Computational Experience with a
Preconditioner for Interior Point
Methods for Linear Programming

A.R.L. Oliveira and D.C. Sorensen

CRPC-TR97772
November 1997

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted September 1998; Available as Rice CAAM
TRI7-28; In review for SIAM J. Optimization

COMPUTATIONAL EXPERIENCE WITH A PRECONDITIONER
FOR INTERIOR POINT METHODS FOR LINEAR PROGRAMMING

A. R. L. OLIVEIRA* AND D. C. SORENSENt

Abstract. In this paper, we discuss efficient implementation of a new class of preconditioners
for linear systems arising from interior point methods. These new preconditioners give superior
performance near the solution of a linear programming problem where the linear systems are typically
highly ill-conditioned. They rely upon the computation of an LU factorization of a subset of columns
of the matrix of constraints. The implementation of these new techniques require some sophistication
since the subset of selected columns is not known a priori. The conjugate gradient method using this
new preconditioner compares favorably with the Cholesky factorization approach. The new approach
is clearly superior for large scale problems where the Cholesky factorization produces intractable fill-
in. Numerical experiments on several representative classes of linear programming problems are
presented to demonstrate the promise of the new preconditioner.

Key words. linear programming, interior-point methods, preconditioners, augmented system
AMS subject classifications. 65F10, 65F50, 90C05, 90C06
Abbreviated Title: Computational Experience with a Preconditioner.

1. Introduction. In [9] a new class of preconditioners for for the linear systems
from interior point methods for linear programming is proposed and its theoretical
properties are discussed. This class avoids computing the Schur complement matrix.
Instead, these preconditioners rely upon an LU factorization of a subset of columns
of the constraint matrix. In this work we present several techniques for an efficient
implementation of these preconditioners. Among these, are techniques for the effi-
cient utililization of the nonzero structure of the matrix to speed up the numerical
factorization. We investigate the performance of some important large scale problem
cases using this preconditioner with the conjugate gradient method. Performance
of this iterative approach is compared with the performance of the direct Cholesky
factorization technique.

We use the following notation throughout this work. Lower case Greek letters
denote scalars, lower case Latin letters denote vectors and upper case Latin letters
denote matrices. Components of matrices and vectors are represented by the cor-
responding Greek letter with subscripts. The symbol 0 will denote the scalar zero,
the zero column vector and the zero matrix, its dimension will be clear from context.
The identity matrix will be denoted by I, a subscript will determine its dimension
when it is not clear from context. The Euclidean norm is represented by || - || which
will also represent the 2-norm for matrices. The relation X = diag(z) means that
X is a diagonal matrix whose the diagonal entries are the components of z. On the
other hand, diag(A) means the column vector formed by the diagonal entries of A. A
superscript k for a scalar, vector or matrix will denote their value at the kth step of
an iterative procedure.

* State University of Campinas UNICAMP, Sao Paulo 13083-970 (aurelio@densis.fee.unicamp.br)
This work was supported in part by the Brazilian Council for the Development of Science and
Technology CNPq, and by FAPESP Fundagao de Amparo a Pesquisa do Estado de Sao Paulo,

tDepartment of Computational and Applied Mathematics, Rice University, Houston, Texas,
77005-1892 (sorensen@caam.rice.edu). This work was supported in part by NSF cooperative agree-
ment CCR-9120008, and by ARPA contract number DAAL03-91-C-0047 (administered by the U.S.
Army Research Office) .

2. Linear Programming Problems. Consider the linear programming prob-
lem in the standard form:

minimize ctr

(2.1) subject to Az =1b, x>0,

where A 1s a full row rank mxn matrix and ¢, b and x are column vectors of appropriate
dimension. Associated with problem (2.1) is the dual linear programming problem

maximize bly

(22) subject to Aly+z=1¢, z>0,

where y 1s a m-vector of free variables and z is the n-vector of dual slack variables.
The optimality conditions for (2.1) and (2.2) can be written as a nonlinear system
of equations with some nonnegative variables:

Ar —b
(2.3) Alty+z—c | =0, (z,2)>0,
XZe

where X = diag(z) and Z = diag(z) and e is the vector of all ones.

The majority of the primal-dual interior point methods found in the literature
can be seen as variants of Newton’s method applied to the optimality conditions (2.3).
Bellow we give a slightly more general framework:

MEeTHOD 2.1 (Primal-Dual Method). Given y° and (2°,2°) > 0.
Fork=20,1,2,..., do
(1) Set v* = (z%)'2z* and choose " € (0,1) and p*.

(2) Compute the search directions Ax*, Ay* and Az* using p*.
(3) Choose a step length o = min(1, Tkp[;, *pk) for % € (0, 1) where

b -1
pp - . Azk
min; { —¢*

i

-1

) (Azf) :
ming; e
(4) Form the new iterate

(2P R = (28 oF 2FY 4 of (AR AyR L AR,

and pt =

The way to compute the search directions determine different methods. In prac-
tice 1t is better to separate the step length for the primal and dual problems. Thus, we

define a primal step length of = min(l,Tkpp) and a dual step length

P
a® = min(1, 7% p4) which are used to compute

2Rt = 2k 4 o/;Amk and
(yk+1’zk+1) — (yk”zk) 4 QS(Ayk,Azk)
on step (4) of the method.

2.1. Mehrotra’s Predictor-Corrector Method. Soon after its appearance,
the predictor-corrector variant [8] became the method of choice [7]. The predictor-
corrector approach differs from the standard primal-dual method in the choice of the
search directions. First it computes the affine directions

0 I A Az rk
(2.4) AR G A | = o
A 0 0 AGF rk

where,

'rf; = c— AtyF —2*
rf: = —XkZke
r;; = b— Az*.
Then, the search directions are given by
0 I Al AzF rﬁ
(2.5) zk Xk 0 A =
A 0 0 AyF r{j

where,

k= ke — Xk 7k —AXFAZRe

m

and ¥ = (30)2(25) with 3% = (2% + AGF) (25 + AZH).

