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Abstract

A class of affine-scaling interior-point methods for bound constrained optimization
problems is introduced which are locally g—superlinear or g—quadratic convergent.
It is assumed that the strong second order sufficient optimality conditions at the
solution are satisfied, but strict complementarity is not required. The methods are
modifications of the affine-scaling interior-point Newton methods introduced by
T. F. Coleman and Y. Li (Math. Programming, 67:189-224, 1994). There are two
modifications. One is a modification of the scaling matrix, the other one is the use
of a projection of the step to maintain strict feasibility rather than a simple scaling
of the step. A comprehensive local convergence analysis is given. A simple example
is presented to illustrate the pitfalls of the original approach by Coleman and Li
in the degenerate case and to demonstrate the performance of the fast converging
modifications developed in this paper.
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1 Introduction

In this paper we present and analyze an extension of an affine-scaling interior-point
method for the solution of simply constrained minimization problems of the form

minimize f(x)

(1)

def

subject tox € B= {z e R* : a; < z; < b;}.

Throughout the paper we assume that the interior B° & {z € R" : a; < z; < b;} of the
feasible set is non—empty. We allow the strict complementarity condition at a solution
T to be violated, i.e., we allow that Z; € {a;,b;} and V f(Z); = 0 for some 7. We call a
solution Z of (1) degenerate if the strict complementarity conditions are violated at Z.

The basis of our method is the affine-scaling interior-point method introduced in
[3,4]. Several extensions to this interior-point method have been made subsequently
[5,8,9,25,24,23]. Many of these works are motivated by discretized or infinite dimen-
sional optimal control problems with bound constraints on the controls. In particular
the research [24,23] on affine-scaling algorithms for infinite dimensional problems with
pointwise simply constrained controls in I” have partly motivated this work.

All papers listed above assume strict complementarity at the solution to establish
local convergence results. The main purpose of this paper is to weaken this assump-
tion and to develop an affine-scaling interior-point algorithm that converges locally
q-quadratic. Strict complementarity is also required in local convergence proofs for
several other interior-point approaches. We will discuss these results after a brief re-
view of the affine-scaling interior-point method and the motivation of this paper. In
this review we will make a few slight modifications to the original algorithm in [3,4] to
match it with our presentation in the subsequent sections and we will concentrate on
the local convergence.

Assumptions.

(A1) f:D — Ris twice continuously differentiable on an open neighborhood D D B.
(A2) The Hessian V?2f is locally Lipschitz continuous on B.

Let T be a solution of (1) and let (A1), (A2) hold. The fundamental observation in
[3,4] is that the necessary optimality conditions for (1) can be written as T € B and

D(z)Vf(z)=0.
where D(z) % diag(d,(z), ..., d,(x)) with

XT; — Q; if Vf(.’L‘)z > 0,
di(z) = di"(2) & b — if Vf(z); <0, (2)

min {.T, — Q;, bz — LL‘Z} else.



The nonlinear equation D(z)V f(z) = 0 is solved using a modification of Newton’s
method. The iterates are constructed to remain in B°. At a point z¢ € B° a formal
application of the product rule yields a Newton-like step of the form

M(z%)s = —D(z°)V f(z°)

with M(z) & D(z)V2f(z) + E(z), where E(z) % diag(ei(z), ..., e,(z)) with e;(z) =
|V f(x);]. The step is scaled by ot so that 7 = 2°+ ots is in the interior. The step size
t € [0,1] is the largest step size giving z° + ts € [a,b] and o € (0,1) is a scalar close
to one. If Z is a point at which the second order sufficient optimality conditions are
satisfied and which is nondegenerate, i.e., at which |V f(z);| > 0 whenever z; € {a;, b;},
then one can show that M(xz) ! exists and is uniformly bounded for all z € B in a
neighborhood of z. Moreover, it is shown in [3] that 1 — ot is of the order ||z¢ — Z||
and does not interfere with the local convergence of Newton’s method if 1 — ¢ is of the
order ||s||. The affine-scaling interior-point method is locally q—quadratic convergent.

If strict complementarity is violated, the previous statements about the Coleman-Li
affine-scaling interior-point method do not hold. In the degenerate case, if ¢ — 7,
there exist indices ¢ such that zf — a; or zf — b; and V f(2¢); — 0 at the same time.
In this case, the matrix M (z¢) asymptotically becomes singular. As a result, the step
sizes t may become very small. In general, this will prohibit fast local convergence, cf.
the second example in §6. It is worth noting that even if the unit stepsize can be used,
the convergence still may be only linear. This is illustrated by the first example in §6.

The purpose of this paper is to modify the affine-scaling interior-point method so
that fast local convergence in the degenerate case can be maintained. This will be
accomplished by two modifications. The first one concerns the scaling matrix D(z)
and/or the matrix E(z). Roughly speaking, we will modify them so that scaling will
be switched off for components in which degeneracy is detected. This detection will be
done automatically. Secondly, the scaling of the step by ot to keep the new iterate in
the interior will be replaced by a projection. Since the scaling ¢ is determined by the
components s; that are the most infeasible compared to their size, ‘bad components’ in
s may result in a very small ¢, which is then also applied to the ‘good components’ of
s, i.e. the ones which are sufficiently interior. We will show in this paper, cf. (46), that
the step sizes leading to small scalings ¢ are small relative to the ‘good components’ of
s. The projection cuts off ‘bad components’, but leaves ‘good components’ unchanged
or changes them only slightly and therefore preserves fast convergence. We will prove
local convergence with g-order min{2,p}, where p > 1 is a fixed parameter used in
the modification of scaling matrices D(z) and F(z). We emphasize that the use of a
projection does not destroy the descent property of the steps, see §5.

Our local convergence analysis differs from those in, e.g., [3,4] even in the nondegenerate
case. Our modifications for the degenerate case are partly motivated by our analyses
for the infinite dimensional case in [23,24]. For example, using a projection instead of
simple scaling to make 2 an interior point is already featured in [23]. However, the
analysis in the present paper is different and, in some parts, uses proof techniques that
do not carry over to the infinite dimensional framework.



