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Abstract

An approach is proposed for the ab initio macromolecular phase
problem in which the information that proteins are make up of con-
nected chains of atoms is exploited by connectivity constraints. It
is show here that the simple forms of the connectivity constraint to-
gether with the non-negativity constraint can generate approximate
molecular envelopes from the diffraction data |Fhkl|. Examples with
different solvent contents, space groups, and numbers of molecules per
asymmetric unit cell were chosen to illustrate the applicability of the
algorithms.

1 Introduction

1.1 The Phase Problem

The phase problem (Hauptman, 1989) arises because a monochromatic diffrac-
tion experiment on a single crystal provides only the amplitudes of the re-
flections. The phases of the reflections cannot be recorded in the experiment.
However, both the phase and the amplitude of each reflection are required
to recover the electron density in the crystal by the inverse Fouier transfor-
mation. Thus, the phase problem can be viewed as the recovery of an object
from the amplitudes of its Fourier transform.



The phase problem has been solved in the case of small molecules (up to
a few hundred atoms in the unit cell) through the so-called direct methods (
Karle & Hauptman, 1956). However, the application of these direct methods
to macromolecules has not yet succeeded.

1.2 The uniqueness of the macromolecular phase prob-
lem

The question of the uniqueness of the solution in the phase problem is impor-
tant because even the most sophisticated searching algorithms is bound to
fail when the true solution is only one of a very large number of distributions
satisfying all of the constraints.

1.2.1 Phase recovery in in optics

In optics, an unique solution exists for the phase problem in almost all cases
if the object is sampled continuously in two or higher dimensions (Bates,
1982; Hayes, 1982). In these cases, the uniqueness depends on whether the
structure factor

F =3 p(z,y)erp2mi(hz + ky)] (1)

zy

is factorizable. In one-dimensional problems, F'is polynomial in a single vari-
able, and the fundamental theorem of algebra guarantees that F' can always
be expressed as a product of first-order polynomials. Thus, the phase prob-
lem in one dimension generally does not have a unique solution. However,
there is no equivalent of the fundamental theorem in higher dimensions, and
in fact almost all polynomials in two or higher dimensions are irreducible
(Hayes, 1987). This has been borne out in practice by the development of
simple iterative algorithms for reconstructing an object from only the mag-
nitude data (Dainty & Fienup, 1987).

1.2.2 Phase problem in x-ray crystallography

The application of the iterative algorithms to crystallography fails because
the Fourier transform of the object can only be sampled at discrete points in
the crystallographical experiments. For the continuous function

I = FF+, (2)



where * indicates the complex conjugate, to be completely specified by its

values at discrete points, it must at least be sampled at the Shannon limit.
For simplicity, let’s consider an one-dimensional example. The intensity of
reflection I is seen to be the transform of the autocorrelation of object func-
tion p(x):
L L/2
=> | Y p@)p(x+a")| exp(2mihz). (3)
z=—L |z'=—L/2

the limits on the outer sum are twice that of the inner sum since with p
non-zero for —L/2 < z' < L/2, the autocorrelation of p will be non-zero for
—L < z < L. As the spectral width of I is twice that of F', the Nyquist
spacing required for I is one half that required for F'. But, the periodicity of
the crystal restricts sampling to integer multiples of 1/L, which suffices for
F but not for I. The polynomial I is thus not uniquely specified by crystal
diffraction data, and hence there is no equivalent of

I =FFx

to uniquely determine F' in crystallography. Additional chemical information
is clearly required to uniquely define p, but the amount needed is unknown
(Milane, 1990; Baker et al. 1993).

1.2.3 Connectivity constraint

Simple constraints from chemical considerations such as atomicity and posi-
tivity are sufficient for small molecule crystal structures at atomic resolution
to solve the phase problem. In small-molecule crystallography, the number
of measured |Fhkl| > 3(N — 1), where N is the number of atoms. Thus,
the constraints of atomicity and positivity makes the structure-determination
problem greatly overdetermined. For proteins, however, this is generally not
the case. Stronger chemical constraints will be required to compensate for
the low ratio of data to free parameters intrinsic to the macromolecular phase
problem.