2.2. The Search Directions. The key step in a given iteration in terms of
computational cost is the solution of linear systems (2.4) and (2.5). Eliminating Az*,
from system (2.5) it reduces to:

(2) (3)()

where, D* = (X*)~1 7% We refer to (2.6) as the augmented system. Eliminating Az"
from (2.6) we get

(2.7) SFAYE = rf + A((DF) Il — (ZF) 7Tk,

In (2.7) S¥ = A(D¥)~1 At is called the Schur complement. A similar reduction can be
done for system (2.4).

We like to stress that D* is a diagonal matrix with positive diagonal entries and it
is the only change in the matrices of systems (2.6) and (2.7) at each iteration. Several
entries of D* converge to zero as the method approaches a solution while other entries
tend to infinity.

2.3. Solving the Linear Systems. There are several approaches for computing
the search directions. The most widely used is computing the Cholesky factorization
of the Schur complement for solving the linear systems.

In this work, we are concerned with the solution of the augmented system by
iterative methods. For this approach, it is essential to modify an ill-conditioned linear
system into an equivalent better conditioned system. Otherwise, the iteration may be
very slow or even fail to converge. This is done in such a way that it is easy to recover
the original system solution from the modified one. The technique just described is
known as preconditioning.

Consider the following situation: given Bz = b, we solve the equivalent linear
system M~'BN~1i = b, where # = Nz and b = M~'b. The system 1s said to
be preconditioned and M~!BN 1! is called the preconditioned matrix. Notice that
usually it is not necessary to compute the preconditioned matrix since most of the
iterative methods only access the matrix to compute matrix-vector products.

We say that a preconditioner is symmetric if N* = M because in that case if B
is symmetric, the preconditioned matrix M ~'BM ~? is also symmetric.

3

3. A New Class of Preconditioners. In [9] the following preconditioner for
the augmented system was introduced*:

— t _ L Atent -1
(3.1) M_1< Z%)M_t:< I, + D" A'G + GAD 0)

0 Dy
where,
o . -1 _ D_% G
(3.2) M= (A)
with G = H*D3B~!, HP* = [1 0], AP* = [B N] and
. _(Dp 0
(3.3) PDP' = (0" o)

Since Dp is diagonal, we are concerned with the left upper block matrix
K =—I,+ D 3A'G' + GAD™ %

which is indefinite. It is possible to exploit the structure of the problem even further,
reducing it to a smaller positive definite system. If we expand K we obtain the
following matrix

Sp-1nyp-*
(3.4) P! 1 ! N DpB= NDy P.
Dy?N'B~'D2 I

Therefore, the problem can be reduced to a positive definite linear system involv-
ing either the matrix

(3.5) Im+ DB NDRN'B~* D}
or the matrix
(3.6) Inom + Dy N'B~* DB N Dy,

In [9] it is shown that the eigenvalues of K squared are eigenvalues of the positive
definite matrices.

3.1. Choosing the Set of Columns. We now discuss how to select the columns
of A that form B. The type of matrices in (3.5) and (3.6) suggest a choice for the

columns of B by looking at the values of D. Let W = DéB‘lND;,%. If we can chose
the columns related to the smallest values of diag(D), both WW?* and W'W approach
zero at the final iterations of the interior point method. Thus, a good strategy consists
in taking the first m linearly independent columns of A ordered by the value of §;;
in non decreasing order. This choice of columns tends to produce better conditioned
matrices as the interior point method approaches a solution. This is because at least
n — m diagonal entries entries of D became large and diminish the importance from
WW?" and W'W.

Another way to obtain a good set of columns is to minimize ||W¥||. This problem
is hard to solve but it can be approached by a cheap heuristic, that is we choose the
first m linearly independent columns of AD~! with smallest 1-norm.

*From now on we drop the superscript k& since we are concerned with one iteration of the primal-
dual interior point method.

3.2. Equivalence to the Schur Complement. A useful fact is that the matrix
(3.5) can be obtained via the Schur complement. Recall that the Schur complement
is defined as S = AD~™'A? and that A = [BN]P. Thus,

S = BDg'B' + NDy'N*.
Now, pre-multiplying S by DZB~! and post-multiplying by its transpose leads to
(3.7) DiB~'SB™'D3 = I, + D3B ' ND'N'B~'D3.

Observe that the matrix on the right hand side of (3.7) is the same as in (3.5). It can
be shown that the right hand side vector for both preconditioned systems is the same.
Therefore, the systems are completely equivalent. On the other hand, matrices (3.4)
and (3.6) can not be obtained from the Schur complement.

From a practical point of view, we favor the use of the matrix-vector product on
the left hand side of (3.7) even though it is a little more expensive, because it seems to
be more stable according to preliminary experiments. Moreover, this representation
of the preconditioner is well suited for use within a preconditioned conjugate gradient
method.

3.3. Scaling the Columns. Looking at the expression W = D&%NtB_th
again, it is tempting to scale the matrix after selecting the columns of B such that
||[W]|| & 0. The following lemma shows that this idea is not easy to implement since
the scaling will disappear from the preconditioned matrix.

