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Abstract. A new class of preconditioners is proposed for the iterative solution of linear systems
arising from interior point methods. In many cases, these linear systems are symmetric and indefinite.
Typically, these indefinite systems can be reduced to an equivalent Schur complement system which
is positive definite. We show that all preconditioners for the Schur complement system have an
equivalent for the augmented system while the opposite is not true. This suggests it may be better to
work with the augmented system. We develop some theoretical properties of the new preconditioners
to support this. Computationally, we have verified that this class works better near a solution of
the linear programming problem when the linear systems are highly ill-conditioned. Preliminary
experiments which illustrate these features are presented. The techniques developed for a competitive
implementation are presented in a follow up paper along with numerical experiments on several classes
of linear programming problems.
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1. Introduction. Interior point methods have been used successfully for solv-
ing linear programming problems for about a decade now. Their good performance
in practice and their theoretical properties have motivated the implementation of so-
phisticated codes to solve large scale problems. These methods are effective because
they converge in relatively few iterations. However an iteration of an interior point
method is more expensive than the iterations of the traditional simplex method.

Each iteration of an interior point method involves the solution of one or more lin-
ear systems. There are several ways for solving the linear systems. The most common
approach reduces the indefinite augmented system to a smaller positive definite one
called the Schur complement. After this reduction, the solution for the linear system
is computed via the Cholesky factorization for the majority of the implementations.

In this work, we study efficient ways to solve the augmented linear system by
iterative methods. Special attention is given to the choice of a preconditioner. This
is a key point in applying iterative methods for solving linear systems. We will show
that every preconditioner for the reduced system yields an equivalent preconditioner
for the augmented system but the converse is not true. Therefore, we choose to work
with the augmented system because of the greater opportunity to find an effective
preconditioner.

We propose a new class of preconditioners which avoid computing the Schur com-
plement. These preconditioners rely on an LU factorization of a subset of columns
of the constraint matrix instead. We show some theoretical properties of the precon-
ditioned matrix and reduce it to positive definite systems. The discussion on how
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to implement these preconditioners efficiently is presented in [17]. We report a few
preliminary numerical results to illustrate the features of this preconditioner.

We use the following notation throughout this work. Lower case Greek letters
denote scalars, lower case Latin letters denote vectors and upper case Latin letters
denote matrices. Components of matrices and vectors are represented by the cor-
responding Greek letter with subscripts. The symbol 0 will denote the scalar zero,
the zero column vector and the zero matrix, its dimension will be clear from context.
The identity matrix will be denoted by I, a subscript will determine its dimension
when it is not clear from context. The Euclidean norm is represented by || - || which
will also represent the 2-norm for matrices. The relation X = diag(z) means that
X is a diagonal matrix whose the diagonal entries are the components of z. On the
other hand, diag(A) means the column vector formed by the diagonal entries of A. A
superscript k for a scalar, vector or matrix will denote their value at the kth step of
an iterative procedure.

2. Linear Programming Problems. Consider the linear programming prob-
lem in the standard form:

minimize ctx

(2.1) subject to Az =45, x>0,
where A 1s a full row rank mxn matrix and ¢, b and x are column vectors of appropriate
dimension. Associated with problem (2.1) is the dual linear programming problem

(2.2) maximize  bly
’ subject to  Aly+z=¢, 2z>0,
where y 1s a m-vector of free variables and z is the n-vector of dual slack variables.
The optimality conditions for (2.1) and (2.2) can be written as a nonlinear system
of equations with some nonnegative variables:

Ax—b
(2.3) Aty+z—c | =0, (2,2) >0,
XZe

where X = diag(z) and 7 = diag(z) and e is the vector of all ones.

2.1. Mehrotra’s Predictor-Corrector Method. The majority of the primal-
dual interior point methods found in the literature can be seen as variants of Newton’s
method applied to the optimality conditions (2.3). Soon after its appearance, the
predictor-corrector variant [16] became the most popular variant of the primal-dual
interior point methods. The search directions are obtained by solving two linear
systems. First we solve

o I A Az* rk
(2.4) Zk Xk 0 AR = ok
A 0 0 AP rf;
where,
'rlc‘l”‘ = c— AtyF —2*
rk= —Xkzke
rg‘ = b— Az,

2



and AZ® A%Z* and Ag® are called affine directions. Then, the search directions are
given by

0 I Al Azk rﬁ
(2.5) zZF Xk 0 A =
A 0 0 AyF r{j

where,

k= pfe — XFZFe — AXFAZFe,

and pf = (j—:)Q(niZ) with v% = (2%)t2% and 4% = (2% + AzF) (25 + AZF).

This variant significantly reduces the number of iterations for the primal-dual
method. This reduction is obtained at the price of solving two linear systems per
iteration. However, these linear systems have the same coefficient matrix. In practice
the work for solving the extra linear system is easily compensated by the savings on

the reduction of the number of iterations.