Notice that the macromolecular phase problem become greatly overde-
termined once it is possible to trace an atomic model through the density
and thus make use of the detailed rules of connectivity in stereochemistry.
Thus, the detailed connectivity represents a strong chemical constraint that



contains enough information to specify an unique solution for the macro-
molecular phase problem. Unfortunately, in general this constraint can only
by utilized after an approximate model is determined.

However, even without an approximate model, the information that pro-
teins are made up of connected chains of atoms can be exploited at relatively
early stages in the solution of macromolecular structure. Wilson and Agard
(1993), Baker et al (1993) and Bystroff et al. (1993) approximated the con-
nectivity of the protein by skeletonization of the electron density map. The
skeleton was thinned and pruned by modification of the algorithm described
by Greer (1985). This approximate connectivity constraint can become very
powerful and start to provide significant amount of information in the situ-
ation where the the phase error is less than 50°.

Since the connectivity is such a powerful constraint in general, it would
be worthwhile to find out if there is some sort of connectivity constraint
that can be employed at the earliest stages in the ab initio phasing and how
much information can be provided by the connectivity constraint. In this
paper, we will show that a coarse connectivity constraint can be applied at
the very beginning of a searching process in which the solution is searched by
optimizing its agreement with observed diffraction intensities. The additional
information provided by the constraint specifies real-space envelopes for the
macromolecules.

2 Definitions

In this approach, the electron-density map is calculated on 3-dimensional
regular grid determined by the resolution of the measured data.

e The neighborhood of a grid point (x, y, z) is defined as a set of 27 grid
points: (z +d,y +d, z + d) with d = —1,0, or 1.

e The nearest neighbors of a grid point (z,y, z) is defined as (z £1, v, 2),
(z,y £ 1,2), (z,y,2 £ 1);

e A grid point is marked if it is considered as a part of the molecule and
is unmarked otherwise.

e The marked points are considered to connected if there is a continuous
path of marked nearest-neighbors between them.
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e A cluster of marked points is a set of marked points that are mutually
connected.

e The size of a cluster is defined as the number of marked points in the
cluster.

e An isolated point is a marked grid point and also the only marked point
in its neighborhood.

3 Iterative Algorithm

In this section, we describe the basic iterative algorithm under a simple
connectivity constraint and the application of this algorithm to the measured
diffraction data of tropomyosin molecule.

3.1 The iteration protocol

The iterative transform algorithm is also known as the error-reduction al-
gorithm has been widely used in the optical image recovery (Stark, 1987).
The error-reduction algorithm was chosen because it enable the easy input
of connectivity information from the real space. The algorithm we proposed
here consists of the following five steps ( for nth iteration):

1. Fast Fourier Transform (FFT) of f,(z,y, 2), an estimated density map
p(x,y, z), yielding G, (h, k,1);

2. scale the G, (h, k,1) with respect to the measured |F|;

3. replace the magnitude of Gy, (h, k, ) with the measured data if the data
is available which allow it to satisfy the Fourier-domain constraints to
form GJ,(h, k,l), an estimate of F'(h,k,1);

4. inverse FFT of G! (h, k, 1), yielding f!(z,y, 2);
5. apply a real-space filter to f(z,y,z) to form f,1(z, vy, 2).

The real-space filter modifies f!(z,y,2) to allow it to satisfy the constraints
of positivity, connectivity and symmetry.



The function f](z,y,z) is defined in a grid space. We assume that the
molecule can be approximated by NV grid points with non-zero density values
in the asymmetic unit. The value N, which is much less than the total
number of grid point, is a user defined parameter.

3.2 Real-space filter-0

A real-space filter imposing only positivity constraint consists of two steps:
1. set the density value of unmarked point be zero; and
2. if the density value of a marked point is less than zero, set it to zero.