LEMMA 3.1. Consider the following scaling of the augmented system

c 0 -D A' c 0 c=t 0 Az \ ([C 0 by
0 I A 0 0 7 0 I Ay)\ 0 T by)
Then the preconditioned matriz (3.4) is independent of the diagonal scaling matriz

C.
Proof. The scaled system is given by

—-CDC At ClAz \ _ [Ch
A 0 Ay B by
where A = AC. Tts preconditioned matrix is as follows

o I DEBTINDYE
Dy?N'B'Dj —I

where AP = [BN]. O

It is still possible to use the idea of scaling with good results. After computing the
first LU factorization, the columns of A not selected as columns of B can be rescaled
giving a new linear programming problem. With a proper choice of the scaling factor,
the first linear systems will be better conditioned than before and yet the problem
will not be badly scaled. Before a second LU factorization is computed, the original
linear programming problem is recovered by undoing the scaling. Therefore, the linear
programming problem will be properly scaled for the remaining of the procedure and
the first iterations of the interior point method generate better conditioned systems
which are the most difficult for this class of preconditioners.

5

3.4. Special Structures. If we apply the new preconditioner to problems with
inequality constraints, we obtain the following preconditioned matrix

y-t (TP A e (T+ DTRAGN 4+ GADTE +GEGY 0
A F - 0 —Dp

Where E is a diagonal matrix with nonzero entries on the diagonal for each cor-
responding inequality constraint. The only difference to the standard form is term
GEG" on the left upper block. Expanding it gives

pt(1+ DEBEBTDE DRBUINDRE)
DyIN'B-tD] -1

Like before, see (3.4), the problem can be reduced to a smaller system giving the
matrix

Im + DEB-YNDJN' + E)B~* D

which can be also related to the Schur complement. However, the n — m system is no
longer an option.

Besides this drawback, there are two important practical reason for adding the
slack variables into the problem instead of eliminating then from the linear system.
First, this preconditioner relies on the computation of the LU factorization of a lin-
early independent set of columns from A. By including the slack columns as part of
A we may obtain very inexpensive factorizations. The best case 1s a problem with
all inequalities where the matrix B formed by the slack columns is a permutation of
the 1dentity matrix. Second, the explicit use of the slack variables may also avoid
redundant rows in A. The presence of redundant rows causes the first factorization to
be very expensive. The reason is that all the columns have to be factored no matter
the ordering, to detect redundant rows.

We remark that the augmented system for problems with bounded variables has
the same nonzero structure of the augmented system for the standard form. Therefore,
the preconditioners developed here can be applied to this type of problem without
any change.

3.5. An Equivalent Preconditioner. The choices H = [0]PD~% and
G* = (HA*)~[I 0]P on (3.2) lead to the preconditioned system

1 =D A + _(—I+D 3A'G'+ GAD™3 0
M (A o)M= 0 -1)

This preconditioner is equivalent to (3.1) for all practical purposes on the context of
interior point methods because

(HAY)™' = B'D3

for this choice of H. However, on a more general context, where D is not necessarily
diagonal, this preconditioner requires more computational work.

4. Computing the LU Factorization. This class of preconditioners is not
competitive against the direct method approach by computing the Cholesky factor-
ization without a careful implementation. This is due to the computation of an LU

6

Version | Factorizations | MFlops | Time(s)
Standard 25 393 3217
Keep LU 4 426 2162

TaBLE 4.1

KEN18 New Factorization versus Keeping LU

factorization where the set of independent columns is unknown at the beginning of the
factorization. This factorization may be too expensive for two reasons. First, it may
generate too much fill-in. Second, it may be necessary to factor too many columns
before the completion of the factorization since the dependent columns must be dis-
carded. In this and next sections we discuss several techniques for the implementation
of a competitive code.

For this application, the most economical way to compute the LU factorization is
to work with one column at a time. This version of the LU factorization is sometimes
called the delayed update form. It fits very well with our problem because when a
linearly dependent column appears, it is eliminated from the factorization and the
method proceeds with the next candidate column. No time is wasted in updating
the matrix using columns which may turn out to be dependent. This procedure is
repeated until m linearly independent columns are found. If A has less than m linearly
independent columns, the factorization is applied to the right hand side of the linear
programming problem. If it is linearly independent with respect to the set of columns,
the problem is infeasible. Otherwise, the remaining rows of A are redundant and can
be eliminated.

4.1. Keeping the Factorization. A nice property of this preconditioner is that
we can work with the selected set of columns for some iterations. Observe that most
of the work for computing the preconditioner consists of choosing the columns and
computing the LU factorization which is already available.

It 1s important to notice that keeping the matrix B from previous iterations
does not mean keeping a fixed preconditioner. The preconditioner depends on D
and thus adapts to the new linear system at each iteration as D changes. Thus, this
strategy provides an adaptive preconditioner at each iteration that is very inexpensive
to compute. However, these preconditioners do not provide the best selection of
columns after the first factorization according to the heuristic.

Table 4.1 illustrates this idea. The chosen problem is KEN13 a multi-commodity
network flow problem. It can be obtained from netlib. The dimension of the linear
system is 14627 after preprocessing. In column Version we have the standard ap-
proach of computing a factorization at every iteration against the idea for keeping
the factorization. A new LU factorization is computed whenever the preconditioned
conjugate gradient method takes more iterations than one over twenty times the di-
mension of the problem to achieve convergence. Notice that this version computes
only 4 factorizations.

4.2. Incomplete LU Factorization. We find in practice that the LU factor-
ization often generates too much fill-in. Usually, this is because no a-priori reordering
procedure can be used to reduce the amount of fill-in. The columns of the matrix
are not known until they are accepted. Later in this section we present techniques to
alleviate this problem.

