1, I:Ik and ék are k + 1 by k, Hessenberg matrices and V£+1Vk+1 =Iiy1.
This relation is produced by a sequence of Arnoldi-like steps but the subspace that is generated is
not a Krylov space. Instead the projective space is the linear span of a sequence of rational functions
of A applied to the starting vector vi. The additional freedom from having two projected matrices
H and G allows multiple shifts (spectral transformations) to be incorporated into one k-step RKS
factorization. Only one shift can be used in conjunction with the Arnoldi method. Linear equations
must be solved at each step of the iteration and refactorizatons of shifted operators are done every
so often as new shift points are selected. The RKS method constructs an orthonormal basis for the
Rational Krylov Subspace

S(A,vo, {u;}) = span{vg, v, vy, ..vi},

where v; = (A —p;1)7'v;_1. The generalized eigen-pairs of (Hy, Gg) (the leading k x k submatrices
of the projections) provide Ritz approximations from this subspace.

Another new method that is very promising with respect to avoiding the need for accurate so-
lutions of the shift-invert equations is the Jacobi-Davidson method [16]. This method is a gener-
alization of the Davidson method that is quite popular within computational chemistry. Given an
initial approximation vy of a desired eigenvector, the Jacobi-Davidson method finds, at each step,
a correction vector zj that is orthogonal to the previous approximate eigenvector ug. This vector
is added into a subspace from which the next approximate eigenpairs are drawn. The correction
vector is solved from the equation

(I- ukukH)(A —AI)(I-— ukukH)zk = —r; and z L ug, (7)

where ry = Aug — fguyg, and 6 is the current approximation to the eigenvalue of interest. It can
be shown [16] that if (7) is solved exactly, the Jacobi-Davidson method becomes equivalent to RKS
with an optimal shift selected in each iteration [14]. The advantages of this approach are that the
correction equation does not need to be solved to any particular accuracy and that the projected
equations are likely to be better conditioned than the unprojected ones because the “singularity”
is being projected out. However, if the equations are not solved accurately, the Krylov relation is
completely lost and the Hessenberg relationships (1) are not preserved with the Jacobi-Davidson
iteration. To obtain several eigenvalues and eigenvectors, some standard deflation schemes [15]
are needed. To avoid building a large dimensional subspace S, restarting is also necessary. The
implementation of the Jacobi Davidson QR (JDQR) algorithm is explained in detail in [5].

The final method discussed here is the “truncated RQ-iteration” [19]. This new method is in
the spirit of implicit restarting but recasts the underlying iteration so that rapid inverse-iteration-
like convergence occurs in the leading columns of the updated Arnoldi iteration. This scheme
encompasses important features from the Rational Krylov scheme when equations can be solved
accurately. It also shares many of the features of the Jacobi-Davidson method when inexact solutions
to shift-invert equations are introduced.

The TRQ equations may be used to develop a truncated k-step version of the Implicitly Shifted
RQ-iteration. If a k-step Arnoldi factorization (1) has been obtained then a k-step TRQ iteration
may be implemented as shown in Algorithm 3 (Figure 3.)

Implicit restarting a truncation of the (implicitly) shifted QR-iteration. There is a related itera-
tion, the shifted RQ-iteration, which as the name suggest is QR in reverse. After an initial reduction
of A to Hessenberg form AV = VH, it amounts to

H—- 1, I=RQ; H+ QR+ y;I; V vQT, for j=1,2,--- until convergence.
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Algorithm 3: (TRQ) Truncated RQ-iteration

Input: (A, Vg, Hy, ;) with AV, = Vi, Hy + fkeg, Vka = I, H; upper Hessenberg.
Output: (Vi, Hg) such that AV = Vka,VI?Vk =T and Hy, is upper triangular.

1. Put Bk = ||fx]| and put v = £}/ Bx;
2. for j = 1,2,3, ... until convergence,
2.1. Select a shift p  pj;

A—ul Vi vy \ [ va . L

2.2. Solve < v 0 ) ( “h ) = < 0 ) with |[vy] = 1;
Ry
0

Hy — ply h) < 1‘)<Qk (1)
2.4. R(@) Fact = ;
@ Factor ( el p cel

a
2.5. Vi Vka +vyqf;
2.6. B Uengek; V & VEo + ViY;
2.7. Hy + QrRy + ply;

3. end;

Figure 3: The Truncated RQ-iteration.

