A General Resource Reservation
Framework for Scientific
Computing

Ravi Ramamoorthi, Adam Rifkin, Boris
Dimitrov, and K. Mani Chandy

CRPC-TR97736-S
December 1997

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted January 1998; Presented at the First ISCOPE
Conference, Marina del Rey, CA, USA, December 1997;
Published in the Spring-Verlag Lecture Notes in Computer
Science 1343, December 1997

A General Resource Reservation Framework
for Scientific Computing*

Ravi Ramamoorthi, Adam Rifkin, Boris Dimitrov, and K. Mani Chandy

California Institute of Technology

Abstract. We describe three contributions for distributed resource al-
location in scientific applications. First, we present an abstract model
in which different resources are represented as tokens of different colors;
processes acquire resources by acquiring these tokens. Second, we present
distributed scheduling algorithms that allow multiple resource managers
to determine custom policies to control allocation of the tokens represent-
ing their particular resources. These algorithms allow multiple resource
managers, each with its own resource management policy, to collaborate
in providing resources for the whole system. Third, we present an im-
plementation of a distributed resource scheduling algorithm framework
using our abstract model. This implementation uses Infospheres, which
are Internet communication packages written in Java, and shows the ben-
efits of distributing the task of resource allocation to multiple resource
managers.

1 Introduction

A user often needs access to several distributed heterogeneous resources. For
instance, a scientist may conduct a distributed experiment [3] requiring a super-
computer, a visualization unit, and a special high quality printer all in different
locations. All three resources are essential to the experiment so the scientist
needs to synchronously lock and use all three distributed resources for the same
time period to complete the computing task. The distributed heterogeneous re-
sources together form a networked virtual supercomputer or metacomputer [1].
The scientist also wants resources to be scheduled automatically as a service of
the appropriate software, with or without the inclusion of specific supplemental
information such as the times the user is available to perform the experiment.
Traditional metacomputing resource allocation [6,9] uses a central authority
for scheduling, usually for efficiency. For example, the IBM SP2 uses a scheduling
algorithm [8] that reduces the wait time of jobs requiring only a few nodes, if
these can be scheduled without delaying more computationally intensive jobs.

* This work was supported in part under the Caltech Infospheres Project, by the
Air Force Office of Scientific Research under grant AFOSR F49620-94-1-0244, by
the CISE directorate of the NSF under Problem Solving Environments grant CCR-
9527130, and by the NSF Center for Research on Parallel Computation under coop-
erative agreement CCR-9120008. We thank Doug Lea for his helpful comments.

Pentium Cluster (Instruments)
[+—— PENTIUM
[tuba.cs.caltechedu) [flute.cs.caltech.edu} |«——{SCHEDULER
Z
request tuba request flute

RESOURCE request 2 SG's
@ RESERVATION <—.@
SYSTEM

and 2 pentiuns

request
2 pentiums

request opal request garnet
request
2 SGs
(opal.cs.caltech.edu) (garnet.cs.callech.edu} [+— SGI Attribute based query
= | SCHEDULER
SGI Cluster (Gemstones)

Direct reservation

Fig. 1. Two models are given for resource reservation. On the left, the client simply
asks for specific machines. On the right is a more advanced request, in which the client
asks the Resource Reservation System (RRS) for two SGIs and two Pentiums. The
RRS connects to separate resource managers that schedule time on the two clusters
(using, for example, our calendar-based algorithm).

By contrast, consider the computational needs of users requiring resources
managed by different groups in different places. Scheduling is more complicated
because it is impractical for individual sites to “know” global information that
would help them to do more efficient scheduling [6].

The owner of a set of resources may have resource management policies that
are different from those of owners of other resource sets. Our challenge is two-
fold: (i) to establish methods of cooperation so that the collection of owners
offers system-wide resources to users, and (i) to make the algorithms scalable
so that new resource providers can enter the common resource pool quickly and
semi-autonomously.

An infrastructure for reserving resources in a distributed system is required
by many applications. Our research deals with designs and implementations of
distributed resource management schemes that coordinate different policies for
different sets of resources. Though this paper addresses resources used in meta-
computing, our research deals with resources in many distributed applications.

A convenient abstraction for such applications represents each indivisible
resource by an indivisible token of some color [4]; different types of resources
have different colors. For instance, a node of an IBM SP2 can be represented as
a token of the IBM SP color. Likewise, a room in a hotel can be represented by
a token of the hotel color.

Our model deals with time explicitly. So, a reservation can be made for 64
nodes of an IBM SP2 for 10 contiguous hours, or a hotel for seven nights.