Of course, the affine-scaling interior-point method is only one interior-point approach
that can be used to solve problems like (1). Interior-point methods for nonlinear pro-
gramming problems are a very active research area. In the following we will only discuss
a few papers on this topic that discuss local convergence results. Strict complementarity
is assumed in [10] and [28] to establish local convergence proofs of primal-dual Newton
and quasi-Newton interior-point methods. See also [25]. In [2] a trust-region Dikin-
Karmarkar scaling interior-point method is introduced for problems of the type (1)
with additional linear equality constraints. Local convergence is proven without strict
complementarity requirement but assuming strict second order sufficient optimality.
However, since a Dikin-Karmarkar scaling is used, local convergence is slow. The al-
gorithm can not be expected to converge superlinearly [2,22]. Strict complementarity
is used to prove convergence of the barrier method with logarithmic barrier function
[26, Thm. 3.6]. For linear and quadratic programs the structure of the problems can
be used to make stronger statements about the convergence of interior-point methods.
For example, in the case of linear programs there always exists at least one solution
which satisfies strict complementarity, e.g., [27, Thm. 2.4], and there are many results
which prove convergence of interior-point methods towards one such solution — the
analytic center of the solution set. See, e.g., [17] for a discussion. For quadratic pro-
grams and linear complementarity problems (LCPs) strict complementarity may not
be satisfied at any solution. In this case, interior-point methods may convergence signif-
icantly slower. For example, [11,20] consider a class of Newton interior-point methods
for monotone LCPs and show that if there exists no solution that satisfies strict com-
plementarity, then the duality gap converges only q-linearly with factor 1/4 instead of
g—superlinearly.

In addition to interior-point approaches, other methods can be used to solve problems
like (1). In particular trust-region modifications of the projected gradient and projected
Newton method [1] are often used. In [18] a modification of the trust region algorithm
[6,7] is proposed that converges locally q—quadratic under assumptions comparable to
ours.?

Finally, we remark that there is a class of optimization methods for nonlinear pro-
grams which for (1) requires conditions comparable to the ones used in this paper.
These methods are based on equivalently rewriting the necessary Karush-Kuhn-Tucker
optimality conditions as a nonlinear system. This system is then solved by a Newton
type method [15]. Local q—quadratic convergence of this Newton-type method can be
proven without strict complementarity assumptions, but with the strong second order
sufficient optimality condition stated in Theorem 2 below. See, e.g, [12,16] for recent
developments in this direction.

This paper is organized as follows. Section 2 introduces the basics of the algorithm. In it
the affine-scaling framework is stated with minimal requirements on the matrices D(x)
and F(x). Section 3 contains several convergence estimates. These will form the basis for
the final convergence analysis of our algorithm. The algorithm, in particular our precise

3 The report [19], published after the submission of this paper, extends these results. For
problems (1) the assumptions in [19] for local convergence are comparable to ours.



choices of the matrices D(z) and E(x) will be given in Section 4. This section also
contains the main convergence result. In Section 5 we show that our convergence result
remains valid if the Newton system is solved inexactly with appropriately controlled
accuracy. Moreover, we sketch a trust region globalization. An illustrative example is
presented in Section 6.

Notations. We use Z, z¢, 27 to denote a solution of (1), a current iterate of the al-
gorithm, and the new iterate of the algorithm respectively. The matrices D(z) and
E(z) are diagonal matrices generated by vectors d(z) and e(z), respectively. Analo-

gously, we will generate a diagonal matrix W (z) from a vector w(x). We recall that
BOd:e{ {.TER” : a,<:rz<bz}

2 Optimality conditions and basic formulation of the algorithm

We first review optimality conditions for (1).

Theorem 1 (First order necessary conditions)
If the assumption (A1) holds and T is a local solution of (1), then T € B, and

=0 ifai<:1_c,~<bi,
(ON)  V[f(2)i{>0 ifz; = a;,

For z € B we decompose 7{1, ...,n} into the active index set with strict complemen-
tarity A, the inactive set I, and the active set without strict complementarity N, i.e.,

N

© lief{l,...,n} : 7€ {ai,bi}, V(@) # 0},
© lief{l,...,n} : a; < T < b},

© lie{l,...,n} : T € {a;, b}, Vf(Z); =0}.

2' ~|

Theorem 2 (Strong second order sufficient optimality conditions)
Let the assumption (A1) hold. If the conditions in Theorem 1 are satisfied and if

(OS)  there exists a > 0 such that sTV2f(T)s > a||s||5 for all s € T(%),
where T(T) & {s eER": 5;,=0Vie€ A}, then T is a local solution of (1).

The name strong second order sufficient optimality condition is, to our knowledge,
due to [21, p. 55]. It is important for sensitivity analysis if the strict comple-
mentarity condition is violated, see, e.g., [13, p. 43]. It is also used in the con-
vergence analyses in, e.g, [2,15,18,19]. If strict complementarity holds at Z, i.e.,
if N = (), then the second order sufficient optimality condition in Theorem 2 is
the standard one. If N # (), then the second order sufficient optimality condition,
e.g., [14, Thm. 4], only requires that s"V2f(Z)s > «l|s|> for all s in the cone

{SET(Q_:) : s, >0ifi e N and 7; = a;, siSOifiENandfi:bi}.



By introducing a scaling-matrix D(z) % diag(d,(x),. .., d,(z)) with

': 0 1f,’[Z = a; and Vf(x)z > 07

i\ L
>0 if x; € {a,-, bz} and Vf(.’]?)z =0,

(> 0 else,

the condition (ON) can be written in the form
D(z)V f(z) = 0. (4)

The affine-scaling interior-point method is a Newton-like method applied to solve (4)
while maintaining = € B° for the iterates. A formal linearization of D(x)V f(z) around
z¢ leads to the Newton-like system

M(z)(z" — a°) = =D(z)V f (z°). ()

Here

M(z) = D(z)V*f(z) + B(x) (6)

is obtained by formal application of the product rule and E(z) is a substitute for the

in general not existing derivative -=(D(Z)V f(z))|3=,. We choose E(z) as a diagonal

matrix F(z) € diag(e; (), . . ., e,(r)) with

ei(x) =di(x)Vf(x)y, i=1,...,n. (7)

In (7) the real valued functions d}(z) are substitutes for the not everywhere existing

derivatives ;2-d;(z). We assume there exists ¢y > 0 such that

0<ei(a), |dia) <o, i=1,...,m, (8)

for all z € B. If we choose the Coleman and Li scaling d(z) = d°"“(x) defined in (2),
then we set

di(z) =sgn (Vf(z)), i=1,...,n. 9)

If x € B° and Vf(x); # 0, then (9) is the actual derivative of (2) with respect to z;.
With the choice (9) the entries (7) of E(x) are given by

ei(z) = |Vf(z)], i=1,...,n. (10)

The solution z* of (5) in general does not satisfy + € B°. To complete the description
of the local algorithm one has to describe how the solution z* of (5) is modified to



ensure that 27 € B°. We will discuss this issue in Section 4. First, we will analyze the
iteration (5).