2.2. The Search Directions. The key step in a given iteration in terms of
computational cost is the solution of linear systems (2.4 and (2.5)). Eliminating Az*
from system (2.4) it reduces to:

() (E)-()

where, D* = (X*)~1 7% We refer to (2.6) as the augmented system. Eliminating Az®
from (2.6) we get

(2.7) SEAYF =k + A((DF)T1k — (ZF) k).

In (2.7) S¥ = A(D*)~1 At is called the Schur complement. A similar reduction can be
done for system (2.5).

We like to stress that D* is a diagonal matrix with positive diagonal entries and it
is the only change in the matrices of systems (2.6) and (2.7) at each iteration. Several
entries of D* converge to zero as the method approaches a solution while other entries
tend to infinity.

2.3. Approaches for Solving the Linear Systems. Using the Cholesky fac-
torization of S* to solve for the search directions in interior point methods is by far
the most widely used approach (see for example [1, 12, 13, 14]). This approach takes
full advantage of S¥ being symmetric and positive definite. However, S¥ can have
much less sparsity and is often more ill-conditioned than the matrix of system (2.6).
The most extreme loss of sparsity occurs when A has a dense column. This results in
a completely dense Schur complement matrix.

One way around this problem is to use iterative methods. These methods consist
of constructing an iterative sequence of approximate solutions for the linear system,
until a desirable tolerance is achieved. Since these methods require the matrix only for
computing matrix-vector products there is no need to compute the Schur complement
unless the preconditioner depends on it. Therefore, loss of sparsity may not be an
issue for this approach.

The preconditioned conjugate gradient method is the most popular of the iterative
methods for solving positive definite systems. The conjugate gradient method is easy
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to implement and will converge rapidly with a good preconditioner. Attempts to
solve (2.7) using the preconditioned conjugate gradient method have achieved mixed
results [13, 15], mainly because the linear systems become highly ill-conditioned as
the interior point method approaches an optimal solution. Another disadvantage of
these implementations is that they rely on the computation of the Schur complement
to build the preconditioner. Thus, they can suffer from loss of sparsity in the presence
of a few dense columns.

For the reasons stated above, several researchers have began to consider the aug-
mented system even though it i1s indefinite. Consequently, the Cholesky factorization
can not be applied since there 1s no numerically stable way to factor a general in-
definite matrix onto LDL' with D diagonal. However, the reduction to the Schur
complement system is embedded in this approach given that the diagonal entries of
D are chosen as pivots [20], stability considerations apart. A similar result regarding
preconditioners for iterative methods will be shown later.

Implementations using the Bunch-Parlett factorization proved to be more stable
but they are slower than solving (2.7) (see [7, 10, 20]). A multifrontal approach applied
to the augmented system has been investigated in [5].

The conjugate gradient method is not well defined for indefinite systems. Thus, it
is not used for solving (2.6). In [10], SYMMLQ is used to solve the augmented system
for a few small problems. We are not aware of any successful implementation of an
iterative method for solving the indefinite system arising in interior point methods for
large scale linear programming problems. However, this is an active research area and
progress along these lines is certainly anticipated. For instance, in [8] it is mentioned
that computational results for large scale problems for the preconditioner outlined
there will be reported in a forthcoming paper.

All the above discussion refers to solving one of the linear systems. We now
discuss what changes when we are solving two systems with the same matrix per
iteration.

One important difference 1s that much work can be saved by computing only one
factorization per iteration for the predictor-corrector variant. The reason is that both
linear systems share the same matrix thus, the factorization can be used for both.
That is the primary reason for popularity of this variant.

It 1s not completely clear whether the predictor-corrector variant is the most
appropriated for the approaches using iterative methods to solve the linear systems.
It depends on the expense of computing the preconditioner relative to the work for
solving both linear systems and how many interior point iterations the predictor-
corrector variant saves.

The linear systems are related since they have the same matrix and the right hand
side of the second linear system depends on the solution of the first. With that in
mind, it might be possible to obtain better performance when computing the solution
of the second linear system. However, we have not found and are not aware of any
practical way to accelerate the computation of the second system by using the solution
to the first one. This is most likely due to the nonlinearity of the perturbation on the
right hand side. Finding a better initial guess for the second linear system will be left
as a subject for future research.

2.4. Modeling Linear Programming Problems. Few linear programming
problems arise naturally in the standard form (2.1). In practice we have to consider
inequality constraints, range constraints, bounded and free variables. It is possible
to transform these type of problems into the standard form, but this increases their
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dimension. In this section we present the changes in the linear system when consider-
ing special structures. These structures will cover all the cited cases except the range
constraint which usually is reduced to the bounded variable case by adding one vari-
able for each of these constraints, that is, given the range constraint g, < atz < 8,
we replace it by @'z —w =0and B, <w < f,.

Applying the primal-dual method on the perturbed optimality conditions of a
general problem and eliminating the slack variables the augmented system will be:

(2.8) —-DF A Azk _ i

’ A E® Ayt ] T\ b
where DF has zero diagonal entries for the corresponding free variables. E* is a diago-
nal matrix with nonzero entries for the corresponding inequality constraint. Bounded
variables change the way to compute D* but they do not change the nonzero structure

of the augmented matrix.
For the Schur complement we have

SEAYT =1k + A(DF)E

where S¥ = A(D*)1A* 4+ E* | provided the primal problem has no free variables and
m < n.