The centralized IBM SP2 scheduling algorithm relies on knowledge of how
many nodes each process needs to “promote” less computationally-intensive
tasks as necessary. On the other hand, as illustrated in Figure 1, if each node in a
supercomputer were to be scheduled independently in a distributed way, efficient
scheduling would become much more difficult. As metacomputing applications
use distributed heterogenous systems, they will need algorithms for efficient dis-

tributed resource scheduling. In addition, negotiation protocols might need to
leverage the notion of resources as economic currency, perhaps using electronic
commerce protocols.

This paper presents a general framework for heterogeneous resource reser-
vation. Within this framework, we present a simple Java implementation using
Infospheres [2]. Specific contributions include: (i) an abstraction for distributed
resource management problems that fits many, but not all, applications; (ii) a
distributed implementation that coordinates multiple resource managers, each
with its own policy; and (iii) efficient processing of user preferences by sending
Java applets to resource managers to perform resource scheduling.

In Section 2, we discuss some simple attempts at distributed resource allo-
cation algorithms, describe how they fail, and introduce calendars, which are
useful for efficient resource allocation. In Section 3, we describe how the calen-
dar metaphor builds on our resources-as-tokens metaphor. A simple application
to safe metacomputer scheduling across distributed resource managers is pre-
sented in Section 4, after which we discuss efficient scheduling when resources
are specified by attribute. We conclude with some observations in Section 5.

2 Distributed Resource Reservation Algorithms

The problem of distributed resource reservation has several simple solutions,
including local clocks and central server, that are correct but may be inefficient.
We discuss how calendars provide a more scalable solution.

One approach to resource reservation is to try to lock all of the resources
the application wants. If an application is unable to lock a resource, it enters
a queue waiting for it based on the priority of a logical local clock timestamp
[4]. If an application with lower priority has the resource but is not yet using
it, that application must relinquish the resource (or token), deferring to the
higher-priority application. This method is robust and fairly scalable, but can
be inefficient. For example, as illustrated in Figure 2, client 1 can be using
resource 1, while client 2 is waiting to use it. Client 2 has locked resource 2 and
is not using it, but still prevents client 3 from using 2 (which 3 could use since
it requires no other resources to run its task).

As discussed in Section 1, we could improve efficiency by using a central
scheduling algorithm, as used by the IBM SP2. However, this is clearly imprac-
tical from a scalability standpoint. Our goal is to recover some or all of the
efficiency of a worldwide central server while maintaining the scalability features
of distributed resource-management servers.

Calendars allow a nice tradeoff between scalability of resource managers and
efficient utilization of resources. Allowing an application to “make appointments”
in a calendar for resource reservation, a resource cannot be blocked from use while
sitting idle. If a resource is unused, no application has an appointment for it at
that time. Thus, efficient resource allocation is possible without global informa-
tion. This calendar model is easily extensible to general resource reservation.

isblocking isblocking

CLIENT 1 CLIENT 2 CLIENT 3

RESOURCE RESOURCE
ONE TWO
) Client 1 Client 2)
Wait queue Wait queue
forres.one | cjient 2 Client 3 | forres.two

I nefficient local clocks solution.

Fig. 2. Local clocks can fail to use available resources. Client 1 holds resource 1, and
client 2 is next in line for both resources 1 and 2. Because client 2 is blocking it, client
3 must wait for client 2 to finish (2 has higher priority), and hence client 1 to finish,
even though client 3 does not even use resource 1.

3 Owur Model

Individual resources use a calendar metaphor for arranging their schedule; the
basic calendar functionality our implementation provides includes the concepts
of time slots and access lists.

A time slot consists of a time interval with a particular time unit grain. Every
time slot can be in one of three states: locked, held or available. A Locked slot
appears when a client commits to using a resource during that slot; as a result,
locked slots can be read but not written. Held slots are slots that a particular
client is considering locking, but has not yet committed to locking. Only that
client can write to these slots, thereby locking them; they are read-only for
other clients. However, unlike a locked slot, a held slot can be released, reverting
to awvailable. Available slots may be read or written and converted to held or
locked status. Slots correspond to the tokens discussed in Section 1; so, resource
reservation is tantamount to collecting the proper tokens.

Each slot has an associated access list that keeps track of which processes can
obtain a lock on that slot. For instance, a resource manager may provide access
to an authorized user from the Center for Research on Parallel Computation, but
not grant access to anyone else. Thus, some slots may be available to only one
set of users, while others can be available to other sets of users. This approach
differs from traditional “whiteboard scheduling” models.

The reservation of a set of resources is determined when all of the resource
managers (or servers) agree to lock the slots that correspond to the same time.

