ARPACK+H++4: A C++
Implementation of ARPACK
Eigenvalue Package (Draft Version)

Francisco M. Gomes and Danny C.
Sorensen

CRPC-TR97729
August 1997

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted in November 1997

M ot 4

A c++ implementation of ARPACK eigenvalue package.

FRANCISCO M. GOMES
Departamento déMatematicaAplicada eComputacional
UniversidadeEstadual deCampinas - Brazil

DANNY C. SORENSEN

Department of Computational and Applied Mathematics
Rice University

August 7, 1997

Contents

I ntroduction 1
1. Ingtalling and running ARPACK ++ 5
Obtaining the software 5

I ngtalling ARPACK++ 6
Compatibility 7
Dedaring complex numbers with the arcomplex class 7

Storage requirements 8
Comparing the performance of ARPACK and ARPACK++ 9

2. Getting started with ARPACK ++ 11
A real nonsymmetric example 11
Defining amatrix in compress parse olumn format 13

Building the example 15

The AREig function 15

3. ARPACK++ classes and functions 17
Eigenvalue problem classes 18
Classesthat require matrices 18
Classesthat require user-defined matrix-vedor products 19

Reverse ommunicaion classes 19

Base dasses 20
Constructor parameters 20
Matrix classes 21
Computational modes 22

Red symnetric ssandard problems 23

Red symnetric generdized problems 23

Red nonsymmetric sandard problems 25

Red nonsymmetric generdized problems 26
Complex standard problems 27
Complex generalized problems 28

ARPACK++ functions

N
(o]

i ARPACK++

Setting problem parameters

Changing problem parameters

Retrieving information about the problem

Determining eigenvalues and eigenvedors

Tradking the progressof ARPACK

Exeauting ARPACK++ gtep by step

Deteding if the solution of the egenvalue problem is avail able
Retrieving eigenvaues and eigenvedors

4. Solving eigenvalue problems

Solving problemsin four steps

Defining matrices
Using ARPACK++ matrix classes
Letting the user define amatrix class

Creating eigenvalue problems
Passng parametersto congtructors
Defining parameters after objed dedaration

Solving problems and getting output data
Letting ARPACK++ handle data
Employing user-defined data structure
Using the STL vedor class

Finding singular values
Using the ARSymStdE+ig class

5. ARPACK ++ examples

The examples diredory

Using ARPACK++ matrix structure
Solving asymimetric generdized eigenvaue problem
Solving a omplex standard eigenvalue problem
Solving truncated SVD problems

Working with user-defined matrix-vedor products
Creding ameatrix class
Solving an eigenvaue problem
Printing some information about eigenvalues and eigenvedors

Using the revese ommunication interface
Building an interfacewith another library

A. ARPACK++ reference guide
Template parameters
Types of matrix-vedor product functions

Problem parameters
Compulsory parameters
Optiond parameters

29
29
30
30
32
32
33
33

37
37

38
38
40

41
41
41

42
42
43
44

44
46
47
a7

48
48
53
57

60
60
62
63

65
67

71
71
72

73
74
77

Eigenvalue problem classes
Classesthat require matrices
Classesthat require user-defined matrix-vedor products
Classesthat do not handle matrix information
Base dasses

Matrix classes
Matrices
Pencils

Available functions
Functionsthat store user defined parameters
Functionsthat deted if output dataisready
Functionsthat provide accssto interna variables values
Functionsthat allow changesin problem parameters
Tracefunctions
Functionsthat permit step-by-step exeaution of ARPACK
Functionsthat perform al cdculationsin one step

CONTENTS i

79
80
94
104
110

112
112
135

148
149
152
154
158
162
164
167

Functionsthat perform cdculations on user supgied data structure 169

Functionsthat return vedor and matrix eements
Functionsthat provide raw accesto autput data
Output functionsthat use the STL vedor class

Handling errors
Error class
ARPACK++ @rorsand error messages

References
I ndex

171
175
179

185
185
186

189
191

| ntroduction

ARPACK++ is an objed-oriented verson of the ARPACK padkage. ARPACK [6] is
a wedl-known colledion of FORTRAN subroutines designed to compute a few
eigenvalues and, upon request, eigenvedors of large scde sparse matrices and pencils.
It is cagpable of solving a gred variety of problems from single predsion postive
definite symmetric problems to double predsion complex non-Hermitian generdized
eigenvalue problems.

ARPACK implements a variant of the Arnoldi processfor finding eigenvalues cdled
implicit restarted Arnddi method (IRAM) [10, 11]. IRAM combines Arnoldi
fadorizations with an implicitly shifted QR medanism to creade anew method that is
appropriate for very large problems. In most cases only a wmpressed meatrix or a
meatrix-vedor product y — Ax must be supdied by the user.

ARPACK++ is a olledion of classes that offers c++ programmers an interfaceto
ARPACK. It presarves the full cagability, performance acaracy and memory
requrements of the FORTRAN padage, but takes advantage of the c++ objed-
oriented programming environment.

The main feaures of ARPACK preserved by the c++versoninclude:

» The adllity to return afew eigenvalues that satisfy a user spedfied criterion, such as
largest red part, largest absolute vaue, etc.

+ A fixed pre-determined Storage requirement. Usualy, only n[O(k) + O(k?)
memory locations are used to find k eigenvalues of an-dimensona problem.

e A user-spedfied numericd acaracy for the w@mputed eigenvaues and
eigenvedors. Resdud tolerances may be st to the level of working preasion.

» The ality to find multiple egenvalues without any theoreticd or computationa
difficulty other than some aldtiona matrix-vedor products required to expose the
multiple instances. This is made possble through the implementation of deflation
tecdhniques smilar to those anployed to make the implicit shifted QR agorithm
robust and pradicd. Since ablock method is not required, the user does not need

2 ARPACK++

to “guess the rred block sze that would be needed to cgpture multiple
eigenvalues.

» Severd dternatives to solve the symmetric generdized problem Ax = MxA for
singular or ill-conditioned symmetric postive semi-definite M.

Other feduresthat are exclusveto ARPACK++ ae

» Theuse of templates. Classtemplates, or containers, are the most noticedle way
of defining generic data types. They combine run-time dficiency and massve @de
and design reutili zation. ARPACK++ uses templates to reduce the work needed to
establish and solve egenvaue problems and to smplify the structure utilized to
handle such problems. One dasswill handle sngle and double predsion problems.
Depending on the data structure used, a Single dasscan aso be used to define red
and complex matrices.

* A friendly interface. ARPACK++ avoids the cmplicaion of the revese
comrunication interface that charaderizes the FORTRAN verson of ARPACK.
It contains many classtemplatesthat are eay to use. Some of them require the user
to supdy only the nonzero eements of a matrix, while others demand the definition
of a dass that includes a matrix-vedor function. Nevertheless the revese
comrmunication interfaceis dso preserved in the c++padage, alowing the user to
solve an eigenvalue problem iteratively, performing explicitly al the matrix-vedor
products required by the Arnoldi method.

* A great number of auxiliary functions. ARPACK++ gives the user various
dternatives for handling an eigenvalue problem. There ae many functions to set
and modify problem parameters, and adso severd output functions. For instance,
seven different functions can ke used to determine the @genvedors of a problem.
There ae dso ten functions that return from a single dement of an eigenvedor to
an STL vedor that contains al the agenvedors.

* The ability to eadly find interior eigenvalues and to solve generalized
problems. ARPACK++ includes sveral matrix classes that use sate-of-the-art
routines from SuperLU, UMFPACK and LAPACK to solve linea systems. When
one of these dasses is used, spedrd trandformations such as the shift and invert
method can ke employed to find interna eigenvalues of regular and generdized
problems without requiring the user to explicitly solve linea systems.

* A dructure that amplify the linkage with other libraries. The main am of
ARPACK++ is not only to dlow the user to efficiently handle esen the most
intricate problems, but also to minimize the work needed to generate an interface
between ARPACK and other libraries, such as the Template Numerical Todlkit
(TNT) [9] and the Hilbert ClassLibrary (HCL) [5].

INTRODUCTION 3

In the first chapter, some indructions are given on how to ingtal ARPACK++.
Chapter 2 dscusses briefly what is necessary to start solving eigenvalue problems with
the library. Differences and gmilarities between ARPACK++ dases and its
computational modes are described in chapter 3. Chapter 4 contains more detalled
indructions on how to crede an eigenvalue problem, while some examples that
il ustrate ARPACK++ usage were included in chapter 5. Findly, dl classes, functions,
congructor and template parameters are fully described in the gopendix: ARPACK++
referenceguide.

The auithors would like to adnowledge Dr. Roldan Pozo and Dr. Kristyn Maschhoff
for their ingghtful suggestions and supyort.

Financid support for this work was provided in part by FAPESP (Braal), grant
96/25569, by the Nationa Science Foundation cooperative areanent CCR-912008
and by the ARPA contrad number DAAL03-91-C-0047 (administered by the U.S.
Army Reseach Office).

Chapter

Installing and
running ARPACK ++

As a olledion of classtemplates, ARPACK++ can ke eally ingalled, provided that
other libraries required by the software ae available. This chapter describes how to
obtain ARPACK++ and what isnecessary to useit.

Obtaining the software.

ARPACK++ is digributed as a sngle file cdled arpackpp. tar.gz. Thisfile mntains
al of thelibrary files, some ill ustrative examples and adso a @py of this manud. It can
be obtained fromthe URL: ftp://ftp.caam.rice.edu/pub/people/chico.

Becaise ARPACK++ is an interfaceto the origindd ARPACK FORTRAN library, this
library must be available when ingtdlling the c++ ©de. Although FORTRAN files are
not distributed along with ARPACK++, they can be obtained from Netlib or diredly
fromthe URL: ftp://ftp.caam.rice.edu/pub/software/ARPACK.

ARPACK FORTRAN software @wmes with al necessry BLAS and LAPACK
routines, but it is also possble to use locd (optimized) ingtalations of these libraries if
they are available. ARPACK user’s guide [6] provides further ingtructions on how to
obtain and compile the FORTRAN code'.

! The ARPACK user’s guide also describes in detail how ARPACK works and contains a lot of
useful examples. It is an excdlent source of information for those interested in solving
eigenvalue problems.

6 ARPACK++

Other libraries required by some (but not al) ARPACK++ dasses include SuperLU
[3], UMFPACK [1] and the Sandad Template Library (see[8]) padkages.

The SuperLU padage can be used to solve egenvaue problems that require mmplex
or red nonsymmetric maetrix fadorizations. It is cdled by ARTuNonSymStdEig,
ARTuNonSymGenEig, ARTuCompStdEig and ARTuCompGenEig classes and must be
inddled if one of these dases is to be used. SupeLU is avalable &
http://www.netlib.org/scalapack/prototype.

The @ove mentioned classes can dso cdl UMFPACK library functions insteal of
usng SuperLU to solve egenvaue problems that require matrix decompositions.
However, UMFPACK may be used <oldy for educaiond, reseach, and
benchmarking puposes by non-profit organizations and the U.S. government.
Commercid and other organizaions may meke use of UMFPACK only for
benchmarking puposes. UMFPACK can ke downloaded from ftp://ftp.cis.uf1.
edu/pub/umfpack. The MA38 Padkage in the Harwell Sulyoutine Library (HSL.) has
equivalent functiondity (and identicd cdling interfacg as UMFPACK and is available
for commercia use. Tedhnicd reports and information on HSL can be obtained from
http://www.cis.rl.ac.uk/struct/ARCD/NUM.html. Unfortunatedly, MA38, as
well asolder versons of UMFPACK, cannot ded with complex matrices.

The vedor classfrom the Sandad Template Library (STL) can be used to retrieve
eigenvalues and eigenvedors computed by al ARPACK++ dasss There ae dso
plans to build an interfacebetween ARPACK++ and TNT [9], an STL-based library,
as on asthis padkage beme available. Some wmpilersinclude their own version of
STL. If it is not the ca&e the libray can dso be found a
ftp://butler.hpl.hp.com/st1.

| nstalling ARPACK++.

To unbundlefile arpackpp. tar. gz the user should use the following command:
gzip -d arpackpp.tar.gz | tar -xvf -

A main diredory cdled arpack++ will be attomaticdly creaed. This diredory should
contain three other diredories. One of them, arpack++/include, concentrates all
ARPACK++ templates. Another, arpack++/examples, includes ®me sdeded
examples, and the last, arpack++/doc, contains ingdlation rotes, a description of
ARPACK++ gructure and alist of known bugs.

ARPACK++ isa olledion of templates. Templates are defined in header (. h) files, so
they can ke used dredly by other programs without any previous compilation. No
objed (.o) or library (.a) files have to be generated when ingtaling ARPACK++,
except those @rresponding to ather libraries (ARPACK, LAPACK, SuperLU and

INSTALLING AND RUNNING ARPACK++ 7

UMFPACK). Some hints on how to properly instal these libraries can be found in the
doc/installation. txt file

ARPACK++ header files can ke moved to any "include” diredory, provided that an
optionintheform

-I<directory name>

is added to the command line when compiling programs that use the software, where
<directory name> isthe name of theinclude diredory.

Compatibility.

At the present time, ARPACK++ has only been compiled with the CC and GNU g++
compilers and tested in a SUN SparcStation. Further work must be done in order to
port the padkage to ather environments.

To minimize this inconvenience, compil er-dependent functions and deta types used by
ARPACK++ were grouped in afile cdled include/arch.h. Thus, this file should be
changed to refled the daraderigtics of the user’s ystem.

Beddes that, a lig of known incompatibilities between ARPACK++ and some
compilers can be found in doc/bugs . txt.

Declaring complex numberswith the arcomplex class.

One of the mgjor drawbadks of building mathematicd software in c++ is the ladk of a
standard complex class Different c++ compilerstend to have different complex classes
and most people ayreethat writing aportable mde isamost impossble in such case.

Becaie of that, ARPACK++ includes its own complex class cdled arcomplex,
arcomplex is a dasstemplate aeaed in an effort to emulate the g++ complex class
when other compilers are being used. Both single axd double predson complex
numbers can ke represented by arcomplex, as $rown in the following example:

#include “arcomp.h”

arcomplex<float> z; // A single precision complex number.
arcomplex<double> w; // A double precision complex.

arcomplex is the only complex type referenced by all the ARPACK++ files, so it is
not necessry to change severa files when using a ompiler other than g++, but only
arcomp. h, thefilewhere arcomplex is defined.

8 ARPACK++

Storage requirements.

The anount of memory required to run ARPACK++ depends on a grea number of
variables, including the type of the problem, its dimension (n) , the number desred
eigenvalues (neV) and the number of Arnoldi vedors generated at ead iteration (ncv).

The table below furnishes the anount of memory postions used to find eigenvalues
and eigenvedors’ of astandard problem as afunction of n, nevand ncv. Sincethe user
is not required to suppy ncv (this is a optiona parameter), the third column of the
table indicaes the memory required when ncvis st to its default value (2new+ 1).

The table indicates the number of red positions required to solve the related problems.
The number of bytes adualy used in eat case can be obtained by multiplying the
value shown in the table by the size (in bytes) of the red element used®. These values
correspond to a problem solved in reguar mode. A (smdl) amount of memory that
does not depend on n, ncv or nevis aso required to store some other ARPACK++
variables and function parameters, but this memory is negligible for large problems.

type of memory podgtions memory usage

problem required with default ncv
real 4n+ n.ncv+ nov 5n+ 2n.nev+
symmetric + 8ncv+ nev 4neV + 21nev
real 4n + n.ncv+ 3ncV 5n+ 2n.nev+

nonsymmetric + 9ncv + 2nev 12neV’ + 32nev
8n + 2n.ncv + 6nev 10n + 4n.nev+

complex + 15ncv+ 2nev 24neV + 56nev

If the user wants to determine nev eigenvedors and nev Schur vedors at the same
time, or if he wants to supfdy his own vedor to sore the agenvedors, the storage
requirements are increased by nevlh postions in the symnetric cae, nevih+n
positionsin the nonsymmetric case and 2nev[ih pogtionsin the mmplex case.

The values mentioned above do not include the memory required to store the matrices
of the problem, nor the LU fadorsthat are generated when a spedra transformation is
used. Sincethe exad number of eements of L and U are hard to determine, the user
should aso take in acount & least an estimate of these alditiona memory positions
required to store the problem data.

2 The same amount of memory is required to find nev Schur vedors or an Arnoldi basis instead
of the eigenvectors.
% Typical values are: 4 bytes for single precision variables and 8 bytes if double precision is used.

INSTALLING AND RUNNING ARPACK++ 9

Comparing the performance of ARPACK and ARPACK++.

Comparing the performance of ARPACK and ARPACK++ is ot so easy as it might
appeda, gncethelibraries are not exadly equivalent.

Thefirg asped that must be noted isthat the FORTRAN verson of ARPACK isnot a
padkage that finds eigenvalues at once, but rather a @lledion of functions that must be
cdled iteratively when solving an eigenvalue problem. This gructure is cdled the
revase mwmrrunicationinterface

Since ARPACK++ dso includes this interface the smplest comparison between both
versons conssts in determining the overhead produced by the c++ structure. This
overhead comprises the time spent to dedare an eigenvalue problem using one of the
classes provided by ARPACK++, the time required to set the initidize d of the
ARPACK++ internad variables and the overhead generated ead time aFORTRAN
subroutine is cdled.

Compared this way, both versons have shown the same performance The difference
between ARPACK and PARPACK++ isinggnificant.

Another way to compare the c++and FORTRAN codes conssts in measuring the
total time spent by ead library to solve an eigenvalue problem. The disadvantage of
this type of andysis is that the time @nsumed by the matrix-vedor products (and
occasondly some linea systems) required by the Arnoldi method is also considered,
which means that not only the performance of ARPACK and ARPACK++ is
compared, but aso the ddility of the FORTRAN and c++ compilers to optimize the
meatrix-vedor product routine (and sometimes aso the linea solver).

In a preliminary test, a very ample set of sample problems that are distributed with
ARPACK was used to compare the performance of both padages. The mmputations
were made on a Sun Workstation, with the f77 (verson 3.0.1) and the g++ (verson
2.7.2) compilers’. The mmpiler option -0 was used in al tests. The dimension of the
problem was st to values varying between 100 and 2025 All the tests were
performed in double predsion.

The reaults obtained suggest that for problems with red variables the performance of
ARPACK and ARPACK++ is very dgmilar. A closer look a the matrix-vedor
products reveds that they have taken alittle more time in c++ than in FORTRAN, but
this difference was usudly attenuated when consdering the tota time spent by the
Arnoldi method.

On the other hand, problems with complex variables have run much faster in
FORTRAN than when compiled with g++. Generally, eat matrix-vedor product in
c++ have taken about 750% more time than the same product in FORTRAN.

* The CC compiler was also tested but it has shown a worse performance when compared to g++.

10 ARPACK++

This difference is © grea that it suggests that for complex problems the time
consumed by the matrix-vedor products can dictate the overal performance of the
program. Thisis particularly true for large scde egenvalue problems.

Perhaps this poor behavior can ke imputed to the fad that the c++language does not
contain a intringc complex data type & FORTRAN does. Although g++ includes a
very atradive dasstemplate to define cmplex variables, the performance of this class
IS not so good.

The matrices of the @mplex problems tested were very sparse, so the totd time spent
by the c++ ©de was 32% greder than the time cnsumed by the FORTRAN verson
of ARPACK. However, worse results sould be expeded in generd.

ARPACK++ ds0 contains ome dasses that are cgable of performing al the matrix-
vedor products (and occasondly solving the linea systems) required to solve an
eigenvalue problem, but these dasses were not used here, Sncethey are not present in
ARPACK. The cmmparison was made using the same matrix-vedor routine trandated
to c++ and FORTRAN.

Naturally, some cae must be taken before extending these results to ather problems.
One cannot analyze the behavior of both libraries based only on the results mentioned
here, since the totd time spent by the Arnoldi method is gredly affeded by many
fadors such as the dimension of the system, the sparsity pattern of the matrices, the
number of eigenvalues that are to be caculated, the desred portion of the spedrum
and the number of Arnoldi vedors generated at ead iteration. Without mentioning
that the computer and the compiler used can adso affed the measured results.

Chapter

Getting started
with ARPACK ++

The purpose of the dapter is to give a brief introduction to ARPACK++ while
depicting the kind of information the user is required to provide to easly solve
eigenvalue problems.

The example included hereis very smple and is not intended to cover al ARPACK++
fedures. In this example, a red nonsymmetric matrix in Compressed Spase Column
(CXC) format is generated and its eigenvalues and eigenvedors determined by using
the ARE1g function.

Other different ways of creaing elaborate ARPACK++ objeds and solving more
difficult problems, such those that require the use of spedrad transformetions, will be
presented in chapter four. A full description of al ARPACK++ dasses and functionsis
the subjed of the gpendix.

A real nonsymmetric example.

Perhaps the eaiest way of getting started with ARPACK++ is trying to run the
simple.cc example ontained inthe examples/areig/nonsym diredory.

A dightly modified verson of simple. cc isreproduced below. It ill ustrates

1. How to dedare amatrix in CSC formet;
2. How to passmatrix datato the ARE1ig function;

12 ARPACK++

3. How to use ARE1ig to dbtain some egenvaues and eigenvedors,; and
4. How to store output data.

/:':
MODULE Simple.cc
Simple example program that illustrates how to solve a real
nonsymmetric standard eigenvalue problem in regular mode
using the AREig function.

*k/

#include "areig.h"
#include <math.h>
#include "Tnmatrxc.h"

main()

{

// Declaring variables needed to store
// A in compressed sparse column (CSC) format.

int n; // Dimension of matrix.

int nnz; // Number of nonzero elements in A.

int* irow; // Row index of all nonzero elements of A.
int* pcol; // Pointer to the beginning of each column.
double* A; // Nonzero elements of A.

// Generating a double precision nonsymmetric 100x100 matrix.

n = 100;
Matrix(n, nnz, A, irow, pcol);

// Declaring AREig output variables.

int nconv; // Number of converged eigenvalues.
double* EigValR = new double[100]; // Eigenvalues (real part).
double* EigVall = new double[100]; // Eigenvalues (imag part).

double* EigVec new double[1100]; // Eigenvectors.
// Finding the five eigenvalues with largest magnitude
// and the related eigenvectors.

nconv = AREig(EigvalR, Eigvall, EigVec, n, nnz, A, irow, pcol, 5);
// Printing eigenvalues.

cout << "Eigenvalues:" << endl;
for (int i=0; 1i<nconv; i++) {
cout << " Tlambda[" << (i+1) << "]: " << EigvalR[i];
if (EigvalI[i]>=0.0) {
cout << " + " << EigvValI[i] <<
}
else {
cout << " - " << fabs(EigvalI[i]) << " I" << endl;
}
}

} // main.