3 Basic convergence estimates

Let the necessary optimality conditions in Theorem 1 hold at Z. With (4) we obtain
the trivial equality M (z¢)(z — z) = —D(z)V f(Z). Subtracting this equality from (5)
yields

M(z%)(z" — 7) = r(z°) (11)

with remainder term

r(z) = D(z)Vf(z) - D(2)Vf(z) — M(z)(z — ). (12)

The following lemma provides important estimates for r.

Lemma 3 i. Let the assumption (Al) hold and let T satisfy the first order necessary
conditions in Theorem 1. If D, M, E are matrices satisfying (3), (6), (7) and if r is
given by (12), then for allz € B and 1 <i<n

ri(x)| < diz) [(Vf(Z) = Vf(z) = V2 f(2)(T — 2))i]
+ |V(2)i(di(Z) — di(x)) — ei(2)(Zi — 3)]| -

(13)

ii. If, in addition to the assumptions in i., (A2) holds, if (8) is satisfied, and if di(x),
ei(x) are defined by (2), (10), respectively, for all i € A, then there exist p > 0 and
Ly > 0 such that for all x € B with ||z — Z||, < p the following estimate is satisfied:

ri()| < Ly dy(x)||e — || + max{1,ca} |Vf(2); = Vf(2)] lzs — 2] (14)

fori=1,...,n, where cg is given by (8).
iii. Under the assumptions in ii. the following inequality is valid:

Iri(z)| < Lydi(z)||z — Z||2 Vi€ N with e;(z) = 0. (15)
Proof. i. Using (6) and (12) we obtain

ri(z) = di(z)(V(Z) = Vf(z) = V*f(2)(Z — 2));

This implies (13).



ii. By continuity there exists p > 0 such that for all z € B with ||z — Z||, < p the
implication

Vi@)i#0 = Vf(z)Vf(x); >0
holds. Since d;(z) is defined by (2) and Vf(Z); # 0, d;(z) = 0 if i € A, we obtain for

all z € B with ||z — Z||, < p and all i € A that d;(z) — di(x) = sgn (Vf(Z):)(Zi — 2s).
Since Vf(z); =0 for alli € {1,...,n}\ A, we have for all i € {1,...,n}

V@ (d(E) — die) = { [VH@)l(E: = o) e (16)

0 else.

Similarly, if (8) is satisfied and if for all i € A the scalars e;(z) are defined by (10),
then

ei(r)(Z; — 2;) = [V f(2)] (% — z3) (17)
for all s € A and
l€:(2)(Z; — m3)| < ca |V f(2)i] [T — @i = ca|V ()i = V@)l 2 — 2] (18)
for all i € {1,...,n}\ A. Using (13), (16), and (17), we find that for i € A
ri(2)] < di(w) [(VF(Z) = VF(2) = V2 (2)(F — 2));
+ ||V (@)i] - V()

< di(x) |(VF(@) = Vf(z) = V*f(2)(Z — 7)),

|Zi — i

From (13), (16), and (18) we deduce that for i € {1,...,n}\ A

ri(z)| < di(@) |(Vf(Z) — Vf(z) = V*f(2)(Z — 2))i]

For p > 0 sufficiently small, assumption (A2) provides us with a Lipschitz constant Lo
of V2f on {zx € B : ||z — ||, < p}. Thus

(V(7) = Vf(z) = V*f()(@ — )] < Lolle — 21, (19)

and the assertion (14) is proven.

iii. Let 7 € N and e;(z) = 0. The assertion (15) follows from (13), (16), and (19), since
Vi(z)i=0foric N. O



If a second order sufficiency condition with strict complementarity holds at z then
Lemma 3 indicates the second order convergence of the Coleman and Li algorithm
in which d;(x), e;(z) are defined by (2), (10). As we have stated earlier, in this case
M(z)™! exists and is uniformly bounded in a neighborhood of Z. The estimate (14)
implies that z* defined by (5) obeys ||z* — Z||, < C||z¢ — Z||2, provided that z¢ € B° is
sufficiently close to Z. Moreover, the scalar ot in ¢+ ot(z™ — 2¢) converges sufficiently
fast to one so that it does not interfere with the q—quadratic convergence.

If strict complementarity is violated at Z, then the set N is nonempty and for all
i € N we have d;(T) = ¢;(Z) = 0. The uniform boundedness of M(z)~! is no longer
ensured in any neighborhood of z. Assume, for example, that z; = a;, Vf(Z); = 0
for some i and that there is a sequence {z*} with ¥ € B°, limy_,, 2% = Z, and
Vf(x¥); > 0, d;(zF) = d¥F(2*). Then d;(2*) = 2F —a; = 2% —Z; and limy_, o, d;(2¥) = 0,
limy o €;(2%) = limy_y oo di(2*)V f;(z%) = 0. Consequently, the definition (6) of M (z¥)
shows that the ith row of M (z*) tends to zero and thus

: kN—1)1 __
Jim [|M(2*) ]| = co.

To overcome this difficulty we premultiply equation (5) by the diagonal matrix W (z°)
with W : B° — R™" W (z) = diag(w; (z), . .., w,(z)),

def 1

wi(z) = di(z) + e;(2)

Note that W (z) is well-defined on B°, since d;(xz) > 0 and e;(x) > 0,7 =1,...,n, for
x € B°. We introduce the matrix
ei(x)

H(z) € W(x)M(x) = diag (%) V2 f(z) + diag (M) , (20)

and we use it to equivalently rewrite (11) as

H(z%(z" — z) = W(2°)r(a°). (21)

We first show that H(x)~! exists and is uniformly bounded for all z € B°, ||z — Z||, < p,
if 7 satisfies (OS) and if p > 0 is small enough.

