On the Fundamental Role of
Interior-Point Methodology in
Constrained Optimization

Richard A. Tapia

CRPC-TR97730
April 1997

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted November 1997; Also available as Rice CAAM
TRI7-09



On the Fundamental Role of Interior-Point

Methodology in Constrained Optimization?

Richard A. Tapia?

Abstract

Recently primal-dual interior-point methodology has proven to be an effective tool
in linear programming applications and is now being extended, with great enthusi-
asm to general nonlinear programming applications. The primary purpose of this
current study is to develop and promote the belief that since Newton’s method is a
tool for square nonlinear systems of equations, the fundamental role of interior-point
methodology in inequality constrained optimization is to produce, in a meaningful and
effective manner, a square system of nonlinear equations that represents the inequal-
ity constrained optimization problem sufficiently well that the application of Newton’s

method methodology to this square system is effective and successful.

Keywords: Interior-point methods, algorithmic consistency, linear and nonlinear pro-
gramming.
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1 Introduction

The following notion should be a fundamental component in evaluating algorithms. We view

it as a basic and minimal property.
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Definition (1.1) (Algorithmic consistency)
An iterative method is said to be consistent, with respect to problem P, if whenever the
sequence it generates converges, it converges to a solution of problem P.

Consider problem constraints of the form

hiz) =
(2) (1.1)
g(z) >
and an iterative method of the form
Lh41 ISCk—}—OékACCk, kIO,l,... 5 (12)

where aj, > a > 0. We identify two paradigms designed to allow flexibility in the construction

of the step Az, yet, promote algorithmic consistency.

Linearization Paradigm:

The step Axy is required to satisfy

Vg(z) T Azy + g(z) > 0. '
Interior-Point Paradigm:
The step Az and the steplength ay are required to stisfy
Vh(zp)t A h(: = 0
(zx)" Azg + h(zy) (1.4)

9(@ps1) > 0.

Observe that both paradigms allow flexibility in the construction of the step Az, and
promote consistency in the sense that if v, — z*, then h(2*) = 0 and g(2*) = 0, under

rather mild assumptions.

Definition (1.2) (Interior-point method)
By an interior-point method we mean an iterative method that generates iterates that strictly
satisfy the inequalities in the problem definition.

In some sense an interior-point method ignores the inequalities and moves always staying
interior with respect to these inequalities. As such it can be extremely naive, ineffective, and

actually inconsistent. The interior-point challenge, which will determine success or failure



of the interior-point method under construction, is to incorporate information about the
“ignored” inequalities into the model subproblem defining the step Az; in a clever and
effective manner. Our present task is to interpret the primal-dual interior-point Newton
approach, proposed by Kojima, Mizuno, and Yoshise [7] in 1989 for linear programming and
extended to nonlinear programming by El-Bakry, Tapia, Tsuchiya, and Zhang [2] in 1992, in
the context of both existing literature and the interior-point challenge described immediately
above.

Let’s begin with a rather bold statement, but one that we believe captures the essence

of numerical computation.

1.1 The Fundamental Tool of the Computational Sciences

The fundamental tool of the computational sciences is the numerical solution of the square

nonsingular linear system

Az = b. (1.5)

where A € IR™*" and b € IR"; hence the solution x will be a member of IR". Since computers
can only perform arithmetic it follows that the only system of equations that can be solved
on a computer are linear systems. Moreover, if we ask that our method of solution be
unambiguous and well-defined, we are asking that the linear system have a unique solution.
Hence in the linear system (1.5) the matrix A must be square and nonsingular. It follows
then the basic activity of the computational sciences is formulating problems so that their
solutions can be approximated by employing strategies that require only the solutions of

square nonsingular linear systems.

1.2 A Fundamental Tool

Consider the square (number of equations equals the number of variables) nonlinear system

of equations

F(z) = 0. (1.6)

where F': IR" — IR". Recall that by damped Newton’s method for approximating solutions

of problem (1.6) we mean the iterative procedure.