I" << endl;

GETTING STARTED WITH ARPACK++13

Inthe example a&ove, Matrix isafunction that returns the variables nnz, A, irow, and
pcol. These variables are used to passmatrix data to the ARE1 g function, as described
in the next sedion. The number of desired eigenvaues (five) must also be dedared
when cdling AREig.

AREig is not atrue ARPACK++ function. Although being a MATLAB-style function
that can be used solve most eigenvalue problemsin a very straightforward way, AREig
does not explore most ARPACK++ cagablities. It was included here only as an
example, merely to introduce the software. The user is urged to chedk out chapters 3
and 4to seehow to redly take advantage of al ARPACK++ fedures.

AREig was defined in afile cdled examples/areig/areig.h and contains the some
basc ARPACK++ commands neeaded to find eigenvalues using the SuperLU padkage.
Therefore, to use this function, SuperLU must be previoudy ingtaled (following the
diredions given in chapter one).

EigVec, EigvalR, Eigvall and nconv are output parameters of AREig. EigVec isa
vedor that stores dl eigenvedors squentidly (see digpter 5 or the gpendix).
EigvalR and Eigvall are used to sore, respedively, the red and imaginary parts of
meatrix eigenvalues. nconv indicades how many eigenvaues with the requested
predson were ac¢ualy obtained.

Many other ARPACK++ parameters can e passed as arguments to AREig. Becaise
these other parameters were dedared as default arguments, they should be dedared
only if the user does not want to use the default values provided by ARPACK++ .

Defining a matrix in Compr ess Spar se Column for mat.

TheMatrix function below shows briefly how to generate asparse red nonsymmetric
matrix in CSC format. See the definition of the ARTuNonSymMatrix and
ARumNonSymMatrix classesin the gopendix for further information on how to crede a
meatrix using this formet.

n is an input parameter that defines matrix dimenson. All other parameters are
returned by the function. A is a pointer to an array that contains the nonzero dements
of the matrix. irow is a vedor that gives the row index of ead eement stored in A.
Elements of the same lumn are stored in an increaaing order of rows. pcol gives
integer pointersto the beginning of al matrix columns.

In this example, the matrix is tridiagonal®, with dd on the main diagond, d1 on the
subdiagonal and du on the superdiagonal.

® ARPACK++ also includes a band matrix classthat could have been used here. It was not used
since the purpose of the example is to show how to define a matrix using the CSC format.

14 ARPACK++

template<class FLOAT, class INT>
void Matrix(INT n, INT& nnz, FLOAT* &A, INT* &irow, INT* &pcol)
{

INT 1, 3J;

// Defining constants.

FLOAT dd = -1.5;
FLOAT d1 = 4.0;
FLOAT du = -0.5

// Defining the number of nonzero matrix elements.
nnz = 3*n-2;

// Creating output vectors.

A = new FLOAT[nnz];
irow = new INT[hnz];
pcol = new INT[n+1];

// Filling A, irow and pcol.
pcol[0] = O;

j=0;

for (i=0; i'=n; i++) {

// Superdiagonal.

if (G 1=0) {
irow[j] = i-1;
Alj++] = du;
}

// Main diagonal.

i
dd;

irow[j]
Alj++]

// Subdiagonal.

if G = (n-1) {
irow[j] = i+1;
Alj++] dl;

}

// Defining where the next column will begin.

pcol[i+1] = j;

} // Matrix.

GETTING STARTED WITH ARPACK++15

Building the example.

To compile simple.cc and link it to some libraries;, ARPACK++ provides a
Makefile file. The user just need to type the ommand

make symsimp

However, some other files, such as Makefile.inc and include/arch.h, should be
modified prior to compili ng the example, in order to corredly define seach diredories
and some macdine-dependent parameters (see tiapter one).

The AREig function.

AREig is a function intended to illustrate how to solve d kinds of standard and
generdlized eigenvalue problems, inasmuch as the user can store matrices in CSC
format. It isdefined inthe examples/areig/areig.hfile.

Actudly, areig.h contains one definition of the AREig function for ead different
problem supported by ARPACK. Thisis cdled function overloading and isa very used
fedure of the c++language. One of the implementations of AREig (the one that is
used by the example defined in this chapter) is $1own below.

template <class FLOAT>

int AREig(FLOAT EigValR[], FLOAT EigvalI[], FLOAT EigVec[], int n,
int nnz, FLOAT A[], int irow[], int pcol[], int nev,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

// Creating a matrix in ARPACK++ format.
ARTuNonSymMatrix<FLOAT> matrix(n, nnz, A, irow, pcol);

// Defining the eigenvalue problem.

ARTuNonSymStdEig<FLOAT> prob(nev, &matrix, which, ncv,
tol, maxit, resid, AutoShift);

// Finding eigenvalues and eigenvectors.

return prob.EigenvValVectors(EigVec, EigvalR, Eigvall);

As gated ealier, this function is intended to be smple axd easy to use. As a
consequence of its smplicity, many feaures provided by ARPACK++ dasses and thelr
member functions are not covered by ARE1ig. It cannot be used, for example, to dbtain
Schur vedors, but only eigenvalues and eigenvedors. The user also cannot choose

16 ARPACK++

among al the output formats suppied by ARPACK++. Only the smplest format can
be used.

To overcome in part the limitations imposed by this very stringent structure, AREig
uses default parameters. These parameters can ke ignored if the default vaues
provided by ARPACK++ ae gpropriate, but the user can aso change their values at
his convenience maxit, the maximum number of Arnoldi iterations dlowed, and
which, the part of the spedrum that is to be mmputed, are just two o those
parameters. For a ammplete description of dl ARPACK++ parameters, the user should
refer to the gopendix.

The verson of AREig depicted above @ntains only three @mmands. The first one
dedares a matrix usng the ARTuNonSymMatrix function. The second one defines the
eigenvaue problem and sets the ARPACK++ parameters. The third command
determines eigenvalues and eigenvedors.

All of these ommands may be used dredly (and in conjunction to ather ARPACK++
functions and clases) 0 the user need not to cdl AREig to solve an eigenvaue
problem. However, becaise this function is quite Smple to use, it may be viewed as an
interesting aternative to find eigenvalues of a matrix in CSC formet.

Chapter

ARPACK ++
classes and functions

Due to agorithmic consderations concerning program efficiency and smplicity,
ARPACK divides eigenvalue problems into threemain categories. red symmetric, red
nonsymmetric and complex. ARPACK provides a separate FORTRAN subroutine for
ead one of these dasss.

In the c++ library, these caegories are subdivided further. ARPACK++ makes a
digtinction between regular and generdized problems, due to the different number of
meatrices that charaderize them, so there ae six types of classes that can be used to
define egenvalue problems.

By dividing problems this way, ARPACK++ assrres that ead type of problem
belongsto a dasswith minimal template aguments, reducing the compilation time and
the size of the programs. As a onsequence, ARPACK++ has a large number of
classes. On the other hand, the number of constructor parametersis snall.

Generally, the user will be asked to define adense matrix or a matrix in compressed
gparse olumn (CSC) or band format, or to supdy a matrix-vedor product y — OPX

in order to describe the a@genvaue problem. The desred part of the spedrum nmust
also be spedfied.

ARPACK++ dasses and their computational modes are briefly described below. Some
of the problem charaderistics that can be defined by parameters passed to constructors
are dso presented, dong with a mmplete list of ARPACK++ functions.

18 ARPACK++

Eigenvalue problem classes.

ARPACK is an extendve padkage that supdies a variety of dternatives to handle
different reguar and generalized eilgenvaue problems. Whenever possble, advantage
is taken of gpeda dructure or charaderigics sich as the symmetry of involved
matrices, the type of its elements (if they are red or complex) and the spedra
transformation strategy used.

In this dion, ARPACK++ dasses are divided into three levels acording to the
amount of information the user isrequired to supdy. For example, if a gparse matrix is
avallable, in the sense that its nonzero elements can be put in avedor, then one group
of classes $ould be used. Another group of classes were made available for the cae
the user can supdy only matrix-vedor products. Findly, a third group should be used
if the user wants to evaluate matrix-vedor products by himself insteal of passng them
to ARPACK++ dasses congtructors.

ARPACK++ dasses are summarized below. Some examples that clarify their use wil
be presented in the next chapter, but the user must refer to the ARPACK++ reference
guide below for a @mmplete description of them.

Classes that require matrices.

The first and most versatile group of ARPACK++ dasss is $iown in the table below.
These dasses can ke used to solve d kinds of eigenvalue problems as long as the
nonzero elements of matrices can be stored in compressed sparse @lumn or band
format, or sequentialy ina n x n vedor if the matrix is dense.

Typeof matrix | typeof problem classname
symmetric generdized ARIuSymGenEig
red Standard ARIuNonSymStdEig
nonsymmetric generdized ARIuNonSymGenEig
not Hermitian generalized ARIuCompGenEig

Becaise dasss of this group wtse ARPACK++ interna structure to perform nmetrix-
vedor products and solve linea systems (by dired methods), the kind of information

ARPACK++ CLASSES AND FUNCTIONS19

that the user is sipposed to supdy is minimal: just an objed that belongs to one of the
matrix classes provided by ARPACK++, besides the number of desired eigenvalues. A
list of available matrix classsis given later in this chapter.

Classes that require user-defined matrix-vector products.

Thisgroup includes classes that permit the user to define matrix-vedor products when
nonzeo meatrix elements cannot be pased dredly to ARPACK++. For eath
combination of matrix type, problem type axd computational mode, there is a different
st of such products that must be supdied, asit will be described in the next sedion.

To alow these matrix-vedor products to have the same number of parameters without
preventing them from sharing information with other data structures, they must be
dedared as amember function of some spedfic matrix classes.

Typeof matrix | typeof problem classname
red Standard ARNonSymStdEig
nonsymmetric generdlized ARNonSymGenEig
red sandard ARSymStdEig
symmetric generdized ARSymGenEig
complex sandard ARCompStdEig
(Hermitian or not) generdized ARCompGenEig

These dases are ds0 useful if the user wants to build an interface between
ARPACK++ and some other library that contains matrix classes. An example on how
to crede such interfacewill be presented in chapter 5.

Rever se communication classes.

These dasses implement the so cdled revese comnunication interface (the interface
provided by the ARPACK FORTRAN code), and should be used only if the user
wants to solve agenvaue problems without passng any meatrix informeation to
ARPACK++. Inthis case, the Arnoldi processis interrupted ead time amatrix-vedor
product isrequired, so the user’s code can perform the product.

20 ARPACK++

typeof matrix | typeof problem classname
red standard ARrcNonSymStdEig
nonsymmetric generdized ARrcNonSymGenEig
symmetric generdized ARrcSymGenEig
(Hermitian or not) generdized ARrcCompGenEig

Base classes.

All the dove dasss are derived from the lowest level base dasses ARStdEqig,
ARGenE1ig, ARrcStdEig and ARrcGenEig. These dasss contain the most fundamenta
ARPACK++ variables and functions and are not intended to be used dredly. But they
can ke useful if someone wants to build his own classes related to some spedfic
problems.

Constructor parameters.

Choosing one of the dasses listed above is not the only requirement the user is
supposed to med when defining an eigenvaue problem. It is dso necessary to provide
information about the matrices that charaderize the problem, to furnish the number of
eigenvalues ught and to dedde how to stop the Arnoldi method, for example.

This additional information is usualy supgdied to ARPACK++ by passng parameters
to the dass congructor when objeds are being dedared. Although some dass
congtructors include more parameters than others, most of them usualy requre the
user to spedfy

» thedimenson of the egenvalue problem, n;

 the number of eigenvalue to be mmputed, nev;

e One or two matrix objeds, depending on whether a standard or a generdized
problem is being solved.

These parameters are essential, which means that one cannot set up a problem without
defining them. Various other parameters are usudly defined internaly by ARPACK ++,

ARPACK++ CLASSES AND FUNCTIONS21

but the user may also supdy them when cdling the ongructor. In this case, the
default values are ignored. Among these optiona parameters, the most important are:

* which, the part of the spedrum that should be computed,

* ncv, the number of Arnoldi vedors generated at ead iteration of ARPACK;
* tol, therdative acaracy to which eigenvalues are to be determined;

* maxit, the maximum number of iterations alowed;

* resid, an garting vedor for the Arnoldi process

Passng parameters through classcongtructors, as described above, is a very common
procedure in c++. It isaso a mnon pradiceto define more than one wngtructor for
ead class so0 the number of parameters required to define dightly different problems
can ke reduced to a minimum.

In the ARPACK++ library, al clases® contain at leagt four different constructors: a
default congtructor (with no parameters), a @py consgtructor (to build an eigenvaue
problem from another), a mnstructor that defines a problem in reguar mode and a
another one to solve problems using the shift and invert mode spedral transformation.
However, severd classes contain more than these four constructors.

The spedra trandformations available for eath class and the spedfic requirements
related to them will described later in this chapter. A detaled description of all
ARPACK++ dassparameters and congtructors can be found in the gopendix.

Matrix classes.

Eigenvalue problems arisng in red applicaions are frequently charaderized by very
large and sparse matrices. Usually, it is convenient to store such matrices in a dense
vedor, or usng the ompressed sparse @lumn (CSC) or band format to efficiently
perform the matrix-vedor products or solve the linea systems required by the Arnoldi
method. In such cases, the smplest way of defining a problem is to use some
predefined matrix classprovided by ARPACK ++.

ARPACK++ contains $x classesthat can be used to store sparse matrices, as sownin
the following table. They are divided acrding to two parameters: the library that is
used to solve linea systems and the presence of symmetry. Other two classes are
provided for dense matrices. Red and complex data ae handled by the same dasses,
snce ARPACK++ uses templates to define them.

® Except those classified as pure base classes.

22 ARPACK++

This classficaion permits the user to supdy only the minimum amount of information
that is necessry to charaderize amatrix. For example, only four parameters are
required to crede ared square nonsymmetric band matrix: its dimenson, the upper
and the lower bandwidth and avedor that contains the matrix eements that belong to
the band. If the matrix is ymmetric, only the upper or the lower trianguar nonzero
elements must be furnished.

Some ingtructions on how to dedare matrices using these dasss are given in the next
chapter, which aso describes how to define anew meatrix classif none of those listed
below can efficiently represent the problem being solved.

Library used matrix type classname
SuperLU symimetric ARIuSymMatrix
(CSC formet) nonsymmetric ARIuNonSymMatrix

UMFPACK symmetric ARumSymMatrix
(CSC formet) nonsymmetric ARumNonSymMatrix
LAPACK symmetric ARbdSymMatrix
(band formet) nonsymmetric ARbdNonSymM atrix
LAPACK symmetric ARdsSymMatrix

(dense) noNsymMmetric ARdsNonSymM atrix

Computational modes.

It is important to sded the gpropriate spedrd transformation strategy for a given
problem. Some spedra transformations are required to solve generdized problems,
while others can ke anployed to enhance ®nvergence to a particular portion of the
spedrum. However, most of these transformations require the solution of linea
systems, so the user must be avare of the memory requirements related to ead one of
them. Some caie must aso be taken to asaure that the desired portion of the spedrum
iscomputed.

In ARPACK++, these transformations are cdled computationd modes. ARPACK++
classes contain a different congtructor for ead computational mode, so the user must
seled one of them when dedaring an objed of a spedfic dass

ARPACK++ CLASSES AND FUNCTIONS23

ARPACK++ computational modes are listed below. Some examples on how to define
the right mode for a spedfic problem are given in the next chapter and in the gopendix.
An exhaustive description of all avallable ARPACK modes can ke found in [6].

Real symmetric standard problems.

There ae two drivers desgned to solve aproblem in the sandard form Ax = xA
with a red symmetric matrix A, depending on the portion of the spedrum to be
computed. One of these drivers $ould be sdeded when dedaring objeds of
ARSymStdEig, ARTuSymStdEig Or ARrcSymStdEig classes.

1. Regular mode.

This first driver is well suited to find eigenvaues with largest or smalest agebraic
vaue, or eigenvaues with largest or smalles magnitude. Since this mode is
graightforward and does not require any data transformetion, it only requires the user
to supdy A stored as a dense matrix, or in CSC or band format, or a function that
computes the matrix-vedor product y — Ax.

2. Shift-and-invert mode.

This driver may be used to compute agenvalues nea a shift o and is often used when
the desired eigenvalues are dustered or not extreme. With this gedrd transformation,
the egenvaue problem isrewritten in the form

(A-ol)'x=xv

It is easy to prove that v, the égenvalues of largest magnitude of OP = (A-al) ™,
can ke used to cdculate the agenvalues A that are neaest to o in absolute value. The
relation between them is v=1/(A —0) or A =o+1/v. Eigenvedors of both the

origind and the transformed systems are the same, so no badkward transformation is
required in this case.

The mgor drawbadk of this mode is the necessty of evauating the matrix-vedor
product y — OPx, which means that a function that solves linea systems involving
(A-01) mus be avallable. This function is provided interndly by ARPACK++ if

ARTuSymStdEig is being used, but it must be defined by the user when one of the
ARSymStdEig or ARrcSymStdEig classsis employed.
Real symmetric generalized problems.

ARPACK++ dso provides three dasses, named ARSymGenEig, ARTuSymGenEig and
ARrcSymGenEig, to solve symmetric red generdized problems in the form

24 ARPACK++

Ax = BxA . These dasses include four different modes that can be sdleded acording
to some problem charaderigtics

1. Regular mode.

As in the sandard case, this mode is well suited to find eigenvalues with largest or
smallest dgebraic vaue or magnitude. Two matrix-vedor products are performed
(and must be supdied if ARSymGenEig or ARrcSymGenEig are being used) in this
mode:

w — OPx = B1Ax

Z —« Bx

The reguar mode is effedive when B is ymmetric and positive definite but can not be
efficiently demmposed wsing a sparse Cholesky fadorization B=LL". If this
decompostion is feasble and B is well conditioned, then it is better to rewrite the
generdized problem intheform

(L*ALT)y = A,

whereL"x =y, and use one of the dasss designed to solve standard problems.
Naturally, in this case, eat matrix-vedor product (L™*AL™")z should be performed

in three geps, includng a product in the form w ~ Axand the solution of two
triangular systems.

2. Shift and invert mode.

To find eigenvaues nea ashift oinagenerdized problem, it is necessary to transform
the problem into

(A-0B)™"Bx =xv.

After finding the egenvalues of largest magnitude for the dove problem, the desired
original eigenvalues are ealy obtained using the relation A =o+1/v, as in the
sandard case.

This transformation is done aitomeaticdly by ARPACK++, but the required matrix-
vedor products, y — OPz where OP = (A-0B) ™, andw — Bz, must be performed

by the user if the dassbeing used is other than ARTuSymGenEig. Matrix B is supposed
to be symnetric postive semi-definite.

ARPACK++ CLASSES AND FUNCTIONS25

3. Buckling mode.

This mode can dso be used to find eigenvalues nea a shift 0. If Ax=Bx\ is
rewritten in the form

(A-0B) ™" Ax = xv,

the largest eigenvalues v of this yystem and the egenvalues of the origind problem are
related by A =ov/(v—-1). The matrix-vedor products involved in this mode ae
y « OPz and w — Az, where OP=(A-0B)™. They ae required by the
ARSymGenEig and ARrcSymGenEig classes. Moreover, matrix A must be symmetric
positive semi-definite.

4. Cayley mode.

In this last mode, to find eigenvaues nea a shift o, the sygem Ax = Bx\ is
transformed into

(A-0B) ™ (A+0B)x = xv.

Therelation between the largest eigenvalues of this yystem and the desired eigenvalues
isgiven by A =a(v+12)/(v -1 . Inthis mode, matrix B is required to be symmetric
positive semi-definite.

Only the shift must be defined by the user if ARTuSymGenEig is being used. However,
threedifferent matrix-vedor products must be supdied to both the ARSymGenEig and
the ARrcSymGenEig classes. These produwctsare y —« OPz, w —~ Az and u ~ Bz,

where OP = (A-oB) ™.

Real nonsymmetric standard problems.

There ae dso two drivers for nonsymmetric sandard eigenvalue problems. They are
handled by ARPACK++ dasss ARNonSymStdEig, ARTuNonSymStdEig and
ARrcNonSymStdEig.

1. Regular mode.

Thisdriver can be used to find eigenvalues with smallest or largest magnitude, red part
or imaginary part. It only requires the user to supfy the nonzero structure of matrix A
or a function that computes the matrix-vedor product y ~ Ax. Naturaly, when
computing eigenvalues of smdlest magnitude, the user must condder aso the
posshility of using A™ and the shift and invert mode with zero shift, becaise ARPACK
ismore dfedive d finding extrema well separated eigenvalues.

26 ARPACK++

2. Shift-and-invert mode.

This driver may be used to compute egenvaues nea a shift ¢ and is often used when
the dedired eigenvalues are not extreme (seethe sedion on real symnetric sandad
problems for a brief description of this mode).

When class ARTuNonSymStdEig is being used, only the shift must be furnished.
However, to use this gedra transformation combined with one of the dass
ARNonSymStdEig or ARrcNonSymStdEig, the user must supdy a function that
evauates the matrix-vedor product

y « OPx=(A-al)™x

where ¢ is supposed to be red. To define a omplex shift, the user should use a
generdizead driver or redefine the problem as a mwmplex one.

Real nonsymmetric generalized problems.

To find eigenvaues of nonsymmetric generdized problems, the user can use one of the
three different modes wupdied by ARPACK++ dasses ARNonSymGenEig,
ARTuNonSymGenEig and ARrcNonSymGenEig. These modes differ on the part of the
spedrum that is ught. All of them require matrix B to be symmetric postive semi-
definite.

1. Regular mode.

Asin the symmmetric case, to solve problems in reguar mode the user can supdy only
the nonzero structure of matrices A and B in CSC format. As an dternative, it isaso
possble to supdy two functions: one that computes the matrix-vedor product

w — OPx = B1Ax

and other that returns the product z — Bx. Again, this mode is effedive when B is ill -
conditioned (nealy snguar) or when B cannot be dficiently decomposed using a
sparse Cholesky fadorization B = LL" . If B is well conditioned and can be fadored
then the cnverson to astandard problem is recommended.

2. Real shift and invert mode.

This mode can be used to find eigenvalues nea ared shift o. Only matrices A, B and
the shift o ae requred to use dass ARTuNonSymGenEig. When usng
ARNonSymGenEig Or ARrcNonSymGenEig, the user must supdy two functions that
evauate the products.

y « OPx=(A-0B)"x ad w — Bx.

ARPACK++ CLASSES AND FUNCTIONS27

Seethe sedion about symnetric problems for more detalls.
3. Complex shift and invert mode.

To find eigenvalues nea a mmplex shift oin a nonsymnetric generalized problem,
ARPACK++ nealsto perform threedifferent matrix-vedor products:

y <OPx, veBx ad w Ax,

where OP can ke set to the red or imaginary part of (A-oB)™. The first two
products are used to find the agenvalues of largest magnitude of the problem

(A-0B)™"Bx =xv.