Equation (2.8) is the augmented system for problems with inequality constraints,
bounded variables and free variables. It contains no slack variables either for inequality
constraints or bounds and there is no need to split the free variables into nonnegative
variables. It is the smallest system we can get without further information on A or
without changing its sparsity pattern.

3. The Augmented System. A slightly more general form for the augmented
system (2.6) arises naturally in several areas of applied mathematics such as optimiza-
tion, fluid dynamics, electrical networks, structural analysis and heat equilibrium. In
some of these applications, the matrix D is not necessarily diagonal although it is
symmetric. The techniques for solving this system varies widely within these areas
since the characteristics of the system changes with the problems. See for example
[3, 6, 18, 19, 21] among several others. Still, these systems have many properties in
common as we will see next.

3.1. Properties of the Augmented System. The augmented system is non-
singular if its first n columns are linearly independent. This is always the case when
D is a diagonal matrix with no zero diagonal entries and A has full row rank. The
augmented system is also clearly indefinite. Moreover, it can be seen from the relation

-D 0 —-D! 0 -D A"\ ([ -D A*
A T 0 ADTIA* + E o I ) A FE
that by Sylvester’s law of inertia [11] it has m positive and n negative eigenvalues if

D is positive definite and F is positive semi-definite.
It can easily be verified that

3.1) D A*\' [ (=D7'4 D lAtS~1AD-1) D-1AtS-1
> A E - S=1AD-! 51

where S = AD™1A* + E.



3.2. Preconditioning. Iterative methods are very sensitive to the condition
number of the matrix x,(A4) = ||A||p||A7"||,- A matrix with a large condition number
is said to be il-conditioned. In most applications it is essential to modify an ill-
conditioned linear system into an equivalent better conditioned system. Otherwise,
the iteration may be very slow or even fail to converge. This is done in such a way
that 1t is easy to recover the original system solution from the modified one. The
technique just described is known as preconditioning.

Consider the following situation: given Ax = b, we solve the equivalent linear
system M~'AN~1Z = l~), where # = Nz and b = M~'b. The system 1is said to be
preconditioned and M~ AN~ is called the preconditioned matrix.

We say that a preconditioner is symmetric if Nt = M because in that case if A
is symmetric, the preconditioned matrix M~1AM ~¢ will also be symmetric. In this
situation, the preconditioned matrix has the same number of positive (or negative)
eigenvalues as the original matrix for symmetric preconditioners. Thus, symmetric
preconditioners cannot be used to change an indefinite system into a positive definite
one.

There are several classes of preconditioning methods. In this work we are mainly
concerned with the class of preconditioners called incomplete factorization methods.
This approach has been used successfully to develop preconditioners for problems
similar to ours. Usually these preconditioners have been applied to the Schur com-
plement.

The idea of incomplete factorization is to ignore the fill-in entries during the
course of the factorization that would create nonzero entries outside of a predeter-
mined pattern. Often, the pre-specified pattern is the original non-zero structure of
A. As the factorization proceeds, the result of operations that would cause unwanted
fill are simply set to zero. In PDE problems there are physical explanations to justify
the use of these type of preconditioners. Understanding of the underlying physical
motivation has produced very effective preconditioners. The success of this approach
has motivated the use of incomplete factorization on other problems where there 1s
not much information to guide the choice of preconditioners. For symmetric positive
definite matrices we compute say L and let M = N* = L thus obtaining a (precon-
ditioned) symmetric positive definite matrix which should be closer to the identity
than the original matrix A. This preconditioner is called the incomplete Cholesky
factorization.

The incomplete Cholesky factorization is a natural choice to apply as a precon-
ditioner for the Schur complement. A slight modification of this approach was inves-
tigated in [15]. Here, we are concerned with the incomplete Cholesky factorization
version that ignores all fill-ins that may occur on L.

3.3. Existing Preconditioners. Consider the following class of symmetric pre-
conditioners®:

(3.2) H 0 —-D At H' F*\ ( —-HDH' B!
o F G A F 0o Gt )~ B C
where, B=—FDH! + GAH! and C = —FDF! + FA'G' + GAF' + GEG*. We will

see next that some of the preconditioners proposed to the augmented system belong
to this class.

*From now on we drop the superscript k& since we are concerned with one iteration of the primal-
dual interior point method.



Preconditioner Hy Hp Fn Fp G
M1 —Dy | I 0 0 I
M2 ~DyF | B 0 0 I
M3 —Dy? | B 0 —1B~tHpB~ I
M4 -pyE | 1 0 L VHp L Ut
Pl —Dy? | —Dp? 0 0 —HpB!
P2 _Dy? | =D,? | ~HpB~'NDy —Hp Hy'B™!