As with QR, the matrix H remains Hessenberg througout the RQ-iteration. The primary difference
is that

1
vii e —(A — ;1) vy

P11
so there is an inverse iteration relation amongst the successive first columns of V. If this iteration
can be truncated in the a manner analogous to the truncation of QR-iteration in implicit restarting
then a rapidly convergent technique for computing several eigenvalues and vectors would result.

The key idea here is to determine the k& + 1-st column v of the updated matrix V and the
k + 1-st column of H that would have been produced in the RQ-iteration if carried out in full. In
[19] the necessary equations were developed and analyzed. These TRQ) equations are used to develop
a truncated k-step version of the Implicitly Shifted RQ-iteration. If a k-step Arnoldi factorization
(1) has been obtained then a k-step TRQ iteration may be implemented as shown in Algorithm 3
(Figure 3.)

At each iteration, the TRQ equations are solved and then the iteration is completed through
the normal RQ bulge chase sweep. As eigenvalues converge, the standard deflation rules of the
RQ-1teration may be applied. Orthogonality of the basis vectors is explicitly maintained through
accurate solution of the defining equation. Moreover, even if the accuracy of this solution is relaxed,
orthogonality may be enforced explicitly through the DGKS mechanism [1]. Potentially, the linear
solve indicated at Step 2.2 of Algorithm 3 could be provided by a straightforward block elimination
scheme. However, considerable refinements to this scheme are possible due to the existing k-step
Arnoldi relationship (1).

The TRQ equations may be solved very efficiently as shown in Algorithm 4.

This approach is appropriate when sparse direct factorization of (A — uI) is feasible. When this
is not the case we must resort to an iterative scheme. For an iterative scheme, there may be an
advantage to solving the projected equation

(I = Ve Vi) (A = pD)(I = Vi Vi )i = fi
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Algorithm 4: Direct Solution of the TRQ Equations

Input: (1&,‘7,1@7 Hk,fk,,u) with AVk = Vka + fkeg, vak =TI and fok =0.
Output: (v4,h, a) such that (A — puI)vy = Vih+y o, VEvy =0 and [|vy| = 1.

. Choose t and 5 and solve (A — pI)w = Vit + fin;
y V,fw;
W W — Viy;

Vi e @ BT (A = pDvy /| b VT A,

Figure 4: Direct Solution of the TRQ Equations.

and putting
w .
Uy & m,
where w = (I = Vj, VkH)ﬁ}. This is mathematically equivalent to solving the TRQ equations. As with
the Jacobi-Davidson scheme, the advantage here is that the matrix

(I = VeVi)(A = pD)(I = Vi Vi)

is most likely to be much better conditioned than (A — uI) when u is near an eigenvalue of A.
In [19] a restart mechanism is developed for method that allows this TRQ equation to be solved
inaccurately (with a pre-conditioned iterative method say) and the results are quite competitive
with the JDQR approach.

6 CONCLUSIONS

The past few years have seen substantial progress. It is now possible to solve problems on the order
of n = 10%. In fact ARPACK with Tchebycheff polynomial preconditioning was recently used to
compute the three lowest non-trivial eigenvectors of a weighted Laplacian matrix of a graph. The
matrix was of dimension 2.4 million, with about 44 million nonzeros. The calculation took just
under 44 hours on an SGI Onyx with two R10000 processors and 3Gbytes of RAM. The results were
needed as part of a project to visually represent the large-scale structure of scientific disciplines
based upon citation analysis [7].

The nonsymmetric problem is in far better shape than it was just five years ago. However,
there is still considerable research to be done before there will be sufficient tools available to solve
“any” problem. Clearly, polynomial pre-conditioning, inexact spectral transformations, and other
acceleration schemes need to be developed and improved to handle the most difficult problems.
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