We call this filter the real-space filter-0.

3.3 Real-space filter-1

A simple real-space filter with the consideration of connectivity, which we
call real-space filter-1, can be implemented as following:

1. sort the grid points according to their density values in the neighbor-
hoods of the marked points in the asymmetric unit;

2. mark the first N grid points with the highest density values and unmark
the rest grid points in the asymmetric unit;

3. unmark any isolated points;
4. set the density value of unmarked point be zero;

5. if the density value of a marked point is less than zero, set it to zero;
and

6. use the symmetric operations to extend above modifications to the
whole unit cell.



3.4 Random method for initial density generating

The initial estimate of the density map fo(z,y,2) can be generated by a
random method:

1. randomly place N marked points in the asymmetric unit;

2. set the density values of marked points to 1.0 and unmarked points to
zero; and

3. apply symmetric operations to create a map fo(z,y,z) over the entire
unit cell.

3.5 Application example

Tropomyosin molecules are composed of alpha helices that are about 284
amino acids in length. The structure was solved initially at 9 Aresolution.
The tropomyosin molecules crystallize in space group C2. The crystals have
unit cell parameters a = 259.7, b = 55.3, ¢ = 136.3, = v = 90.0, and
B = 97.2. The resolution of the diffraction data ranges from 2.233 Ato 87.7
A. The unit cell contains 128 x 32 x 64 grid points. We used N = 10, 000
grid points to approximate the electron density in the asymmetric unit. Only
95% of the reflection were used in the iteration precess and the other 5% were
used for calculating free r values. The results are show in Fig. 1.

It seems that the algorithm can quickly digest the connectivity informa-
tion contained in the real-space filter-1 and produce approximate envelopes
for certain types of molecules. However, the error-reducing process becomes
saturated rapidly and the free r cannot be improved by the large number of
iterations. At this stage, it seems that additional information of connectivity
is needed in order to reduce the phase error further.

4 Alternative algorithms

In this section, we discuss two alternative algorithms in which higher con-
nectivity constraints are imposed. The basic iteration protocol will remain
the same. However, different real-space filters will be constructed. Also, the
initial density map will be generated differently.



4.1

Clustering method for initial density generating

The random method discussed previously generates the initial map by a
pure random process. The new method specified here will create the starting
density map with the consideration of connectivity of the map. The method
consists of the following procedures:

1.

10.
11.

12.
13.

generate a random initial density map fy(z, y, ) by the random method
described previously;

. perform one iteration using real-space filter-1 to get a new density map

fiz,y,2);

. find the clusters formed by the marked grid points in the asymmetric

unit and sort the clusters with respect to their sizes;

keep the first three largest clusters and unmark the grid points that
belongs to other clusters;

. set the density value of the unmarked points to 0.0;

. create a new density map fi(z,y,z) over the entire unit cell by sym-

metric operations;

count the total number of the marked points, P, corresponding to the
density map f!(z,y, 2);

. repeat steps (1) to (7) described above many times, say 1,000 times,

and select the f](z,y,z) that has the maximum number of marked
points, P;

. FFT of f{(z,vy, 2) to get a function G’ (h, k, 1) in reciprocal space.

scale the G (h, k,[) with respect to the measured |F;

replace the magnitude of G’ (h, k, l) with the measured data if the data
is available to form G (h, k,1);

inverse FFT G (h, k,1), yielding f{'(z, vy, 2);

Sort the unmarked points in the asymmetric unit according to their
density values.



14.

15.
16.

17.

4.2

Add D = 1.5N — P marked points to the asymmetric unit such that
there are total of 1.5N marked point in the asymmetric unit. The
marked points are added in the following way: mark 0.8D unmarked
points that have lowest density values and mark 0.2D unmarked points
that have highest density values.

Set the density value of unmarked point be zero;
If the density value of a marked point is less than zero, set it to zero;
Use the symmetric operations to extend above modifications to the

whole unit cell to form the initial map.