TaBLE 3.1
Ezisting Preconditioners, B* = LU

Gill et al. [10] introduce some preconditioners for the standard form which try
to avoid the numerical problems caused by the ill-conditioned behavior of D as the
primal-dual method progresses. The first preconditioner they proposed was:

(1)

where H is a diagonal n x n matrix whose nonzero entries are:

L { (5;% for the n — m biggest entries of D

Nig — .
1 otherwise.

Notice that this is equivalent to choosing H = H, F =0 and G = I in (3.2).

If we adopt the partition A = [B N]P where N corresponds to the n—m variables
closest to a bound, and use the notation Hg and Hy to denote the corresponding
submatrices for a matrix H, their preconditioners correspond to the choices M1 to
M4 given in table 3.1.

In the same work, they also propose a preconditioner based upon the Bunch-
Parlett factorization LDL? [4] for an approximation of the matrix in the system (2.6).
By constructing a diagonal matrix D whose eigenvalues are the absolute value of those
in D (recall that D is a block diagonal matrix whose blocks have dimension 1 or 2),
they obtain a positive definite matrix and therefore a symmetric preconditioner.

In [2] Battermann and Heinkenschloss introduce and analyze another class of
preconditioners for the quadratic programming problem. Table 3.1 also gives the
choice for the block matrices for the first two preconditioners P1 and P2 presented
by them. The third preconditioner introduced has a different partitioning:

I 0 DpB~1
P3= 0 0 B!
—(B"'N)Y I (B"'N)'DgB~!

Notice that this is the representation for these preconditioners for linear programming
problems. See [2] for a complete description.

The preconditioners in [10] presented on table 3.1 break down for degenerate
problems, that is, problems which have an optimal solution where more than m pri-
mal variables z are not at their bounds. A consequence of degeneracy is that the
number of diagonal entries on D that will converge to zero is unknown. Since these
preconditioners assume it occurs for a fixed number (n — m) their performance is
sensibly affected by degenerate problems.

7



3.4. Unsymmetric Preconditioners. Consider the inverse of the augmented
system with implicit slack variables:

(33 —D At \"' [ (=D' 4+ D 1AtS~1AD-1) D-1AtS-!
> A E - S=1AD-! S-1

where S = AD"1A' + E.

From relation (3.3) we can derive an unsymmetric preconditioner by replacing S
by an incomplete Cholesky factorization LL*. We call it unsymmetric because the
preconditioned matrix may be unsymmetric although both the original matrix and
the preconditioner are symmetric. This preconditioner can be very effective but its
matrix-vector product is more expensive than the others since it requires the solution
of two linear systems involving S.

Freund and Jarre [8] present another unsymmetric preconditioner based upon the
SSOR where the matrix D is now block diagonal with 1 x 1 and 2 x 2 blocks about
the diagonal. In order to achieve this, it is necessary to permute the augmented
matrix since its last diagonal block consists of all zeros for problems in the standard
form. Their preconditioner has the following form N = I and M = U*D~'U where,
U = (L' + D)P* and P is a permutation for the augmented matrix.

The block diagonal matrix D in this preconditioner has m (2 x 2) blocks and
m — n (1 x 1) blocks since the augmented system has m zero diagonal entries. In
order to M be a good approximation for A, |LD~!L|| should be as small as possible.
With this goal in mind they propose to choose the permutation by minimizing the
product of the largest eigenvalues of the blocks on D~' over all possible choices of 2 x 2
blocks. This approach gives different permutations at each iteration. The problem of
finding the permutation is solved as a weighted bipartite matching problem.

3.5. Why Work with the Augmented System?. The reduction to the Schur
complement has the inherent disadvantage of changing the sparse structure of the
matrix which can be disastrous for some problems. Even if iterative methods are
being applied, the computation of the Schur complement is necessary for obtaining
a preconditioner in all implementations we are aware of. The computational time
required to construct and apply it may not compensate the reduction of the problem
from indefinite to a smaller positive definite system.

The results of this section are very important because they give theoretical sup-
port for working with the augmented system. They indicate that considerable impor-
tant information is lost by reducing to the Schur complement. On the other hand,
by studying the augmented system, no information is lost. Moreover, it 1s possible to
return to the Schur complement system when it is advantageous to do so since it is
in some sense contained in augmented system.

The following lemma gives a justification for working with the augmented sys-
tem instead of the Schur complement when applying iterative methods. It will be
shown that every preconditioner for the Schur complement can be replicated on the
augmented system while the converse statement is not true. Therefore, the precon-
ditioned Schur complement system can be seen as a particular case contained on the
more general class of preconditioners for the augmented system.

LEMMA 3.1. Let
-D A
A F
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be nonsingular and D be symmetric positive definite. Then there exists a precondi-
tioner pair M and N such that this matriz can be reduced to:

—1 -D At -1 _ I 0
M ( A £ )V =0 gsm
where S is the Schur complement and G and H are arbitrarily chosen nonsingular

matrices of appropriated dimension.
Proof. Let D = LL' and consider the preconditioner pair

L0
-1 _
M= ( GAD™' G )

and
L=t D lA'H!
-1 _
(5 ).
Then,
o —-D A (1 0
(34) M ( A £ )N =0 Gsm

where S = AD7'A' + E. o

Observe that this result even holds for singular matrices G and H. However, it
does not make sense to obtain a singular matrix in the context of preconditioning.