The lagt product is required to remver the egenvaues of the originad problem.
Becaise the relation between v and A is not bijedive in this case, the Rayleigh
quotient

A = x" Ax/x" Bx
isused to dbtain the @rred eigenvalues.

These products are interndly performed if class ARTuNonSymStdEig is being used.
Otherwise, they must be supdied by the user.

Complex standard problems.

If the egenvalue problem Ax = x\ has complex data, one of the two drivers of
clas®es ARCompStdEig, ARTuCompStdEig and ARrcCompStdEig should be used.
These drivers are smilar to those presented above, and are briefly described here.

1. Regular mode.

Thisdriver can be used to find eigenvalues with smallest or largest magnitude, red part
or imaginary part. y — Ax is the only matrix-vedor product required to solve a
problem in this mode. This product must be suppied if a dass other than
ARTuCompStdEig isused.

2. Shift-and-invert mode.

This driver may be used to compute agenvalues nea a wmplex shift o . When one of
the ARCompStdEig or ARrcCompStdEig classesis being used, the user must supdy a
function that evaluates the matrix-vedor product

y « OPx=(A-o0l)"x

28 ARPACK++

Complex generalized problems.

This is the last group of problems ARPACK++ is able to solve. The rresponding
clases are cded ARCompGenEig, ARTuCompGenEig and ARrcCompGenEig. These
classes dso includes two drivers.

1. Regular mode.

When solving generdized problems in reguar mode without using the
ARTuCompStdEig class the user is required to supdy two functions that compute the
meatrix-vedor products

W< OPx=B*Ax ad 2z Bx.

If ARTuCompStdEig is being used, A and B must be supdied as a dense matrix or in
band or compressed sparse wlumn formet.

2. Shift and invert mode.

This mode can ke used to find eigenvalues nea a omplex shift . When using one of
the ARCompStdEig or ARrcCompStdEig classs, the user must supdy two functions
that evauate the products

y « OPx=(A-0B)"x ad w — Bx.

Seethe sedion about symnetric problems for more detalls.

ARPACK++ functions.

ARPACK++ dasses contain severa member functions designed to supgy information
about problem data, to change some parameters, to solve problems in various
computational modes and to return eigenvalues and eigenvedors. Most of them are
defined as virtua members of only four classes [0 ARrcStdEig, ARrcNonSymStdEig,
ARrcSymStdEig and ARrcCompStdEig [and inherited or changed by other derived
classes. This procedure reduces the necessty of redefining functions and permits the
user to add hisown classesto the library by only defining afew constructors.

The functions can ke divided acording to their purposes into eight groups. These
groups are summerized below. Only a brief explanation of ead function is given, so
the user should refer to the gopendix for amore wmplete description of them.

Setting problem parameters.

ARPACK++ CLASSES AND FUNCTIONS29

Generdly, an eigenvalue problem is st by passng al problem parameters to the dass
congdructor. However, sometimes the parameters may not be available when the
problem is dedared, s0 the user may be forced to define them later. The functions
listed below are intended to help the user in such cases.

DefineParameters

SetBucklingMode

SetCayleyMode

SetComplexShiftMode

SetRegularMode

SetShiftInvertMode

Sets the values of variables that are usudly passed as
parametersto classconstructors.

Turns a generdized symmetric red problem into
buckling mode.

Turns a generdized symmetric red problem into
Cayley mode.

Turns a generdized nonsymmetric red problem into
complex shift and invert mode.

Turns any eigenvaue problem into regular mode.

Turns any eigenvalue problem into shift and invert
mode.

Changing problem parameters.

Although changes in problem data ae not very common, they are dlowed by
ARPACK++ to permit the user to overcome some dypicd Stuations were program
fals to solve aproblem with the mode or other parameter previoudy chosen. The
functionsthat can be used with this purpose ae

ChangeMaxit
ChangeMultBx
ChangeMul1tOPx

ChangeNcv

ChangeNev
ChangeShift

ChangeTol
ChangeWhich

InvertAutoShift

Changes the maximum number of iterations alowed.
Changes the function that performs the product Bx.
Changes the function that performs the product OPXx.

Changes the number of Arnoldi vedors generated at
ead iteration.

Changes the number of eilgenvaues to be computed.

Turns the problem into shift and invert mode (or
changes the shift if thismode is dready being used).

Changes the stopping criterion.
Changesthe part of the spedrum that is ught.

Changes the shift seledion Strategy used to restart the
Arnoldi method.

30 ARPACK++

NoShift Turns the problem into regular mode.

Retrieving information about the problem.

Some ARPACK++ functions can ke helpful if one wants to know which parameters
were anployed to solve an eigenvalue problem. They can ke used, for example, to
build other functions that require information about some details of the egenvalue
problem, such as the mmputational mode or the sopping criterion adopted, without
explicitly passng eat parameter in the function healing.

A lig of al the ARPACK++ functions that return problem data is given below. Some
of them are ds0 used in various examples included in rext two chapters.

GetAutoShift Indicates if exad shifts are being used to restart the
Arnoldi method.

GetMaxit Returns the maximum number of iterations all owed.

GetIter Returns the number of iterations adudly taken to solve
aproblem.

GetMode Returns the omputation mode used.

GetN Returns the dimension of the problem.

GetNcv Returns the number of Arnoldi vedors generated at
ead iteration.

GetNev Returns the number of required eigenvalues.

GetShift Returns the <hift used to define a gspedrd
transformation.

GetShiftImag Returns the imaginary part of the shift.

GetTol Returnsthe tolerance used to dedare onvergence

GetWhich Returns the portion of the spedrum that was ought.

ParametersDefined Indicates if dl problem parameters were @rredly
defined.

Deter mining eigenvalues and eigenvectors.

The most important and most frequently used ARPACK++ functions are listed below.
With them, one can determine egenvaues, eigenvedors, Schur vedors or an Arnoldi
basis.

Instead of containing one single function that solves the egenvalue problem,
ARPACK++ gives the user various dternatives to determine and store just the desired

ARPACK++ CLASSES AND FUNCTIONS31
part of the solution. There ae deven different functions. Eadh one stores a particular
group of vedors using a spedfic output format.

Thethreeoutput formats available ae used here to group the functions.
1. Functionsthat use ARPACK ++ internal data structure.

This first group contains functions that solve the egenvalue problem and store the
output vedors into ARPACK++ internal data structure, so the user does not need to
worry about how and where agenvalues and eigenvedors are stored.

The output data generated by these functions can ke retrieved later by using one of the
severd functions described in the Retrieving eigenvalues and eigenvedors sedion
below.

FindArnoldiBasis Determines an Arnoldi basis.

FindEigenvalues Determines eigenvalues.

FindEigenvectors Determine egenvedors (and optiondly Schur vedors).
FindSchurVectors Determines Schur vedors.

2. Functionsthat store output data in user-supplied vectors.

Using functions of this a@nd group, it is possble to solve the egenvaue problem and
store the output datain user-supdied c++ sandard vedors.

Eigenvalues Returns the egenvalues of the problem being solved
and optiondly determines eigenvedors and Schur
vedors.

EigenvalVectors Returns the egenvaues and eigenvedors of the given

problem (and optionaly determines Schur vedors).

Eigenvectors Return the egenvedors of the given problem (and
optiondly determine Schur vedors).

3. Functionsthat generate objectsof the STL vector class.

Functions of this last group are used to solve the egenvalue problems and return
output datainto dojeds of the STL vedor class

St1ArnoldiBasisVectors Returnsan Arnoldi basisfor the problem being solved.

St1Eigenvalues Returns a vedors that contains the egenvalues of the
given problem. Optiondly, Eigenvedors and Schur

32 ARPACK++

vedors can dso be determined and sored into
ARPACK++ internd data structure.

St1Eigenvectors Returns a vedor that dores squentidly the
eigenvedors of the problem being solved. Eigenvaues
(and optionaly Schur vedors) are dso determined and
gored internally by ARPACK++.

St1SchurVectors Returns a vedor that contains the Schur vedors of the
problem being solved.

Tracking the progress of ARPACK.

The FORTRAN verson of ARPACK provides a means to tracethe progressof the
computation of the egenvaues and eigenvedors as it proceeals. Various levels of
output are avallable, from no output to voluminous. This fedure is dso supported by
ARPACK++ through the two functions listed below:

Trace Turns tracemode on.

NoTrace Turns tracemode off.

Executing ARPACK ++ step by step.

The revase ommnunication interface classes requires the user to interad with
ARPACK++ and perform metrix-vedor products on request during the mmputation
of the egenvaue ad eilgenvedors.

However, to perform a product, say y — Mx, one neadsto know where x is gored,
and also where to put y. The same occurs when the user deddes to supgy the shifts
for the implicit restarting of the Arnoldi method: he must know where to store the
shifts. Thiskind of information is provided by the functions listed below.

GetIdo Indicates the operation that must be performed by the
user between two successve cdlsto TakeStep.

GetNp Returns the number of shifts that must be supdied for
theimplicit restarting of the Arnoldi method.

GetProd Indicates where the product Bx is gored.

GetVector Indicates where x is gored when a product in the form
Mx must be performed.

GetVectorImag Indicates where the imaginary part of the egenvalues

of the arrent Hessenberg matrix are stored.
PutVector Indicaes where to store the product OPXx (or BX).

ARPACK++ CLASSES AND FUNCTIONS33

TakeStep Performs the caculations required between two
successve matrix-vedor products.

Detecting if the solution of the eigenvalue problem is available.
In various stuations, notably when solving the egenvaue problem step by step, the

user neads to find out if the solution of the problem is dready available, in order to
procea with his own computations. In such cases, one of the functions listed below

should be used.

ConvergedEigenvalues Returns the number of eigenvalues found o far.
ArnoldiBasisFound Indicatesif an the requested Arnoldi basisis available.
EigenvaluesFound Indicatesif the requested eigenvalues are available.
EigenvectorsFound Indicaesif the requested eigenvedors are available.
SchurVectorsFound Indicatesif the requested Schur vedors are available.

Retrieving eigenvalues and eigenvectors.

Various functions contained in the Determining eigenvalues and eigenvedors sedion
above (FindEigenvalues and Eigenvectors are just two of them) use ARPACK++
interna data sructure to store part of the solution, or even the whole solution of the
eigenvalue problem.

This dion contains svera functions that permit the user to retrieve those output
vedors interndly stored by ARPACK++. The functions listed below can ke used to
obtain from a particular element of an Arnoldi basis vedor to avedor that contains all
eigenvedors gored sequentially.

1. Functionsthat return vector dements.

For those people that do not want to worry about how and where to store egenvalues
and eigenvedors, ARPACK++ includes me functions that permit dired accesto
every sngle dement of the output vedors. These functions are listed below.

ArnoldiBasisVector Returns one dement of an Arnoldi basis vedor.
Eigenvalue Returns one of the “converged” eigenvalues.
EigenvalueReal Returns the red part of an egenvaue (when the

problem isred and nonsymietric).

EigenvalueImag Returns the imaginary part of an eigenvaue (when the
problem isred and nonsymietric).

34 ARPACK++

Eigenvector

EigenvectorReal

EigenvectorImag

SchurVector

ResidualVector

Returns one dement of asngle egenvedor.

Returns the red part of one dement of an eigenvedor
(when the problem isred and nonsymmnetric).

Returns the imaginary part of one dement of an
eigenvedor (when the problem is red and
NONSYMITELTiC).

Returns one dement of a Schur vedor.
Returns one dement of the resdud vedor.

2. Functionsthat return pointersto vectors.

ARPACK++ dso includes functions that return vedor addresses insteal of vedor
components. Ther purpose is to permit the user to supdy eigenvaues and
eigenvedors (or any other vedor stored into ARPACK++ interna data Structure) as
input parametersto ather functions.

RawArnoldiBasisVector

RawArnoldiBasisVectors

RawEigenvalues

RawEigenvaluesImag

RawEigenvectors

RawEigenvector

RawSchurVectors

RawSchurVector

RawResidualVector

Returns a pointer to a vedor that stores one of the
Arnoldi basisvedors.

Returns a pointer to a vedor that contains the Arnoldi
bass.
Returns a pointer to a vedor that contains dl the

eigenvalues (or the red part of them, if the problem is
red and nonsymmetric).

Returns a pointer to a vedor that contains the
imaginary part of al the egenvalues, when the problem
isred and nonsymmetric.

Returns a pointer to a vedor that sores al the
elgenvalues conseadtively.

Returns a pointer to a vedor that stores one of the
eigenvedors.

Returns a pointer to a vedor that stores the Schur
vedors conseadtively.

Returns a pointer to a vedor that stores one of the
Schur vedors.

Returns a pointer to a vedor that contains the resdual
vedor.

ARPACK++ CLASSES AND FUNCTIONS35

3. Functionsthat return STL vectors.

There ae dso functions that return output vedors using the STL vector class
Besides St1Eigenvalues, St1Eigenvectors and St1SchurVectors, lised ealier
in this chapter, this group aso includes:

St1ArnoldiBasisVector Returns one of the Arnoldi basis vedors.

St1EigenvaluesReal Returns the red part of the egenvaues, when the
problem isred and nonsymrmetric.

St1EigenvaluesImag Returnsthe imaginary part of the egenvalues, when the
problem isred and nonsymrmetric.

St1Eigenvector Returns one of the egenvedors.

St1EigenvectorReal Returns the red part of an eigenvedor, when the

problem isred and nonsymrmetric.

St1EigenvectorImag Returns the imaginary part of an eigenvedor, when the
problem isred and nonsymrmetric.

St1SchurVector Returns one of the Schur vedors.
St1ResidualVector Returns the resdual vedor.

Chapter

Solving
eigenvalue problems

The purpose of this chapter isto show how easly one can define axd solve egenvaue
problems usng ARPACK++ dasss. There is no intent to cover every sngle
ARPACK++ detall here, but only to stressthe most important charaderistics of ead
kind of classand function, and gve some hints that should be followed by the user
when solving his own problems.

Solving problemsin four steps.

As emphasized in chapter 3, ARPACK++ has a large number of classes and functions.
This profuson of classs is easy to judify. It gives the user various dternatives to
define and solve egenvalue problems without having to pass extra parameters when
cdling congtructors.

However, one can easly get confused when so many choices are available, espeadly
when using the library for the first time. Therefore, the ations needed to define ad
solve an eigenvaue problem using afew smple seps il be enphasized:

Step One. Firg of dl, it isnecessary to crede one or more matrices using some user-
defined classor one of the aght matrix classes provided by ARPACK++. If the
user does not want to represent a matrix by means of a dass he ill can use the
revese ommnunication interface but this option is not recommended and
should be mngdered only after discarding the previous dternatives.

38 ARPACK++

Step Two. Once avallable, these matrices must be used to dedare the egenvaue
problem. Other relevant parameters, such as the number of desired eigenvalues,
the spedrd trandformation and the shift, should also be defined.

Step Three. After that, the usr must cdl one of the ARPACK++ functions
spedficdly desgned to solve the agenvalue problem. Eigenvalvectors and
FindEigenvectors arejust two of these functions.

Step Four. Findly, some other ARPACK++ function can dso be cdled to retrieve
output data, such as eigenvalues, eigenvedors and Schur vedors, if this was not
done by the function used in the third step above.

Notice that several functions mentioned in the last chapter were not included in these
seps. Functions whose purpose isto change some of the problem parameters (such as
the tolerance or the maximum number of iterations) or turn on the trace mode, for
example, are seldom used and, because of their seandary role, will be described only

inthe gpendix.

Defining matrices.

From the user’s point of view, the hardest step in the list given above is the definition
of the matrices that charaderizethe agenvalue problem. Thisis particularly true when
the problem islarge.

The difficulty comes from the fad that, in order to define amatrix, it is necessary not
only to gore its eements, but dso to crede afunction that performs a matrix-vedor
product and, in the cae of a spedrad transformation is being used, to define how a
linea system should be solved.

Two different schemes are provided by ARPACK++ to mitigate this difficulty: one can
use apredefined class and let the library handle the matrices, or use his own classto
define the required matrix-vedor products.

In fad, the reverse omnunication interface ca adso be used, so it is even possble to
avoid completely the use of a c++ dassto store information about the matrix. In this
cax, the user is totdly free to dedde how matrix-vedor products $ould be
performed. However, becaise this liberty implies a much more complicaed code, only
the first two dternatives will be mnsidered in this sdion.

Using ARPACK ++ matrix classes.

The eaiest way to crede amatrix is to use one of the aeght predefined classes
provided by ARPACK++. These dasses dready contain member functions that

SOLVING EIGENVALUE PROBLEMS39

perform metrix-vedor products and solve linea systems, so the user neads only to
supdy meatrix data in compressed sparse @lumn or band format in order to use them
to define amatrix. A sngle vedor will sufficeif the matrix is dense.

The first example below illustrates how a red nonsymmetric band matrix can be
dedared as an ARbdNonSymMatrix objed.

int n = 10000;

int nL = 6;

int nU = 3;

double* nzval = MatrixData().

ARbdNonSymMatrix<double> A(n, nL, nU, nzval);

In this example, n is the dimension of the system, nL and nU are, respedively, the
lower and the upper bandwidth (not consdering the main diagonal), and nzval is a
vedor that contains al elements of the (nL+nU+1) nonzeo diagonds of A. This last
vedor is generated by function MatrixData (not shown here).

Oncededared, A can e passed as a parameter to adl ARPACK++ dasses that define a
nonsymmetric eégenvalue problem. However, snce dassARbdNonSymMatrix (like d

other predefined matrix classes) uses adired method to solve linea systems, one must

take in acount the memory that will be consumed if a spedrd transformation is
employed.

The next example ntains the definition of a sparse wmplex matrix using class
ARTuNonSymMatrix.

int n; // Matrix dimension.

int nnz; // Number of nonzero elements in A.

int* irow; // pointer to an array that stores the row
// indices of the nonzeros in A.

int* pcol; // pointer to an array of pointers to the
// beginning of each column of A in nzval.

complex<double>* nzval; // pointer to an array that stores the

// nonzero elements of A.

n = 10000;
CompMatrixA(n, nnz, nzval, irow, pcol);
ARTuNonSymMatrix<complex<double> > A(n, nnz, nzval, irow, pcol);

Here, CompMatrixA is a function that generates nnz, irow, pcol and nzval. These
four parameters, dong with n, are used to define matrix A. In addtion to them, the
relative pivot tolerance and the wlumn ordering that should be used to reducethe fill -
ins that ocaur during the matrix fadorizaion can dso be pased to the
ARTuNonSymMatrix classconstructor.

40 ARPACK++

L etting the user define a matrix class.

If none of the matrix classes mentioned above meds the user’s requirements, either
becaise the data structure is not appropriate or due to the use of a dired method for
solving linea systems, a new classcan ke defined from scratch. In this case, the dass
must contain some member functions that performs the matrix-vedor products
required by the Arnoldi method.

Different clasees with particular member functions must be aeded for eath
combination of matrix (red symmetric, red nonsymmetric or complex) and
computational mode (regular, shift and invert, etc) used to solve the egenvalue
problem. To solve, in regular mode, a andard eigenvalue problem that involves ared
nonsymmetric matrix A, for example, one nedls to define amatrix classwith a least
one member function that performsthe product w — Av, as $rown below.

template<class T>
class MatrixWithProduct {

private:

int m, n; // Number of rows and columns.
public:

int nrows() { return m; }

int ncols() { return n; }

void MuTtMv(T* v, T* w); // Matrix-vector product: w = M*v.
MatrixWithProduct(int nrows, int ncols = 0) // Simple constructor.

nrows;
(ncols?ncols:nrows);

}; // MatrixwithProduct.

The only condition imposed to this classby ARPACK++ is that Mu1tMv, the function
that performs the required matrix-vedor product, contains only two parameters’. The
first parameter must be apointer to the vedor that will be multiplied by A, while the
seoond parameter must supdy a pointer to the output vedor. Thisis not a very strong
restriction since any other information about the matrix, such as the number of rows or
columns, can ke passed indiredly to MuTtMv by usng some dassvariables.

In the example dove, parameters v and w are dedared as pointers to a cetain type T,
allowing MatrixWithProduct to represent both sngle and double predson meatrices.

" Naturally, default argumentse also allowed.

SOLVING EIGENVALUE PROBLEMS41

Other two variables used by MuTtMv, m and n, are defined when the @nstructor is
cdled.

Creating elgenvalue problems.

There ae two different ways of dedaring an eigenvalue problem as an ARPACK++
objed. The user can either define d problem parameters when creding the objed or
use adefault congtructor and define parameters later. Both alternatives are briefly
described below.

Passing par ameter sto constructors.

All information that is necessry to set up the agenvaue problem can ke spedfied at
oncewhen dedaring an objed of the arresponding class For example, to find the five
eigenvalues closest to 5.7 + 2.3i of a ammplex generdized problem using the shift and
invert mode, the user can dedare an objed of classARCompGenE1ig writing

ARCompGenEig<double, MatrixOP<double>, MatrixB<double> >
EigProb(10000, 5, &0P, &MatrixOP<double>::MultVet, &B,
&MatrixB<double>: :MultVet, complex<double>(5.7, 2.3));

Here, 10000is the dimension of the system and MatrixOP<double>: :MultVet and
MatrixB<double>: :MultVet are functions that evauate the products (A—oB)™v
and Bv, respedively.

The same mplex problem mentioned above can be dedared In a more
graightforward way if the ARTuCompGenEig classis used. Inthis case, after defining A
and B astwo ARTuNonSymMatrix objeds, onejust neadsto write

ARTuCompGenEig<double> EigProb(5, A, B, complex<double>(5.7, 2.3));

Red symnetric and nonsymmetric sandard and generdlized problems can ke aeaed
in an analogous manner.

Defining parameter s after object declaration.

There ae some caeswhere it isnot necessry, and sometimes not even convenient, to
supdy al problem information when dedaring an ARPACK++ objed. If some
parameter is not available when problem is being dedared, for example, al data can be
pased to ARPACK++ later, as in the following red nonsymmetric generaized
problem:

42 ARPACK++

ARNonSymGenE1ig<double, MatrixOP<double>, MatrixB<double> > EigProb;

/...

EigProb.DefineParameters(100, 4, &0P, &MatrixOP<double>::MultVet,
&B, &MatrixB<double>::MultVet);
EigProb.SetShiftInvertMode(l.2, &0P, &MatrixOP<double>::MultVet);

In this example, the shift and invert mode will be used to find 4 eigenvalues nea 1.2.
The dimension of the problem is 100 and matrix-vedor products are functions of
classes MatrixOP<double> and MatrixB<double>. The fird line only dedares an
objed cdled EigProb. In the last two lines, al ARNonSymGenEig parameters are
defined, including the spedral transformation mode.