Lemma 4 Let the assumption (A1) hold and let T € B satisfy the strong second order
sufficient optimality conditions stated in Theorem 2. Moreover, let D, M, E satisfy
(3), (6), (7), and (8) and let H be defined by (20). If there exists p > 0 such that for all
z € B° with ||z — Z||, < p and all i € A the diagonals d;(z) are defined by (2) and the
diagonals e;(x) are defined by (10), then for p € (0, p) sufficiently small and all x € B°
with ||z — Z||, < p the matriz H(z) is nonsingular with

1+CH+O,’/2@

@)y < =

Caot, (22)



where « is the constant in (0OS) and Cxg = sup [|[V*f(2)],-
llz—2[l,<p

Proof. For s € R"® we set

sa EW(z)D(x)s, s.=W(z)E(x)s.

i. First we show that for all k > 0 there is p > 0 such that for all x € B° with
|z —zll, <p

(0% .
STV (@)5a > Slisally Vs € R with [[sall, > sls]l (23)

To prove (23), we choose p € (0, p) so small that

1
max [V f(2); — Vf(2)i] < 5 min|VF(@)i =~y (24)
€A 2 icA
for all € B° with ||z — z||, < p. Let x € B° with ||z — z||, < p be arbitrary. From

(24) we obtain

IzrgggIVf( )il > . (25)

As a consequence, V f(z);Vf(Z); > 0 for all i € A, and, since d;(x), i € A, is defined
by (2), it follows that

The vector sy with

0 else

Sd)i if ¢ f_l,
(ST)Z_:{( ) ifi g

is an element of the linear space 7'(Z) defined in Theorem 2. Using (25), (26), and the
fact that e;(z) = |V f(x)s for i € A, we obtain an estimate for sye = sq — 54

di(x)
di(x) + |V f(2)i

<
el < max

- ||S||2 < e L sall, (27)

Since stsre. = 0, we have by (27)

2
2 2 2 P 2
= — > (11— .
[srlly = llsally — lls7elly > ( 5272> lIsall;

10



Moreover, (A1) and (OS) guarantee that

3
IV f(@)sr > Sallsrll (25)

for all x € B with ||z — Z||, < p, provided p is sufficiently small. Using the previous
two estimates, (27), and (28), we get

sV f(x)sq=sEV2f(2)sT + 50 V() (ST + 84)

3 2 2p 2
> ellsrll; EIIVQf(x)IIQIISdIIQ

3 p’ 2 2p >
> 30 (1= 25 el = 22Ul

Together with (A1), the previous estimate implies (23) for sufficiently small p > 0.
ii. By (A1) there is a constant Cy > 0 such that for sufficiently small p > 0,

IV2f(z)|l, < Cy Y z € Bwith ||z — Z||, < p.

We set kK =1/(1 4+ Cy + «/2). We have shown in part i. that — possibly after reducing
p > 0 — (23) is satisfied for all z € B° with ||z — Z||, < p. We now show that for all
these z

a/2 "
1H @) sll, 2 7= slly Vs € R". (29)

CH+a/2

This inequality proves that

1+CH+a/2

1H ()7 I, = [[1H (z) "I, < o2

as asserted. To prove (29), let x € B° with ||z — z||, < p be arbitrary. For s € R* we
consider two cases.

1. Let ||sq4]|, > &||s]|,- From the nonnegativity of d;(z), e;(x), and w;(z) we find that
sts, = sT' D(z)W?(z)E(x)s > 0. This inequality and (23) yield

(0%
Isallo|H (2)"slly > 54 H(z)"'s = 53V f(2)sa + 545¢ > 53V F(@)5a > S l|sall-

Hence,

a/2

15 Cy + a2l

(0% (6
|H@)sll, 2 Sllsall, > Srllsl, =

2. Let ||s4|l, < K]|s]|,- Then

Isello[1H (2) 'slly > 57 H (2)"'s = s V2 (2)sa+ 52 56 > lIselly — Callsallyllsell,.

11



Since s = s4 + se we have ||s.||, > ||s||, — ||sall, and thus

1H ()" sll, > lIsell, = Callsally > lIslly = (1 + Ca)llsall,

> (1= w1+ C)lsll, = —212

The proof is complete. O

As a first result we get the following error bound.

Theorem 5 Let (A1), (A2) hold and let the strong second order sufficient optimality
conditions stated in Theorem 2 be satisfied at T. Furthermore, let D, M, E satisfy (3),
(6) (7), and (8). If there exists p > 0 such that for all x € B° with ||z — Z||, < p and
all i € A the diagonals d;(x) are defined by (2) and the diagonals e;(x) are defined by
(10), then there exists C' > 0 such that for p € (0, p) small enough (21) admits a unique
solution xt and the estimate

le* —zll, < © (lla® — 22 + 7)) (30)
where
" 0 ifi € N and e;(z) =0, (31)
) = o 31
Vi (2)i = V()] |2i — 7] otherwise,

di(z) + e;(x)

is valid for all z¢ € B° with ||z° — Z||, < p.

Proof. Since d;(xz°) > 0 for all i € {1,...,n}, the matrix W (z°¢) is well defined and
the equations (5), (11), and (21) are equivalent. For sufficiently small p > 0, Lemma 3
and 4 are applicable. The estimates (14), (15) imply that

di(a) ¢ — Z|2 + max{1, cg }|7s(z°
) +eay el adiREO )

< Ly ||z¢ — 7|2 4+ max{1, cg }|75(2°)]-

|(W (29)r(29))i] < Lo

Now (21) and (22) yield (30) with C' = Cy-1 max{y/nLs,1,cg}. O

Note that if e;(x) is given by (10), then

_ V@) = V(@) |2 — 3_3z'|_

0@ + V@) (33)

12



4 Formulation of the algorithm and local convergence analysis

The results in Lemmas 3, 4 and Theorem 5 indicate that the Coleman-Li scaling and
the corresponding E given by (10) are good choices for i € A. We will see in a moment
that they are also good choices for indices i € I. However, if we use the Coleman-Li
scaling matrix (2) and the corresponding matrix E given by (10) for all indices, then
the estimate (30) with 7 given by (33) indicates that the term ||7||y in (30) may only
be of first order in ||z° — Z||, if [V f(x);| and d;(x) are of the same order of magnitude.
But for i € N this may happen if d;(x) and e;(x) are defined by (2), (10), respectively.
On the other hand, for i € AU I, and d;(z) according to (2) there is € > 0 such
that d;(z¢) + |V f(z°);| > € for ||z° — Z||, small, yielding a quadratic order of these
components of 7(z¢).

