Finite Differences vs Automatic
Differentiation for Restartable
Iterative Procedures

Alan Carle and Mike Fagan

CRPC-TR97733
December 1997

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted December 1997

Finite Differences vs Automatic Differentiation for Restartable

[terative Procedures®
CRPC-TR97733

Alan Carle Mike Fagan

December 4,1997

Abstract

Many scientific programs that use iterative processes to compute their results also include a restart
capability. This report investigates some methods that use restarts to improve the performance of
sensitivity calculations. The investigation covers both finite-difference sensitivity methods as well as
forward-mode automatic differentiation.

1 Introduction

Many useful programs compute their results by producing a sequence of iterates, terminating when the
iterates are “sufficiently close” to a true fixed point of the iterative procedure. A prototypical iterative
procedure has as its principal component a stepping function s that operates on two components: the
independent input G, and the previous iterate g,. The result of s is the next iterate g,41. The object of
the iterative procedure is to find (approximate) the fixed point of s. That is, the iterative procedure seeks
to approximately compute a ¢, so that

7« ~ 5(G, qx).

The iterative process begins with some canonical choice of initial iterate qq.

Furthermore, to add a measure of fault tolerance, many iterative programs employ a “restart” mechanism.
A restart mechanism periodically saves iterates for possible use at a later time. If a fault occurs, the most
recently saved iterate can be used to restart the iterative procedure. More concretely, suppose an iterative
computation begins with G and the canonical qq. After 100 steps, the process saves iterate g0 as a restart.
At step 102, a fault occurs. By using a restart, the iterative procedure may resume the computation using
the previously saved q1gg, rather than starting over with ¢q.

In addition to fault tolerance, a restart mechanism may also facilitate the computation of sensitivity infor-
mation. To understand the essential idea, consider a typical finite-difference sensitivity calculation for an
iterative procedure. Using input G and the canonical starting point qg, say the iterative procedure converges
to g«. The finite-difference step requires a perturbed input, say G + §. Then, again using the canonical
starting point qg, the iterative procedure converges to q2. The sensitivity of the iterative procedure, then, is

qz—q*
5

*This work was supported by the National Aeronautics and Space Administration under Cooperative Agreement No.
NCC 1 236, and by the National Science Foundation, through the Center for Research on Parallel Computation, under Cooper-
ative Agreement No. CCR-9120008. Additional computing resources provided by NASA Ames High Performance Computing
and Communication Program Testbed 1 Cooperative Research Agreement (through IBM P.O. # 835600Z-E1).

For “small” values of &, one would expect ¢° to be “close” to g.. Consequently, if the perturbation step
uses ¢, as its starting point, instead of the canonical gg, then the iterative procedure might converge to ¢2
in fewer steps, since it started “closer” to the final value. If the iterative procedure employs restarts, then
the perturbation step of a finite-difference calculation may be accomplished by “restarting” the iterative
procedure with G + § and g..

The restart feature also has favorable implications when computing sensitivities by automatic differentiation
(AD). If some “close” approximation to the derivatives are available, then restarting the derivative iteration
with the close approximation may take less iterations to converge to the desired results. In this report,
we examine more closely both finite differences and automatic differentiation with respect to restarts. We
divide our analysis into four sections. Section 2 details our model of the iterative process, including our
assumptions on the mathematical properties of the processes in question. Section 3 uses the model to
analyze finite differences under restart. Section 4 uses the model to analyze the AD process. Section 5
summarizes our findings.

2 The Model

Our model of the iterative procedure consists of three components: a stepping function s that advances
a given iterate to the next iterate, a canonical starting point, and a stopping criterion. As mentioned in
section 1, the stepping function s takes two arguments: the independent variable (G, and the current iterate
q. Both G and ¢ may be vectors. We model the stepping function in a general way, making no assumptions
about its internal structure. We will later discuss the relevant mathematical properties. We notate a single
step of function s as follows:

k41 = S(G;Qk)~

We identify the canonical starting point as ¢q.