Solving problems and getting output data.

Once dedared an eigenvaue problem, ARPACK++ provides svera dternatives to
retrieveits lution. These dternatives are briefly described below.

Letting ARPACK ++ handle data.

When solving an eigenvaue problem, ARPACK++ can hold the output vedors in its
own data structure, o the user does not nead to dedde where they should be stored.
In this case, ead Sngle dement of the eagenvalues and eigenvedors can ke remvered
later using some functions provided by ARPACK++, asin the following example:

// Finding and printing a few eigenvectors of EigProb.
EigProb.FindEigenvectors();

for (int i=0; i<EigProb.ConvergedEigenvalues(); i++) {
cout << “Eigenvaluel[” << (i+l) << “] =
cout << EigProb.Eigenvalue(i) << endl;
cout << “Eigenvector[” << (i+1) << “]1 :
for (j=0; j<EigProb.GetN(Q); j++) {
cout << EigProb.Eigenvector(i, j) << endl;

}

cout << endl;

Here, FindEigenvectors is afunction that determines eigenvalues and eigenvedors
of a problem defined by EigProb, and store them into ARPACK++ interna structure.
ConvergedEigenvalues returns the number of eigenvalues found by ARPACK++.
To retrieve output data, functions Eigenvalue and Eigenvector were used’.

8 SchurVector andResidualVector are other functions that could be used.

SOLVING EIGENVALUE PROBLEMS43

ARPACK++ dso includes other functions that return vedor addresses ingeal of
vedor dements. These functions provide dired access to output data without
requiring the user to crede avedor. They are well suited to those Stuations where
eigenvalues and eigenvedors must be supdied as parameters to ather functions.
RawE1igenvector, one of such functions’, isused in the example below:

// ...

EigProb.FindEigenvectors(); // Finding eigenvectors.

double* w = new double[EigProb.GetN()]; // Defining a vector w.
A.MultMv(EigProb.RawEigenvector(0), w); // Setting w <- matrix*Eigenvector

/..

In thisexample, A, a matrix dedared elsewhere in the program, is multiplied by the first
eigenvedor of an eigenvalue problem defined by EigProb. A.MultMv, the function that
performs the product, takes two pointers to double predson red vedors as
parameters. ARPACK++ function GetN is used to determine the dimension of the
problem.

Employing user-defined data structure.

ARPACK++ dso permits the user to use his own vedors to store the solution of an
eigenvaue problem. As an example, a function cdled EigenvalVectors is used
below to determine the nconv eigenvalues and eigenvedors of a red nonsymmetric
gandard problem (represented by EigProb). Smilar functions can e used to find
Arnoldi basis vedors, Schur vedors, etc.

double EigvalR[10];
double EigvalI[10];
double EigVec[1100];
int nconv;

nconv = EigProb.EigenvalVectors(EigVec, EigvalR, Eigvall);
for (int i=0; i<nconv; i++) {

cout << “Eigenvaluel[” << (i+l) << “] = “;

cout << EigValR[i] << “ + “ << EigvalI[i] << “I” << endl;

}

Since EigProb is a nonsymmetric problem and, in this case, some of the agenvaues
can ke omplex, two red vedors, EigvalR and Eigvall, are used to sore,
respedively, the red and imaginary part of the egenvalues.

The agenvedors are stored sequentidly in Eigvec. Red eigenvedors ocaupy n
successve positions'®, while eab complex eigenvedor require 2*n positions (n for the
red part and another n for the imaginary part of the vedor). Sincethe last eigenvedor

® Other functions with similar meaning ax@vEigenvalues andRawSchurVector.
9 Here,n is the dimension of the system.

44 ARPACK++

found by Eigenvalvectors can be complex, Eigvec must be dimensoned to store
(nconv+1)*n elements.

Using the STL vector class.

Last but not leasst, ARPACK++ can store egenvaues and eigenvedors using the
vector classprovided by the Sandad Template Library (or STL).

STL isalibrary that provides an easy and powerful way to handle vedors, linked lists
and other gtructuresin c++ Among all its classes templates, only the vector classcan
be mngdered appropriate to sore the dense vedors generated as output by
ARPACK++. Thisclassis used in the example below:

prob.St1Eigenvectors();
prob.St1Eigenvalues();

vector<double>* EigVec
vector<double>* EigVal

for (int i=0; 1i<prob.ConvergedEigenvalues(); i++) {
cout << “Eigenvaluel[” << (i+1l) << “] = “ << EigVval[i] << endl;

}

Inthisexample, St1Eigenvectors not only finds the egenvedors of a problem cadled
prob, but aso credes a new objed of class vector to store them sequentialy,
returning a pointer to this vedor in Eigvec. Eigva is used to store the pointer
generated by St1Eigenvalues. The number of eigenvalues found by ARPACK++ is
suppied by function ConvergedEigenvalues.

Finding singular values.

ARPACK++ can dso be used to find the truncated snguar value demmpastion
(truncated S/D) of ageneric red redangular matrix. Supposing, for example, that A is
a mx x matrix, the truncated SVD is obtained by decomposing A into the form

A=UzV’

where U and V are matrices with orthonormal columns, U'U =V'V =1, and
2 =diag(o,,0,,...,0,) isadiagona matrix that satisfies 0, 20, 2---20, 20.

Eadh dement o, is cdled a snguar value of A, while eab column of U is a left
singdar vedor and ead column of Visaright snguar vedor of A.

To use ARPACK++ to dbtain a few singular values (and the crresponding singular
vedors) of A, one should noticethat 0,,0,,...,0,, ae predsdly the square roots of

the egenvaues of the symmetric n x n matrix

SOLVING EIGENVALUE PROBLEMS45

A"A=V3U'UzV' =V
and, in this case, the égenvedorsof A" A aretheright snguar vedors of A.

Naturally, this formulation is appropriate when m is greder or equd to n. To solve
problems where m<n, it is sifficient to reverse the roles of A and A" in the @ove
equation.

When the singuar vaues obtaned by ARPACK++ ae not multiple or tightly
clustered, numericdly orthogond left sngular vedors may adso be cmmputed from the
right sngular vedors using the relation:

U=Avz?t.
Asan dternative, one can use the reation

0o AUO Qg

A orHTR/E>

to determine the left and right leading Sngular vedors smultaneoudy. In this case, no
tranformation is required since the clumns of U and V can ke eaily extraded from
the onverged eigenvedors of

_ 00 AQ»

A=Har od

In view of the fad that A hasboth o, and - 0, as eigenvalues, it is important to set

thewhich variableto “LA” when cdling ARPACK++, so anly the positive egenvalues
(those with largest algebraic value) are mmputed.

The mgor drawbadk of this approach is related to the fad that A is an
(m+n) x(m+n) matrix, while A" A contains only n* dements. Even considering
that the sparse matrix-vedor products Av and A" Av require the same anount of
float point operations, the Arnoldi vedors generated a ead iteration of ARPACK are

greder when A is used. Moreover, setting which to “LM” is generaly better than
using “LA”.

As a result, in most cases it is better to use AT A than A. Exceptions to this rule
ocaur only when the leading eigenvalues of A are very tightly clustered.

46 ARPACK++

Using the ARSymStdE-ig class.

ARPACK++ dassARSymStdEig can ke eaily adapted to solve SVD problems. Thisis
paticularly true if ARTuNonSymMatrix, ARumNonSymMatrix, ARdsNonSymMatrix
or ARbdNonSymMatrix is used to store matrix A, becaise these dasses contain three
member functions, MuTtMtMv, MultMMtv and MultOMMtO, that perform, respedively,

the products A" Av, AATv and A .vfor agivenv.

Supposing, for example, that vedorsvalA, irow and pcol are used to sore A in CSC
format, sO ARTuNonSymMatrix can be used to define the matrix, the following
commands are sufficient to find the four leading sngular values of A.

// Using ARTuNonSymMatrix to store matrix A and to perform the product
// A'Ax (LU decomposition is not used, so SuperLU is not required).

ARTuNonSymMatrix<double> A(m, n, nnz, valA, irow, pcol);
// Defining the eigenvalue problem (MultMtM is used, so m >= n).

ARSymStdEig<double, ARTuNonSymMatrix<double> >
prob(n, 4, &A, &ARTuNonSymMatrix<double>: :MultMtMv);

// Finding eigenvalues.

double svalue[4];
dprob.Eigenvalues(svalue);

// Calculating the singular values.
for (i = 0; i < prob.ConvergedEigenvalues(); i++) {

svalue[i] = sqrt(svalue[il);

}

Other interesting examples where ARPACK++ is used to find snguar values and
vedors can ke found inthe arpack++/examples diredory.

Chapter

ARPACK ++ examples

This chapter contains ome examples on how to use ARPACK++. The purpose of
these examples is to illustrate the mgjor charaderigtics of the software and to clarify
the steps required to find eigenvalues and eigenvedors mentioned in the last chapter.

Severad combinations of matrix classes, eigenvalue problems and output functions are
conddered here. Problems where ARPACK++ matrix classes were used are presented
first, followed by some examples that involve user-defined matrix-vedor products and
the reverse omnunication interface Some strategies to build an interface between
ARPACK++ and other libraries are dso briefly mentioned.

The examples diredory.

The problems mentioned in this chapter are dso digtributed as examples dong with
ARPACK++ code. The arpack++/examples diredory contains $sme subdiredories
O suchassuperlu, product, umfpack, harwel1, dense, band and reverse [that
include severa sample programs covering al available spedra transformations for red
symnetric, red nonsymmetric and complex problems. Although the purpose of these
programsis only to illustrate ARPACK++ usage, they can dso be anployed to crede
new problems. The user just neal to replace the matrix data or the matrix-vedor
product functions.

Some ingtructions on how to run these examples are given in README files included in
al of the example diredories. The required Makefiles are dso supdied. However,
prior to compiling the programs, some modificaions $would be made to the
Makefile.inc file in order to corredly define the compiler and the path of the
libraries referenced by ARPACK ++.

48 ARPACK++

Using ARPACK++ matrix structure.

Complex and red symmetric and nonsymnetric dgenvalue problems can ke eally
solved by ARPACK++ when matrix elements are sored in compressed sparse @lumn
(CSC) or band format (or sequentidly in avedor, if the matrix is dense). In this case,
only afew commands are required to adbtain the desired eigenvalues and eigenvedors.
To illugrate this, threedifferent examples were included in this ®dion. In the firg, a
red symmetric generalized problem is slved by using the Cayley mode. The second
contains a omplex standard problem that is ®lved in reguar mode. Finally,
ARPACK++ isaso used to find some singular values of ared nonsymmetric matrix.

Solving a symmetric gener alized eigenvalue problem.

In this first example, the Cayley mode™ is used to find the four eigenvalues neaest to
150 of a generalized symmetric problem in the form Ax = BxA , where A is the one-
dimensond discrete Lapladan on the interva [0, 1], with zero Dirichlet boundary
conditions, and B is the massmatrix formed by usng pecevise linea eements on the
same interva. Both matrices are tridiagond. This example is very smilar to the one
found inthe examples/band/sym/bsymgcay. cc file.

1. Generating problem data.

Before generating A and B, it is worth moticing that, being symnetric, these matrices
can ke perfedly charaderized by their upper or their lower triangular part. Therefore,
some memory can be saved if not all their lements are stored.

Two functions, MatrixA and MatrixB, wil be used here to crede A and B,
respedively. These functions have two input parameters.

* n, thedimension of the system; and
* uplo, aparameter that indicates which part of the matrix will be suppied;

and two autput parameters,

* nD, the number of upper or lower nonzero diagonds (not including the main
diagond);
* A, apointer to avedor that contains the nonzero matrix elements.

These output parameters are the minimum amount of information required by
ARPACK++ to store amatrix as an ARbdSymMatrix objed, S0 it can be used later to
crede a eigenvalue problem.

1 See chapter 4 for a description of all computational modes available in ARPACK++.

ARPACK++ EXAMPLES 49

Sincethe dimension of the vedor pointed by A depends on nD, a parameter that is not
known in advance by the user, MatrixA and MatrixB aso dlocae memory for this
vedor, as $own below.

template<class FLOAT, class INT>
void MatrixA(INT n, INT& nD, FLOAT* &A, char uplo = 'L')
{

// Declaring internal variables.

INT i;
FLOAT h, df, dd;

// Defining constants.

h = 1.0/FLOAT(n+1); // mesh size.
dd = 2.0/h; // using 2/h instead of 2/hA2.
df = -1.0/h; // using 1/h instead of 1/hA2.

// Defining the upper (or lower) bandwidth.
nD = 1;
// Creating output vector A.
A = new FLOAT[2*n];
if (uplo == 'L') { // Storing the lower triangular part of A.
for (i=0; i<n; i++) {
A[2*%i] = dd; // Main diagonal element.

if (n-i-1) A[2*i+1] = df; // Lower diagonal element.
}

}
else { // Storing the upper triangular part of A.
for (i=0; i<n; i++) {
if (1) A[2*%i] = df; // Upper diagonal element.
A[2*%i+1] = dd; // Main diagonal element.
}
}
} // MatrixA.

template<class FLOAT, class INT>
void MatrixB(INT n, INT& nD, FLOAT* &A, char uplo = 'L")
{

// Declaring internal variables.

INT i;
FLOAT h, df, dd;

50 ARPACK++

// Declaring constants.

h = 1.0/FLOAT(n+1);
dd = (4.0/6.0)*h;
df = (1.0/6.0)*h;

// Defining the upper (or lower) bandwidth.
nD =1;

// Creating output vector A.

A = new FLOAT[2*n];

if (uplo = 'L') { // Storing the upper triangular part of B.

for (i=0; i<n; i++) {

A[2*%i] = dd; // Main diagonal element.
if (n-i-1) A[2*i+1] = df; // Lower diagonal element.
}
}
else { // Storing the upper triangular part of B.

for (i=0; i<n; i++) {
if (i) A[2*%i] = df; // Upper diagonal element.
A[2*i+1] = dd; // Main diagonal element.
}

}

} // MatrixB.

MatrixA and MatrixB were defined here & function templates. The first template
parameter, FLOAT, permits the function to credae both sngle axd double preasion
meatrices. The seamnd parameter, INT, represents the integer type used and must be set
toint or Tong int.

Sincethese functions do not make dea how a band symmetric matrix can ke stored in
asgnglevedor, thiswill beillustrated by the example given below.

Condder the matrix

O
0o 0 0 ay as axDO

ARPACK++ EXAMPLES 51

M is a generic 6x 6 symmetric band matrix, with bendwidth 5, i.e. with 5 nonzero
diagonals. Due to the symmetry, eements a; and &; are ejua, which means that only
the upper or lower nonzeo diagonds of M are required to describe it.

Rewriting the 3 upper nonzeo diagonds (including the main diagond) of M as a
redangular 3x 6 matrix, one obtains.

BO 0 a3 a, a5 a4 B
M upper — DO A, Qy Ay G Al
%11 Ay Q3 Ay Az Qg E

Noticethat afew zeros were introduced in Myppr, due to the fad that some diagonals
contain more dements than others.

Once My IS avallable, it is easy to store this matrix, by columns, in a single vedor,
Say Mupper :

Mupper = [0 0 a'll 0 a'12 a'22 a'13 a'23 a33 a'24 a'34 a44 a35 a'45 a'55 a46 a'56 a66] '

A very similar procedure can be used to store the lower triangular part of M. In this
case, a 3x 6 redanguar matrix Mioe and a vedor M are generated, as $rown

below:

upper

%11 Ay Adz Ay Az Qg B
Mlower =[@y Qa3 a4 az ag 0 b
%31 , a5 Ag 0 0 E

Mlower = [all a‘21 a‘31 a‘22 a‘32 a‘42 a33 a‘43 a53 a44 a54 a‘64 aSS a65 0 a66 0 0] '

Both functions, MatrixA and MatrixB, permits the user to choose between storing the
lower or the upper trianguar part of the matrix. If this information is not suppied by
theuser, uplois st to 'L’.

2. Defining the main program.

Once MatrixA and MatrixB are available, it is now easy to write aprogram that
solves an eigenvaue problem in Cayley mode.

A smple example is $iown below. In this example, after cdling both functions defined
above, matrices A and B are dedared as two ARbdSymMatrix objeds. Then, class

52 ARPACK++

ARTuSymGenE1ig is used to crede agenerdized problem'?, prob. Findly, function
EigenvalVectors iscdled to determine egenvalues and eigenvedors.

The parametersthat are passed to the mwngtructor of ARTuSymGenEig are:

* The @mputationd mode that should be used to solve the problem ('C is
passed, which means that the Cayley modeisto be used);

* The number of eigenvalues ught (nev);

» The matricesthat define the problem (A and B); and

» Theshift (1500).

#include "arbsmat.h" // ARbdSymMatrix definition.
#include "arbgsym.h™ // ARTuSymGenEig definition.

main()

{

// Declaring input variables;

int n; // Dimension of the problem.

int nev; // Number of eigenvalues sought.

int nsdiagA; // Lower (and upper) bandwidth of A.

int nsdiagB; // Lower (and upper) bandwidth of B.

double® valA; // pointer to an array that stores the nonzero
// elements of A.

double* valB; // pointer to an array that stores the nonzero

// elements of B.
// Creating matrices A and B.
n = 100;
MatrixA(n, nsdiagA, valA);
ARbdSymMatrix<double> A(n, nsdiagA, valA);

MatrixB(n, nsdiagB, valB);
ARbdSymMatrix<double> B(n, nsdiagB, valB);

// Defining the eigenvalue problem.

nev = 4;
ARTuSymGenEig<double> prob('C', nev, A, B, 150.0);

// Declaring output variables.
int nconv; // Number of converged eigenvalues.

double* Eigval new double[nev]; // Eigenvalues.
double* EigVec = new double[nev*n]; // Eigenvectors.

// Finding and storing eigenvalues and eigenvectors.

nconv = prob.EigenvValVectors(EigVec, Eigval);

12 Since AR1uSymGenE1ig call's the SuperL U library to solve the linear system (A-oB)w = v when
the Cayley mode is being used, this library is supposed to be available.

ARPACK++ EXAMPLES 53

// ...
} // main.

In this example, the four eigenvalues neaest to 150 are determined and stored in
Eigval. The orresponding eigenvedors are dso stored sequentidly in an array cdled
EigVec.

EigVec was dimensoned here to sore n*nev dements, where nev is the number of
eigenvedors and n is the dimengon of ead one of them. For complex problems, a
complex vedor with nev*n dements is also sufficient. On the other hand, red
nonsymmetric problemsrequire ared vedor with (nev+1) *n components, Snce some
of the agenvedors might be complex (seethe description of EigenvalVectors inthe

appendix).

Solving a complex standard eigenvalue problem.

To illugtrate how to dedare and solve aproblem where the metrix is supdied using the
compressed sparse @lumn format, a sandard complex eigenvalue problem will now
be mnsdered. In this example, the reguar mode is used to find the four eigenvaues
with largest magnitude of the block tridiagonad matrix A derived from the central-
differencediscretizaion of the two-dimensional convedion-diffuson operator

—Au+pUu

on the unit square [0,1] x[0,]], with zero Dirichlet boundary conditions. Here, A
represents the Lapladan operator, and [0 the gradient. p is a omplex parameter. A
smilar example can ke found in the examples/superlu/complex/1compreg. cc file.

1. Generating problem data.

A function, cdled MatrixA, will be used here to generate A in CSC format. This

matrix has the form:
or -1 0 00O
0 . 0
po! 7 .. g
h* 0. O
D! T _ID
EO 0o -1 TE

where h isthe mesh szeg, | isthe identity matrix and T is atridiagonal matrix with 4 on
the main diagond, (-1-ph/2) on the subdiagond and (-1+ph/2) on the
superdiagondl.

54 ARPACK++

MatrixA

® hX

has only one input parameter:

, themesh sze

and five output parameters,

* n, thematrix dmension;

* nnz, the number of nonzero dementsin A;

* A, apointer to avedor that contains al nonzero matrix elements,

* irow, a pointer to a vedor that contains the row indices of the nonzero
elements dored inA; and

* pcol, apointer to a vedor that contain pointers to the first eement in ead
column stored in A and 1 row.

These output parameterswill be used later to store matrix A as an ARTuNonSymMatrix

objed.

Asinthe

template
void Mat

{

first example of this chapter, afunction template is used to define MatrixA:

<class FLOAT, class INT>
rixA(INT nx, INT& n, INT& nnz, complex<FLOAT>* &A,
INT* &irow, INT* &pcol)

// Declaring internal variables.

INT
comple

i, j, k, id;
x<FLOAT> h, h2, dd, d1, du, f;

// Defining constants.

const
const
const
const

h
h2
.F
dd
dl
du

complex<FLOAT> half(0.5, 0.0);
complex<FLOAT> one(1.0, 0.0);

complex<FLOAT> four(4.0, 0.0);
complex<FLOAT> rho(1.0e2, 0.0);

one/complex<FLOAT>(nx+1, 0); // mesh size.
h*h ;

-one/h2;

four/h2;

f - half*rho/h;

f + half*rho/h;

// Defining the number of columns and nonzero elements in A.

n
nnz

// Cre

A
irow
pcol

nx*nx;
(5*nx-4)*nx;

ating output vectors.
new complex<FLOAT>[nnz];

new INT[hnz];
new INT[nx*nx+1];

ARPACK++ EXAMPLES 55

// Defining matrix A.

pcol[0] = O;
J = 0;
id = 0;

for (k=0; k'!'=nx; k++) {
for (i=0; i'=nx; i++) {

if (k) {
irow[j] = id-nx;
A[j++] = T; // A(i-nx,i) = f.
}
if () {
irow[j] = id-1;
A[j++] = du; // A(i-1,1) = du.
}
irow[j] = 1id;
A[j++] = dd; // A(i,i) = dd.
if Gl=(nx-1)) {
irow[j] = id+1;
A[j++]1 = d1; // A(i+1,1) = d1.
}
if (k!'=(nx-1)) {
irow[j] = id+nx;
A[j++] = T; // A(i+nx,i) = f.
}
pcol[++id]l= j;
}
}
} // MatrixA.

2. Defining the main program.

Now that the matrix datais available, it is time to write the main program. To crede a
complex standard eigenvalue problem, two ARPACK++ dasses will be required. One,

ARTuNonSymMatrix, to define A as the matrix represented by {n, nnz, valA, irow,

pcol}, and the other, ARTuCompStdEig, to dedare prob as the problem to be solved

and to set some parameters.

As d$own bdow, only two parameters ae passed to the @ndructor of
ARTuCompStdEig in this case. The firg is the number of desred eigenvalues. The
seand isthe matrix. No ather information is required, sncethe default values supdied
by ARPACK++ for the other parameters are alequete.