These are the key observations for the development of a fast convergent method in
the case without strict complementarity. We must control the components of 7(x) with
indices ¢ € N by suitable choice of d;(x) and/or e;(x).

This can be done in various ways. We propose two choices.

Scaling matrices I. For p > 1 set

d$t(x) if |V f(2);] < min{z; — a;, b; — z;}" or
di(z) = if min {z; — a;,b; — z;} < |V f(z);P (34)

1 else.

The matrix E(z) is either defined by (10) or by

|V f(z);| if |Vf(x);] <min{z; —a;,b; — z;}F or
ei(z) = if min {x; — a;, b — 2;} < |V f(2):|? (35)

0 else.

Scaling matrices II. The matrix D(z) is defined by (2) and E is defined by (35)
with some fixed p > 1.

Ifi € Nand |Vf(z);| ~ |zi—7;| < 1 then |V f(z);| > |2;—Z;|P = min {x; — a;, b; — z;}*
and min {z; — a;,b; — x;} = |z; — T;| > |V f(x);|P. Hence, the choice (34) of D ensures
that for these components, which turn out to be the pathological ones, see the proof
of Theorem 8, the Coleman-Li scaling is eventually switched off. On the other hand,
we will show in Lemma 7 below that for all indices i € AU I the diagonal entries d;(z)
and e;(x) are chosen according to (2) and (7), respectively, if z is sufficiently close to z.
The choice (10) of E is the standard choice in the Coleman and Li setting, the choice
(35) of E corresponds to the ‘derivative’ of D in (34).

First, we remark that the definition (34) of D is admissible, i.e. satisfies (3). This can
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be seen readily from (34).
Lemma 6 The definition (34) of d; satisfies the requirement (3).

Lemma 7 Let (Al) hold, let T € B and let D(x), E(x) be defined by (34) and (35),
respectively. Then there exists p > 0 such that

di(z) = di " (z), ei(z) =|Vf(z)|

for alli € AUI and all z € B with ||z — Z||, < p.

Proof. Consider an index i € A. Since 0 = min {Z; — a;,b; — Z;} < |Vf(Z):[?, the
continuity of the expression on both sides of the previous inequality ensures the exis-
tence of p > 0 with min{z; — a;, b, — z;} < |V f(x);? for all i € A and all x € B with

||z — Z||, < p. This proves the assertion for ¢ € A.

Now, consider an index ¢ € I. We have that 0 = |V f(z);| < min {z; — a;,b; — z;}". As
before, there exists p > 0 such that |V f(z);| < min{z; — a;,b; — z;}* for all ¢ € I and
all z € B with ||z —z||, < p. O

We now state the main result:

Theorem 8 Let (A1), (A2) hold and let the strong second order sufficient conditions
of Theorem 2 be satisfied at T. If M is defined by (6) and if D and E are computed
according to choice 1 or choice 11, then there are C' > 0 and p > 0 such that for all
z¢ € B°, ||z¢ — Z||, < p, the equation (21) has a unique solution x* and

|zt =z, < Olla® — a|l5™", (36)

where p > 1 is the scalar in the definition of D or E, respectively.

Proof. By Lemma 7 there exists p > 0 such that if d;(x) is defined by (2) or (34) and
if e;(x) is defined by (10) or (35), then

di(z) = dS"(z), ei(z) = |Vf(x);| forallic AUT (37)

and for all z € B with ||z — Z||, < p. In particular, both choices I and II of the scaling
matrix D and of E satisfy the assumptions in Theorem 5 and the estimate (30) is valid
for sufficiently small p > 0.

We complete the proof by estimating the quantities 7;(z) defined in (31).
By the definition of A and I there exists v > 0 with

min (|V f(z);| + min {z; — a;,b; — z;}) = 27.

i€AUT
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Since d;(x) > min {1, z; — a;, b; — z;} we have, after a possible reduction of p > 0,

min_(d;(z) + |V f(z)i]) =27 >0
i€ Aul
for all x € B with ||z — Z||, < p.
Since (A1) implies the local Lipschitz continuity of V f with a constant Ly, (31), (37),
and the previous inequality imply that
Vi) = V@il |2 =7 _ Laflz — 2y i — i
di(x) + |V f(2)i] B v

7i(z) = Vie AUL. (38)

For the remaining indices i € N we have V f(z); = 0 and Z; € {a;, b;}. We reduce p > 0
such that z € B, ||z — Z||, < p, implies
\z; — Z;| = min {x; — a;,b; — z;} = min {1, z; — a;,b; — z;} < d;(z) Vi€ N. (39)

We consider three cases. In each of the following cases, we consider an arbitrary i € N.

1. Let |V f(x);| < min{z; — a;, b; — z;}". In this case d;(z) = dS"(z) and for all choices
of E(z) in I and II we have that e;(z) = |V f(x);|. Moreover,

‘Vf(.’L')Z - Vf(fl_?)z‘ = |Vf($)z‘ < min {.’L‘Z — Gy, bz — .Ti}p = ‘SEZ - .Ti|p.