The next lemma shows that for the augmented system (2.8). the converse state-
ment is not true.

LEMMA 3.2. Consider the augmented system given by

—-D At Ax \ [ m

A E Ay /7 \ r
and its Schur complement S = AD™'A* + E where D is nonsingular and A has full
row rank. Then any symmetric block triangular preconditioner

H 0
F G
leads to a preconditioned system for GSG® independent of H and F.
Proof. Consider again the class of symmetric preconditioners given by:

H 0 —-D At H* F*\ ( —HDH' B!
F G A FE 0o Gt )~ B C
where, B= —FDH! + GAH! and C = —FDF' + FA'G* + GAF! + GEG*. Then,

the preconditioned system will be as follows:

—~HDH' Bt AE Y Hry
B C Ag B Grz + FT’l

now, by eliminating Az we get:

(3.5) GSG'Ajj=Gry+ AD™'ry
9



this system does not depend on either H or F', thus any choice for these matrices that
preserves nonsingularity are valid preconditioners which lead to (3.5). O

Notice that these results can be applied in a more general context. For instance
D can be any symmetric positive definite matrix not necessarily diagonal. Systems
with these characteristics occur in other fields including nonlinear programming and
PDE problems. Moreover, there is no restriction to F whatsoever. However, if F
is positive semi-definite as in the augmented system, the Schur complement will be
positive definite.

4. A New Class of Preconditioners. In this section we will construct and
study a class of symmetric preconditioners for the augmented system which exploits
its structure. In view of the discussion on previous sections the preconditioners are de-
signed to avoid forming the Schur complement. Our goal is to obtain a preconditioner
that is relatively cheap to compute and retains excellent theoretical and practical
properties.

4.1. Building a Preconditioner. Since the augmented system is naturally
partitioned into block form, lets start with the most generic possible block symmetric
preconditioner for the augmented system

YN . (F G
M= =N _<H J)

and choose the matrix blocks step by step according to our goals. We only consider
symmetric preconditioners. We believe there is insufficient motivation for loosing
symmetry.

The preconditioned augmented matrix (2.6) will be the following *:

@) < _FDF' + FA'G + GAFt* —FDH' + FA'J' + GAH? )

—HDF'+ HA'G* + JAF* —HDH!'+ HA'J* + JAH?

At this point we begin making decisions about the blocks. We start by observing
that the right lower block is critical in the sense that the Schur complement AD~! A?
appears in the expression for many reasonable choices of J and H. The Schur com-
plement may be avoided more easily if we set J = 0. This choice seems to be rather
drastic at first glance leaving few options for the selection of the other blocks. But, as
we will soon see, the careful selection of the remaining blocks will lead to promising
situations. With J = 0 the preconditioned augmented system reduces to

—FDF' 4+ FA'G* + GAF* —FDH'+ GAH!
—HDF' + HA'G? —HDH! '

Lets turn our attention to the off diagonal blocks. If we can make them zero
blocks, the preconditioned matrix appears to be closer to the identity matrix and
the problem decouples into two smaller linear systems. Thus, one idea is to write
F' = D71A'G'. However, it is easy to verify that N'(F*) D N(G?) therefore, this
choice is not acceptable. A more reasonable choice is G* = (HA*)~"1HDF?® giving

—FDFt 4+ FA'G® + GAF? 0
0 —HDH?

*We will be restricted for now to the problem without inequality constraints and free variables
to facilitate the discussion.
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Now lets decide how to chose H. The choices A, AD™! or variations of it will
not be considered since matrices with the nonzero pattern of the Schur complement
will appear in the right lower block and also as part of G. On the other hand, setting
H = [I 0]P where P is a permutation matrix such that H A" is nonsingular does
not introduce a Schur complement type matrix. The right lower block reduces to a
diagonal matrix —Dp = —H DH® where,

. ¢« ( D 0
(4.2) PDP_<0 DN)

and we achieve one of the main goals, namely avoiding the Schur complement.

Therefore, we can concentrate on F' at the upper left block. The choice F' = D™z
seems to be natural and as we shall see later leads to some interesting theoretical prop-
erties for the preconditioned matrix. Summarizing, the final preconditioned matrix
takes the form

. . ( =D A +_( =TI+ D 3A'G*+GAD™z 0
(4.3)M<AOM_ 0 Dy

where,

-1 _ D_% G
w=( )

with G = HthB_l, HP!'=[I0] and AP* = [B N]. We remark that this notation
for the partition of A borrowed from the literature of the simplex method does not
mean that the set of columns B form a particular basis for the linear programming
problem. The only concern up to this point is that these columns form a nonsingular
matrix.