Real-space filter-2

The real-space filter-2 will put a stronger connectivity constraint on the es-
timated density map than real-space filter-1. The new filter will have better
performance under certain circumstance. The real-space filter-2 is imple-
mented as follows.

1.

Sort the grid points according to their density values in the neighbor-
hoods of the marked points in the asymmetric unit.

Mark the first IV grid points with the highest density values and unmark
the rest grid points in the asymmetric unit.

. Find the clusters formed by the newly marked grid points and sort the

clusters according to their sizes.

Keep the grid points in the first M largest clusters marked and unmark
the rest grid points.

Count the number of the marked points, P, in the asymmetric unit.

Sort the unmarked points in the asymmetric unit according to their
density values.

Add D = 1.5N — P marked points to the asymmetric unit such that
there are total of 1.5N marked point in the asymmetric unit. The
marked points are added in the following way: mark 0.8D unmarked



points that have lowest density values and mark 0.2D unmarked points
that have highest density values.

8. Set the density value of unmarked point be zero;
9. If the density value of a marked point is less than zero, set it to zero;

10. Use the symmetric operations to extend above modifications to the
whole unit cell.

Most of the newly marked points in step (7) are low density points because
this would keep the change of the map to the minimum. Once a point
becomes marked, its density value is no longer restricted to zero during FF'T.
The point could remain marked if it can fit both connectivity and density
constraints during following iterations.

When using the real-space filter-2, the output of the filter f,(z,y,z) is
on longer an estimate of the density map; it is instead the input function
consisting of the estimate of the map plus some disturbances used to drive
the iterating process. The estimate of the density map can be obtained
by applying the real-space filter-0 and symmetric operations to the output
function from step 4 described above.

The filter-2 is much complicated than filter-1 because there are parame-
ters which need to be specified in order to use the real-space filter-2. These
parameters are: the number of largest clusters that should be retained during
the iteration (M, and the number of marked points need to be added after
the small clusters have been unmarked. The smaller the value of M, the
stronger the connectivity constraint is being imposed by the filter.

4.3 Real-space filter-3

The disadvantage of real-space filter-2 is that the connectivity constraint im-
posed by the filter is less flexible. The constraint is often either too loose or
too tight. Under certain circumstance, the real-space filter-3 specified below
will provide an alternative in which the connectivity of a map is graduately
maximized. However, the real-space filter-3 seems having superior perfor-
mance only in the cases where there is only one molecule in the asymmetric
unit.
The real-space filter-3 consists of following steps:
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1. find the clusters formed by the marked points in the asymmetric unit
and the size of each cluster;

2. assign a number s to each marked point with s equal to the size of the
cluster that the marked point belongs;

3. assign a number s to each unmarked point in the neighborhoods of all
marked points with s equals to the size of the cluster that could be
formed if the unmarked point becomes marked;

4. calculate the value e = s x density for each grid point that has s values.

5. sort the grid points according to their e values in the neighborhoods of
the marked points in the asymmetric unit;

6. mark the first V grid points with the highest e values and unmark the
rest grid points in the asymmetric unit;

7. set the density value of unmarked point be zero;

8. if the density value of a marked point is less than zero, set it to zero;
and

9. use the symmetric operations to extend above modifications to the
whole unit cell.

4.4 Application example of real-space filter-2

The diffraction data of Mannose Binding Protein (MBP) from 4 wavelength
MAD experiment (Burling et al., 1996) is used. The data contains both ob-
served |F'|'s and phases. Ounly |F|'s are used in our iterations. The observed
phases are compareed with the calculated ones. The average phase error for
the reflections with resolution higher than 10 Acould be reduced from above
80° to lower 70° by the clustering method for initial density map generating.
The phase error for reflections of higher resolution were not reduced signifi-
cantly by this procedure. The following iterations with real-space filter-2 can
improve the molecular envelope but can not reduce the phase error further
for the reflections with resolution both above or bellow 10A.