Hence, using (39),

IVf(x)i = VF@)illwi = Ta| _ v = 3PT oy — 3P
di(x) + |V f ()l T di(r) T |m - T

7i(x)| =
2. Let min {z; — a;,b; — x;} < |V.f(x);[P. As in the previous case, d;(z) = d-"(x) and
for all choices of F(z ) in I and IT we have that e;(z) = |V f(z);|. Moreover, V f(Z); =
|23 — T = min{z; — a;, b — 23} <[V[(2)il’ = [Vf(2); = Vf(2):]",

and

2)i — Vf(@)i["

(
+|[Vf(@)i — Vf(Z)il (41)

_ Vf(@)i = Vf(x)i]|mi — 74 < Vf
+ [V f(z)i] di(z)

2ilP < Lz — z[l3-

3. Finally, assume that neither case 1 nor case 2 apply. If D and E are chosen according
to I, then d;(x) = 1 and e;(x) > 0. In this case we obtain

|Vf($)z' - Vf(f)inz' — T4

<|Vf(z ) Vf( )i \ |zi — Zi| < Lallz — 2|y |2 — 7).
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If D and E are chosen according to II, then e;(z) = 0 and 7;(x) = 0.
From the estimates (38) to (42) we obtain the existence of C; > 0 with

F@)] < Crlle — a7 (43)
for all i € {1,...,n}. Using this estimate in (30) gives the desired result. O

The solution 2 of (5) will in general not satisfy ™ € B°. Therefore, we need to modify
zT to ensure that the new iterate is in the interior. Of course, the modification should
be so that the convergence result in Theorem 8 remain valid. In most cases the new
iterate is chosen as z¢ + ots, s = 27 — z¢, where the step size

t = min {1, min {(b; — x5)/s; | s; > 0}, min{(a; — z{)/s; | s; <0}} € [0,1], (44)

is the largest step size giving z¢ + t°s € [a,b] and o € (0,1) is scalar close to one.
This is used, e.g, in [3,4]. Under the conditions in [3, Lemma 12], which include strict
complementarity, it is shown that this step size satisfies ot = 1 — O(||z¢ — Z||) if o is
chosen of the order 1 — O(||s||). Together with an estimate like (36) for p > 2, this
implies g—quadratic convergence of the iteration.

In the degenerate or near degenerate case this scaling of s = x1—z° by ot is problematic.
It can not be guaranteed that ¢ is close to one if x¢ is close to z. In fact, in the next
section we will give an example in which the step size even converges towards zero.
From (44) we see that ¢ < 1 can be caused by only one component. In such a case all
other components of z7 — z¢ will be scaled by this small ¢, even though many of the
other components of 7 may be safely inside B°. To see how badly the scaling by ¢ can
fail and to find a remedy, we make two observations. First, we note that if (36) holds
and if x; is infeasible, then

dist(a}, @i, b)) < |2 = af | = O(llz = 2™ = O(lJa™ — &™), (45)

The first equality in (45) follows from (36) and the second equality from (36) and

|7 — 29|(1 - O] — 29 ™7 <7 — 2| — ||a* - 2|

< flat = afll < llo* = 7] + |17 - 21| < |17 = 27 (1 + Ol — a2,

Equation (45) shows that the infeasibility of the unscaled step is always small relative
to the step length. For our second observation suppose that a small scaling ¢ < 1
occurs. Let t = (b; —x§) /s, s; > 0, or t = (a; — x5)/s4, s; < 0. Simple calculations show
that dist(x], [a;, b;]) = (1 —t)|s;|. Since t < 1, dist(z;", [a;, bi]) = |s;|. With (45) we see
that components of s = 27 — ¢ that lead to a small scaling ¢ are always small, more
precisely,

sl = O(|Is[™™*7) < |1s]. (46)
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Therefore, if the scaling is small, this is caused by the ‘unimportant’ small components
of s. The example in Section 6 will show that these components can in fact lead to
very small step sizes t and, consequently, to a deterioration of convergence. Thus, a
modification of the scaling matrix D and the corresponding matrix E alone is not
enough to guarantee fast convergence.

Our first observation points to a remedy. Equation (45) shows that only a modification
of the order O(||s||’) is necessary to obtain a feasible point from z*. This can be
easily accomplished. Instead of the scaling by ¢, we use a projection P onto B. In
the case of box constraints the projection can be easily computed and is given by
P(z) = max {a, min {b, z}}. Instead of 2¢ + ot(xt — 2¢) we use 2¢ + o (P(z*) — 2¢) as
the next iterate, where o is chosen close to one, e.g. 0.9995 < ¢ < 1. This choice was
first proposed in [23]. The advantage of the projection over the simple scaling is that
the projection only cuts off components z;” which are larger than b; or smaller than
a;. Other components are unchanged. Moreover, since P(z*) cuts off components z;"
outside [a;, b;], the point P(z™) will actually be closer to Z € B than z* if P(z) # z™.
We define

P[z¢](z) = 2° + max {0,1 — [|P(z) — 2°[|,} (P(z) — 2°)

and obtain the following method:

Algorithm 1 (Projected Affine-Scaling Interior-Point Newton Method)
Let z° € B° be given. Select the way the scaling matrizx D and E is computed from
choice I and 11.

Fork=0,1,2,...:

1. Compute D(z*) and E(x*) according to choice I or choice 11.

2. If D(zF)V f(z*) = 0 STOP with solution x*.

3. Solve H(x*)(z**+1/2 — k) = —W (2*) D (a*)V f (z*).

4. Set 25+ = Pla¥](z¥+1/2) = o* +max {0, 1 — ||P(a**1/?) — 2¥||,} (P(a**1/2) - 2¥).
This algorithm is locally convergent with q—order min{p, 2}. More precisely:

Theorem 9 Let the assumptions of Theorem 8 be valid and let p be the scalar in the
definition (34), (35) of the modified scaling matrices D or E. The iterates generated
by Algorithm 1 converge locally with g—order min{p, 2} towards a point T satisfying the
second order sufficient optimality conditions in Theorem 2.

Proof. Let z° be sufficiently close to T so that (36) is valid, i.e.,
/2 ~ 2ll, < Clla® - 2.
The nonexpansion property of the projection and P(z) = 7, P(z°) = z° imply

1P(2) = zll, < |a'? = zll,,  |P@"?) = 2°ll, < ||l2*/? = 2°),.
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Step 4 of the Algorithm 1 implies that

vt =7 = (1-max{o,1 - |P("?) - 2°|,,}) (z° = P(z"/%)) + P(z'/?) - &

If max {o, 1 —||P(z'/?) - a:0||2} = 1—||P(2?) — 1°||,, the two inequalities from above
yield that

_ 2 _ 2 _
=t = z[l, < [|1P('/?) = 2, + | P('/?) = Z]l, < |22 = 2%, + ||/ — 7],
_12 _2 _
< 2|2 — 2|, + 2l|="/* — Z[|, + [|=*2 — 2],

< 2(C?)|2® — 2P 2 1) |20 — ZJ; + Ol — 3.