Algorithm 1.1 (Damped Newton’s Method)
Given g, for k=0,1,..., do

(1) Solve F'(xy)Ax = —F(xy) for Axy.
(2) Set xpy1 = v + arAxyg, where 0 < oy < 1.

It is our expectation that the damped Newton sequence {z;} will converge to a solution
z* of problem (1.6). Moreover, we know that under rather standard assumptions this will
be the case for z, sufficiently close to a solution z* and the convergence will be fast, i.e.,
quadratic, provided a; — 1 sufficiently fast.

Now, we stress that the damped Newton’s method, Algorithm 1.1 is consistent.

Theorem 1.1 (Consistency for damped Newton’s method) Suppose that the Newton se-
quence for problem (1.6) converges to a point x*. Assume that F' is continuous at x* and

ar > a > 0. Then z* is a solution of problem (1.6).

Proof: The proof follows directly from Algorithm 1.1. a
Newton’s method allows us to reduce the solution of a square nonlinear system of equa-
tions to the solution of a sequence of square (hopefully nonsingular) square linear systems.

Hence the class of problems that can be handled numerically is significantly enlarged.

1.3 A Fundamental Activity in the Computational Sciences

A fundamental activity in the computational sciences is the modeling and formulation of
problems as square nonlinear systems of equations. Once this task has been accomplished
the researcher has at his or her disposal the entire arsenal of tools related to Newton’s method.
As we shall soon see often times a particular problem has been stated as a mathematical
problem and the task at hand is to reformulate it as a square nonlinear system of equations,

or as a sequence of such problems.

1.4 Computational Optimization

We now restrict our attention to the area of computational optimization. It is standard how
one transforms the unconstrained optimization problem and the equality constrained opti-

mization problem into essentially equivalent square systems of nonlinear equations. It is not
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at all obvious how an optimization problem with inequality constraints can be transformed
into or represented by a square nonlinear system of equations. Moreover, this is the subject
of the present study. It is our basic premise that the new emerging interior-point methodol-
ogy should be viewed as a clever and effective way of handling optimization problems with
inequality constraints by only dealing with square nonlinear systems of equations.

In the next section, Section 2, we will describe the various optimization problem classes
and show how Newton’s method technology can be readily applied to unconstrained opti-
mization and equality constrained optimization. In Section 3 we will present methods from
the literature for handling the inequality constrained problem by considering related square
systems of nonlinear equations. We include a discussion of the strengths and weaknesses of
such ad hoc procedures from the literature. In Section 4 we describe the current primal-
dual interior-point formulation. We argue that this formulation has the strength of other ad
hoc procedures without also sharing their weaknesses. Finally, in Section 5 we make some

concluding remarks.

2 Optimization Problem Classes Hierarchy

In computational optimization it is standard to consider the following four problem classes;

listed in order of increasing difficulty.

2.1 Nonlinear Equations
The nonlinear equation problem is denoted by

F(z) =0, (2.7)
where F': IR" — IR" and is read as find #* € IR" such that F'(2*) = 0. This problem was

considered in (1.6) and we presented it as the basic framework for the definition of Newton’s
method.

2.2 Unconstrained Optimization

The unconstrained optimization problem is denoted by

minimize f(x) (2.8)



where f : IR" — IR and is read as find * € IR" such that f(z*) < f(z) for all z € IR".
In some applications we are interested in local minimizers and in this case we only ask that
f(z*) < f(z) for all @ such that ||z — 2*|| < € for some ¢ > 0. A well known necessary
condition for the unconstrained minimization problem (2.8) is that any solution, including

local solutions, must satisfy the nonlinear equation problem
Vi(2) =0, (29)

where Vf : IR" — IR" is the gradient operator, i.e., V f(x) is the vector of first order partial
derivatives at x. The basic Newton’s method framework for the unconstrained minimization
problem (2.8) is the nonlinear equations problem (2.9). Unfortunately these two problems
are not equivalent, and Newton’s method may find solutions of (2.9) that are not solutions
of problem (2.8). These extraneous solutions would correspond to maximizers of f or saddle
points of f. However, various modifications or additions can be made to the basic Newton’s

method in an attempt to preclude convergence to these extraneous solutions.