For any fized number of steps, we can model the iterative process as a “correction” function s (G, q), where
s"(G,q) = s(G,s" MG, q)) = s(G, s(G,s"*(G,q))) ...

For consistency, define s°(G,q) = q.

The stopping criterion controls the number of iterations in the process. This number may be highly dependent
on the input variables. For example, the “run until converged” criterion could certainly take fewer steps if
the starting ¢ is “close” to the final answer than if q is “far away” from the final answer.

Stopping criteria are strongly application dependent (some say they are strongly application user dependent).
In light of the large possible variation, we will limit our analysis to the “small” residual convergence criterion.
We model that as follows:

Definition 1 (Tolerance R fixed-point approximation(RFPA)) For iterative step q = s(G,qx—1),
we say step k has converged to within residual R if

llax = 5(G,a)ll < R.

The qi quantity is a tolerance R fized-point approrimation for s. We will use the abbreviation RFPA for
“tolerance R fized-point approrimation”.

Note that RFPAs need not be unique. For further analysis, we need to identify a unique such approximation.
We will distinguish a canonical RFPA based on the canonical starting point ¢o.

Definition 2 (Canonical Tolerance R fixed-point approximation) Let qq be the canonical starting
point for s. Let qn be an RFPA derwed from N steps of s, starting at qq. That is,

qN = SN(G1 QO)

where

llav = s(Gqn)l| < R

but

HQN—1 — sV, QO)H > R.

Using this model of the computation, we wish to compute the sensitivity of the canonical RFPA of s with
respect to the inputs G.

Assumptions on the iterative step function s
Following Christianson[1] and Griewank et al[3] !, we assume that the iterative step function s has certain

reasonable convergence properties. First, we assume that for any given GG, s has a fixed point. That is, we
assume:

for all G there exists ¢* s.t. ¢* = s(G, ¢%).
In addition, we assume the behavior of s is regular in that s has the following properties:

1. s 1s continuously differentiable.

2. 8

(2%, g—;) is Lipschitz (with constant C).

3. s is attractive with attraction constant 7 (that is,

a
2] <.
We use the contractivity property to establish a simple estimation procedure for RFPAs.

Estimate 1 [(Distance between RFPAs)] Let q1 and q3 be any two RFPAs for the same input variables,
that 1s

llgi —s(G @)l <R, i=1,2.

Then

2R
oz — aell < T

We establish this estimate as follows:

Letting ¢ be the actual fixed point of s(G, q), we use a result of Christianson (derived by simple
line integration) to get

lla* = s(G @l <7llg™ =gl
Using the fact that ¢; are RFPAs; we note

! Griewank[3] prefer a different, less restrictive (but more complicated) condition than attractivity (property 3). We will
follow the simpler case here, and conjecture that similar results hold for the Griewank conditions.

So

llg™ — all llg™ — s(G, qi) + s(G, 4;) — gill

< g™ = s(G @)l + 1Is(Gq:) — aill
< rllg" —all+ R
forz=1,2.
Rearranging terms yields
R
g < ,1=1,2.
" —aill < 7= @

We can now get our estimate by simply adding and subtracting ¢* to the desired difference:

lgr— a2l = llgr—q" + 4" — g2
< gy = q7l + llg™ — qz]|
R . .
< + ——— by previous reasoning
- 1—-7 1-7
2R
Tol-7

3 Finite Differences

To preface our analysis of finite differencing, we need to clarify the finite-difference methods under exami-
nation. We will elaborate the “standard” finite-difference method, as well as a prototypical finite-difference
method that uses restarts. A straightforward finite-difference protocol works as follows:

Protocol 1 (Standard finite differences)

1. Starting with “baseline” inputs G4, compute the canonical tolerance R fixed-point approximation gs.
Assume this step takes N iterations.

2. Perturb one of the inputs, yielding Gy +d, and find the canonical tolerance R fixed point approximation
of this new input. Subtract ¢, from this approximation, and divide by d.