Here we discuss another possibility which is not adopted as a default option.
It consists of computing an incomplete LU factorization. The standard incomplete

7

factorization where the nonzero structure of the original matrix coincides which the
nonzero structure of the triangular matrices L\U does not work well for this problem.
In fact, our implementation of the interior point method does not converge for any of
the problems tested using this incomplete factorization. On the other hand, the use
of drop tolerance seems to be a viable approach. The idea is to eliminate any entry
smaller than a preset value. For a carefully chosen tolerance, this technique can be
very useful and it actually gives better performance on some of the problems tested.
This line of research deserves more investigation in the future.

4.3. Using Indicators. Indicators [5] can also be used to reduce work in the
factorizations when the interior point method is close to a solution. An indicator is
a tool for determining if a column is not a member of any optimal basis before the
method converges. Such columns can thus be eliminated. In the context of this work,
indicators can be used to keep these columns at the end of the list for finding an
independent set of columns, saving work on the factorization. Since these columns
are not being eliminated from the problem, it is possible to be less rigorous in the
way they are determined without taking the risk of getting an erroneous solution to
the linear programming problem. It turns out that the diagonal entries of D are
valid indicators. Thus, the approach we have adopted here actually uses indicators
for reordering the columns.

4.4. Avoiding Dependent Columns. A more sophisticated implementation
would record a set of columns that make another column dependent. This information
could then be used to save computational work in the subsequent factorizations. Any
dependent column can be dropped from the current factorization whenever it appears
behind the same set of independent columns on the new ordering.

In order to have an efficient search for these sets and to avoid excessive use of
memory, this type of information can be stored at the bit level. Thus, if A has n
columns, a set can be stored on n bits. Operating with these bits will be much faster
than managing arrays of indices. Memory requirements can become a critical issue if
arrays are used to store these sets for large scale problems.

4.5. Computing a Second LU Factorization. This approach provides a
means to control excessive fill-in within the LU factorization and still produce a
well conditioned problem to solve. The idea is to compute second factorization on the
chosen set of independent columns using all of the most powerful a-prior: techniques
for computing an efficient sparse LU factorization, such as reordering the columns,
finding strongly connected components, choosing the pivots with sparsity in mind,
etc. Thus, the first factorization is used to select the basis and the second one is used
to obtain the most efficient factorization of this selected basis.

Significant improvements have been observed with this approach. It often results
in a great reduction of the floating point operations on the iterative linear system
solver which compensates the extra work for computing the factorization. The effec-
tiveness of this strategy will be clear on the numerical experiments shown later.

The following techniques are the default options for the second LU factorization
on our code. We stress that it is not possible to use them on the first LU factorization
because the structure of B is not known prior to the factorization.

The columns are permuted by the ordering of BB given by the minimum degree
ordering. We included a threshold parameter for the choice of the pivot. At each
step of the factorization, we chose a row permutation with the pivot being chosen
among all candidates within the threshold. The one with least entries on its row for

8

the remaining columns of the original matrix is chosen. We are aware that there are
many others powerful techniques which could be applied here. We plan to implement
them in the future.

5. Identifying Symbolically Dependent Columns. In this and the next
section we will present techniques which save computational work by studying the
ordering of columns prior to computing the factorization.

Given an ordering of columns, we want to find the unique set of m independent
columns which preserves the ordering. The brute force approach for this problem con-
sists of computing the factorization column by column and discarding the dependent
columns on the way. The strategies developed here will change the initial ordering
and indicate when a column can be ignored in the factorization. It is important to
note that the set of independent columns found by these techniques is the same set
obtained by the brute force approach.

5.1. Previous Work. A powerful tool for reducing computation in the LU
factorization is to identify columns that are symbolically dependent. That is, columns
that are linearly dependent in structure for all numerical values of their nonzero
entries. The 1dea 1s to find a set of say k£ columns with nonzero entries in at most
k — 1 rows. This set of columns is symbolically dependent. As we shall see, there are
efficient algorithms for finding such sets.

Let us first consider square matrix for simplicity. In this situation, the problem is
equivalent to permuting nonzero entries onto the diagonal. For any diagonal which a
nonzero entry could not be assigned we have a symbolically dependent column. This
problem is equivalent to find a matching of a bipartite graph where the rows and
columns form the set of vertices and the edges are represented by the nonzero entries.
This idea was first used by Duff [4] where several matching algorithms are compared.
A Fortran code for the best of them is given. Our implementation is based on Duff’s
code.

In [3] this idea is extended to rectangular matrices. They were concerned in
finding a sparse basis for the null space of the matrix. In order to obtain a sparse
basis, it is necessary to to find a set of independent columns of the matrix which
gives a sparse LU factorization. Thus, the columns are reordered by degree and the
matching algorithm applied. As a result, it will give a set of columns, denominated
here key columns, that are not symbolically dependent. Next, an LU factorization
of the key columns is computed. If the set is found to be numerically dependent,
the dependent columns are eliminated from the matrix. Then a new matching is
computed and the process is repeated.

It is reported in [3] that for the problems tested, few dependent columns are
found in the first factorization and that the factorization itself is cheap to compute
since the columns are reordered by smallest degree. This idea cannot be applied to
our problem because the LU factorization is expected to be much more expensive
since the ordering of columns is independent of the degree. Thus, recomputing a
factorization for another set of key columns is out of question. It is worth noting
that the problems we intend to solve are much larger than the size of the reported
problems.

5.2. Using Key Columns. In this work we have another use for the key
columns. Our idea comes from the fact that the number of independent columns
before the kth key column on the matrix is at most £ — 1. Therefore, i1t is possible
to speed up the LU factorization whenever we compute & — 1 independent columns

9

Problem Standard Key Columns Matching
Iteration | Nonzero | Updated | Updated | Skipped | Updated | Skipped
0 3474 6576 6572 4 5192 1394
6 6902 4478 3576 902 1102 3376
12 37369 3179 1819 1360 1170 2009
18 40826 3219 1614 1605 1190 2029
TABLE 5.1

TRUSS Updated and Skipped Columns

located before the kth key column in the ordering. Then, we can skip all the columns
from the current one to the kth key column. This can be repeated for all the key
columns of the matrix. Notice that we cannot just ignore the non-key columns from
the beginning because key columns may be numerically dependent among them. This
could be done in [3] because loosing a few sparse columns does not affect the amount
of sparsity of the resulting matrix too much.