We observe that the goal of avoiding the Schur complement was achieved. The
price paid 1s that now we have to find B and solve linear systems with this matrix.
However, the factorization QB = LU is typically easier to compute than the Cholesky
factorization. The reason is that the selection of the columns of B causes no change
on the structure of the problem, in contrast to the computation of AA?. In fact, it is
known [9] that the sparsity pattern of L' and U is contained in the sparsity pattern of
R, where AA* = R'R, for any valid permutation ). Typically in practice, the number
of nonzero entries of R is much larger than the combined number of nonzero entries
in L and U. Moreover, the LU factorization of B does not depend on D which is the
only change in the matrix of the augmented system from one iteration to another.
Thus, if we decide to keep the permutation matrix P unchanged, the computation of
the next preconditioned matrix is almost free. It only requires computing n square
roots.

Another advantage of this preconditioner compared with other augmented system
preconditioners is that it reduces the size of the linear system from n + m to n since
the lower block equation is easily solved for the diagonal matrix. It still gives a larger
system than the Schur complement reduction, but as we shall see, this disadvantage
can also be overcome.

In the next section we will study some of the theoretical properties of the upper
left block preconditioned matrix (4.3) and later show some strategies on how to choose
the permutation matrix, that is, the columns of A that we select to form B. But first
we will make a few observations about the preconditioned matrix.

11



Recall that the augmented matrix (2.6) has m positive and n negative eigenvalues.
Thus, the preconditioned matrix (4.3) have the same inertia of eigenvalues. Since
the lower right block matrix has m negative eigenvalues, the upper left block has
m positive and n — m negative eigenvalues. Therefore the preconditioned matrix is
indefinite except for the odd case where m = n.

We close this section by showing a property of the matrices in the upper left block
of (4.3) which leads to the results of the next section.

LEMMA 4.1. Let A = [B N] with B nonsingular and G = HthB_1 where
H=1[I0]. Then G'D~2A' = AD"3G = I.
Proof. 1t 1s sufficient to show that G'D 3At = I.

B-tDZ[I 0]D-¥[B N}’
BT D[D,* 0)[B N
B~t[I0][B N

7 0

This result can be easily extended for any permutation A = [BN]P with B
nonsingular.

4.2. Theoretical Properties of the Preconditioned System. In this section
we will study some properties of matrices of the type

(4.4) K=-I, + UWV' + VU
' where UV = VIU' = I,
and U, V! are m x n matrices. By lemma 4.1 it easy to verify that the upper left
block (4.3) belongs to this class of matrices. First we show that the eigenvalues of K
are bounded away from zero.

THEOREM 4.2. Let X be an eigenvalue of K given by (4.4) where U and V' €
R™*™ then |A| > 1.

Proof. Let v be a normalized eigenvector of K associated with A then,

Kv=M
K% =%
(I-UWV' — VU U VVU+VUU'VHy = A\
v+ (UVE—VU)VU - UVHy = A,

Multiplication on the left by v® gives

L4+ (UVE - VU) (VU — UVy = A?
14+ wiw = \?

where, w = (VU — U*V*)v. Thus, we obtain A? > 1. O

COROLLARY 4.3. The preconditioned matriz (4.3) is nonsingular.

Thus, by theorem 4.2 K is not only nonsingular but it has a norm of order 1 and
has no eigenvalues in the neighborhood of zero. These are indeed desirable properties
for getting good performance with iterative methods for solving linear systems. The
following remark is useful for showing other important results.

REMARK 4.1. Since U and V' € R™*" are such that UV = I,,, VU is an oblique
projection onto Range (V). Thus, if € Range (V), then VUz = z.
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THEOREM 4.4. The matriz K in (4.4) where U and V' € R™*" has at least one
eigenvalue X\ such that |A| = 1.
Proof. Observe that if K + 1 = U'V*? 4+ VU is singular, then K has at least an
eigenvalue A = —1. Lets consider three cases:
(i) If n > 2m then K + T is singular, since for any square matrices A and B
rank(A + B) < rank(A) 4+ rank(B).
(i) If n < 2m, observe that dim(Range (U") U Range (V)) < n. Also, U* and
V have rank m since UV = I, . Thus, dim(Range(U*) N Range(V)) > 0
since n < 2m. Hence, there is at least one eigenvector v # 0 such that
v € Range(U*) N Range(V') therefore, by remark 4.1,
Kv=(-I+UV'+VU)v=—-v+v+v=u.
(iii) If n = 2m, then from (ii) if Range(U*) N Range(V') # 0 there is a eigenvalue
A = 1. Otherwise there exist an eigenvector v such that vrange(v)y = 0 or
URange (Ut) = 0. Without loss of generality consider that vrange(v) = 0, 1.6,
v € N (V") and there is an eigenpair (# = A + 1,v) where

VUv = fv.