2.3 Equality Constrained Optimization

The equality constrained optimization problem is denoted by

minlimize f(z) | (2.10)
subjectto hi(x)=0 i=1,...,m

where f : IR" — IR, and h; : IR" — IR and m < n. The problem is to find z* which

minimizes f in the class of all x satistying the constraints.

In an effort to derive an equivalent square nonlinear system of equations for problem
(2.10) we first consider the Lagrangian function ¢ : IR" x IR™ — IR defined by

Uz, A) = f(@) + Mhi(z) + ... + b (). (2.11)

It is well-known that, under rather mild assumptions, if * is a solution of problem (2.10),
then there exist Lagrange multipliers A* € IR™ so that the pair (z*, A*) is a solution of the

square nonlinear system of equations, the so-called first-order necessary conditions

Vi(z,\) = 0. (2.12)



It is not difficult to see that (2.12) has the form

Vi(z)+ MVhi(z)+ ...+ A Vh,(z) = 0 (2.13)
hi(z) = 0, i=1,..m

Hence, we can use this square nonlinear system of equations as the framework for applying

Newton’s method to the equality constrained optimization problem (2.10). As in the case of

problem (2.8) and problem (2.9), we know that problem (2.10) and problem (2.13) are not

mathematically equivalent. However, the equivalence is sufficiently close to allow us to build

effective Newton’s method theory and algorithms.

It should be clear that Newton’s method will be algorithmically consistent with respect
to problems (2.9) and (2.12).

2.4 Nonlinear Programming

Consider the optimization problem with both equality and inequality constraints, the so-

called general nonlinear program

minimize f(x)

subjectto hi(x)=0 i1=1,...,m (2.14)

gi(z)>0 ¢=1,...,p

where f, h;, g; are all real-valued functions defined on IR". In this context we define the
Lagrangian function ¢ : IR" x IR™ x IR" — IR by

0, 0) = F(2) + NTh(z) — uTg(2), (2.15)
where A = (Ay, ..., \0)T, h(z) = (Ri(2),..., hn(2))T, and g(z) = (g1(2), ..., g,(z))?. Under

mild assumptions, we know that any solution of the nonlinear program (2.14 must satisfy

the Karush-Kuhn-Tucker (KKT) first-order necessary conditions

KKT CONDITIONS

Vil(z,u,A) = 0
ug(z) = 0
h(z) = 0 (2.16)
glz) > 0
u > 0



In (2.16) the equalities and inequalities are read component-wise. The first things that we
notice is that the KKT system (2.16) is not a square nonlinear system. We can not imitate
the situation in unconstrained and equality constrained optimization; and therefore do not
know how to directly apply Newton methodology to the general nonlinear program (2.14).
Indeed, how this should be done is the topic of this entire study. Before we move on, we
remark that the second set of equations in the KKT conditions (2.16) are very interesting
and important and are called the complementarity equations, or simply complementarity.
A particular inequality constraint say g; is either binding or active at a solution z*, i.e.,
g(z*) =0, or it is non-binding and inactive, i.e., g(z*) > 0. In the former case our problem
does not change if we treat the inequality constraint g; as an equality constraint; while in the
latter case the flavor of the problem does not change if locally (near the solution) we ignore
this inequality constraint and completely discard it from the problem formulations. It is
exactly the smooth transition between these two scenarios that is the role and responsibility
of the complementarity equations. As such they are extremely important; and this point of

view will be greatly reinforced as we travel through the current study.

3 Standard Approaches for Inequality Constraints

In this section we study three known and rather standard approaches from the optimization
literature for handling optimization problems with inequality constraints. These approaches
are the squared slack variables approach, the active set strategy, and the logarithmic barrier
function approach. Each of these three approaches represents the nonlinear programming
problem by an optimization problem with only equality constraints. In this way we are able
to apply Newton methodology to the original problem. We remind the reader that in line
with the basic premise of this paper, these three approaches can be viewed as vehicles for
obtaining a square nonlinear system that represents the original problem to varying degrees

of accuracy and to which Newton’s method can be applied.