#include "arlnsmat.h"™ // ARTuNonSymMatrix definition.
#include "arlscomp.h™ // ARTuCompStdEig definition.

56 ARPACK++

main()

{

// Declaring problem data.

int nx;

int n; // Dimension of the problem.

int nnz; // Number of nonzero elements in A.

int* irow; // pointer to an array that stores the row
// indices of the nonzeros in A.

int* pcol; // pointer to an array of pointers to the
// beginning of each column of A in valA.

complex<double>* valA; // pointer to an array that stores the

// nonzero elements of A.
// Creating a complex matrix.
nx = 10;
MatrixA(nx, n, nnz, valA, irow, pcol);
ARTuNonSymMatrix<complex<double> > A(n, nnz, valA, irow, pcol);
// Defining the eigenvalue problem.
ARTuCompStdEig<double> prob(4, A);

// Declaring output variables.

vector<double>* EigVal; // Eigenvalues.
vector<double>* EigVec; // Eigenvectors.

// Finding eigenvalues and eigenvectors.

EigVec = prob.St1Eigenvectors();
EigvVal = prob.St1Eigenvalues();
/] ...

} // main.

In this example, the four eigenvalues and the crresponding eigenvedors with largest
magnitude of A were found by using function St1Eigenvectors. The agenvedors
were stored sequentidly in an STL vedor cdled Eigvec, which was internaly
dimensoned by ARPACK++ to store 4*n eements. St1Eigenvalues was used to
sorethe egenvaluesinEigval.

As it will become dea in the Working with user-defined matrix-vedor products
sedion below, it is not necessary for the user to supfy arrays siuch as Eigvec and
Eigval when solving eigenvalue problems. ARPACK++ can hendle egenvalues and
eigenvedors using its own data structure. In this case, FindEigenvectors should
replaceSt1Eigenvectors, and one of the severd output functions provided by the
software (Eigenvalue and RawEigenvector are just two examples) used to recver
the solution.

ARPACK++ EXAMPLES 57

Solving truncated SVD problems.

In the last example of this dion, ARPACK++ will be used to dotain the some of the
sngular vaues of a red nonsymmetric matrix. As described in chapter four, the
truncaed sngular value decomposition of a generic red redangular matrix A can ke
obtained by finding the egenvalues and eigenvedors of the symmetric nx n matrix
A'A 3 Inthis case, the égenvalues of this matrix are predsely the singular values of A
squared, while the egenvedors are the right sngular vedors of A.

1. Generating problem data.

A function template, RectangularMatrix, is used below to generate avery smple
2n x n matrix inthe form

Ny
"4

where T is atridiagona matrix with 4 on the main diagond, 1 on the subdiagona and
2 on the superdiagondl.

The function takes one input parameter:
 n, the number of columns of A,
and return five parameters.

e m, the number of rows of A,

* nnz, the number of nonzero dementsin A;

e A, apointer to avedor that contains al nonzero matrix elements,

e 1irow, a pointer to a vedor that contains the row indices of the nonzero
elements dored inA; and

e pcol, apointer to a vedor that contain pointers to the first eement in ead
column stored in A and i row.

template<class FLOAT, class INT>

void RectangularMatrix(INT n, INT& m, INT& nnz, FLOAT* &A,
INT* &irow, INT* &pcol)

{

// Declaring internal variables.

INT 1, 3;
FLOAT dd, d1, du;

13 Supposing that mis greater or equal to n. If m < n, AA" must be formed instead of A'A. For a
complete description of all schemes provided by ARPACK++ to find singular values and vedors,
the user should refer to chapter four.

58 ARPACK++

// Defining constants.

dl
dd
du

N B
O OO

VA
VA
VA
// Defining the number of rows and nonzero elements in A.

nnz
m

n*6-2;
n*2;

// Creating output vectors.

A = new FLOAT[nnz];
irow = new INT[hnz];
pcol = new INT[n+1];

// Defining A.

pcol[0] = O;
i=0;

for (i=0; il!=n; i++) {

if (G 1=0) {
irow[j] = i-1;
Alj++] = du;

}

irow[j] = 1;

Alj++] = dd;

irow[j] = i+1;

Alj++] = d1;

irow[j] = i+n-1;

Alj++] = d1;

irow[j] = i+n;

Alj++] = dd;

if G = (n-1) {
irow[j] = i+n+1;
Alj++] = du;

}

pcol[i+1] = j;

}

} // Rectangular matrix.

2. Defining the main program.

The main program listed below shows how to find some of the largest and smallest
sngular vaues of A, and how the two-norm condition number of the matrix can ke
cdculated.

ARPACK++ EXAMPLES 59

#include "arssym.h" // ARSymStdEig class definition.
#include "arlnsmat.h™ // ARTuNonSymMatrix class definition.
#include <math.h> // sqrt function declaration.

main()

{

// Declaring variables;

int m; // Number of rows in A.

int n; // Number of columns in A.

int nnz; // Number of nonzero elements in A.

int nconv; // Number of “converged eigenvalues”.

int* irow; // pointer to an array that stores the row
// indices of the nonzeros in A.

int* pcol; // pointer to an array of pointers to the
// beginning of each column of A in valA.

double* valA; // pointer to an array that stores the
// nonzero elements of A.

double cond; // Condition number of A.

double svalue[6] // Singular values.
// Creating a rectangular matrix with m = 200 and n = 100.

n = 100;
RectangularMatrix(n, m, nnz, valA, irow, pcol);

// Using ARTuNonSymMatrix to store matrix information
// and to perform the product A'Ax.

ARTuNonSymMatrix<double> A(m, n, nnz, valA, irow, pcol);
// Defining the eigenvalue problem.

ARSymStdEig<double, ARTuNonSymMatrix<double> >
prob(n, 6, &A, &ARTuNonSymMatrix<double>::MultMtMv, "BE");

// Finding eigenvalues.
nconv = prob.Eigenvalues(svalue);
// Calculating singular values and the condition number.

for (int i=0; 1i<nconv; 1i++) svalue[i] = sqrt(svalue[i]);
cond = svalue[5]/svalue[0];

// ...
} // main.

In this program, the output parameters generated by function RectangularMatrix
were used to store matrix A as an objed of classARTuNonSymMatrix*. This classwas
chosen because it contains a function, cdled MultMtMv, that performs the matrix-

vedor product w — AT Av, required to solve the @égenvalue problem.

60 ARPACK++

After goring matrix data, classARSymStdEig was used to dedare avariable, prob,
that represents the red symmetric @genvalue problem defined by A'A. Five parameters
were passed to the mngtructor of thisclass

» Thedimenson of the system (n);

» The number of eigenvalues ught (6);

* Thematrix (A);

« Thefunction that performs the matrix-vedor product w — A" Av (MuTtMtMv);

* The desred part of the spedrum (”BE” is passd here, which means that
elgenvalues from both ends of the spedrum are sought).

The @genvaues of A'A were determined by function Eigenvalues and stored in a
vedor cdled svalue. After computing the square rocts of the dements of svalue, the
largest and the smallest singular values [0 svalue[0] and svalue[6], respedively [
were used to cdculate the condition number of A.

Working with user-defined matrix-vedor products.

This ®dion contains a very smple nonsymmetric sandard eigenvaue that ill ustrates
how to define a dass that includes a matrix-vedor product as required by
ARPACK++ and dso how this class can ke used to odbtan eigenvaues and
eigenvedors.

Creating a matrix class.

The objedive of this smple example is to dbtain the egenvaues and eigenvedors of
the matrix A derived from the standard centrd difference discretizaion of the one-
dimensona convedion-diffuson operator —u” + pu’ on the interva [0,1], with zero
Dirichlet boundary conditions. This matrix is nonsymmetric and has atridiagond form,
with 2/h? as the main diagond dements, —1-p/2h in the subdiagond and
—1+p/2h onthe superdiagond, where h isthe mesh sze

Before defining an eigenvalue problem using ARPACK++, it is necessry to build at
least one dassthat includes the required matrix-vedor product as a member function.
This classcould be cdled NonSymMatrix, for example, and the name of the function
could be Mu1tMv.

It is better to dedare NonSymMatrix as a dass template, in order to permit the
eigenvalue problem to be solved in single or double predsion. So, heredter, parameter

14 ClassARumNonSymMatrix can also be used. Or even ARbdNonSymMatrix, if the matrix is dored
in band format.

ARPACK++ EXAMPLES 61

T will designate one of the c++predefined types float or double. NonSymMatrix can
contain variables and functions other than MuT1tMv. There only requirements made by
ARPACK++ ae that MultMv must have two pointers to vedors of type T as
parameters and the input vedor must precale the output vedor. The dassdefinition is
shown below.

template<class T>

class NonSymMatrix {

/*k
This simple class exemplifies how to create a matrix class that
can be used by ARPACK++. Basically, NonSymMatrix is required to
have a member function that calculates the matrix-vector product
NonSymMatrix*v, where v is a vector with elements of type T.

*/

private:
int m, n;
public:

int ncols() { return n; }
// Function that returns the dimension of the matrix.

void MuTtMv(T* v, T* w)

/s'c
Function that performs the product w <- A*v for the matrix A
derived from the standard central difference discretization of
the 1-dimensional convection diffusion operator u" + rho*u' on
the interval [0, 1], with zero Dirichlet boundary conditions.
A 1is scaled by hA2 in this example.

int j;
T dd, d1, du, s, h;

h = 1.0/T(hcols(+1);
s = 0.5*rho*h;

dd = 2.0;

dl = -1.0 - s;

du = -1.0 + s;

w[0] = dd*v[0] + du*v[1];
for (j=1; j<ncols()-1; j++) {
w[j]l = d1*v[j-1] + dd*v[j] + du*v[j+1];
}
wlncols()-1] = d1*v[ncols()-2] + dd*v[ncols()-1];

return;
} // MultMv

NonSymMatrix(int nval) { n = nval; }
// Constructor.

}; // NonSymMatrix.

62 ARPACK++

Solving the eigenvalue problem.

Once defined the matrix-vedor product, it is necessary to crede ameatrix that belongs
to classNonSymMatrix, and dso an objed of classARNonSymStdEig. After that, the
desred number of egenvdues can be obtaned by cdling function

FindEigenvectors.

Becaise ARNonSymStdEig was dedared as a template by ARPACK++, some
parameters must be used to crede aspedfic dasswhen the program is compiled. In
this example, those parameters are set to double, the type of the dements of matrix A,
and to NonSymMatrix<double>, the name of the dassthat handles the matrix-vedor
product.

Besdesthat, the mngructor of classARNonSymStdEig also accepts me parameters,
such as the dimendon of the egenvaue system (A.ncols), the number of desred
eigenvalues (4), an objed of classNonSymMatrix<double> (A), the aldress of the
function that evaluates the matrix-vedor product (&NonSymMatrix<double>::
MultMv) and the portion of the spedrum that is ught (”SM”, which means the
eigenvalues with smalest magnitude). Other options and parameters (not used here)
are described in the gpendix.

#include "arsnsym.h"

main()

{
int nconv;
// Creating a double precision 100x100 matrix.
NonSymMatrix<double> A(100);

// Creating an eigenvalue problem and defining what we need:
// the four eigenvectors of A with smallest magnitude.

ARNonSymStdEig<double, NonSymMatrix<double> >
dprob(A.ncols(), 4, &A, &NonSymMatrix<double>::MultMv, "SM");

It is possible to pass other parameters directly to the
constructor of class ARNonSymStdEig in order to define a
problem. The 1list of parameters includes, among other values,
the maximum number of iterations allowed and the relative
accuracy used to define the stopping criterion. Alternatively,
it is also possible to use function DefineParameters to set
ARPACK++ variables after declaring dprob as an object of
class ARNonSymStdEig using the default constructor.

s'c/
// Finding eigenvectors.

nconv = dprob.FindEigenvectors();

ARPACK++ EXAMPLES 63

// Printing the solution.
Solution(A, dprob);

} // main.

Printing some information about eigenvalues and eigenvectors.

The function Solution was included in this example to illustrate how to extrad
information about eigenvalues and eigenvedors from classARNonSymStdEig. Only a
few suggestions are shown here. A complete list of ARPACK++ functions can be

found in the gpendix: ARPACK++ referenceguide.

#include “blaslc.h” // ARPACK++ version of blasl routines.

#include “lapackc.h” // ARPACK++ version of Tapack routines.

template<class FLOAT, class EIGPROB>
void Solution(SymMatrix<FLOAT> &A, EIGPROB &Prob)
/*k

This function prints eigenvalues and eigenvectors on
standard "cout" stream and exemplifies how to retrieve

information from ARPACK++ classes.

*k/
{
int 1, n, nconv, mode;
FLOAT *Ax;
FLOAT *ResNorm;
/-k

ARPACK++ includes some functions that provide information

about the problem. For example, GetN furnishes the dimension
of the problem and ConvergedEigenvalues the number of
eigenvalues that attained the required accuracy. GetMode

indicates if the problem was solved in regular,
shift-and-invert or other mode.

*k/

n = Prob.GetN(Q);

nconv = Prob.ConvergedEigenvalues();
mode = Prob.GetMode();

cout << "Testing ARPACK++ class ARNonSymStdEig" << endl;

cout << "Real nonsymmetric eigenvalue problem: A*x-lambda*

switch (mode) {

case 1:

cout << "Regular mode" << endl << endl;

break;
case 3:

cout << "Shift and invert mode" << endl << endl;
}
cout << "Dimension of the system : " << n <<
cout << "'requested' eigenvalues : " << Prob.GetNev() <<
cout << "'converged' eigenvalues : " << nconv <<

x"<< endl;

endl;
endl;
endl;

64 ARPACK++

co
co

/*k

*k/

ut << "Arnoldi vectors generated: " << Prob.GetNcv() << endl;
ut << endl;

EigenvaluesFound is a boolean function that indicates
if the eigenvalues were found or not. Eigenvalue can be
used to obtain one of the "converged" eigenvalues. There
are other functions that return eigenvectors elements,
Schur vectors elements, residual vector elements, etc.

if (Prob.EigenvaluesFound()) {

*k/

// Printing eigenvalues.
cout << "Eigenvalues:" << endl;
for (i=0; i<nconv; i++) {
cout << " Tlambda[" << (i+1) << "]: " << Prob.EigenvalueReal(i);
if (Prob.EigenvalueImag(i)>=0.0) {

cout << " + << Prob.EigenvalueImag(i) <<

I" << endl;
}
else {
cout << " - " << fabs(Prob.EigenvalueImag(i)) << " I" << endl;
}
}

cout << endl;

EigenvectorsFound indicates if the eigenvectors are
available. RawEigenvector is one of the functions that
provide raw access to ARPACK++ output data. Other functions
of this type include RawEigenvalues, RawEigenvectors,
RawSchurVector, RawResidualVector, etc.

if (Prob.EigenvectorsFound()) {

// Printing the residual norm || A*x - lambda*x || for the
// nconv accurately computed eigenvectors.

// axpy and nrm2 are blas 1 fortran subroutines. The first
// calculates y <- y + a*x, and the second determines the
// two-norm of a vector. lapy2 is the lapack function that
// computes sqrt(x*x+y*y) carefully.

AX
ResNorm

new FLOAT[n];
new FLOAT[nhconv+1];

for (i=0; i<nconv; i++) {

if (Prob.EigenvalueImag(i)==0.0) { // Eigenvalue is real.
A.MultMv(Prob.RawEigenvector(i), Ax);
axpy(n,-Prob.EigenvalueReal (i),Prob.RawEigenvector(i),1,Ax,1);
ResNorm[i] = nrm2(n, Ax, 1)/fabs(Prob.EigenvalueReal(i));

}

else { // Eigenvalue is complex.
A.MultMv(Prob.RawEigenvector(i), Ax);
axpy(n,-Prob.EigenvalueReal (i),Prob.RawEigenvector(i),1,Ax,1);
axpy(n,Prob.EigenvalueImag(i),Prob.RawEigenvector(i+1),1,Ax,1);

ARPACK++ EXAMPLES 65

ResNorm[i] = nrm2(n, Ax, 1);

A.MultMv(Prob.RawEigenvector(i+l), Ax);

axpy(n,-Prob.EigenvalueImag(i),Prob.RawEigenvector(i),1,Ax,1);

axpy(n,-Prob.EigenvalueReal (i), Prob.RawEigenvector(i+1),1,Ax,1);

ResNorm[i] = lapy2(ResNorm[i],nrm2(n, Ax, 1))/
lapy2(Prob.EigenvalueReal (i) ,Prob.EigenvalueImag(i));

ResNorm[i+1] = ResNorm[i];

++;

}
}
for (i=0; i<nconv; i++) {

cout << "||A*X(" << Gi+1) << ") - Tambda(" << (i+l);

cout << ")*x(" << (i+1) << ") || " << ResNorm[i] << endl;
}

cout << endl;

delete[] Ax;
delete[] ResNorm;

}

} // Solution

Using the revese ammmunication interface

ARPACK++ provides a somewhat smple structure for handling eigenvalue problems.
However, sometimes it is inconvenient to explicitly define afunction that evauates a
meatrix-vedor product usng the format required by the dove mentioned classes.

To ded with such cases, ARPACK++ dso includes a s&t of classes and functions that
alow the user to perform metrix-vedor products on hs own. This gructure is cdled
the revese commnunication interface and is derived from the FORTRAN verson of
the software.

Although this interface gives the user some freedom, it requires a step-by-step
exeaution of ARPACK++. Therefore, to find an Arnoldi basis it is necessry to define
a sequence of cdls to a function cdled TakeStep combined with matrix-vedor
products until convergenceis attained.

One example that ill ustrate the use of these dasses is given below The matrix used in
this example, say A, isred and symmetric. It is not defined by a dass but only by the
function MultMv that performs the product y — Ax. A dightly different verson of

this program can ke found in diredory examples/reverse/sym.

#include "arrssym.h"

66 ARPACK++

template<class T>
void MultMv(int n, T* v, T*% w)

/s':
Function that evaluates the matrix-vector product w <- A*v,
where A 1is the one dimensional discrete Laplacian on
the interval [0,1] with zero Dirichlet boundary conditions.
s'c/
{
int j;
T h2;
w[0] = 2.0*v[0] - v[1];
for (j=1; j<n-1; j++) {
wlil = - v[j-11 + 2.0%*v[j]1 - v[j+1];
}
wln-1] = - v[n-2] + 2.0%v[n-1];
// Scaling vector w by (1/hA2) using blas routine scal.
h2 = T((n+D*(n+1));
scal(n, h2, w, 1L);
} // MultMv
main()
{

// Declaring matrix A.
SymMatrixA<double> A(100); // n = 100.

// Creating a symmetric eigenvalue problem and defining what
// we need: the four eigenvectors of A with largest magnitude.

ARrcSymStdEig<double> prob(A.ncols(), 4L);
// Finding an Arnoldi basis.
while (!prob.ArnoldiBasisFound()) {

// Calling ARPACK fortran code. Almost all work needed to
// find an Arnoldi basis is performed by TakeStep.

prob.TakeStep();
if ((prob.GetIdo() == 1)||(prob.GetIdo() == -1)) {
// Performing the matrix-vector product.
// Getldo indicates which product must be performed
// (in this case, only y <- Ax).
// GetVector supplies a pointer to the input vector

// and Put vector a pointer to the output vector.

A.MultMv(prob.GetVector(), prob.PutVector());

ARPACK++ EXAMPLES 67

// Finding eigenvalues and eigenvectors.
prob.FindEigenvectors();

// ..
} // main.

In the dove example, the definition of the egenvaue problem was made without any
mention to the matrix class Becaise of that, ARPACK++ was not able to handle the
meatrix-vedor products needed by the Arnoldi processand it was necessry to include
awhile statement in the main program in order to iteratively find an Arnoldi basis.
Only after that, FindEigenvectors was cdled to find eigenvalues and eigenvedors.

In this iterative seach for an Arnoldi basis, TakeStep was used to perform amost all
work needed by the dgorithm and only the product y — Axwas left to the user.

When solving a generdized eigenvalue problem, however, a least two different
matrix-vedor products must be performed, and the GetIdo function should be used to
determine which product must be taken after ead cdl to TakeStep.

Some other useful ARPACK++ functions included in the example ae GetVector,
PutVector and ArnoldiBasisFound. GetVector and PutVector are two functions
that return pointers to the exad postion where, respedively, x, the input vedor, and
y, the output vedor of the matrix-vedor product, are stored. ArnoldiBasisFound is
used to deted if the desired eigenvalues have dtained the desired acarragy.

Finally, it is worth mentioning that, although no output command was included in the
above program, functions sich as EigenvalVectors, RawEigenvectors,
St1Eigenvalues and Eigenvalue are ds0 avalable when usng the revese
communicationinterface

Building an interfacewith another library.

More than a c++ verson of the ARPACK FORTRAN padkage, ARPACK++ is
intended to be an interface between ARPACK and other mathematicd libraries.
Virtudly al numericd libraries that represent matrices and their operations by means
of c++ das®es can ke linked to ARPACK++. This is the main reason why class
templates were used to define egenvalue problems.

The smplest way to connred ARPACK++ with another library is to pass a matrix
generated by this library as a parameter to one of the dasses ARNonSymStdEig,
ARSymStdEig, ARCompStdEig, ARNonSymGenEig, ARSymGenEig Or ARCompGenEig.
In this case, the user can dso pass the matrix class as template parameter, so the

68 ARPACK++

problem can be solved dmost immediately, as sown in the Working with user-defined
matrix-vedor products sedion above.

This dternative is recommended when only a few eigenvalue problems are to be
solved. However, if the user intends to solve many eigenvalue problems, it is better to
define anew classto interfaceARPACK++ with the other library.

The aedion of a new classis very smple, snce most of its member functions can ke
inherited from other parent classes. As an example, one of the dedarations of the
ARTuNonSymStdEig class is transcribed below. Actudly, this is the UMFPACK
verson of this class exadly as it is dedared in the arpack++/include/arusnsym.h
file.

/:':
MODULE ARUSNSym.h.
Arpack++ class ARTuNonSymStdEig definition (umfpack version).

s'c/

#ifndef ARUSNSYM_H
#define ARUSNSYM_H

#include "arch.h" // Machine dependent functions and variable types.
#include "arsnsym.h" // ARNonSymStdEig class definition.
#include "arunsmat.h" // ARumNonSymMatrix class definition.

template<class FLOAT>
class ARTuNonSymStdEig:
public virtual ARNonSymStdEig<FLOAT, ARumNonSymMatrix<FLOAT> > {

public:

// a) Public functions:

// a.1l) Function that allows changes in problem parameters.
virtual void ChangeShift(FLOAT sigmaRp);

// a.2) Constructors and destructor.

ARTuNonSymStdEig() { }
// Short constructor.

ARTuNonSymStdEig(int nevp, ARumNonSymMatrix<FLOAT>& A,
char* whichp = "LM", int ncvp = O,
FLOAT tolp = 0.0, int maxitp = 0,
FLOAT* residp = 0, bool ishiftp = true);
// Long constructor (regular mode).