The proof can be completed using standard induction arguments. O

5 Inexact solution of linear systems and globalization

For large-scale problems, the exact solution of the linear system in step 3 of Algorithm
1 may be impossible or at least very expensive. In this case iterative methods are used
to compute approximate solutions z¥+1/2 satisfying

H(z*)(zF+Y2 — 2k) = W (2D (2*)V f () + oF. (47)

The control of the residual error vy can be done similarly to the control of inexactness
in Newton’s method for unconstrained optimization. The following theorem states a
typical convergence result.

Theorem 10 Let the assumptions of Theorem 9 hold. Assume that in step 3 of Al-
gorithm 1 the iterates 112 are computed only inezactly such that they satisfy the
accuracy requirement (47) with

[V¥ll, < mellW (@) D(®) V£ (25)]],, (48)

where ng, > 0. If limg yoome = 0 and nx, < n, n > 0 sufficiently small, or even
e < K||W(xk)D(:ck)Vf(:ck)||§mm{2’p}71) for some K > 0, then the iterates z* con-
verge locally g—superlinearly, or locally with g—order min{p, 2}, respectively, towards a
point T satisfying the second order sufficient optimality conditions in Theorem 2.

Proof. In the following, let C > 0 denote a generic constant. For 2° € B° sufficiently
close to Z, Theorems 5 and 8 are applicable. In particular, (32) and (43) hold, proving
that ||W (z%)r(z%)]l, < C||z° — Z||2™*" . From (A1) it is obvious that H(z), z € B°,

is bounded in a neighborhood of Z. Hence, the definition (12) of r yields

W (2)D(2)V £ (a)ll, = | H(2°) (2" = 2) = W(2")r ()|, < Clla” — ],

18



This, assumption (48), and Lemma 4 imply
_ - —((min{2,p}—1 -
|21/ =z}, = | H(2®) 7 (W (2°)r(2°) +0°)l, < C(ll2® = 25 ) |2 — 21,

See also (21). Now we can proceed as in the proof of Theorem 9. O

Algorithm 1 can be globalized using a trust-region method analogously to the one in
[3,4,23,24]. We only sketch the results and leave the details to a forthcoming paper. The
main observation for the transition from global convergence to fast local convergence
in the trust-region method is that Algorithm 1 produces a descent directions if the
iterates are close enough to z. Given zF € B°, 2¥71/2 solves the equation in step 3 of
Algorithm 1 if and only if 2¥+/2 — 2% is a stationary point of the quadratic function

Yr(s) E Vf(2*)Ts + %STQ(xk)s

with Q(z*) £ D(2*) "' M (2*) = V2 f(2*) + D(2*)~' E(2*). One can show that Q(z*) is
positive definite for z* close enough to Z satisfying the strong second order sufficiency
condition of Theorem 2. Hence, 1), may be used for a trust region globalization where
the trial steps s* are approximate solutions of the subproblems

minimize ;(s) subject to z* +s€ B, ||s]l, < Ay

Denoting by ¢ the optimal value of v for this subproblem one can show that s* =
okt — 2% with ¥+ from step 4 in Algorithm 1 satisfies for any fixed 3 € (0,1) the
fraction of optimal decrease condition y(s¥) < B¢ if the sufficiency condition of
Theorem 2 holds for Z and ||z*¥ — Z||, < p, p > 0 small enough. If the acceptance of
steps and the update of the trust region radius Ay are performed in a standard way
by comparing actual reduction ared = f(a* + s¥) — f(2*) and predicted reduction
pred = V f(zF)T sk + %skTVQf(:ck)sk it can be shown that for Ay > Apin > 0 the step
s* is always accepted for sufficiently small p. Hence, close to z Algorithm 1 generates
trial steps that are accepted by the trust region method outlined above, yielding local
convergence with g-order min{2, p}.

6 Two simple examples

The first example is min,>o f(z). We assume that Z = 0 is a minimizer and that
f'(0) =0, f(0) > 0. Since f'(x), f"(x) > 0 for sufficiently small z > 0, it is not difficult
to show that the Coleman and Li affine-scaling interior-point method is equivalent to
Newton’s method applied to the root finding problem g(z) < 2 f'(z). In particular, the
Coleman and Li steps are always shorter than the Newton steps for min f(x) and they
are always strictly feasible. Since ¢’(0) = 0 and ¢”(0) = 2f”(0) > 0, the Coleman and
Li affine-scaling interior-point method is linearly convergent. Depending on the choice
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of the scaling matrix, our modification of the affine-scaling interior-point method will
either take steps s = (f"(z) + f'(z))"'f'(z) or s = f"(z)"'f'(z). If z + s < 0, then
the projection in Step 4 of the algorithm will move the new iterate even closer to the
solution. Our algorithm converges q—quadratically, if the parameter in the choice of the
scaling matrices is p = 2.

The previous example shows that for one-dimensional problems only the choice of the
scaling matrices D and F in the Coleman and Li affine-scaling interior-point method
cause a deterioration of the local convergence in the degenerate case. The next example
shows that in the degenerate case the original Coleman and Li affine-scaling method
can produce step sizes that do not converge towards one. Our previous discussion shows
that this can not happen in one dimension. We consider

. g 1o 14 2
pmin flz,y) = — oo’ + oy’ — o'y + o (49)

It is easy to check that (Z,7) = (0,0) is a minimizer of f at which the second order
sufficient optimality conditions of Theorem 2 are satisfied. The strict complementarity
is violated in the component y. For small z,y > 0, the step in the original Coleman and
Li affine-scaling method with D and E given by (2), (10), respectively, is the solution
of

di(—1-2y)+ (1 —2z—2zy) —2zxd; 51 di(1 — z — 2zy) (50)
—2xdy do + \y - $2| 52 d2(y - mZ) ’

where dy =z and dy =y ify—22>0and dy =1 -y if y — 22 < 0.

We fix € (0,1) and look at the special case y = px?, x > 0 small. Then dy = 1 — pa?
and the solution of (50) is given by s; = —z + O(z?), so = —(1 + p)z? + O(z®). Hence,
if a simple scaling is used to maintain strict feasibility, then sy &~ —((1 4+ u)/p©)y leads
tot = p/(1+ u) < p. This example illustrates our statement (46) that the components
s; which lead to small scalings ¢ are small relative to the step length.