But then A+ 1 = (0 or 1) since UV = I and from theorem 4.2 it must be
A=—1. O
COROLLARY 4.5. The condition number k2(K) in (4.4) is given by max|\(K)|.
Proof. The proof is immediate from theorems 4.2, 4.4, the definition of
ka(K) = Zme= and recalling that K is symmetric. O

min

4.3. Practical Aspects. The iterative methods need access to the matrix only
to compute matrix-vector products. In this section we present a more stable way
to compute this product versus using the matrix directly as in w = Kz. Lets
consider for simplicity our matrix to be of the form (4.4). We can write any n-
dimensional vector z as * = ZRange(v) + Ta(Vt), Where Trange(v) € Range (V)
and z vty € N(V?'). Thus,

Ke=—-z+ UtVtJL‘Range(V) +VUz
= —éL‘N(Vt) + UtVtQL‘Range (V) + VUIN(Vt)

by remark 4.1. Now, since V* = [I 0]P its null and range spaces can be easily
represented in a code and all the calculations for it consist in managing some indices
properly. Observe that the first two terms do not have nonzero entries in common for
any of the positions. Hence, no floating point operations are needed to add them. If
we compute the product Kz without these considerations, some round-off error will
be introduced for the zero sum —zRrange(v) + UV ZRange(v) and often this error is
large enough compared with the other entries of . A welcomed side effect is that n
floating point operations are saved with this strategy.

Another practical aspect concern the recovering of the solution. The approximate
solution for the original system can be easily recovered from the solution for the
preconditioned system (Z,y) by computing

(3)=w(

where the error of the solution is given by

r1 (K + Dx — Aly
ry ) by — Az — Ey '

13
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Sometimes the norm of the error ||7||? = ||r1||? +||r2|? is too large due to the round-off
error introduced on computing the preconditioned system and recovering the solution.
It can get particularly large at the final iterations of the interior point method. One
way to reduce this error is to compute & = D~!(A'y—b;) and form a new approximate
solution (Z, y). The error for the new solution 7 will be given by 72 = ra + AD™1pq if
we assume that ¥ = by + Dz — A’y is zero. Thus, we update the solution whenever
||7]| is above a given tolerance and ||7]| < ||r||. This update is necessary for the
successful convergence of the interior point method for some of the problems tested
with this preconditioner. Notice that this strategy can be used for any symmetric
preconditioner for the augmented system.

4.4. Reduction to Positive Definite Systems. Consider again the indefinite
linear system at the left upper block
K=—1+D 7A'G' + GAD™ %

1
where G = H'DZB~! and HP' = [I 0]. It is possible to exploit the structure of the
problem even further, reducing it to a smaller positive definite system. If we expand
the above equation we obtain the following matrix

pt o DEBTINDY
DY N'B-D} -1

where we used relation 4.2.
Therefore the problem can be reduced to solve a positive definite linear system
involving either matrix

(4.5) I+ DB 'NDR'N'B~' D}
or
(4.6) Inom + Dy N'B™t D BN Dy,

These matrices have some interesting theoretical properties related to the indefinite
matrix K. \ \

Lets first define W = Dy 2 N*B~*D}. Hence, the positive definite matrices can be
written T+W'W and I+WW? respectively while the indefinite matrix not considering

permutations reduces to
I wt
w -1 )"

THEOREM 4.6. The matrices in (4.5) and ({.6) are positive definite and their
eigenvalues are greater or equal to one.

Proof. Let v be a normalized eigenvector of I + WW?" and § its associated eigen-
value, then

(I+WW"v = v
vt (v+ Wth) = v'v
I1+utu=20

where u = Wy. Thus 6 > 1. The proof for I + W'W is similar. O
14



REMARK 4.2. The matrices in ({.5) and ({.6) have the same set of eigenval-
ues with the exception of the extra eigenvalue equal to one for the matriz of higher
dimension.

From the above theorem and theorem 10.2.4 in [11] we can conclude that the
conjugate gradient method converges in at most min(m,n — m) iterations in exact
arithmetic for both positive definite matrices. Thus, we do not expect very different
behavior between the two linear systems although they have different dimension.
Besides the work for computing the matrix-vector product is about the same for all
three systems.

The next theorem is also important since it relates the eigenpairs of the indefinite
matrix with the eigenpairs of the positive definite matrices.

THEOREM 4.7. Consider the eigenvalue problem

I wt u)_ oy fu
w  —I v | v
then (0,u) is an eigenpair of I + W'W and (6,v) is an eigenpair of

I+ WW?, where 0 = A2,
Proof. Notice that

I wt I Wt _ [ I+W'W 0
W I | 0 I+ WW!

I+ W'w 0 U\ _ (U 0
0 I+ Wwt v ) v )7

Therefore the indefinite system can still be an option for solving the linear system
since 1t has a better eigenvalue distribution than the positive definite systems.

thus,

4.5. Choosing the Set of Columns. In this section we discuss how to select
the columns of A that form B. The type of matricesin (4.5) and (4.6) suggest a choice
for the columns of B by looking at the values of D. If we can chose the columns related
to the smallest values of diag(D), both WW?* and W*'W approach zero at the final
iterations of the interior point method. Thus, a good strategy consists in taking the
first m linearly independent columns of A ordered by the value of §;; in non decreasing
order. This choice of columns tends to produce better conditioned matrices as the
interior point method approaches a solution. This is because at least n — m diagonal
entries entries of D became large and diminish the importance from WW?* and W*W .