5.3. Matching During the Factorization. Sometimes the use of key columns
does not save too much work. The reason is that often these columns are numerically
dependent. Another way to save floating point operations is to compute the matching
during the factorization. Thus, before we update the column with the factorization,
we verify whether it is symbolically dependent or not. If it is, the column is discarded
and the factorization continues with the next column.

This technique saves computational work because the matching can be done on the
original matrix instead of the factored matrix. Thus, fill-in entries are not accessed.
Moreover, no floating point operation is performed. If many columns are discarded,
the overhead caused for the ones that are not symbolically dependent is compensated
and the overall time for computing the factorization is reduced.

5.4. Preliminary Experiments with Symbolically Dependent Columns.
Tables 5.1 and 5.2 show some results for the techniques presented in this section. For
these experiments we used the problem TRUSS. This is a problem for minimizing
the weight of structures subject to external loads. This problem is part of the netlib
test collection of problems. The linear system has dimension 1000 and the problem
has 8806 columns. Both tables show the number of nonzero entries for the first LU
factorization for a few iterations of the interior point method. A factorization is com-
puted at every iteration. Table 5.1 shows the number of columns that are numerically
updated for the standard approach, where no symbolic technique is used. It shows the
number of columns numerically updated and skipped with the key columns approach
and with the matching approach that computes the matching inside the factorization.
Table 5.2 has the floating point operation count for computing the factorization for
the three approaches.

It is clear that the key columns and the matching approaches can lead to great
savings on the total number of floating point operations on the factorization. Later
we will present experiments showing that the overhead caused by these techniques is
compensated by the savings on floating point operations for most test problems.

6. Symbolically Independent Columns. Just like there exist symbolically
dependent columns, it is possible to define columns that are symbolically independent
1.e., columns that are linearly independent in structure for all numerical values of their
nonzero entries. This concept can be useful for computing the LU factorization of a

10

Iteration | Nonzero | Standard | Key Columns | Matching
0 3474 97.4 97.4 78.7
6 6902 207.9 148.9 28.5
12 37369 7143 2924 1281
18 40826 6782 2263 1239
TABLE 5.2

TRUSS Flops Count x10°

rectangular matrix.

A strategy consists of moving the symbolically independent columns to the be-
ginning of the ordered list since those columns are necessarily going to be on the
factorization for this ordering. Then these columns can be reordered further by any
known strategy such as minimum degree in order to reduce the number of fill-ins on
the LU factorization. Note that only the key columns are candidate to be symbolically
independent.

In [2], it is established that a set columns is symbolically independent if and only
if it can be permuted into a matrix which contains an upper triangular submatrix with
nonzero on the diagonal. We are not aware of any efficient algorithm for finding all the
symbolically independent columns from a given ordered set. Therefore, we developed
a heuristic approach to identify some of the symbolically dependent columns.

In the heuristic described below, we say that column j is the first entry column of
row ¢ if j contains the first nonzero entry in row ¢ on the ordered set. We consider a
column j symbolically independent given an ordered set if at least one of the following
rules applies:
el. Column j is the first entry column of at least one row;
e2. Column j is the second entry column of a row ¢ and the first entry column of row

1 18 also first entry column for at least another row not present on column j.

This set of rules guarantees that the columns selected are symbolically indepen-
dent but it does not guarantee that all symbolically independent columns are found.
For instance, consider the following sparse matrix

X X X
X X
X

applying the heuristic, we determine that the first column is symbolically independent
by rule 1 and the second by rule 2. However, we fail to notice that the third column
is also symbolically independent.

6.1. The Merging Strategy. After reordering the symbolically independent
columns, it may possible to reduce still further the number of fill-ins in the factoriza-
tion by merging the symbolically independent and dependent list of columns using the
degree as criteria. This is allowed whenever the symbolically independent columns
remain so.

It is very expensive to verify whether the columns remain symbolically indepen-
dent at every step of the merging process. Therefore, we use the first ordering of the
columns as a cheap heuristic. Thus, we move up on the list a symbolically dependent
column with lower degree provided it remains behind the symbolically independent
columns with lower index on the first ordering.

6.2. Preliminary Experiments with Symbolically Independent Columns.
Tables 6.1 and 6.2 show some results for the techniques presented in this section. For

11

Iteration | Columns | Standard | Independent | Merging
0 12761 48406 49407 49467
11 12477 56261 53564 53190
17 12352 73077 59769 59679
23 12339 63650 55278 55287
TABLE 6.1

KEN18 Number of Nonzero Entries on the Factorization

Iteration | Columns | Standard | Independent | Merging
0 12761 203 230 230
11 12477 86.2 83.3 81.9
17 12352 398 397 391
23 12339 170 130 130
TABLE 6.2

KEN13 Flops Count x10° for the Factorization

these experiments we use problem KEN13. Table 6.1 shows the number of nonzero
entries for the LU factorization. Only iterations of the interior point method where
the factorization is computed are shown. The number of symbolically independent
columns found is shown under Columns. Three different versions of the method are
compared. Here the standard approach, computes the matching during the factor-
ization but does not find symbolically independent columns. The second technique
find symbolically independent columns by the heuristic given early, move them to the
front and reorder them by smallest degree. The third technique merge the symbol-
ically independent list of columns with the other list as described before. Table 6.2
has the floating point operation count for the three versions.