3.1 Squared Slack Variables

Consider an inequality constraint from problem (2.14), say g;(x) > 0. The following equiva-

lence is immediate

gi(z) 2 0 & gi(x) =y}, (3.17)

for some y; € IR. Hence, problem (2.14) can be stated equivalently as the following equality
constrained optimization problem

minimize f(x)

subject to  h(x)

g9(z)

where the auxiliary variable y € IR™. Since (3.18) is equivalent to (2.14) and has only equality

0 (3.18)
y2

=

constraints, Newton methodology can be applied as described in Section 2. Much numerical
experience has been gained over the years with this so-called squared-slack approach. We
now formally list the advantages and disadvantages of the squared-slack approach to applying
Newton methodology to the general nonlinear program (2.14).

Advantages

1. The optimization problem has no inequality constraints.
2. Newton’s method is algorithmically consistent with respect to the KKT conditions
(2.16) except for the nonnegativity of the multipliers.
Disadvantages

1. The dimension (number of variables) of the problem is increased.

2. The degree of nonlinearity of the inequality constraints is increased and leads to a loss

of convexity.

3. The introduction of extraneous multiple solutions causes the global convergence of

Newton’s method to deteriorate significantly.

The first disadvantage is not particularly serious, and can actually be circumvented by a

decoupling procedure described in Tapia [11]. The second disadvantage is serious and of



concern. However, the third disadvantage is devastating and effectively renders the squared-
slack variable approach useless, as a numerical tool. To further understand this highly critical
statement, we add the following explanation. If (z*,y*) is a solution of problem (3.18), then
so is (a*, gf*) where y* is y* with any component replaced by its negative value. Observe that
if y* € IR™, then there are 2™ possible choices for y*, hence 2™ — 1 extraneous solutions has
been introduced. Let us now argue why this exponential explosion of extraneous solutions
literally makes Newton’s method ineffective. On the real-line, if Newton’s method is started
with a point that is in the region midway between two solutions, Newton’s method does
not behave well and the iteration sequence may not be well-defined. In higher dimensions
we observe a similar phenomenon. It is not hard to see that for the squared-slack variable
formulation, the effective convergence of Newton’s method will be restricted to little pockets
around each solution. This restrictive behavior can be demonstrated numerically, and is
unfortunately more often the rule, than the exception. In spite of this poor behavior, the
use of squared-slack variables and Newton’s method has been a tool in scientific computation

in the past twenty years or so. This is particularly true in engineering applications.

3.2 Active Set Strategy

Consider the nonlinear program (2.14). At a solution, say z*, there exists an active set of
inequality constraints E, = {¢ : ¢;(z*) = 0} and an inactive set of inequality constraints
I, ={i:¢gi(z*) > 0}. Observe that z*is a solution of both problem (2.14) and the equality
constrained problem

minimize f(x)

subjectto hi(z)=011=1,...,m (3.19)

gi(z)=0 i€ E,
So, if we knew which constraints were active, then we could ignore the inactive inequality
constraints and formulate the problem at hand as an equality constrained problem. The
Active Set Strategy says that at each stage of an iterative process, e.g. Newton’s method,
“guess” the constraints that are active at the solution. Treat these as equalities and ignore
the others, i.e., work with a problem of the form (3.19).
The simplex method for linear programming is the canonical example of an active set

strategy. Recall that a vertex can be characterized as a point which uniquely satisfies a subset
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of the constraints. It is fair to say that most active set strategies in nonlinear programming
are direct descendants of the simplex idea in linear programming. Moreover, they seem to
have been suggested in the decades following the birth of the simplex method. In some sense
an active set strategy can be viewed as a form of model switching, and only one model is

the correct model.

Advantages
1. An active set strategy leads to a square nonlinear system of equations at each iteration.

2. The square system is of lower dimension, than the original problem.

Disadvantages

1. There is an exponential combinatorial explosion in the number of possible active sets

as the number of inequality constraints increases.