The MBP crystal has unit cell parameters a = 65.508, b = 72.216, ¢ =
45.035, and @ = = v = 90.0 and belongs to space group P2,2,2;. The
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resolution of the diffraction data ranges from 1.065 Ato48.512 A. In our
calculation, there are 64 x 64 x 64 grid points in the unit cell. We let N equals
to the 8.4/in the asymmetric unit and M = 150. The initial density map
was created by the clustering method. Each step (or cycle) in the calculation
consists of 5 iterations with real-space filter-0 and 1 iteration with real-space
filter-2. The results are shown in Fig. 2.

4.5 Application example of real-space filter-3

The myoglobin molecule is used here as an application example for real-space
filter-3. The unit cell parameters are: a = 90.38, b = 90.38, ¢ = 45.34, a =
B =90.0,7 = 120.0. The reflections were calculated from the know structure
with a solvent mask. The resolution of the reflections ranges from 1.31 Ato
78.27 A. The unit cell consists of 64 x 64 x 32 grid points. The value N is
equal to 12.5% of the total number of grid points. The step of the calculation
consists of 20 iterations with real-space filter-0 and 1 iteration with real-space
filter-3. The initial map was generated by the clustering method with only
50 repeating times (see step 8 of clustering method). The real-space filter-3
can reduce the average phase error of the reflections with resolution above
4A. The results are shown in Fig. 3.

5 Discussion

Additional information is needed in order to solve the phase problem in
macromolecular crystallography. It seems that the needed information can
come from the connectivity of the density map. How precise the molecular
structure can be determined depends on how much connectivity informa-
tion can be provided. The algorithm proposed here could produce a better
molecular envelope than that can be done by Subbiah’s method (Subbia,
1991, 1993) because the real-space filters described above can provide more
connectivity information in comparing with the simple condensing require-
ment in Subbiah’s method.

Is there more detailed information about the general connectivity of den-
sity map available at the molecular envelope stage? If such information is
available, how can we formulate the information into connectivity constraint?

We have tried to combine our approach with the algorithms of histogram
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matching, sift-and-rotating method, voting method and patching method.
However, none of them can significantly improve the results.

Different optimization approaches such as simulated annealing was tried
and was not successful.

We have also tried different type of syntheses including «, £ , 7' and
2F, — F, syntheses in reciprocal space. Unlike that in the approach of skele-
tonization, we found that 2F, — F, produced very poor results in our situation
where the phase error is relatively large. However, it is still possible that some
sort of information input from the reciprocal space can help to overcome the
stagnation we are currently facing.
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(h)

Fi g. la. Applying the iteration algorithm with real-space
filter—1 to the Tropomyosin data. (a) to (g) show the
first 50 iterations. (h) is the SIR-Fo map from 7A model.




Time Steps

Fi g. 1b. The changes of r, free-r, correlation
coefficient (c), and free—c betwee calculated
and measured |F|’s of tropomyosin at each step
of iteration.

freer

freec



Fi g. 2. lterations with the real-space filter—2 of
MBP data. (a) is the initial map generated by the
clustering method. (b), (c) and (d) are step 1, 2
and 150 of the interation, respectively. (e) is

the map calculated from the measured phases. (f)
Is the overlap of (d) and (e).




Fi g. 3a. Iterations with the real-space filter—3 of
myoglobin data. (a) is the initial map generated by the
clustering method. (b), (c) and (d) are step 1, 2 and 200
of the interation, respectively. (e) is the map calculated
from the known structure. (f) and (g) show the overlap of
of (d) and (e) on x-y and x-z plans, respectively.




Fi g. 2. lterations with the real-space filter—2 of
MBP data. (a) is the initial map generated by the
clustering method. (b), (c) and (d) are step 1, 2
and 150 of the interation, respectively. (e) is

the map calculated from the measured phases. (f)
Is the overlap of (d) and (e).
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Fi g. 3b. Change of the average phase errors
at different resolution (a), and the correlation
coefficient during the iterations of myoglobin
data.