Calendar and queues
Pending agents

Calendar and queues
Pending agents

Message pool ACTIVE send send Message pool ACTIVE
AGENT: 1 agent 1 agent 2 AGENT: 2
Server One’s Infosphere Server Two’s Infosphere
i i
Non- bl ocki ng Non- bl ocki ng
conmuni cati on comuni cati on
bet ween agent s Proxy for CLIENT Proxy for bet ween agent s
in California California the UK. inBritain
v v
Ca\eqdar and queues send send Ca\eqdar and queues
Pending agents agent 4 agent 3 Pending agents
Message pool ACTIVE Message pool ACTIVE

AGENT: 4 AGENT: 3

Server Four’s Infosphere Server Three’s Infosphere

Hierarchical session infrastructure.

Fig. 3. Our model for scheduling a meeting starts when a client sends agents to the
various resources it desires. Agents communicate with the client and with resources. For
efficiency, groups of nearby agents can coordinate to avoid excessive message-passing
to clients, who may be geographically distant. The resource managers or servers can
also send agents to clients to request back the slots that the clients hold.

We implement reservations atomically using a two-phase commit protocol [7].
The action starting with resource-request initiation and ending with resource-
reservation commitment corresponds to an Infosphere session [5].

Reserving Resources. Our paradigm for resource reservation, using client
requests and brokering agents, provides a test bed on which effective algorithms
can be developed for specific tasks; see Figure 3. Resource reservation begins
with a client application making a request, the only interaction a user needs to
have with the system. A resource can be represented by a boolean function over
all possible Cartesian products of resources and meeting times, with additional
weights given to represent hints. For example, requiring one Pentium and one SGI
on Monday at 10AM is a request that assigns boolean true to all combinations of
resources that include the desired Pentium and SGI. In addition, hints can help
the system choose more appropriate scheduling policies. Although the general
framework is too complex to implement directly in some applications, for any
particular application a suitable subset can be implemented.

Like ambassadors to foreign countries, the client system can send a small set
of instructions in Java as agents [10] to any resource manager to request comput-
ing time. Several efficiency improvements make agent communication attractive.
Agents can include user preferences for efficient filtering of available times at the
server end. The filtered set can then be returned to the client, thereby avoid-
ing heavy message passing in congested or high latency networks. Since nearby
agents can designate a common agent to efficiently set up a coordinated reser-
vation time among these agents, hierarchical solutions can be used to obtain
lists of available slots. By varying the programs that the agents define, different
algorithms can easily be tested without major modifications in the system.

Not only can clients send agents to servers, but servers can send agents to
clients to request back slots that clients had on hold, upon request from a client
that has higher priority. Our system requires that the agent recipient must lock
the slot withing a time period, or the slot will be automatically returned to the
resource manager.

Agent Primitives. Scheduling agents communicate with resource managers on
servers using query, lock, release, and wait messages (Figure 4).

Queries. A query is the first communication an agent makes when setting up
a meeting. When a server receives a query, it gives the client’s agent complete
(access-dependent) information about which slots are available, held, and locked.
The agent relays (a possibly filtered version of) this information back to the
client. However, it also executes quickly on the server, filtering this information
to reserve some vacant slots and wait for its client to decide what to do with them.
The server may impose restrictions on how many slots the agent can reserve at
any one time. We could dispense with agents and allow the server to pick the
slots it reserves for the client; although this is our implementation default, the
agent innovation allows the client to encode some preference information and
have it honored without the lag of message-passing.

Locks and Releases. The server allows authorized clients to lock slots they
hold or release uncommitted slots. It sends released slots to the highest-priority
client on the waiting list if one exists.

Waits. The server can receive requests to be placed on the waiting list for
specific slots. If the slot is held, but not committed, the server will honor the
request and, if the requester has higher priority than the current holder, the
server will request the current holder to return the slot. The holder must lock
the slot within a certain time period, or it will be returned automatically.

4 Applications

Two applications illustrate our framework: scheduling specific resources con-
trolled by more than one resource manager, and scheduling by attribute.

Multiple Resource Managers. Consider scheduling two or more resources,
each controlled by a different manager. One solution is to use local clocks (dis-
cussed in Section 2) to place on hold each resource’s calendar before scheduling
computing time by locking the appropriate slots. That has the efficiency problem
discussed in Section 2, but it will be smaller since we are using the algorithm
only to schedule calendars, not resource use. Thus, just introducing the calendar
metaphor provides substantial savings.

In this algorithm, when one user is reserving time on a given resource, all
other users are excluded, while in reality we need mutual exclusion only on
individual slots for safety. We can therefore improve this algorithm’s efficiency:
a client can use finer-grained adaptive control to place on hold only a small part
of the resource manager’s calendar at a time.