2. As a form of model-switching we will have success or failure as a function of how clever
we are in switching models and identifying the correct model (active set). In a worst-
case scenario, the correct model would not be identified and the sequence generated
by the algorithm could have the property that it converges but not to a solution of the

problem. That is, active set Newton’s method may not be algorithmically consistent.

Our two disadvantages should make a potential user leery of the active set approach, yet
today it is the most popular approach for problems with inequality constraints. Moreover,
these disadvantages must speak directly to the fact that the simplex method for linear
programming is known not to be a polynomial time algorithm. The now famous Klee-

Minty [6] counterexample forces the simplex method to consider each vertex.

3.3 Logarithmic Barrier Function Interior-Point Method

The basic idea of the logarithmic barrier function method is to replace the optimization
problem

minimize f(x)

subject to  h(x)

g(x)

(3.20)

0
0

IV
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with the equality constrained optimization problem

minimize f(x) — plog(g(z))

| (3.21)
subject to h(z) =0

with ¢ > 0. Let z(p) denote the solution of the logarithmic barrier subproblem (3.21). It
is known that under mild conditions x(x) converges to a solution of problem (3.20) as p
decreases to zero. This fact allows us to approximate a solution of problem (3.20) by solving
problem (3.21) for a sequence of p’s which decreases to zero. Implicit in problem (3.21) is
the requirement that g(z) > 0; since otherwise the logarithm is not defined. The logarithmic
term serves as a barrier and gives z(u) such that g(x(x)) > 0. Hence this method is clearly
an interior-point method in the sense that it keeps iterates strictly feasible with respect to
the inequality constraints. The solution path z(p) parameterized by p is called the (primal)
central path and has many beautiful theoretical properties; including that it intersects the
solution set of problem (3.20) at an interesting point called the analytic center.

The logarithmic barrier function method is implicit in Frisch [4] (1955). It was promoted
and popularized by Fiacco and McCormick [3] in the late 1960’s. The fascinating and elegant
properties of the central path were explored independently by McLinden [8], Megiddo [9],
and Sonnevend [10].

Advantages

1. The logarithmic barrier function subproblem has no inequality constraints.

2. Convexity is retained in the sense, that if the original problem (3.20) is a convex

program, then so is the logarithmic barrier function subproblem (3.21).
3. The method has excellent global convergence behavior.

4. The method is consistent with respect to the KKT conditions (2.16).

Disadvantages

1. The method is expensive in that it requires the solution of many nonlinear equality

constrained optimization problems.
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2. The method possesses inherent ill-conditioning near the solution, i.e., for small pu.

It is sufficient to illustrate this latter point with the simple case of a problem with only

one inequality constraint. Towards this end consider the inequality constrained problem

mintmize f(x)

subject to g(x) >0 (3.22)
If we let
() = f(2) — plog(y(x), (323
then we see that
Vi, (z) = Vf(z) — —=Vg(x), (3.24)
g(x)
and
Vi, (x) = VA f(x) - g,(‘—$)v2g<x> - g(’;)2Vg<m>Vg<x>T. (3.25)

Now, if (p) converges to a solution of (3.22) as g — 0, then from the KKT conditions and
(3.24) we must have

ﬁ —u”as u— 0, (3.26)
where u* is the Lagrange multiplier associated with the inequality constraint. Now, suppose
that we are in the situation that g(x) is active at the solution and u* # 0. This is to be
expected unless the constraint is redundant in the sense that the unconstrained minimizer
coincides with the constrained minimizer. From this we see that for p sufficiently small the
conditioning of the Hessian matrix (3.25) becomes arbitrarily bad. The extent that this
ill-conditioning manifests itself in a particular algorithmic formulation of Newton’s method
is not of concern here. There is some disagreement of this latter issue among computational

scientists.