ARTuNonSymStdEig(int nevp, ARumNonSymMatrix<FLOAT>& A,
FLOAT sigma, char* whichp = "LM", int ncvp = 0,
FLOAT tolp = 0.0, int maxitp = 0,
FLOAT* residp = 0, bool ishiftp = true);

// Long constructor (shift and invert mode).

ARTuNonSymStdEig(const ARTuNonSymStdEig& other) { Copy(other); }
// Copy constructor.

ARPACK++ EXAMPLES 69

virtual ~ARTuNonSymStdEig() { }
// Destructor.

// b) Operators.

ARTuNonSymStdEig& operator=(const ARTuNonSymStdEig& other);
// Assignment operator.

}; // class ARTuNonSymStdEig.

#endif // ARUSNSYM_H

ARTuNonSymStdE1ig is derived from ARNonSymStdEig. All functions and variables of
this base dass are inherited by the new class The only function redefined here is
ChangeShift. Naturdly, the dass congructors, the destructor and the asgnment
operator are not inherited aswell.

The main reason for function ChangeSh+ift to be redefined isto include the aommand

objOP->FactorAsI(sigmaR);

This command tells ARPACK++ to fadorize matrix A—ol ead time anew shift
o isdefined. This fadorization is necessary Snce ARTuNonSymStdEig cannot solve an
eigenvalue problem in shift and invert mode without solving severd linea systems
involving A-ol .

In ARPACK++, every time the @py constructor or the assgnment operator is cdled,
a function ramed copy is cdled to make a opy of the dass Fortunately,
ARTuNonSymStdEig does not contain variable dedarations, but if the user intends to
crede a tassthat contains new variables, anew Copy function should aso be defined.
Doing this way, the user assures that neither the @py constructor nor the assgnment
operator neal to be danged.

The standard congtructor and the destructor of ARTuNonSymStdEig contains no
commands. These functions do nothing but cdling the mwngtructors and destructors of
the base dasses. The other three ongtructors contain exadly the same wmmands
defined in the cngtructors of the ARTuNonSymStdE+ig class The same happens to the
assgnment operator. Actually, these functions were redefined just becaise the
language does not allow them to be inherited.

Appendix

ARPACK ++
reference guide

This appendix contains a detailed description of al the ARPACK++ dasses, variables
and functions. Problem and template parameters are presented first. After that, eah
classis described with examples that illustrate how to use d available cnstructors.
Finally, ARPACK++ functions are dassfied and grouped acrdingly their use.

Through this chapter, complex numbers will be presented using g++ notation. Thus,
compTlex<double> represents a double predson complex type, i.e. a @mplex humber
with double predsion red and imaginary parts.

Template parameters.

FLOAT

ARPACK++ isa mlledion of templates. Because of that, its classes are not unique but
depend on some parameters that permit spedfic dasses to be built only at compilation
time. These parameters give the user some freedom to define matrix classes that
describe the agenvalue problem and aso to use different floating point preasion. The
four available parameters are described below.

Description

This is the predefined c++ type used to represent red numbers. It must be set to
double Or float.

72 ARPACK++

TYPE

FOP

Description

This is the type used to represent elements of vedors and matrices. If the problem
being solved is complex, it must be set to complex<double> Or complex<float>,
otherwise it must be set to double or float, depending on the value of the FLOAT
parameter.

Becaise ARPACK++ has gedalized classes that handle @mplex and red symmetric
and nonsymnetric problems, this parameter is sldom used to define an eigenvaue
problem. Only the matrix classes and ARPACK++ base dasss require the definition
of TYPE.

FB

Description

Thisisthe c++ ¢assthat handles matrix information in sandard eigenvalue problems.
It dso the dassused to define one of the matrices in generdized problems. FOP must
contain amember function which matches the definition of Mu1t0Px given below.

Description

Thisisthe c++ ¢assthat contains information about the secnd matrix in generdized
problems (the first matrix is handled by FOP). It must contain a member function with
exadly the same type of Mu1tBx (and also another function that matches the definition
of Mu1tAx, in certain cases). MuTtBx and MultAx are described below.

Types of matrix-vedor product functions.

ARPACK++ dasssthat require matrix-vedor product functions impose the user only
one redtriction: these functions must follow a very stringent pattern. This limitation is
related to the format used by the ARPACK FORTRAN code to store vedors.
Actudly, functions can be aeded usng other types, but there must be an explicit
conversion between them and one of the types described below.

TypeOPx

REFERENCE GUIDE 73

Declaration

typedef void (FOP::* TypeOPx)(TYPE[], TYPE[])

Description

TypeBx

TypeOPx isapointer to afunction that has two vedors of type TYPE as parameters and
returns nothing. This function must be amember of classFOP.

Some ARPACK++ dasses require the user to crede a ¢asswhich includes a function
that evaluates the matrix-vedor product y — OPx (seethe description of MultOPx
below). TypeOPx is used to define the name of this function, while FOP is used to
represent the dassname. The firs parameter is the input vedor, x, and the seaond is
the output vedor, y.

Declaration

typedef void (FB::* TypeBx)(TYPE[], TYPE[])

Description

Andogoudy to TypeOPx, TypeBx represents the name of a function that is member of
class FB and evaluates a matrix-vedor product in the formy — Bx (see MultBx
below). The first parameter of the function isthe input vedor, x, and the second is the
output vedor, y.

TypeBx is also used to represent another member function of class FB. This function
evauates the matrix-vedor product y — Ax and is required only by two classes.
ARSymGenEig (when using the Cayley congtructor) and ARNonSymGenEig (when in
complex shift-and-invert mode).

Problem parameters.

Various ARPACK++ dass congructors and functions that will be described later in
this fdion include one or more parameters. To avoid redefining these parameters
ead time afunction is mentioned, a complete list is given below. The list include
parameters from al ARPACK++ dasses, ead one followed by its type (displayed on
theright) and a brief description.

74 ARPACK++

Some parameters are @mpulsory, i.e. must be suppied by the user when solving an
eigenvalue problem. Other are internaly set by ARPACK++, but the user may change
them if the default value is not appropriate.

Compulsory parameters.

n
int
Description
Dimengon of the egenvalue problem. n > 1.
neyv
int
Description
Number of eigenvaluesto be mmputed. O < nev < n-1.
objOP
FOP*
Description
Pointer to an objed of class FOP™. Class FOP must have Mu1tOPx as a member
function. This parameter is required only if the user intends to use his own matrix
class
MultOPx
TypeOPx
Description

Member function of classFOP that evaluates the product y — OPx . The spedficaion

of OP depends on the problem type and the computationa mode being used. The
aternatives are summerized in the following table:

1> See the description 66p in theTemplate parametegection above.

REFERENCE GUIDE 75

Problem type mode y « OPX
Standard reguar y - Ax
shift and invert y « (A-al)™x
Generalized regular y « B7Ax
al other y « (A-0B)™x

Warning: When solving red nonsymmmetric problems in complex shift-and-invert
mode, OP eements are mmplex, but y must be ared vedor. In this case, y should be
&t to thered or the imaginary part of the @mplex vedor z = OPXx .

objB

FB*

Description

Pointer to an objed of class FB. The dass of this objed must have Mu1tBx as a
member function. objB is required only if the user wants to supdy his own matrix
classes when solving a generdlized eigenvalue problem.

MultBx

TypeBx

Description
Member function of classFB that evaluates aproduct intheform y — Bx ory — Ax
when defining a generdized eigenvalue problem Ax = BxA .

ARPACK++ assumesthat this classwill returny — Ax only if the user is lving ared

symnetric generdized problem in buckling mode. In al other cases, MultBx is
supposed to evauate the product y — Bx.

objA

FB*

Description

Pointer to an objed of class FB. The dass of this objed must have MultAx as a
member function. objA is used with some particular generdized red problems only
(seeMultAx).

76 ARPACK++

MultAx

TypeBx

Description
Member function of classFB that evauates the product y — Ax. This parameter is

required only by two classes. ARSymGenE1ig, when using the Cayley constructor, and
ARNonSymGenEig, when using the emplex shift-and-invert mode.

sigma (or sigmaR)

TYPE

Description

Shift. This parameter is required if a spedra transformation is employed. It represents
thered part of a omplex shift if the problem isred and nonsymmetric.

sigmal
FLOAT
Description
Imaginary part of the shift. This parameter must be suppied when solving
nonsymmetric problemsin complex shift and invert mode.
InvertMode
char
Description
Spedrd transformation used to find eigenvaues of symmetric generdized problems. If
the shift and invert mode is being used, this parameter must be set to “S”. Buckling
and Cayley modes are represented by “B” and “C”, respedively.
part

char

Description
This parameter is required only if the problem to be solved is a red nonsymmetric
generdized one and a mwmplex shift is used to charaderize the desired portion of the
spedrum. In this case, the user neals to supdy a matrix-vedor routine in the form
y « OP.x, where OP is one of the real{(A-oB)™} or imag{(A-oB)™"} ad
the variable part must be set to one of “R” or “I” in order to refled the doice made.

REFERENCE GUIDE 77

Optional parameters.

ncv
int
Description
Number of Arnoldi vedors generated at ead iteration. ncv must be set to a vaue
betweennev + 1andn - 1.
ncv is grongly related to the mmputational time and also to the storage spacerequired
by ARPACK++. The computationa work needed to find eigenvalues is proportiona
to n.ncv? flops, while memory consumption is n.O(ncv) + O(ncv?). Unfortunately,
ncv it isvery problem dependent and there is no a-priori anaysisto guide the sledion
of this parameter. Generally, if matrix-vedor products are deg, a smaler vaue of
ncv may leal to a deaease in the overall computationa time, in spite of the larger
amount of products required.
Default value.
mn{2nev+1,n-1}
maxit
int
Description
Maximum number of Arnoldi updete iterations alowed. If the user suppies a positive
maxi t, thisvaue is maintained, otherwise the default value is employed.
Default value.
100nev.
which
char*
Description

This parameter spedfies which of the Ritz values of OP to compute and depends on
the dassbeing used. The options avallable ae depicted in the table below:

78 ARPACK++

option

desired part of spectrum

LA

eigenvaues with largest dgebraic vaue

SA

eigenvaues with smdlest dgebraic vaue

LM

eigenvalues with largest magnitude

SM

elgenvalues with smallest magnitude

LR

eigenvaues with largest red part

SR

elgenvalues with smallest red part

LI

eigenvalues with largest imaginary part

S

elgenvalues with smallest imaginary part

BE

eigenvalues from both ends of spedrum (if nev isodd, one more

eigenvalue is computed from the high end than from the low end).

For symmetric problems, which must set to be one of LA, SA, LM, SM or BE. For red
nonsymmetric and complex problems, the dternativesare LM, SM, LR, SR, LT and ST.

Default value.
LM.

tol

Description

FLOAT

Stopping criterion (relative accragy of Ritz vaues). The user should exped a
computed eigenvalue, A, to satisfy the relation |\ —\'| < to1|A|, where A" is the
eigenvaueof Aclosest to A .

The Arnoldi processis mewhat sendtive to this parameter, so it must be set with
some cae. Though large values of to1 can reduce the number of iterations required to
attain convergence some egenvalues can ke missd if they are multiple or tightly
clusered. On the other hand, very smal vaues can prevent the cnvergence of the

method.

Default value.

The madine predsonisused if to1 isnot supdied or set to zero.

REFERENCE GUIDE 79

resid
TYPE*
Description
Initial vedor. Although generdly the default starting vedor is a good choice resid
can ke suppied, for example, when a sequence of related problems is being solved. In
such cases, ARPACK can converge fadter if a starting vedor based on previous
eigenvalue caculationsis used.
Default value.
When this parameter is not provided by the user, arandom vedor is adopted.
AutoShift
bool
Description
This parameter indicaes if exad shifts for the implicit restarting of the Arnoldi method
are being generated internaly by ARPACK++ or shifts are being suppied by the user.
Default value.

true (exad shiftsare being used).

Eigenvalue problem classes.

There ae twenty two predefined template dasses in ARPACK++. These dasss are
intended to cover al types of problem handled by ARPACK FORTRAN code and
also to provide an easy way of creding eigenvalue problems. The first eighteen classes
described below may be used to define objeds diredly. The main purpose of the last
four isto serve & a bags for the former classes, but they dso may be used to crede
new user defined classes.

The filename shown under eadt class name (on the right) corresponds to the header
filethat containsthe dassdefinition.

80 ARPACK++

Classesthat require matrices.

ARluSymStdEig
arlssym.h (SuperlLU version)
arussym.h (UMFPACK version)
ardssym.h (LAPACK dense version)
arbssym.h (LAPACK band version)
Declaration

template <class FLOAT> class ARTuSymStdEig

Description

This class defines a red symnmetric sandard egenvalue problem using
ARTuSymMatrix, ARumSymMatrix, ARdsSymMatrix Or ARbdSymMatrix as the dass
that stores matrix data.

Warning ARTuSymStdEig does a sparse LU fadorization of matrix (A—al) when

shift and invert mode is used, so0 the user must be awvare of the memory requirements
asciated to this pedral transformation'.

Such fadorizaion is performed by the SuperLU padage if ARTuSymMatrix is the
matrix class being used, while ARTuSymMatrix cdls UMFPACK routines and
ARdsSymMatrix and ARbdSymMatrix use LAPACK matrix fadorizaions. All these
libraries can be obtained as described in chapter one.

Parent class (SuperL U version)
public virtual ARSymStdEig<FLOAT, ARTuSymMatrix<FLOAT> >

Parent class (UM FPACK version)
public virtual ARSymStdEig<FLOAT, ARumSymMatrix<FLOAT> >

Parent class (LAPACK band verson)
public virtual ARSymStdEig<FLOAT, ARbdSymMatrix<FLOAT> >

Parent class (LAPACK denseverson)
public virtual ARSymStdEig<FLOAT, ARdsSymMatrix<FLOAT> >

Default constructor
ARTuSymStdEigQ

Regular mode constructor (SuperLU verson)
ARTuSymStdEig(int nev, ARTuSymMatrix<FLOAT>& A, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)

16 Errors gich as a memory overflow can be @ught by the user. Seethe Handing Errors sedion
below.

REFERENCE GUIDE 81

Regular mode consgtructor (UM FPACK version)

ARTuSymStdEig(int nev, ARumSymMatrix<FLOAT>& A, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)
Regular mode congtructor (LAPACK band version)
ARTuSymStdEig(int nev, ARbdSymMatrix<FLOAT>& A, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)
Regular mode congtructor (LAPACK denseversion)
ARTuSymStdEig(int nev, ARdsSymMatrix<FLOAT>& A, char* which = "LM",

int ncv = 0, FLOAT tol = 0.0, int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)

Shift and invert mode congtructor (SuperLU version)

ARTuSymStdEig(int nev, ARTuSymMatrix<FLOAT>& A, FLOAT sigma,
char* which = "LM", 1int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Shift and invert mode congtructor (UM FPACK version)

ARTuSymStdEig(int nev, ARumSymMatrix<FLOAT>& A, FLOAT sigma,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Shift and invert mode congructor (LAPACK band verson)

ARTuSymStdEig(int nev, ARbdSymMatrix<FLOAT>& A, FLOAT sigma,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Shift and invert mode congructor (LAPACK denseverson)

ARTuSymStdEig(int nev, ARdsSymMatrix<FLOAT>& A, FLOAT sigma,
char* which = "LM", 1int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Examples

This class requires the user to dedare amatrix usng one of the ARTuSymMatrix,
ARumSymMatrix, ARdsSymMatrix or ARbdSymMatrix classs'’, as in the following
examples.

ARTuSymMatrix<double> A(n, nnz, nzval, irow, pcol);
ARumSymMatrix<double> A(n, nnz, nzval, irow, pcol);
ARdsSymMatrix<double> A(n, nzval);
ARbdSymMatrix<double> A(n, nsdiag, nzval);

Once A has been defined, one of the @mnstructors mentioned above should be used to
dedare the problem. Asthe default constructor would be harder to use than the others,
becaise it does not permit the user to Smultaneoudy define an objed and pessdl the

" For a full description of these classes, seé\tralable matrix classesection below.

82 ARPACK++

required information, only the regular and the shift and invert mode @nstructors were
included here.

1. Using theregular mode constructor
ARTuSymStdEig<double> prob({4, A);

2. Usngthereal shift and invert mode constructor

ARTuSymStdEig<double> prob(4, A, 13.2);

ARluNonSymStdEig
arlsnsym.h (SuperlLU version)
arusnsym.h (UMFPACK version)
ardsnsym.h (LAPACK dense version)
arbsnsym.h (LAPACK band version)
Declaration

template <class FLOAT> class ARTuNonSymStdEig

Description

This class defines a red nonsymmetric sandard eigenvaue problem using one
of the ARlTuNonSymMatrix, ARumNonSymMatrix, ARdsNonSymMatrix oOf
ARbdNonSymMatrix clasesto sore matrix data

Warning A sparse LU fadorizaion of matrix (A—al) is performed when the shift

and invert mode is used, s0 the user must be avare of the memory requirements
asciated to this gedral transformation (seehow to cach a memory overflow in the
Handing errors sedion below).

Such fadorization is done by the SuperLU padage if ARTuNonSymMatrix is the
meatrix class being used, while ARTuNonSymMatrix cdls UMFPACK routines and
ARdsNonSymMatrix and ARbdNonSymMatrix use LAPACK meatrix fadorizaions. All
these libraries can be obtained as described in chapter one.

Parent class (SuperLU version)
public virtual ARNonSymStdEig<FLOAT, ARTuNonSymMatrix<FLOAT> >

Parent class (UM FPACK version)
public virtual ARNonSymStdEig<FLOAT, ARumNonSymMatrix<FLOAT> >

Parent class (LAPACK denseverson)
public virtual ARNonSymStdEig<FLOAT, ARdsNonSymMatrix<FLOAT> >

Parent class (LAPACK band verson)
public virtual ARNonSymStdEig<FLOAT, ARbdNonSymMatrix<FLOAT> >

REFERENCE GUIDE 83

Default congtructor
ARTuNonSymStdEig()

Regular mode constructor (SuperL U verson)

ARTuNonSymStdEig(int nev, ARTuNonSymMatrix<FLOAT>& A,
char* which = "LM", 1int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Regular mode consgtructor (UM FPACK version)

ARTuNonSymStdEig(int nev, ARumNonSymMatrix<FLOAT>& A,
char* which = "LM", 1int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Regular mode congtructor (LAPACK denseversion)

ARTuNonSymStdEig(int nev, ARdsNonSymMatrix<FLOAT>& A,
char* which = "LM", 1int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Regular mode congtructor (LAPACK band version)

ARTuNonSymStdEig(int nev, ARbdNonSymMatrix<FLOAT>& A,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Real shift and invert mode congtructor (SuperLU version)

ARTuNonSymStdEig(int nev, ARTuNonSymMatrix<FLOAT>& A, FLOAT sigma,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Real shift and invert mode congtructor (UM FPACK version)

ARTuNonSymStdEig(int nev, ARumNonSymMatrix<FLOAT>& A, FLOAT sigma,
char* which = "LM", 1int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Real shift and invert mode constructor (LAPACK denseversion)

ARTuNonSymStdEig(int nev, ARdsNonSymMatrix<FLOAT>& A, FLOAT sigma,
char* which = "LM", 1int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Real shift and invert mode congtructor (LAPACK band version)
ARTuNonSymStdEig(int nev, ARbdNonSymMatrix<FLOAT>& A, FLOAT sigma,
char* which = "LM", 1int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)
Examples

This class requires the user to dedare a matrix usng the ARTuNonSymMatrix,
ARumNonSymMatrix, ARdsNonSymMatrix or ARbdNonSymMatrix classs, as in the
following examples:

ARTuNonSymMatrix<double> A(n, nnz, nzval, irow, pcol);

ARumNonSymMatrix<double> A(n, nnz, nzval, irow, pcol);

84 ARPACK++

ARdsNonSymMatrix<double> A(n, nzval);
ARbdNonSymMatrix<double> A(n, ndiagL, ndiagU, nzval);

Once A has been defined, one of the @mnstructors mentioned above should be used to
dedare the problem. Asin the symmetric dass the default constructor is harder to use
than the others, since it does not permit the user to passal required information at
once Thus, only the regular and shift and invert constructors are shown below.

1. Using theregular mode constructor
ARTuNonSymStdEig<double> prob(4, A);

2. Usngthereal shift and invert mode constructor

ARTuNonSymStdEig<double> prob(4, A, 13.2);

ARluCompStdEig
arlscomp.h (SuperLU version)
aruscomp.h (UMFPACK version)
ardscomp.h (LAPACK dense version)
arbscomp.h (LAPACK band version)
Declaration

template <class FLOAT> class ARTuCompStdEig

Description

This classdefines a mmplex standard eigenvalue problem using ARTuNonSymMatrix,
ARumNonSymMatrix, ARdsNonSymMatrix or ARbdNonSymMatrix as the dass that
sores matrix data

Warning: ARTuCompStdEig cdls one of the SuperLU, UMFPACK or LAPACK
padkages to perform a sparse LU fadorizaion of matrix (A-al) when the
eigenvalue problem is being solved in shift and invert mode, so the user must be avare
of the memory requirements asociated to this pedrd transformeation.