Server architecture:

Service thread

Message Classifier

I nf ospher es
’:/E' ! LIZj)aenDn Agents Calendar Messages Synchroni zat i on:
read(s) pending and wait addressed Channel cl ass
execution queues to agents

Reception: sequential
execution of agents

Agent execution thread

Fig. 4. Agents execute atomically and communicate with their server and the outside
world via a receptionist class which provides only non-blocking send and receive meth-
ods. Though agents run in the address space of the server, privacy is possible via the
Java security manager.

Query. The client indicates interest in scheduling a resource by sending agents
to the various servers. The agent executes the program given to it by the client,
and after communicating with the resource manager returns to the client’s sys-
tem a list of slots that it is currently holding, and information (which in case
of free slots may not be up to date) on whether the remaining slots are free,
on hold, or locked. Note that the server pipes available slots through the agent
giving the client a small number of desirable held slots. The agent is an efficient
way to encode client preferences cheaply.

Schedule if possible. The client can then schedule computing time if at least
one slot returned to it from all of the resources matches. It writes to that slot,
committing to using all of the resources at that time, makes any necessary pay-
ments for use of those resources, and releases the remaining slots.

Negotiate. If the client cannot immediately schedule all required resources, it
negotiates instead of just giving up and retrying. Specifically, it releases all held
slots that were locked by other users in at least one desired resource, since there is
no chance of getting all desired resources for that time slot. It then enters a queue
on other slots, where there is still a chance of acquiring all desired resources.
Using logical clocks, the algorithm continues until resources are reserved, or no
reservation is possible. The negotiation phase is usually unnecessary.

Change the agent. Based on the type of negotiation required, the client can
keep evolving its agent to better meet its changing needs for placing holds as
well as locking and releasing slots.

Resource Reservation by Attribute. Offering reservation by attribute (for
example, a request for “3 SGIs and 2 Pentiums”) is easily integrated into our

existing framework. The “and” clause defines resources that must be reserved
together, so these can be treated as specific resources themselves. This reduces
to a scheduling problem such as “get 3 SGIs out of the 30 known to my system.”
We want n out of ¥ homogeneous resources where (k > n). We can use the
algorithm for multiple resource managers if we send agents to p out of the &
resources, but then pick the “best” (or earliest) time at which n out of the p
polled resources are available. Our problem then reduces to choosing p; choosing
(p = k) may not always be the best solution due to message passing delay. For
this reason, we have developed a simple mathematical model for choosing the
optimal p. In our model, the expected delay in scheduling a job is computed for
each p using the probability ¢ that a given slot is unavailable. We then plot a
graph of cost versus p to find the p that minimizes the delay.

5 Conclusions

We have investigated generalizable resource allocation algorithms for which de-
sired resources can be specified by attribute only, and for which different resource
managers can coordinate synchronously. Our model builds on the concept of
resources as tokens and the metaphor of calendars for scheduling. To improve
efficiency under high network latency, our implementation passes small Java pro-
grams as agents for coordination. Our design represents the first step toward the
development of a robust scheduling infrastructure, layered above conventional
schedulers currently available, for the next generation of virtual supercomputers
constructed from heterogeneous resources distributed over the Internet.

References

—_

. C. Catlett and L. Smarr. Metacomputing. Comm. of the ACM, 35:44-52, 1992.

2. K.M. Chandy, J. Kiniry, A. Rifkin, and D. Zimmerman. A framework for structured
distributed object computing. Parallel Computing, 1997. Submitted.

3. K.M. Chandy, J. Kiniry, A. Rifkin, and D. Zimmerman. Webs of archived dis-
tributed computations for collaboration. Journal of Supercomputing, 11(1), 1997.

4. K.M. Chandy and J. Misra. Parallel Program Design. Addison-Wesley, 1988.

5. K.M. Chandy and A. Rifkin. Systematic composition of objects in distributed
internet applications: Processes and sessions. Proceedings of the Thirtieth Hawaii
International Conf. on System Sciences, pages 395404, January 1997.

6. 1. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
International Journal of Supercomputer Applications, 1997.

7. J. Gray and A. Reuter. Transaction Processing. Morgan-Kaufmann, 1993.

8. D.A. Lifka, M.W. Henderson, and K. Rayl. Users guide to the argonne sp scheduling
system. Technical Report ANL/MCS-TM-201, Argonne, May 1995.

9. M. Litzkow, M. Livney, and M. Mutka. Condor — a hunter of idle workstations. In
8" International Conf. on Distributed Computing Systems, pages 104-111, 1988,

10. P. Maes. Agents that reduce work. Comm. of the ACM, 37(7):31-40, July 1994.