4 The Primal-Dual Newton Interior-Point Method

We begin with some statements that motivate and set the stage for the primal-dual Newton
interior-point methods that we are about to discuss.
In an active set approach (so-called model-switching approach) we obtain a square non-

linear system of equations by ignoring various inequality constraints, their multipliers, and
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their complementarity equations. As a consequence our subproblems are not necessarily
badly conditioned. However, this is obtained at the expense of terrible worst-case global be-
havior. Global information in the form of the complementarity equation has been sacrificed
and is not present in the local models. Complementarity is a check on the validity of the local
models. On the other hand, in the logarithmic barrier function approach we obtain a square
nonlinear system and stay strictly interior with respect to the inequality constraints. As a
consequence we promote excellent global convergence properties at the expense of necessar-
ily badly conditioned subproblems. The obvious question to ask is: Can we do something
that will give us the best of both worlds without the worst of either world. The answer to
this rhetorical question is yes. Our development is in the spirit of the development given
by Kojima, Mizuno, Yoshise [7] for the primal-dual Newton interior-point method in linear
programming.

Observe that the inequality g;() > 0 is equivalent to the equality g;(z) — s = 0 and the
inequality s > 0. Hence, without loss of generality we can consider the general nonlinear

program in the following standard form

minimize f(x)
subject to h(xz) =0 (4.27)
x>0

In (4.27) f : IR — IR, h : IR" — IR™, and « € IR". Here x > 0 is notation for z; > 0,

i = 1,...,n. The logarithmic barrier function formulation of problem (4.27) is

mintmize f(x) — p > log(a;)

| (4.28)
subject to h(z) =10

where g > 0 and we implicitly assume > 0. The KKT conditions for this problem are

Vof(z)+ Vh(z)ly —pX~te = 0

Me) = 0, (4.29)

with the implicit assumption that = > 0. In (4.29) e = (1,...,1)¥, X is the diagonal matrix
with z on its diagonal, and Vh(z)'y is notation for y;Vhi(z) + ... + ¥, Vh,.(z). Consider

the introduction of the auxiliary variable z defined by
z=pX e, (4.30)
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and write (4.30) in the benign form
XZe = pe, (4.31)

where 7 is the diagonal matrix with z on the diagonal. Using the transformation (4.30) we

can write (4.29) in the equivalent form

Vof(z)+ Vh(z)ly -z =
h(z) = 0 (4.32)
XZe = e

where g > 0 and implicitly we require (z,z) > 0.

For p = 0 (4.32) are merely the KKT conditions for our original problem (4.27). Hence
we call them the perturbed KKT conditions.

By the primal-dual Newton interior-point method we mean the algorithm that takes
Newton steps on the perturbed KKT conditions (4.32) (ignoring (x,z) > 0) and damps the
Newton steps so that the new x and z remain strictly positive. Of course in the process p
should change and should be chosen so that it decreases to zero. The basic philosophical

approach can be described as follows.

Primal-Dual Newton Interior-Point Method Philosophy

e As a basic framework for Newton’s method consider the KKT conditions for the non-

linear program.

e Start in the interior of the feasibility region defined by the inequalities in the KKT

system

e In computing the Newton step ignore the inequalities in the KKT system. This gives

a square nonlinear system from which a Newton step can be computed.

e Perturb the complementarity equations in the KKT system so that the Newton di-
rection obtained from the perturbed KKT conditions does not point directly into the

boundary, and allows movement away from the boundary to the central path.

e Move in the perturbed direction always staying in the interior of the region defined by

the inequalities.
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Observe that the primal-dual Newton interior-point formulation offers considerable flexibility
and advantages. To begin with eventhough the KKT conditions for the logarithmic barrier
function subproblem (4.29) and the perturbed KKT conditions (4.32) are equivalent; the
Newton steps for the two systems are in general quite different. Indeed, in the case of linear
programming El-Bakry, Tapia, Tsuchiya, and Zhang [2] proved that the two Newton steps
are never the same. Hence in nonlinear programming we should expect similar behavior,
with perhaps some pathological exceptions. If we solve (4.32) to completion for a fixed p
and then decrease p and solve (4.32) to completion, and continue on in this fashion, then we
will be mimicking the behavior of the logarithmic barrier function method; however, we will
accomplish this without solving necessarily badly conditioned linear systems; as would be the
case if we applied Newton’s method to (4.29). However, ¢ can be changed more frequently
in the Newton iteration process when appropriate, i.e., certainly near the solution, in an
effort to obtain a more efficient implementation. El-Bakry et al [2] did not consider the
flexibility of holding p fixed for an appropriate number of Newton iterations. This flexibility
is a major theme in Gonzalez-Lima, Tapia, and Potra [5] in a particular linear programming
application, and is also a major theme in Argaez and Tapia [1].