It can be seen that finding and reordering symbolically independent columns
can save computational work on the factorization by reducing the number of fill-
in entries. The merging version also helps saving floating point operations. Notice
that the first factorization (iteration 0) is very expensive in terms of floating point
operations because this problem has redundant rows.

Table 6.3 present the results for problems TRUSS and KEN13 for total time in
seconds and for the average number of floating point operations for solving the lin-
ear systems. Each column of the table adds one of the techniques to the previous
techniques. Thus, the standard column shows the results where none of the tech-
nique using symbolic columns is used. Column key adds the key columns technique.
Matching computes the matching during the factorization. Independent moves sym-
bolic independent columns to the front and reorder them. Finally, the independent
and dependent lists are merged.

It is clear from this table that saving floating point operations does not imply
on saving computational time. For problems of larger dimension these techniques
became more important because the number of fill-in entries tend to grow faster as
dimension increases. Notice that the reordering of symbolically independent columns
does not necessarily reduces the number of floating point operations. It is hard to tell
beforehand if this technique will work well for given problem. In the next section we
shall present numerical results for large-scale problems using the techniques developed
in this work.

12

Problem Technique
Name Results Standard | Key | Matching | Independent | Merge
TRUSS | MFlops 86.3 | 78.4 76.9 85.6 85.5
Time (s) 172 | 164 171 189 190
KEN13 | MFlops 412 | 407 406 366 367
Time (s) 2432 | 2487 2591 2329 2343
TABLE 6.3

Time and Flops Count for All Techniques

7. Numerical Experiments and Conclusions. In this section we present sev-
eral numerical experiments with the new preconditioner. These experiments are meant
to expose the type of problems where the new approach performs better. Therefore
these experiments are not to be seen as a way to determine which approach for the
interior point methods is better in a general context. Nevertheless, as it can be in-
ferred by the results, the new preconditioner is an important option for some class of
problems. Moreover, its importance increases when large scale problems are involved.

7.1. The Set of Test Problems. In this section we briefly describe the prob-
lems used on the numerical experiments. Problems FIT1P and FIT2P model the
fitting of linear inequalities to data by minimizing a sum of piecewise-linear penalties.
These problems belong to the netlib collection of linear programming problems.

The PDS model is a multi-commodity problem with 11 commodities and whose
size is a function of the number of days being modeled. Thus, PDS-2 models two
days, PDS-20 models twenty days and so on. A generator for this model is available
and experiments for problems of a variety of sizes are presented.

DIFFICULT is the linear programming relaxation of a large network design prob-
lem. Since the edges have capacity that are integral, the original problem is an integer
problem. This problem was formulated by Daniel Bienstock and supplied by Eva Lee
[6].

The QAP problems are models for the linearized quadratic assignment problem
[10]. A source for this type of problems is the QAPLIB [1]. The problems tested
here for the QAP model are from this collection with the modification described in
[10]. Since the new preconditioner obtain nice computational results for this type of
problems, even for the small ones, we present results for more problems of this class.

7.2. Numerical Experiments. The following computational results compare
the behavior of the direct method approach against the new preconditioner based
upon the computation of an LU factorization for a subset of columns of A. The
preconditioned positive definite matrix (3.7) is used for the experiments. The LU
approach uses the preconditioned gradient conjugate method as solver for the linear
system.

The algorithms and procedures are coded in C. The reordering function for the
Cholesky factorization which was implemented by Eva Lee also in C uses the minimum
degree strategy. I/O routines from the CPLEX callable library are used to input the
problems in the standard MPS format.

All the experiments of this section are carried out on a Sun Ultra-Sparc station.
The floating point arithmetic is IEEE standard double precision. The stopping tol-
erance for the interior point method and preconditioned conjugate gradient is the
square root of machine epsilon. The optimality conditions are used as stopping crite-

13

Number of Nonzero Entries
Problem Dimension Matrix A | Schur Complement | Matrix L
FIT1P 627 x 1677 9868 196878 196878
FIT2P 3000 x 13525 50284 4501500 | 4501500
DIFFICULT | 31427 x 274347 814994 706790 | 6089264
PDS-01 1148 x 3729 7440 5614 10735
PDS-02 2499 x 7535 15534 12036 38464
PDS-06 9068 x 28655 60944 46402 564505
PDS-10 15538 x 48670 104550 79646 1573733
PDS-15 25187 x 77043 165819 125354 | 4225522
PDS-20 33874 x 105728 227199 170631 | 6886719
PDS-25 39977 x 131239 281299 211509 | 10297297
PDS-50 79917 x 272091 581362 431527 | 41269921
CHR20A 4219 x 7810 27380 107509 942275
CHR20B 4219 x 7810 27380 107349 924810
CHR20C 4219 x 7810 27380 107809 1003786
CHR22A 5587 x 10417 36520 153856 1424837
CHR22B 5587 x 10417 36520 153680 1453225
CHR25A 8149 x 15325 53725 249324 | 2653126
ELS19 4350 x 13186 50882 137825 | 3763686
HIL12 1355 x 3114 15612 34661 611836
NUGO05 89 x 135 495 884 2501
NUG15 2729 x 9675 38910 88904 | 2604504
ROU10 839 x 1765 8940 19274 242015
SCR12 1151 x 2784 10716 24965 334090
SCR15 2234 x 6210 24060 59009 1254242
SCR20 5079X 15980 61780 166709 | 6350444
TaBLE 7.1

Basic Statistics

ria. The parameter 7 has the fixed value 0.99995. The slack variables are added into
the problem explicitly.