Parent class (SuperLU version)

public virtual
ARCompStdEig<FLOAT, ARTuNonSymMatrix<complex<FLOAT> > >

Parent class (UM FPACK version)

public virtual
ARCompStdEig<FLOAT, ARumNonSymMatrix<complex<FLOAT> > >

Parent class (LAPACK denseverson)

public virtual
ARCompStdEig<FLOAT, ARdsNonSymMatrix<complex<FLOAT> > >

REFERENCE GUIDE 85

Parent class (LAPACK band verson)

public virtual
ARCompStdEig<FLOAT, ARbdNonSymMatrix<complex<FLOAT> > >

Default constructor
ARTuCompStdEig(Q)

Regular mode constructor (SuperL U verson)

ARTuCompStdEig(int nev, ARTuNonSymMatrix<complex<FLOAT> >& A,
char* which = "LM", 1int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, complex<FLOAT>* resid = O,
bool AutoShift = true)

Regular mode consgtructor (UM FPACK version)

ARTuCompStdEig(int nev, ARumNonSymMatrix<complex<FLOAT> >& A,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, complex<FLOAT>* resid = O,
bool AutoShift = true)

Regular mode consgtructor (LAPACK denseversion)

ARTuCompStdEig(int nev, ARdsNonSymMatrix<complex<FLOAT> >& A,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, complex<FLOAT>* resid = O,
bool AutoShift = true)

Regular mode congtructor (LAPACK band version)

ARTuCompStdEig(int nev, ARbdNonSymMatrix<complex<FLOAT> >& A,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, complex<FLOAT>* resid = O,
bool AutoShift = true)

Shift and invert mode congtructor (SuperLU version)

ARTuCompStdEig(int nev, ARTuNonSymMatrix<complex<FLOAT> >& A,
complex<FLOAT> sigma, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
complex<FLOAT>* resid = 0, bool AutoShift = true)

Shift and invert mode congtructor (UM FPACK version)

ARTuCompStdEig(int nev, ARumNonSymMatrix<complex<FLOAT> >& A,
complex<FLOAT> sigma, char® which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
complex<FLOAT>* resid = 0, bool AutoShift = true)

Shift and invert mode congructor (LAPACK denseverson)

ARTuCompStdEig(int nev, ARdsNonSymMatrix<complex<FLOAT> >& A,
complex<FLOAT> sigma, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
complex<FLOAT>* resid = 0, bool AutoShift = true)

86 ARPACK++

Shift and invert mode congructor (LAPACK band verson)
ARTuCompStdEig(1int nev, ARbdNonSymMatrix<complex<FLOAT> >& A,
complex<FLOAT> sigma, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
complex<FLOAT>* resid = 0, bool AutoShift = true)
Examples

To use this class one must dedare a matrix usng ARumNonSymMatrix,

ARTuNonSymMatrix, ARdsNonSymMatrix oOr ARbdNonSymMatrix'®, as in the

following examples:

ARTuNonSymMatrix<complex<double> > A(n, nnz, nzval, irow, pcol);
ARumNonSymMatrix<complex<double> > A(n, nnz, nzval, irow, pcol);
ARdsNonSymMatrix<complex<double> > A(n, nzval);

ARbdNonSymMatrix<complex<double> > A(n, ndiagL, ndiagU, nzval);

Once ceded the matrix, one of the dove mnsructors $ould be used to crede the
problem. As the default congtructor does not permit the user to dedare d the
parameters required by ARPACK++ while defining an objed of this class only the last
two are shown below.

1. Using theregular mode congtructor
ARTuCompStdEig<double> prob(4, A);

2. Usngthereal shift and invert mode constructor

ARTuCompStdEig<double> prob(4, A, complex<double>(0.8, 0.4));

ARluSymGenkEig
arlgsym.h (SuperlLU version)
arugsym.h (UMFPACK version)
ardgsym.h (LAPACK dense version)
arbgsym.h (LAPACK band version)
Declaration

template <class FLOAT > class ARTuSymGenEig

Description
This class defines a red symmetric generdized eigenvalue problem with matrices
gored usng one of the ARTuSymMatrix, ARumSymMatrix, ARdsSymMatrix or
ARbdSymMatrix classes, depending on which padkage is being used to perform the
fadorizaion of matrix B (if reguar mode is chosen) or (A-oB) (when in shift and
invert mode). ARTuSymMatrix classrequires the SuperLU library, while UMFPACK

18 The functionality of these classes is described irttalable matrix classesection below.

REFERENCE GUIDE 87

is used by ARumSymMatrix and LAPACK is cdled by ARbdSymMatrix and
ARdsSymMatrix.

Becaise some fill-in can be generated by a sparse LU fadorization, the user must be
aware of the memory requirements asociated to eat spedra transformation.

Parent class (SuperLU version)

public virtual ARSymGenEig<FLOAT, ARTuSymPencil<FLOAT>,
ARTuSymPencil<FLOAT> >

Parent class (UM FPACK version)

public virtual ARSymGenEig<FLOAT, ARumSymPencil<FLOAT>,
ARumSymPenci 1<FLOAT> >

Parent class (LAPACK denseverson)

public virtual ARSymGenEig<FLOAT, ARdsSymPencil<FLOAT>,
ARdsSymPenci1<FLOAT> >

Parent class (LAPACK band verson)

public virtual ARSymGenEig<FLOAT, ARbdSymPencil<FLOAT>,
ARbdSymPenci1<FLOAT> >

Default constructor
ARTuSymGenEigQ)

Regular mode constructor (SuperL U verson)
ARTuSymGenEig(int nev, ARTuSymMatrix<FLOAT>& A, ARTuSymMatrix<FLOAT>& B,
char* which = "LM", 1int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Regular mode consgtructor (UM FPACK version)
ARTuSymGenEig(int nev, ARumSymMatrix<FLOAT>& A, ARumSymMatrix<FLOAT>& B,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Regular mode congtructor (LAPACK denseversion)
ARTuSymGenEig(int nev, ARdsSymMatrix<FLOAT>& A, ARdsSymMatrix<FLOAT>& B,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Regular mode consgtructor (LAPACK band version)
ARTuSymGenEig(int nev, ARbdSymMatrix<FLOAT>& A, ARbdSymMatrix<FLOAT>& B,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

88 ARPACK++

Shift and invert, buckling and Cayley modes constructor (SuperLU version)™

ARTuSymGenEig(char InvertMode, int nev, ARTuSymMatrix<FLOAT>& A,
ARTuSymMatrix<FLOAT>& B, FLOAT sigma, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)

Shift and invert, buckling and Cayley modes constructor (UM FPACK version)®

ARTuSymGenEig(char InvertMode, int nev, ARumSymMatrix<FLOAT>& A,
ARumSymMatrix<FLOAT>& B, FLOAT sigma, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)

Shift and invert, buckling and Cayley modes constructor (LAPACK denseversion)

ARTuSymGenEig(char InvertMode, int nev, ARdsSymMatrix<FLOAT>& A,
ARdsSymMatrix<FLOAT>& B, FLOAT sigma, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)

Shift and invert, buckling and Cayley modes constructor (LAPACK band version)
ARTuSymGenEig(char InvertMode, int nev, ARbdSymMatrix<FLOAT>& A,
ARbdSymMatrix<FLOAT>& B, FLOAT sigma, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)
Examples

This class requres the user to dedare two matrices, say A and B, usng
ARTuSymMatrix, ARumSymMatrix, ARdsSymMatrix OF ARbdSymMatrix CIaS$SZl, as
in the example below:

ARumSymMatrix<double> A(nA, nnzA, nzvalA, irowA, pcolA);
ARumSymMatrix<double> B(nB, nnzB, nzvalB, irowB, pcolB);

Hencdorth, there ae two different ways of creding a red symmetric dgenvaue
problem (excluding the default constructor, as in the description of al other classes of
this ®dion):

1. Using theregular mode constructor
ARTuSymGenEig<double> prob(4, A, B);

2. Using the shift and invert, buckling and Cayley modes constructor

ARTuSymGenEig<double> prob(’B’, 4, A, B, 13.2); // Buckling mode.

9 This constructor requires A.uplo and B.uplo to be eual (see the description of the
ARTuSymMatrix class for a description ap1o).

20 This constructor also requiresA.uplo and B.uplo to be eual (in this case, uplo is a parameter
of theARumSymMatrix class).

21 For a description of all ARPACK++ matrix classes, seethe Available matrix dasses sedion
below.

REFERENCE GUIDE 89

ARluNonSymGentEig
arlgnsym.h (SuperLU version)
arugnsym.h (UMFPACK version)
ardgnsym.h (LAPACK dense version)
arbgnsym.h (LAPACK band version)
Declaration

template <class FLOAT > class ARTuNonSymGenEig

Description

This classdefines a red nonsymmetric generdized eigenvalue problem with matrices
sored usng ARTuNonSymMatrix, ARumNonSymMatrix, ARdsNonSymMatrix oOf
ARbdNonSymMatrix classes, depending on which padkage is being used to perform the
fadorizaion of matrix B (if reguar mode is chosen) or (A-oB) (when in shift and
invert mode). ARTuNonSymMatrix class requres the SuperLU library, while
UMFPACK is used by ARumNonSymMatrix and LAPACK is cdled by
ARbdNonSymMatrix and ARdsNonSymMatrix.

Becaise some fill-in can be generated by a sparse LU fadorization, the user must be
aware of the memory requirements asociated to eat spedra transformation.

Parent class (SuperL U version)

public virtual ARNonSymGenEig<FLOAT, ARTuNonSymPencil<FLOAT, FLOAT>,
ARTuNonSymPenci1<FLOAT, FLOAT> >

Parent class (UM FPACK version)

public virtual ARNonSymGenEig<FLOAT, ARumNonSymPencil<FLOAT, FLOAT>,
ARumNonSymPenci1<FLOAT, FLOAT> >

Parent class (LAPACK denseverson)

public virtual ARNonSymGenEig<FLOAT, ARdsNonSymPencil<FLOAT, FLOAT>,
ARdsNonSymPenci1<FLOAT, FLOAT> >

Parent class (LAPACK band verson)

public virtual ARNonSymGenEig<FLOAT, ARbdNonSymPencil<FLOAT, FLOAT>,
ARbdNonSymPenci1<FLOAT, FLOAT> >

Default consgtructor
ARTuNonSymGenEig()

Regular mode constructor (SuperL U verson)

ARTuNonSymGenEig(int nev, ARTuNonSymMatrix<FLOAT>& A,
ARTuNonSymMatrix<FLOAT>& B, char* which
int ncv = 0, FLOAT tol = 0.0, int maxit
FLOAT* resid = 0, bool AutoShift = true)

IILMII ,

90 ARPACK++

Regular mode consgtructor (UM FPACK version)

ARTuNonSymGenEig(int nev, ARumNonSymMatrix<FLOAT>& A,
ARumNonSymMatrix<FLOAT>& B, char* which
int ncv = 0, FLOAT tol = 0.0, int maxit =
FLOAT* resid = 0, bool AutoShift = true)

(1] LMH ,

|
o

Regular mode congtructor (LAPACK denseversion)

ARTuNonSymGenEig(int nev, ARdsNonSymMatrix<FLOAT>& A,
ARdsNonSymMatrix<FLOAT>& B, char* which
int ncv = 0, FLOAT tol = 0.0, int maxit =
FLOAT* resid = 0, bool AutoShift = true)

" LMH ,

|
o

Regular mode congtructor (LAPACK band version)

ARTuNonSymGenEig(int nev, ARbdNonSymMatrix<FLOAT>& A,
ARbdNonSymMatrix<FLOAT>& B, char* which
int ncv = 0, FLOAT tol = 0.0, int maxit =
FLOAT* resid = 0, bool AutoShift = true)

" LMH ,

|
o

Real shift and invert mode congtructor (SuperLU version)

ARTuNonSymGenEig(int nev, ARTuNonSymMatrix<FLOAT>& A,
ARTuNonSymMatrix<FLOAT>& B, FLOAT sigma,
char* which = "LM", 1int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Real shift and invert mode congtructor (UMFPACK version)

ARTuNonSymGenEig(int nev, ARumNonSymMatrix<FLOAT>& A,
ARumNonSymMatrix<FLOAT>& B, FLOAT sigma,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Real shift and invert mode congtructor (LAPACK denseversion)

ARTuNonSymGenEig(int nev, ARdsNonSymMatrix<FLOAT>& A,
ARdsNonSymMatrix<FLOAT>& B, FLOAT sigma,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Real shift and invert mode congtructor (LAPACK band version)

ARTuNonSymGenEig(int nev, ARbdNonSymMatrix<FLOAT>& A,
ARbdNonSymMatrix<FLOAT>& B, FLOAT sigma,
char* which = "LM", 1int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Complex shift and invert mode constructor (SuperLU version)

ARTuNonSymGenEig(int nev, ARTuNonSymMatrix<FLOAT>& A,
ARTuNonSymMatrix<FLOAT>& B, char part,
FLOAT sigmaR, FLOAT sigmal, char* which
int ncv = 0, FLOAT tol = 0.0, int maxit
FLOAT* resid = 0, bool AutoShift = true)

" LMH ,
0,

REFERENCE GUIDE 91

Complex shift and invert mode constructor (UM FPACK version)

ARTuNonSymGenEig(int nev, ARumNonSymMatrix<FLOAT>& A,
ARumNonSymMatrix<FLOAT>& B, char part,
FLOAT sigmaR, FLOAT sigmal, char* which
int ncv = 0, FLOAT tol = 0.0, int maxit
FLOAT* resid = 0, bool AutoShift = true)

IILMII ,
0,

Complex shift and invert mode constructor (LAPACK dense version)

ARTuNonSymGenEig(int nev, ARdsNonSymMatrix<FLOAT>& A,
ARdsNonSymMatrix<FLOAT>& B, char part,
FLOAT sigmaR, FLOAT sigmal, char* which
int ncv = 0, FLOAT tol = 0.0, int maxit
FLOAT* resid = 0, bool AutoShift = true)

IILMII ,
0,

Complex shift and invert mode constructor (LAPACK band version)

ARTuNonSymGenEig(int nev, ARbdNonSymMatrix<FLOAT>& A,
ARbdNonSymMatrix<FLOAT>& B, char part,
FLOAT sigmaR, FLOAT sigmal, char* which
int ncv = 0, FLOAT tol = 0.0, int maxit
FLOAT* resid = 0, bool AutoShift = true)

IILMII ,
0,

Examples

This class reguires the user to dedare two matrices, say A and B, usng one
of the ARluNonSymMatrix, ARumNonSymMatrix, ARdsNonSymMatrix oOf
ARbdNonSymMatrix classes, asinthe example below:

ARTuNonSymMatrix<double> A(nA, nnzA, nzvalA, irowA, pcolA);
ARTuNonSymMatrix<double> B(nB, nnzB, nzvalB, irowB, pcolB);

Henceforth, there ae three different ways of creding a nonsymmetric problem
(excluding the default congtructor, asinthe dove dasss):

1. Using theregular mode constructor
ARTuNonSymGenEig<double> prob(4, A, B);

2. Usngthereal shift and invert mode constructor
ARTuNonSymGenEig<double> prob(4, A, B, 13.2);

3. Using the complex shift and invert mode constructor

ARTuNonSymGenEig<double> prob(4, A, B, ’R’, 1.4, 2.2);

92 ARPACK++

ARluCompGentEig
arlgcomp.h (SuperLU version)
arugcomp.h (UMFPACK version)
ardgcomp.h (LAPACK dense version)
arbgcomp.h (LAPACK band version)
Declaration

template <class FLOAT > class ARTuCompGenEig

Description

This classdefines a mmplex generdized eigenvaue problem in the form Ax = BxA
with matrices fored usng one of the ARTuNonSymMatrix, ARumNonSymMatrix,
ARdsNonSymMatrix or ARbdNonSymMatrix classes.

Both computational modes available in this class cdl SuperLU, UMFPACK or
LAPACK routinesto perform a sparse LU decmposition. In the regular mode, matrix
Bisfadored. (A— oB) isdemmposed when the shift and invert mode is used.

Becaise somefill -in can be generated duing the fadorizaion, the user must be avare
of the memory requirements asociated to eat spedra transformation.

Parent class (SuperLU version)

public virtual
ARCompGenEig<FLOAT, ARTuNonSymPencil<complex<FLOAT>, FLOAT >,
ARTuNonSymPenci1<complex<FLOAT>, FLOAT > >

Parent class (UM FPACK version)

public virtual
ARCompGenEig<FLOAT, ARumNonSymPencil<complex<FLOAT>, FLOAT >,
ARumNonSymPenci1<complex<FLOAT>, FLOAT > >

Parent class (LAPACK denseverson)

public virtual
ARCompGenEig<FLOAT, ARdsNonSymPencil<complex<FLOAT>, FLOAT >,
ARdsNonSymPenci1<complex<FLOAT>, FLOAT > >

Parent class (LAPACK band verson)

public virtual
ARCompGenEig<FLOAT, ARbdNonSymPencil<complex<FLOAT>, FLOAT >,
ARbdNonSymPenci1<comp1ex<FLOAT>, FLOAT > >

Default constructor
ARTuCompGenEig(Q)

Regular mode constructor (SuperL U verson)

ARTuCompGenEig(int nev, ARTuNonSymMatrix<complex<FLOAT> >& A,
ARTuNonSymMatrix<complex<FLOAT> >& B, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
complex<FLOAT>* resid = 0, bool AutoShift = true)

REFERENCE GUIDE 93

Regular mode consgtructor (UM FPACK version)

ARTuCompGenEig(1int nev, ARumNonSymMatrix<complex<FLOAT> >& A,
ARumNonSymMatrix<complex<FLOAT> >& B, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
complex<FLOAT>* resid = 0, bool AutoShift = true)

Regular mode congtructor (LAPACK denseversion)

ARTuCompGenEig(int nev, ARdsNonSymMatrix<complex<FLOAT> >& A,
ARdsNonSymMatrix<complex<FLOAT> >& B, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
complex<FLOAT>* resid = 0, bool AutoShift = true)

Regular mode consgtructor (LAPACK band version)

ARTuCompGenEig(int nev, ARbdNonSymMatrix<complex<FLOAT> >& A,
ARbdNonSymMatrix<complex<FLOAT> >& B, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
complex<FLOAT>* resid = 0, bool AutoShift = true)

Shift and invert mode congtructor (SuperLU version)

ARTuCompGenEig(int nev, ARTuNonSymMatrix<complex<FLOAT> >& A,
ARTuNonSymMatrix<complex<FLOAT> >& B,
complex<FLOAT> sigma, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
complex<FLOAT>* resid = 0, bool AutoShift = true)

Shift and invert mode congtructor (UM FPACK version)

ARTuCompGenEig(int nev, ARumNonSymMatrix<complex<FLOAT> >& A,
ARumNonSymMatrix<complex<FLOAT> >& B,
complex<FLOAT> sigma, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
complex<FLOAT>* resid = 0, bool AutoShift = true)

Shift and invert mode congructor (LAPACK denseverson)

ARTuCompGenEig(1int nev, ARdsNonSymMatrix<complex<FLOAT> >& A,
ARdsNonSymMatrix<complex<FLOAT> >& B,
complex<FLOAT> sigma, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
complex<FLOAT>* resid = 0, bool AutoShift = true)

Shift and invert mode congructor (LAPACK band verson)

ARTuCompGenEig(int nev, ARbdNonSymMatrix<complex<FLOAT> >& A,
ARbdNonSymMatrix<complex<FLOAT> >& B,
complex<FLOAT> sigma, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
complex<FLOAT>* resid = 0, bool AutoShift = true)

Examples

To use this classthe user must dedare two matrices, using the ARTuNonSymMatrix,
ARumNonSymMatrix, ARdsNonSymMatrix or ARbdNonSymMatrix clasEs.

If ARumNonSymMatrix isbeing used, these matrices can e dedared asin the following
example:

94 ARPACK++

ARumNonSymMatrix<complex<double> > A(nhA, nnzA, nzvalA, irowA, pcolA);
ARumNonSymMatrix<complex<double> > B(nB, nnzB, nzvalB, irowB, pcolB);

After that, the spedra transformation dictates which constructor should be used (the
default congtructor is not consdered here):

1. Using theregular mode constructor

ARTuCompGenEig<double> prob(4, A, B);

2. Using the shift and invert mode constructor

ARTuCompGenEig<double> prob(4, A, B, complex<double>(0.8, 0.4));

Classes that require user-defined matrix-vector products.

ARSymStdEig

arssym.h

Declaration
template<class FLOAT, class FOP> class ARSymStdEig.

Description
This classdefines ared symmetric sandard eigenvalue problem.

Parent classes

public virtual ARStdEig<FLOAT, FLOAT, FOP>
public virtual ARrcSymStdEig<FLOAT>

Default constructor
ARSymStdEig(Q

Regular mode constructor

ARSymStdEig(int n, int nev, FOP* objOP, TypeOPx MultOPx,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Shift and invert mode constructor

ARSymStdEig(int n, int nev, FOP* objOP, TypeOPx MultOPx, FLOAT sigma,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Examples

Supposing that Matrix is a dass that contains information concerning a spedfic
symimetric matrix and a dso contains a function cdled MultVet, which performs the

REFERENCE GUIDE 95

matrix-vedor product required by the mmputationa mode being used®, the three
different ways of dedaring a problem with classARSymStdEig are exemplified below:

1. Using the default constructor

ARSymStdEig<double, Matrix<double> > EigProb;

If this congtructor is used, al information about the problem nmust be passed elsewhere
in the program using the DefineParameters function:

Matrix<double> A;
EigProb.DefineParameters(100, 4, &A, &Matrix<double>::MultVet);

Becaise ashift cannot be defined using DefineParameters, the following command
is aso necessary when solving the problem in shift and invert mode:

EigProb.ChangeShift(13.2);
2. Usngtheregular mode constructor

Matrix<double> A;
ARSymStdEig<double, Matrix<double> >
EigProb(100, 4, &A, &Matrix<double>::MultVet);

3. Using the shift and invert mode constructor

Matrix<double> A;
ARSymStdEig<double, Matrix<double> >
EigProb(100, 4, &A, &Matrix<double>::MultVet, 13.2);

ARNonSymStdEig

arsnsym.h

Declaration
template <class FLOAT, class FOP> class ARNonSymStdEig

Description
This classdefines ared nonsymmetric sandard eigenvalue problem.

Parent classes

public virtual ARStdEig<FLOAT, FLOAT, FOP>
public virtual ARrcNonSymStdEig<FLOAT>

Default constructor
ARNonSymStdEig(Q)

22 |n regular mode, function Multvet should evaluate the matrix-vedor product Av. In shift and
invert modeMultvet must return the produ¢-ol)*v.

96 ARPACK++

Regular mode congtructor

ARNonSymStdEig(int n, int nev, FOP* objOP, TypeOPx MultOPx,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Real shift and invert mode constructor

ARNonSymStdEig(int n, int nev, FOP* objOP, TypeOPx MultOPx,
FLOAT sigma, char* which = "LM", int ncv = 0,
FLOAT tol = 0.0, 1int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)

Examples

Supposing that Matrix isa dassthat contains information concerning a spedfic matrix
and a dso contains a function cdled Multvet, which performs the matrix-vedor
product required by the cmmputational mode being used, as described in chapter 3, it is
possble to dedare anonsymnetric problem using threedifferent constructors:

1. Using the default constructor

ARNonSymStdEig<double, Matrix<double> > EigProb;

In this case, after dedaring the problem, the user must pass ®me information about
the problem elsawhere in the program, using the DefineParameters function:

Matrix<double> A;
EigProb.DefineParameters(100, 4, &A, &Matrix<double>::MultVet);

Becaise ashift cannot be defined using DefineParameters, the following command
is aso necessary when solving the problem in shift and invert mode:

EigProb.ChangeShift(13.2);
2. Usng theregular mode constructor

Matrix<double> A;
ARNonSymStdEig<double, Matrix<double> >
EigProb(100, 4, &A, &Matrix<double>::MultVet);

3. Using the shift and invert mode constructor

Matrix<double> A;
ARNonSymStdEig<double, Matrix<double> >
EigProb(100, 4, &A, &Matrix<double>::MultVet, 13.2);

ARCompStdEig

arscomp.h

Declaration
template<class FLOAT, class FOP> class ARCompStdEig

REFERENCE GUIDE 97

Description

This class defines a @mplex (Hermitian or non-Hermitian) standard eigenvalue
problem.