3. Repeat step 2 as many times as there are inputs.
Using restarts, protocol 1 generalizes to:
Protocol 2 (Restart-enhanced Finite Differences)

1. Using the base inputs Gy, the iterative process runs for P steps, starting with the canonical starting
point gg. After P steps, we have some updated output value g5 (not necessarily converged). The g,
output is saved in a restart file.

2. Restarting with ¢,, continue on to tolerance R convergence. This should be g, the same value as step 1
of protocol 1.

3. Perturb one of the inputs, yielding Gy +d. Then, restarting with ¢, from step 1 and the newly perturbed
input, compute a new tolerance R fixed-point approximation ¢}. The finite difference computation
yields

a7 — 9o
-

4. Repeat step 3 for each input in G. We note that it is possible that different inputs might require
different numbers of steps to converge.

A common variation of this protocol combines steps 1 and 2 so that ¢; = g3.

As mentioned in the introduction, the main advantage of protocol 2 is a potential decrease in execution time.
If d is “small”, then ¢ should be “close” to the iterate that would have been computed at that point in the
process. Hence, the number of steps to correct g¢s to the fixed point for G + d should be (or at least might
be) less than the number of steps to correct the canonical starting point gq.

Differences between Finite-Difference Protocols
To analyze the difference between protocol 1 and protocol 2, let us assume that d has been chosen so that

(N(G+d0) =" (Gr0) O™
d G

G, QQ) < €.

Writing ¢, for s (G, qo), qa for sV (G +d, q0), and ¢, = sV (G + d, ¢5), and noting that ¢; are all RFPAs, we
add and subtract ¢, from the previous inequality to get

H e Z) aasé;v (G,q0)| < ¢
H (g4 - a) (0 ;Qb) - a;(f;v Gl <
TN I TOEPST R
H@—a@i@,qo) < H@‘ﬂ
H @ ! a;g (G < % + € by estimate 1.

Examining this inequality shows that for careful choice of d and R, then reasonable accuracy may be obtained
for protocol 2. Note however, that R should be a few orders of magnitude less than d, otherwise, the term

% may be too large.

4 Automatic Differentiation

Automatic differentiation of program code produces a new code that computes the derivative based on the
well known rules of calculus, using the chain rule to link together the various operations in the differentiated
program. The program under consideration iterates the computation of s, given G and some starting point
q. Thus, automatic differentiation of s with respect to G yields a single step iterative procedure for j—é.
Moreover, the automatic differentiation procedure in question augments the computer code with derivative

computation, so the derivative-augmented s computes both s and j—é.

As with finite differences in section 3, the ability to restart a computation suggests multiple possible protocols
for automatic differentiation as well.

The standard AD protocol is:

ot

Protocol 3 (Standard AD)

Using the base inputs G, the canonical starting point gg, and the associated canonical ¢, run
the derivative computation for N steps, until the derivative is converged to the desired accuracy.
We note that ¢ is usually, but not always, 0.

Similarly, the standard restart-AD protocol is:
Protocol 4 (Restart-enhanced AD)

Using the base inputs G, restart ¢,, and an associated restart ¢, run the derivative computation
for M steps, until the derivative is converged to the desired accuracy.

There 1s, however, a variation of protocol 4 that has no analog with finite differences. It is possible to use
restarts for function value only, yielding this variant:

Protocol 5 (Restart-function AD)

1. Using the (unaugmented) s procedure, generate a final ¢; that is converged to the desired accuracy.

2. Using Gy, restart gy, and the canonical derivative starting point ¢, run the augmented s until the
derivatives are converged to the desired accuracy.

Previous work by Christianson[1], Gilbert, and Griewank[3] has shown that the conditions we placed on s
ensure QQ-linear convergence of the function iteration, and R-linear convergence of the derivative iteration.
In other words, the derivative iterates converge “at roughly the same rate” as the function iterates. So
protocol 3 should take “about” as many steps to converge the derivatives as the function iteration required
to converge. Similarly, protocol 4 should take approximately the same number of steps to converge derivatives
from the derivative restart value as the function value does from the function restart. If the starting point is
“closer” to the fixed point, then this iteration should take less steps to converge than protocol 3. Protocol 5
should take “about” the same number of steps as protocol 3. In other words, having a good starting point
for only the function value is probably not sufficient to reduce the required number of steps for derivative
convergence. We will analyze these protocols more precisely in the remainder of this section. Our main

analytical tool is Estimate 2. To simplify notation, we will usually write ¢’ for j—g.