Concerning the computation of the LU factorization for the preconditioner, the
following techniques presented on previous sections are used as default:

e A new LU factorization is computed from one iteration to the other whenever

o The preconditioned conjugate gradient method takes too many iterations to
achieve convergence or;

o The true residual for the linear system is larger than the working tolerance.

e A second LU factorization is computed whenever the first factorization is too dense;
e Key columns are used to speed up the LU factorization;

e Symbolically independent columns are moved to the front and reordered;

e The merging strategy as described before is used.

Table 7.1 contains the basic statistics about the test problems. The dimension and
number of nonzero entries shown for the matrix of constraints refer to the preprocessed
problems. The number of nonzero entries for the Schur complement includes only the
lower half of the matrix.

Table 7.2 compares the number of iterations between the new preconditioner and
the Cholesky factorization approach for the interior point method. In column Fact

14

Cholesky LU Approach
Problem Iterations | Iterations | Fact. | Refact.
FIT1P 22 23 14 12
FIT2P 25 25 11 10
DIFFICULT 30 30 5 4
PDS-01 23 21 10 0
PDS-02 27 29 8 0
PDS-06 39 38 6 4
PDS-10 50 54 6 5
PDS-15 63 61 6 6
PDS-20 63 73 6 6
PDS-25 75 6 6
PDS-50 85 8 7
CHR20A 24 24 10 8
CHR20B 27 26 11 9
CHR20C 19 19 9 7
CHR22A 24 24 10 8
CHR22B 29 30 11 9
CHR25A 33 31 9 8
ELS19 32 31 26 24
HIL12 18 19 16 14
NUGO05 7 7 8 6
NUGI15 21 21 22 20
ROU10 19 19 15 13
SCR12 12 15 14 12
SCR15 23 23 22 20
SCR20 24 24 25 23
TABLE 7.2

Cholesky versus LU approach - Number of Iterations

we have the number of LU factorizations needed for the interior point methods on
this strategy including a factorization for computing the starting point. In column
Refact we have the number of refactorizations performed. Notice that the number
of iterations for the interior point methods on both approaches is about the same
for most problems. Only problem PDS-20 presented a large difference. There are no
results for problems PDS-25 and PDS-50 for the Cholesky approach because it would
take a large amount of time to solve this problems.

It is interesting to note that the direct approach does not obtain a clear advantage
over the iterative approach for these problems. Most likely, this is due to the small
tolerance chosen for the experiments. The solution obtained in these experiments
agree to at least eight significant digits for all of the problems whose objective value
are known to us.

Table 7.3 shows a comparison between both approaches for the total running time
and number of floating point operations. The number of floating point operations
shown is the average for computing and solving the linear systems for the interior
point method.

For most problems tested, the LU approach takes less total time for solving the
problems and less floating point operations in average. It is no surprise since these

15

Cholesky LU Approach
Problem Time | MFlops Time | MFlops
FIT1P 308 87.6 19.7 4.7
FIT2P 44122 9110.3 505 106.7
DIFFICULT | 51590 7335.2 | 29964 | 6115.8
PDS-01 4.63 0.3 22.3 6.8
PDS-02 23.97 1.9 102.6 22.9
PDS-06 1528 207.1 1676 237.6
PDS-10 8885 927.7 5565 529.0
PDS-15 51096 4482.6 | 16450 1360.0
PDS-20 103717 8911.9 | 33130 | 2275.2
PDS-25 16705.2 | 52676 | 3529.4
PDS-50 150776.2 | 253966 | 12979.7
CHR20A 1161 244.1 337 77.2
CHR20B 1189 232.6 432 93.2
CHR20C 1093 285.8 273 75.2
CHR22A 1968 414.8 618 138.6
CHR22B 2405 433.0 709 110.5
CHR25A 6501 995.4 1456 232.2
ELS19 26560 5212.0 | 16861 454.2
HIL12 1064 386.6 974 294.9
NUGO05 0.15 0.1 0.27 0.3
NUG15 11184 3473.8 | 14643 | 3431.2
ROU10 275 98.1 259 107.2
SCR12 321 136.0 145 57.9
SCR15 3659 1008.3 1470 190.0
SCR20 47480 | 12331.3 | 25679 1397.0
TABLE 7.3

Cholesky versus LU approach - Time and Flops

models were chosen for this reason. The purpose of these experiments is to show the
type of problems where the new approach is expected to perform better. For example,
on problems like FIT1P and FIT2P that have dense columns, the Schur complement
matrix is already very dense as it can be seen on table 7.1. Thus, this approach takes
much more computational effort than the LU approach.

The QAP model problems also lead to Schur complement matrices that are not
very sparse even though they are somewhat sparser than the FIT problems. This,
together with the fact that the factorization generates considerable fill-in makes the
Cholesky approach less effective. This becomes apparent as the size of the problems
grows. The only problems for this class where the Cholesky factorization approach
performs better are NUG05 which is very small and NUG15 where it was faster even
though a few more floating point operations were required. The LU approach does
not perform very well for this problem because a new factorization is computed for
every single iteration. Notice that the opposite occur to problem ROU10. The new
approach is faster nonetheless i1t takes more floating point operations.

The explanation for this apparently contradictory result seems to be the number of
LU factorizations performed. This factorization have a large overhead compared with
solving triangular systems. Thus, problems that need to compute few factorizations

16

spend less time performing work unrelated to floating point operations.

The PDS model problems do not generate dense Schur complement matrices. On
the other hand, the Cholesky factorization can generate many fill-in entries. As the
dimension of the problem increases, the LU factorization approach performs better
compared to the direct approach. This is clearly illustrated on figures 7.1 and 7.2.