We have now arrived to the point that is the underlying tenet of the current study. The
primal-dual Newton interior-point method consists of Newton steps on a square nonlinear
system of equations, the perturbed KKT conditions (4.32), that has in no way compromised
complementarity. Hence, this feature coupled with the fact that we maintain interior (i.e.,
strictly feasible) iterates allows us to obtain consistency for our Newton’s method with re-
spect to the KK'T conditions. So, in contrast to an active set approach, in our primal-dual
Newton interior-point approach, under mild assumptions, we know that if the sequence of
iterates converges, then it converges to a KKT point of the original problem. Moreover,
Zhang, Tapia and Dennis [12] demonstrated that quadratic convergence could be obtained
from the primal-dual interior-point method for nondegenerate linear programs. Zhang and
Tapia [13] were able to extend this result to degenerate linear programs. This is a surprising
result since the Jacobian matrix at a solution may be highly singular and quadratic con-
vergence for singular Newton’s method is extremely rare. El-Bakry et. al [2] demonstrated
quadratic convergence in the case of nonlinear programming under the standard Newton’s

method theory assumptions.
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Why Perturb the KKT Conditions

Let us consider the complementarity equation for a particular variable say z;. So we have
x;z; = 0. (4.33)
Newton’s method replaces complementarity (4.33) with linearized complementarity
ziAx + 2; Az = —x;2;. (4.34)

Now, if ; = 0 and z # 0, then from (4.34) we see that Az = 0 and consequently
z;+ aAz; = 0 for any value of a. It follows that if we used the unperturbed KKT conditions
in our Newton formulation, then the iterates would stick to the boundary of the nonnegative
orthant. Such behavior would preclude any form of global convergence, or algorithmic con-
sistency as described by Definition 1.1. Moreover, if x; became very small, then we would
expect the Newton method formulation to make small changes; since it makes no change
for z; = 0, and lead us to an inefficient and ineffective algorithm. However, instead of

complementarity(4.33) let us consider perturbed complementarity
wizi = p, p>0. (4.35)
Now, if ; = 0, z; # 0, then linearized perturbed complementarity would lead to
Az = pzi, (4.36)

and the iterate x; can move away from a zero (or small) value. Hence, perturbing promotes
and enhances the global aspects of the primal-dual Newton interior-point method. Moreover,
without perturbing global convergence is precluded. It is satisfying that this perturbation
can also be motivated in terms of the logarithmic barrier function method which is known to
have excellent global convergence properties. The perturbation takes us towards the central

path and away from the boundary.

5 Concluding Remarks

In this study we have attempted to convince the reader that the primal-dual Newton interior-

point method contains many nice philosophical features for handling inequality constrained
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optimization problems that other approaches from the literature lack. This argument rests on
the complementarity equation. We argue that it is central to the formulation of an algorithm
and contains much global information. A key ingredient in our message is that all approaches
that allow Newton’s method methodology to be used on an inequality constrained problem,
can be viewed as approaches for constructing or extracting a square nonlinear system of
equations to serve as local models for the original inequality constrained problem. Moreover,
the primal-dual Newton interior-point ideology performs this task in a mathematically sat-
isfying and numerically promising manner. These particular square nonlinear systems allow
for a formulation which retains all the important information about the entire nonlinear
program and also allows for excellent global and local convergence behavior. It does this
while working with linear systems that do not posses inherent ill-conditioning. Moreover,

one does not have to keep track of active or inactive inequality constraints.
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