Estimate 2 Let qo41 = s(G, qn) be the function iteration. Then
|45 = gnga |l < Cllas = gnll + 7 llg% — gl

where C' 1s the Lipschitz constant and T 1is the attractivity constant.

We derive this estimate by the following steps:

Differentiating s yields (by chain rule) and evaluating at ¢, and ¢. yields:

ds _ 42 ddn
dG (Gsyqn) oG (Gs,qn) 9 (Gsygqn) G’
ds _ Os Os dqx
dG (Gs,q*) aG (Gs,q*) 8q (Gs,(I*) dG

Subtracting, and rewriting using our simplified notation gives:

J i = (Os Os) n Os
n+l =~ 4% — Yl a0
oG CRRY L

- aG

,_ o
In dq

/

Qs
(Gs,qs)

(Gsyqn) (Gs,qn)

Taking norms yields:

Os

oG

Os

- — !
e e

||q;1+1 - ‘]i“ <

Os
l J— —_—
o H -

91, q4.) (Gara)

(Gsqn) (Gs,04)

Finally, we note that our original assumptions on the Lipschitz continuity of s’ and the contrac-
tivity of s establish the bounds we need

Js
oG

Js
oG

Os

!
- ol

|

||q;1+1 - f]i“

, Os

llgnll — 90

(Gs\qn) (Gs,q4) (Gs\qn) T(G.,q0)
Cllgn = a«ll + 7 llgnll = 7 [l g2l

Cllgn — gell + 7 llay, — g2l -

IA A

Examining each of our protocols in light of this estimate gives us a better understanding of its behavior.
For protocol 3, after IV steps, say, the function value has converged to within R of the fixed point, then the
derivatives will be

a1 — a-] < CR+7lldy —d.ll-

So the derivatives are converged to “about” the same accuracy. If the C'R product is fairly large, then a few
more iterations may be required to ensure the desired accuracy of the derivative.

Similarly, for protocol 4, we note that if both ¢, and ¢, are the same order of approximation to ¢, and ¢,
then derivative and function value iterations will yield similar accuracies. The number of iterations to yield
that accuracy depends on the accuracy of both the restart ¢, and ¢..

This observation leads us to conclude that protocol 5 will generally require about the same number of
iterations as protocol 3 for derivative convergence. Suppose we start derivative iteration at ¢. exactly. Then
Estimate 2 still indicates

gt — g || < 7 llak — gl

Hence, starting at ¢ will still require about the same number of steps to converge derivatives as protocol 3.
Experimental confirmation of this behavior for a computational fluid dynamics code is reported by Green[2].

5 Conclusions

Our main conclusion is that restart capability enables potential improvement in both finite difference and
automatic differentiation sensitivity calculations. As always, for finite differences, the step size is important.
It interacts inversely with the desired tolerance. The function tolerance should be several orders of magnitude
smaller than the step size to ensure the desired approximation to the sensitivity.

For automatic differentiation, the main consideration is that both the function restart and the derivative
restart be the same order of closeness to their respective fixed points. Estimate 2 indicates that the number
of steps to converge derivatives depends on both function accuracy and derivative accuracy.

References

[1] Bruce Christianson. Reverse accumulation and attractive fixed points. Optimization Methods and Soft-

ware, 3:311-326, 1994.

[2] Lawrence L. Green, Perry A. Newman, and Kara J. Haigler. Sensitivity derivatives for advanced cfd
algorithm and viscous modeling parameters via automatic differentiation. Journal of computational

physics, 125(2), 1996.

[3] Andreas Griewank, Christian Bischof, George Corliss, Alan Carle, and Karen Williamson. Derivative
convergence for iterative equation solvers. Optimization Methods and Software, 2:321-355, 1993.