Another factor which helps the LU preconditioner obtain good results for the PDS
model which 1s not present for the QAP model is that the number of LU factorizations
is very small compared to the number of iterations. Therefore, computing a solution
for the linear systems on a large number of iterations for these problems is inexpensive
since no factorization is computed. This fact also applies for problem DIFFICULT
explaining the good performance of the new approach even considering that the Schur
complement matrix is sparse.

12

10

Al
2l
° = \
o 2 a 6 8 10 12 14 16 18 20
Days
Fic. 7.1. Running Time for PDS Model
x 10"
16
14 -
12 -
10
a
£ 8r
=
sl
Al
Sl
(o}
o 5

Fic. 7.2. Flops Count for PDS Model

Table 7.4 shows in more detail the effect of the heuristics used for keeping the LU
factorization and computing a second factorization for problem DIFFICULT. Column
PCG contains the number of iterations taken by the preconditioned conjugate gradient
method to achieve convergence. This result is for the first linear system of the interior
point method. The numbers for the second linear system are similar. The number of
nonzero entries for the first and the second LU factorization are shown only for the

17

1P Nonzero Entries
Iteration | PCG | First LU | Second LU
0 901 109894
1 897
2 741
3| 3289
4 267 143739 114967
5 279
6 287
7 336
8 448
9 699
10 906
11 | 1434
12 | 2194
13 277 231102 111702
14 338
15 373
16 404
17 367
18 538
19 585
20 753
21 | 1194
22 | 1235
23 | 1845
24 200 | 5901594 124445
25 279
26 610
27 211 | 5571610 168273
28 232
29 221
30 196
TABLE 7.4

DIFFICULT Factorization Heuristics

iterations where a new factorization is computed. This number refers to the sum of
nonzero entries of L and U.

Notice that only five factorizations are computed on thirty iterations of the interior
point method. A second factorization is computed four times. Notice from table 7.1
that the Cholesky factorization for the Schur complement of this problem gives over
six million nonzero entries.

7.3. Conclusions. This class of preconditioners behaves very well near the end
of the interior point iteration. This is important because the linear systems be-
came more ill-conditioned as an interior point iteration approaches a solution. These
systems are difficult to solve by iterative methods with most previously known pre-
conditioners. However, an efficient implementation of these preconditioners is not
trivial.

18

We discussed how a careful implementation of this preconditioner made this ap-
proach competitive with the direct method approach. This is particularly true on
classes of problems where the Cholesky factorization of the Schur complement matrix
has a large number of nonzero entries.

Among the implementation details, we presented several techniques for computing
the LU factorization given an ordered set of columns. Some of these techniques, such
as finding symbolically dependent and independent columns, can be used in other
problems of mathematical programming.

7.4. Future Work. From the point of view of improving the preconditioner,
it will be interesting to develop a scaled version which may give better conditioned
systems at the first iterations of the interior point method without compromising its
convergence. This strategy will lead to a more robust preconditioner.

Another possibility for improvement is a more sophisticated way to decide when
to keep the current LU factorization. The savings of keeping a factorization can
be so high that this approach deserves more attention. The computation of the
first factorization can also be improved. The approach that reorder the columns to
reduce the amount of fill-in entries deserves attention. There are problems where this
number can be considerably large. The ordering given by this approach is not the
ideal ordering in view of the performance of the preconditioned system. Nonetheless,
it is not an important drawback in comparison.

All experiments reported in this work use the square root of epsilon machine as
tolerance. However, 1t is well known that at least on the first iterations of the interior
point methods it is not necessary to find the directions with great precision. Thus,
a relaxed precision will speed up solving the linear system and perhaps make the
preconditioner more robust. It will be interesting to run experiments with the other
preconditioned linear systems. The indefinite linear system and the n—m dimensional
positive definite linear system.

Finally, a more sophisticated LU factorization which includes strongly connected
components and a pivot strategy for reducing the number of fill-in entries among other
techniques should improve the results significantly. These techniques are to be used
on the second factorization when all the columns are known.

REFERENCES

[1] R. S. BURKARD, S. KaRriscH AND F. RENDL, QAPLIB - A Quadratic Assignment Problem
Library, European J. Oper. Res. 55 (1991), pp. 115-119.

[2] T. F. CoLEMAN AND A. POTHEN, The Null Space Problem I. Complezity, SIAM J. Alg. Disc.
Meth., 7 (1986), pp. 527-539.

[3] , The Null Space Problem II. Algorithms, SIAM J. Alg. Disc. Meth., 8 (1987), pp. 544—
563.

[4] 1. S. DuUFr, On Algorithms for Obtaining a Mavimum Transversal, ACM Trans. Mathe.
Software, 7 (1981), pp. 315-330.

[6] A. S. EL-BAKRY, R. A. TaAPIA, AND Y. ZHANG, A Study of Indicators for Identifying Zero
Variables in Interior-Point Methods, SIAM Rev., 36 (1994) pp. 45-72.

[6] E. K. LEE, Private Communication.

[7] 1. J. LusTia, R. E. MARSTEN AND D. F. SHANNO, On Implementing Mehrotra’s Predictor-
Corrector Interior Point Method for Linear Programming, SIAM J. Optimization, 2 (1992),
pp. 435-449.

[8] M. MEHROTRA, On the Implementation of a Primal-Dual Interior Point Method, STAM .
Optimization, 2 (1992), pp. 575-601.

[9] A. R. L. OLvElRA AND D. C. SORENSEN, A New Class of Preconditioners for Large-Scale
Linear Systems from Interior Point Methods for Linear Programming, Technical Report
TR97-27, Department of Computational and Applied Mathematics, Rice University, 1997.

19

[10] M. PADBERG AND M. P. R1JAL, Location, Scheduling, Design and Integer Programming, Kluwer
Academic, Boston, 1996.

20