If the modified scaling is used, then we obtain the following. Let again p € (0,1) be
fixed, y = pz?, = > 0 sufficiently small. If F is computed from (35), then the entry
ly — 22| = (1 — p)2® will be replaced by zero and dy > 0, which is equal to dy = 1
for Choice I and dy = 1 — pa? for Choice II, can be cancelled. The solution of the
resulting system (50) is given by s; = —z + O(z?), s = —(1 + p)z? + O(z?). Hence, as
before, a simple scaling would lead to a small ¢ &~ /(1 + u) and it would prevent fast
convergence. The same is true for all other variants of Choice I and II, respectively,
since they all generate a step with s; = —z + O(2?%), s = —(1 + p)a? + O(z?).

Using a projection instead remedies the situation. In our numerical results below we
find that using the projection instead of the simple scaling leads to convergence for
the original Coleman-Li scaling as well as for its modifications. However, to obtain
fast local convergence, one has to use the modifications of the scaling D and/or of E
combined with the projection.
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We complete our illustration with a few Matlab computations for the example (49). In
all cases the step is computed using equation (5) multiplied by W (z*). The iteration
was stopped if || DV f(z¥)||, < 107! and ||z* — zF~1||, < 107! or if 20 iterations were
reached. We used o = 0.9995. Our starting point was 29 = 1073, 23 = (29)?/2. The left
part of Table 1 shows the performance of the original Coleman and Li affine-scaling
method discussed in the introduction with D and E given by (2), (10), respectively,
and simple scaling of the steps. It can be clearly seen that convergence is prohibited by
small simple scalings ¢. In particular, we see that to ~ 1/3 = 3/(1 + 3), as expected.

Table 1

Coleman and Li affine-scaling interior-point method and its modifications (§x = Dy V f(z*)).
a. Coleman and Li affine-scaling interior-point method with simple scaling of the step. b. Cole-
man and Li affine-scaling interior-point method with projection of the step. c. Modified Cole-
man and Li affine-scaling interior-point method, Algorithm 1 (p = 2, Choice I/II).

a. b. C.

k ik lgell, — =f T3 7| P Ty lgell, — =f zh

0] 3.3e-01 9.9e-04 1.0e-03 5.0e-07 | 9.9e-04 1.0e-03 5.0e-07 | 9.9e-04 1.0e-03 5.0e-07
5.6e-04 6.6e-04 6.6e-04 2.5e-10 | 5.0e-07 5.0e-07 2.5e-10 | 5.0e-07 5.0e-07 2.5e-10

—

2.8e-07 6.6e-04 6.6e-04 1.2e-13 | 2.5e-13 2.5e-13 1.2e-10 | 2.5e-13 2.5e-13 1.2e-16
1.4e-10 6.6e-04 6.6e-04 6.2e-17 | 3.8e-21 1.5e-23 6.2e-11 | 6.2e-26 6.2e-26 3.1e-29
7.0e-14 6.6e-04 6.6e-04 3.1e-20 | 9.7e-22 4.8e-34 3.le-11
3.5e-17 6.6e-04 6.6e-04 1.5e-23 | 2.4e-22 7.5e-45 1.5e-11
1.7e-20 6.6e-04 6.6e-04 7.8e-27 | 6.0e-23 5.9e-56 7.8e-12

S Ot R W N

19| 2.1e-63 6.6e-04 6.6e-04 9.5e-70

The situation is improved considerably if the simple scaling is replace by a projection
identical to the one in Step 4 of Algorithm 1. However, a closer look at the middle
part of Table 1 shows that the iterates do not converge gq—quadratically towards the

solution, but show a linear convergence behavior with factor ~ %

The right part of Table 1 shows the performance of the modified Coleman and Li
affine-scaling method, Algorithm 1. We used p = 2 and ¢ = 0.9995. With Choice I,
D is computed by (34) and E is computed by (35). We observed that dy(z*) = 1 and
ea(z¥) = 0 for k > 1. The iterates converge almost q—quadratically. The numerical
results with Choice II for D and E are indistinguishable from those for Choice I if the
result are printed to 5 digits. Of course, these illustrations do not replace numerical
tests of the modifications of the affine-scalings and their comparisons with existing ones.
Such tests will be part of a forthcoming report. We believe, however, that they make a
strong case for the projection instead of the simple scaling. This is also supported by
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the examples in [23].

7 Conclusions

Affine-scaling interior-point Newton methods for simply constrained nonlinear prob-
lems were introduced by Coleman and Li [3,4] and have proven to be very robust and
efficient. However, in the original design of Coleman and Li, they are g—quadratically
convergent, only if strict complementarity holds at the solution. In this paper we have
introduced and analyzed two modifications that overcome the two main problems aris-
ing from degeneracy. The first modification addresses the fact that the affine scaling of
degenerate components may destroy fast local convergence. This effect is remedied by
switching off the affine scaling for components which are identified to be degenerate.
This is done completely automatically and involves a parameter p > 1 which can be
chosen arbitrarily. The solution of the affine-scaling Newton equation might result in
an iterate that is outside of B° and, therefore, has to be transported back into the
interior B°. This is usually accomplished by a simple scaling with an appropriate step
size. In the presence of degeneracy, however, this may lead to almost vanishing step
sizes even arbitrarily close to the solution and a loss of fast convergence. Therefore,
the second modification is an implementation of the back-transport into B° by an
interior-point modification of the projection onto B. We have proved that the modified
affine-scaling interior-point Newton method converges locally with q—order min{p, 2}.
This rate of convergence is preserved if the Newton equations are solved only inexactly
with sufficient accuracy. Moreover, it was pointed out that the algorithm generates
locally descent directions and can be globalized by trust region techniques.

The failures of the original Coleman-Li algorithm in the degenerate case and effects of
the two modifications introduced in this paper have been illustrated on an example.

Finally, we would like to point out that the convergence results were proven using some
non-standard techniques, which partly were developed in the analysis of affine-scaling
interior-point Newton methods for infinite dimensional problems [23]. As an example
we mention the preconditioning by the diagonal matrix W. Also the importance of
the projection as back-transport was already discovered in [23], since in the infinite
dimensional context the simple scaling fails even in the nondegenerate case.
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