During the first few iterations, the diagonal values of D are roughly the same.
In fact they are all equal to one for the computation of the starting point. Hence,
for these linear systems the strategy described before is ineffective. Another way to
obtain a good set of columns is to minimize ||W||. This is problem is hard to solve
but 1t can be approached by a cheap heuristic, that is we choose the first m linearly
independent columns of AD~! with smallest 1-norm. This approach is adopted for
the computation of the starting point. After that the ordering of columns by the
diagonal values of D 1s used.

Contrary to some of the preconditioners given in [10], degenerated problems do
not seem to play an important role in this preconditioner. This is a nice property
since the selection of m columns of A naturally leads one to think in terms of basis
for the linear programming problem.
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Inner iterations
1P Incomplete New LU
Iteration Cholesky | Preconditioner
0 49 195
1 49 203
2 45 258
3 39 190
4 24 171
5 24 185
6 20 128
7 22 130
8 22 133
9 32 126
10 44 108
11 71 91
12 104 92
13 171 76
14 323 63
15 480 52
16 834 43
17 1433 34
18 2146 30
19 4070 22
20 7274 18
21 11739 17
22 15658 15
23 24102 12
24 13463 10
25 5126 6
Average 3360 84
TaBLE 4.1

KEN138 Conjugate Gradient Method Iterations

4.6. Preliminary Experiments. Table 4.1 shows the results for the conjugate
gradient method with respect to the number of iterations for the incomplete Cholesky
factorization and the new preconditioner as the interior point method progresses. The
preconditioned matrix (4.5) was used. The experiments are carried out in C, on a
SUN ULTRA-SPARC station. The floating point arithmetic is IEEE standard double
precision. The stopping tolerance for the interior point method and preconditioned
conjugate gradient is the square root of machine epsilon.

The chosen problem is KEN13 a multi-commodity network flow problem. It can
be obtained from netlib. The dimension of the linear system is 14627. The iteration
number zero corresponds to the linear system for computing the starting point for the
interior point method. Only the number of iterations of the conjugate gradient method
for solving the first linear system of the interior point iterations are shown. The
number of iterations for solving the second linear system is very close to the number
for the first system. An interesting property of these approaches is that the incomplete
Cholesky preconditioners in general starts taking few iterations to get convergence and
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its behavior deteriorates as the interior point method converges to a solution. With
the LU based preconditioner the exact opposite occurs. The last few iterations are
the ones where i1t performs better. This property of the LU preconditioner is highly
desirable since the last linear systems are the most ill-conditioned.

The results obtained for problem KEN13 can be considered as typical for both
preconditioners. That leads naturally to the idea of a hybrid approach. We start
with the incomplete Cholesky preconditioner and change to the LU preconditioner at
a certain point. A crucial issue consists in finding a suitable way to decide when to
switch the preconditioner from the incomplete Cholesky factorization to the new LU
factorization approach. The number of of iterations for the conjugate gradient method
to achieve convergence would be a good indicator to determine when is advisable to
switch. It could be when it takes more iterations than a given parameter or when a
sudden increase on this number occur.

5. Conclusion. We have shown that from the point of view of designing precon-
ditioners 1t is better to work with the augmented system instead of working with the
Schur complement. Two important results support this statement. First, all precon-
ditioners developed for the Schur complement system have in a sense an equivalent for
the augmented system. However, the opposite statement is not true. Whole classes
of preconditioners for the augmented system can lead to the an unique preconditioner
for the Schur complement.

Given this result we decided to design a preconditioner for the augmented sys-
tem. Our primary goal on developing this preconditioner was to avoid the Schur
complement. The main reason to avoid it is the loss of sparsity that can happens
by computing it or its factorization. The price for avoiding the Schur complement is
that we now have to compute an LU factorization for a set of linearly independent
columns of A. We expect that this factorization will be cheaper to compute than com-
puting the Schur complement and its (in)complete Cholesky factorization on many
situations found in practice. Moreover, the LU factorization can be used effectively
for a number of iterations thus, computing the next few preconditioners is much more
cheaper. A feature that is not shared by any known successful approach either to the
Schur complement or the augmented system.

A more important advantage of these preconditioners is that they became better
in some sense as the interior point method advances towards an optimal solution.
This i1s a very welcome characteristic since these problems are known to be very
ill-conditioned close to a solution. Finally, this preconditioner reduces the system
to positive definite matrices, and therefore the conjugate gradient method can be
applied, making it easier to compete against the Schur complement approach. This
reduction on the dimension of the system to be solved to either m or n — m is an
advantage over others augmented approaches since it minimizes the overhead of the
vector operations on the iterative linear solver method.

For future implementations we would like to make experiments with the hybrid
approach, that is we start with an incomplete Cholesky factorization and switch to the
LU preconditioner at a certain point. If a suitable way to decide when to switch can be
found, this approach will be probably the fastest way for solving many problems. We
also are interested on finding variations of the preconditioner by choosing its blocks
in a different fashion.

Techniques for computing the new preconditioner efficiently and extensive numer-
ical experiments are reported in a follow up work [17].
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