Parent classes

public virtual ARStdEig<FLOAT, complex<FLOAT>, FOP>
public virtual ARrcCompStdEig<FLOAT>

Default constructor
ARCompStdEig(Q)

Regular mode constructor

ARCompStdEig(int n, int nev, FOP* objOP, TypeOPx MultOPx,
char* which = "LM", 1int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, complex<FLOAT>* resid = O,
bool AutoShift = true)

Shift and invert mode constructor

ARCompStdEig(int n, int nev, FOP* objOP, TypeOPx MultOPx,
complex<FLOAT> sigma, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
complex<FLOAT>* resid = 0, bool AutoShift = true)

Examples

If Matrix is a dassthat contains information regarding a wmplex matrix and aso
contains a function cdled Multvet, which performs the matrix-vedor product
required by the compuationa mode sdeded, it is possble to dedare a ©mplex
problem:

1. Using the default constructor

ARCompStdEig<double, Matrix<double> > EigProb;

If the default congtructor is being used, al the parameters required by ARPACK++
must be passed elsewhere in the program using the DefineParameters function:

Matrix<double> A;
EigProb.DefineParameters(100, 4, &A, &Matrix<double>::MultVet);

Becaise ashift cannot be defined using DefineParameters, the following command
is aso necessary when solving the problem in shift and invert mode:

EigProb.ChangeShift(complex<double>(13.2, 10.4));
2. Usng theregular mode constructor

Matrix<double> A;
ARCompStdEig<double, Matrix<double> >
EigProb(100, 4, &A, &Matrix<double>::MultVet);

98 ARPACK++

3. Using the shift and invert mode constructor

Matrix<double> A;
ARCompStdEig<double, Matrix<double> >
EigProb(100, 4, &A, &Matrix<double>::MultVet,
complex<double>(13.2, 10.4));

ARSymGentEig

argsym.h

Declaration
template <class FLOAT, class FOP, class FB> class ARSymGenEig

Description
Defines ared symmetric generdized eigenvalue problem.

Parent classes

public virtual ARGenEig<FLOAT, FLOAT, FOP, FB>
public virtual ARSymStdEig<FLOAT, FOP>
public virtual ARrcSymGenEig<FLOAT>

Default constructor
ARSymGenEigQ

Regular mode constructor
ARSymGenEig(int n, int nev, FOP* objOP, TypeOPx MultOPx, FB* objB,
TypeBx MultBx, char* which "LM", 1int ncv = O,
FLOAT tol = 0.0, 1int maxit = 0, FLOAT* resid = O,
bool AutoShift = true)

Shift and invert and buckling modes constructor

ARSymGenEig(char InvertMode, int n, int nev, FOP* objOP,
TypeOPx MultOPx, FB* objB, TypeBx MultBx, FLOAT sigma,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Cayley mode congtructor

ARSymGenEig(int n, int nev, FOP* objOP, TypeOPx MultOPx, FB* objA,
TypeBx MultAx, FB* objB, TypeBx MultBx, FLOAT sigma,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

Examples
Becaise generdized problems include more than one matrix, before solving a problem
using ARSymGenE1ig it is generdly necessry to crede two different classes, ead one
containing a least one function, say MultVet, which performs a matrix-vedor

REFERENCE GUIDE 99

product®®, Supposing that al these dasses are available, there ae severd ways to
crede asymmetric generdized problem:

1. Using the default constructor

In this case, after dedaring an objed of the ARSymGenE1ig class the user should supdy
al the information about the problem required by ARPACK++ dsewhere in the
program using the DefineParameters function:

ARSymGenEig<double, MatrixOP<double>, MatrixB<double> > EigProb;

7

MatrixOP<double> OP;

MatrixB<double> B;

EigProb.DefineParameters(100, 4, &0P, &MatrixOP<double>::MultVet,
&B, &MatrixB<double>::MultVet);

When solving the problem in shift and invert mode, another command is aso
necessry, because ashift cannot be defined using DefineParameters:

MatrixOP<double> OP;

MatrixB<double> B;

EigProb.DefineParameters(100, 4, &0P, &MatrixOP<double>::MultVet,
&B, &MatrixB<double>::MultVet);

EigProb.SetShiftInvertMode(l.2, &P, &MatrixOP<double>::MultVet);

The same ocaurs when using buckling mode:

MatrixOP<double> OP;

MatrixB<double> A;

EigProb.DefineParameters(100, 4, &0P, &MatrixOP<double>::MultVet,
&A, &MatrixB<double>::MultVet);

EigProb.SetBucklingMode(1.2, &0P, &MatrixOP<double>::MultVet);

In Cayley mode, three matrices — OP, A and B — are required. Although matrices A
and OP must share the same dass they use different matrix-vedor product functions:

MatrixOP<double> OP;
MatrixB<double> A;
MatrixB<double> B;
EigProb.DefineParameters(100, 4, &0P, &MatrixOP<double>::MultVet,
&B, &MatrixB<double>::MultVet);
EigProb.SetCayleyMode(1.2, &0P, &MatrixOP<double>::MultVet,
&A, &MatrixB<double>::MultAVet);

2. Using theregular mode constructor

MatrixOP<double> OP;
MatrixB<double> B;

2 The required matrix-vedor products are; a) in regular mode: B*Ax and Bx; b) in shift and
invert mode: (A-oB)*x and Bx; ¢) in buckling mode: (A-0B)™x and Ax; d) in Cayley mode: (A-
oB)’x, Ax andBx. See chapter 4 for a detailed description of all modes.

100 ARPACK++

ARSymGenEig<double, MatrixOP<double>, MatrixB<double> >
EigProb(100, 4, &0P, &MatrixOP<double>::MultVet,
&B, &MatrixB<double>::MultVet);

3. Using the shift and invert mode constructor

MatrixOP<double> OP;
MatrixB<double> B;
ARSymGenEig<double, MatrixOP<double>, MatrixB<double> >
EigProb(’S’, 100, 4, &0P, &MatrixOP<double>::MultVet,
&B, &MatrixB<double>::MultVet, 1.2);

4. Using the buckling mode congtructor

MatrixOP<double> OP;
MatrixA<double> A;
ARSymGenEig<double, MatrixOP<double>, MatrixA<double> >
EigProb(’B’, 100, 4, &0P, &MatrixOP<double>::MultVet,
&A, &MatrixA<double>::MultVet, 1.2);

5. Usng the Cayley mode constructor

MatrixOP<double> OP;
MatrixB<double> A;
MatrixB<double> B;
ARSymGenEig<double, MatrixOP<double>, MatrixB<double> >
EigProb(100, 4, &0P, &MatrixOP<double>::MultVet, &A,
&MatrixB<double>: :MultAVet,
&B, &MatrixB<double>::MultBVet, 1.2);

ARNonSymGentEig

argnsym.h

Declaration
template<class FLOAT, class FOP, class FB> class ARNonSymGenEig

Description
Defines ared nonsymnetric generdized eigenvalue problem.

Parent classes

public virtual ARGenEig<FLOAT, FLOAT, FOP, FB>
public virtual ARNonSymStdEig<FLOAT, FOP>
public virtual ARrcNonSymGenE1ig<FLOAT>

Default constructor
ARNonSymGenEig(Q)

Regular mode congtructor

ARNonSymGenEig(int n, int nev, FOP* objOP, TypeOPx MultOPx,
FB* objB, TypeBx MultBx, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)

REFERENCE GUIDE 101

Real shift and invert mode constructor

ARNonSymGenEig(int n, int nev, FOP* objOP, TypeOPx MultOPx, FB* objB,
TypeBx MultBx, FLOAT sigma, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)

Complex shift and invert mode constructor

ARNonSymGenEig(int n, int nev, FOP* objOP, TypeOPx MultOPx, FB* objA,
TypeBx MultAx, FB* objB, TypeBx MultBx, char part,
FLOAT sigmaR, FLOAT sigmal, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)

Examples

ARNonSymGenEig requires the user to supdy two (or sometimes threg different
matrix-vedor products’’. Supposing that at least two meatrix classes are available, eath
one @ntaining at least one function, say MultVet, which performs a matrix-vedor
product as required by the cmputational mode being used, some waysto crede ared
nonsymmetric generdized problem include:

1. Using the default constructor

In this case, after dedaring the problem, the user must passal the information required
by ARPACK++ dsewhere in the program using the DefineParameters function:

ARNonSymGenEig<double, MatrixOP<double>, MatrixB<double> > EigProb;

/...

MatrixOP<double> OP;

MatrixB<double> B;

EigProb.DefineParameters(100, 4, &0P, &MatrixOP<double>::MultVet,
&B, &MatrixB<double>::MultVet);

Another command is adso necessry when solving the problem in shift and invert
mode, snce ashift cannot be defined using DefineParameters:

MatrixOP<double> OP;

MatrixB<double> B;

EigProb.DefineParameters(100, 4, &0P, &MatrixOP<double>::MultVet,
&B, &MatrixB<double>::MultVet);

EigProb.SetShiftInvertMode(l.2, &0P, &MatrixOP<double>::MultVet);

When shift is complex, three matrices — OP, A and B — are required. Although
meatrices A and OP mugt share the same dass they use different matrix-vedor product
functions:

% Therequired products are: a) in regular mode: B*Ax and Bx; b) in real shift and invert mode:
(A-oB)x and Bx; ¢) in complex shift and invert mode: real{(A-oB)*}x or imag{(A-0B)™'}x, Ax
andBx. See chapter 4.

102 ARPACK++

MatrixOP<double> OP;
MatrixB<double> A;
MatrixB<double> B;
EigProb.DefineParameters(100, 4, &0P, &MatrixOP<double>::MultVet,
&B, &MatrixB<double>::MultVet);
EigProb.SetComplexShiftMode(’R’, 1.2, 0.8, &OP,
&MatrixOP<double>: :MultVet,
&A, &MatrixB<double>::MultAVet);

2. Usng theregular mode constructor

MatrixOP<double> OP;
MatrixB<double> B;
ARNonSymGenE1ig<double, MatrixOP<double>, MatrixB<double> >
EigProb(100, 4, &0P, &MatrixOP<double>::MultVet,
&B, &MatrixB<double>::MultVet);

3. Using thereal shift and invert mode constructor

MatrixOP<double> OP;
MatrixB<double> B;
ARNonSymGenE1ig<double, MatrixOP<double>, MatrixB<double> >
EigProb(100, 4, &0P, &MatrixOP<double>::MultVet,
&B, &MatrixB<double>::MultVet, 1.2);

4. Using the complex shift and invert mode constructor

MatrixOP<double> OP;
MatrixOP<double> A;
MatrixB<double> B;
ARNonSymGenEig<double, MatrixOP<double>, MatrixB<double> >
EigProb(100, 4, &0P, &MatrixOP<double>::MultVet,
&A, &MatrixB<double>::MultAVet,
&B, &MatrixB<double>::MultVet, ’'R’, 1.2, 0.8);

ARCompGentEig

argcomp.h

Declaration
template <class FLOAT, class FOP, class FB> class ARCompGenEig

Description
Defines a ammplex (Hermitian or non-Hermitian) generdized eigenvalue problem.

Parent classes

public virtual ARGenEig<FLOAT, complex<FLOAT>, FOP, FB>
public virtual ARCompStdEig<FLOAT, FOP>

Default constructor
ARCompGenEig(Q)

REFERENCE GUIDE 103

Regular mode congtructor

ARCompGenEig(int n, int nev, FOP* objOP, TypeOPx MultOPx,
FB* objB, TypeBx MultBx, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
complex<FLOAT>* resid = 0, bool AutoShift = true)

Shift and invert mode constructor

ARCompGenEig(int n, int nev, FOP* objOP, TypeOPx MultOPx, FB* objB,
TypeBx MultBx, complex<FLOAT> sigma, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
complex<FLOAT>* resid = 0, bool AutoShift = true)

Examples

To solve cmmplex generdized problemsit is also necessary to creae two meatrix-vedor
product functions™. In the examples given below, both these functions are cdled
MuTtVet, but ead one belongsto adifferent class

1. Using the default constructor

ARCompGenEig<double, MatrixOP<double>, MatrixB<double> > EigProb;

In this case, after dedaring an objed that belongs to ARCompGenE1ig, it is necessry to
use the DefineParameters function to passal the remaining information required by
ARPACK++:

MatrixOP<double> OP;

MatrixB<double> B;

EigProb.DefineParameters(100, 4, &0P, &MatrixOP<double>::MultVet,
&B, &MatrixB<double>::MultVet);

Becaise ashift cannot be defined using DefineParameters, the following command
is also necessary when using shift and invert mode:

EigProb.SetShiftInvertMode(complex<double>(1.2, 0.8),
&OP, &MatrixOP<double>: :MultVet);

2. Usngtheregular mode constructor

MatrixOP<double> OP;
MatrixB<double> B;
ARCompGenEig<double, MatrixOP<double>, MatrixB<double> >
EigProb(100, 4, &0P, &MatrixOP<double>::MultVet,
&B, &MatrixB<double>::MultVet);

3. Using the shift and invert mode constructor

MatrixOP<double> OP;
MatrixB<double> B;

% These functions are; a) in regular mode: B*Ax and Bx; b) in shift and invert mode: (A-oB)™x
andBx. See chapter 4.

104 ARPACK++

ARCompGenEig<double, MatrixOP<double>, MatrixB<double> >
EigProb(100, 4, &0P, &MatrixOP<double>::MultVet, &B,
&MatrixB<double>: :MultVet, complex<double>(1.2, 0.8));

Classes that do not handle matrix infor mation.

These dasss were geded only to mantan full compatibility between c++ and
FORTRAN versons of ARPACK. They implement the so cdled revese
comrunication interface and should be used only if matrix neither matrix data nor
matrix-vedor products can ke passed to classcongructors, as described in the dove
sedions.

Although it is easy to dedare objeds using these dasss, obtaining eigenvalues and
eigenvedors require the user to explicitly define an awkward sequence of cdls to a
function cdled TakeStep combined with matrix-vedor products until convergence is
atained.

ARrcSymStdEig

arrssym.h

Declaration
template<class FLOAT> class ARrcSymStdEig.

Description

Defines a red symmetric sandard eigenvaue problem without requiring a meatrix-
vedor product function.

Parent class
public virtual ARrcStdEig<FLOAT, FLOAT>

Default constructor
ARrcSymStdEig(Q)

Regular mode congtructor

ARrcSymStdEig(int n, int nev, char* which = "LM", int ncv = 0,
FLOAT tol = 0.0, 1int maxit = 0, FLOAT* resid = O,
bool AutoShift = true)

Shift and invert mode constructor
ARrcSymStdEig(int n, int nev, FLOAT sigma, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)
Examples

Defining objeds of this classis graightforward:

REFERENCE GUIDE 105

1. Using the default constructor

ARrcSymStdEig<double> EigProb;

When using the default congtructor, problem parameters must be passed elsawhere in
the program using functions DefineParameters and ChangeShift**:

EigProb.DefineParameters(100, 4);
EigProb.ChangeShift(13.2);

2. Usng theregular mode constructor

ARrcSymStdEig<double> EigProb(100, 4);

3. Using the shift and invert mode constructor

ARrcSymStdEig<double> EigProb(100, 4, 13.2);

ARrcNonSymStdEig

arrsnsym.h

Declaration
template <class FLOAT> class ARrcNonSymStdEig

Description
Defines ared nonsymmetric standard eigenvalue problem.

Parent class
public virtual ARrcStdEig<FLOAT, FLOAT>

Default congtructor
ARrcNonSymStdEig()

Regular mode constructor

ARrcNonSymStdEig(int n, int nev, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)

Real shift and invert mode constructor

ARrcNonSymStdEig(int n, int nev, FLOAT sigma, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)

Examples
The user can easlly dedare objeds of this class

26 Only when solving a problem in shift and invert mode.

106 ARPACK++

1. Using the default constructor

ARrcNonSymStdEig<double> EigProb;

When using this congtructor, al other information about the problem nmust be passed
elsawhere in the program using DefineParameters and ChangeShift26:

EigProb.DefineParameters(100, 4);
EigProb.ChangeShift(13.2);

2. Usng theregular mode constructor

ARrcNonSymStdEig<double> EigProb(100, 4);

3. Using the shift and invert mode constructor

ARrcNonSymStdEig<double> EigProb(100, 4, 13.2);

ARrcCompStdEig

arrscomp.h

Declaration
template<class FLOAT> class ARrcCompStdEig

Description
Defines a ammplex (Hermitian or non-Hermitian) standard eigenvalue problem.

Parent class
public virtual ARrcStdEig<FLOAT, complex<FLOAT> >

Default constructor
ARrcCompStdEig(Q)

Regular mode congtructor

ARrcCompStdEig(int n, int nev, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
complex<FLOAT>* resid = 0, bool AutoShift = true)

Shift and invert mode constructor

ARrcCompStdEig(int n, int nev, complex<FLOAT> sigma,
char* which = "LM", 1int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, complex<FLOAT>* resid = O,
bool AutoShift = true)

Examples
1. Using the default constructor

ARrcCompStdEig<double> EigProb;

REFERENCE GUIDE 107

/.

EigProb.DefineParameters(100, 4);
EigProb.ChangeShift(complex<double>(13.2, 10.4));

Asillugtrated in the dove example, to use the default congtructor, it is dso necessary
to cdl other functions, such as DefineParameters and ChangeShift, to pass ®me
problem parametersto ARPACK ++.

In this case, DefineParameters was used to define the Size of the problem and the
number of dedred eigenvalues, while ChangeShift was cdled to define the shift
(supposing that the shift and invert mode should be employed).

2. Usng theregular mode constructor

ARrcCompStdEig<double> EigProb(100, 4);

3. Using the shift and invert mode constructor

ARrcCompStdEig<double> EigProb(100, 4, complex<double>(13.2, 10.4));

ARrcSymGenEig

arrgsym.h

Declaration
template <class FLOAT> class ARrcSymGenEig

Description
Defines ared symmetric generdized eigenvalue problem.

Parent classes

public virtual ARrcGenEig<FLOAT, FLOAT>
public virtual ARrcSymStdEig<FLOAT>

Default constructor
ARrcSymGenEigQ)

Regular mode constructor
ARrcSymGenEig(int n, int nev, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)

Shift and invert, buckling and Cayley modes constructor
ARrcSymGenEig(char InvertMode, int n, int nev, FLOAT sigma,
char* which = "LM", int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, FLOAT* resid = 0, bool AutoShift = true)

108 ARPACK++

Examples
1. Using the default constructor

ARrcSymGenEig<double> EigProb;

When using this congtructor, al problem parameters must be passed elsewhere in the
program using the DefineParameters function:

EigProb.DefineParameters(100, 4);

One of the three ommands below is dso required when a spedra transformation is
being used:

EigProb.SetShiftInvertMode(l.2);
EigProb.SetBucklingMode(1.2);
EigProb.SetCayleyMode(1.2);

2. Using theregular mode constructor
ARrcSymGenEig<double> EigProb(100, 4);
3. Udgng the shift and invert, buckling and Cayley modes constructor

To define aspedrd transformation while defining an objed of this class one of the
following commands must be used:

ARrcSymGenEig<double> EigProb(’S’, 100, 4, 1.2);
ARrcSymGenEig<double> EigProb(’B’, 100, 4, 1.2);
ARrcSymGenEig<double> EigProb(’C’, 100, 4, 1.2);

ARrcNonSymGenEig

arrgnsym.h

Declaration
template<class FLOAT> class ARrcNonSymGenEig

Description
Defines ared nonsymnetric generdized eigenvalue problem.

Parent classes

public virtual ARrcGenEig<FLOAT, FLOAT>
public virtual ARrcNonSymStdEig<FLOAT>

Default consgtructor
ARrcNonSymGenEig()

REFERENCE GUIDE 109

Regular mode congtructor

ARrcNonSymGenEig(int n, int nev, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)

Real shift and invert mode constructor

ARrcNonSymGenEig(int n, int nev, FLOAT sigma, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,
FLOAT* resid = 0, bool AutoShift = true)

Complex shift and invert mode constructor

ARrcNonSymGenEig(int n, int nev, char part, FLOAT sigmaR,
FLOAT sigmal, char* which = "LM",1int ncv = 0,
FLOAT tol = 0.0, 1int maxit = 0, FLOAT* resid = O,
bool AutoShift = true)

Examples
1. Using the default constructor

ARrcNonSymGenEig<double> EigProb;

When using the default constructor, al other relevant information about the problem
must be passed using the DefineParameters function:

EigProb.DefineParameters(100, 4);

One of the following commands is dso necessary when solving the problem in red or
complex shift and invert mode:

EigProb.SetShiftInvertMode(l.2);
EigProb.SetComplexShiftMode(’R’, 1.2, 0.8);

2. Usng theregular mode constructor
ARrcNonSymGenEig<double> EigProb(100, 4);

3. Using thereal shift and invert mode constructor
ARrcNonSymGenEig<double> EigProb(100, 4, 1.2);

4. Using the complex shift and invert mode constructor

ARCompGenEig<double> EigProb(100, 4, ’R’, 1.2, 0.8);

ARrcCompGenEig

arrgcomp.h

Declaration
template <class FLOAT> class ARrcCompGenEig

110 ARPACK++

Description
Defines a ammplex (Hermitian or non-Hermitian) generdized eigenvalue problem.

Parent classes

public virtual ARrcGenEig<FLOAT, complex<FLOAT> >
public virtual ARrcCompStdEig<FLOAT>

Default constructor
ARrcCompGenEig(Q)

Regular mode congtructor

ARrcCompGenEig(int n, int nev, char* which = "LM",
int ncv = 0, FLOAT tol = 0.0, int maxit = O,

complex<FLOAT>* resid = 0, bool AutoShift true)

Shift and invert mode constructor

ARrcCompGenEig(int n, int nev, complex<FLOAT> sigma,
char* which = "LM", 1int ncv = 0, FLOAT tol = 0.0,
int maxit = 0, complex<FLOAT>* resid = O,
bool AutoShift = true)

Examples
1. Using the default constructor

ARrcCompGenEig<double> EigProb;

When using this constructor, the user must employ functions DefineParameters and
SetShiftInvertMode to supdy al problem parameters.

EigProb.DefineParameters(100, 4);
EigProb.SetShiftInvertMode(complex<double>(1.2, 0.8));

2. Usngtheregular mode constructor
ARrcCompGenEig<double> EigProb(100, 4);

3. Using the shift and invert mode constructor

ARrcCompGenEig<double> EigProb(100, 4, complex<double>(1.2, 0.8));

Base classes.

The dasses described below are used as a bass for the definition of al other
ARPACK++ dasss. They are not intended to be used dredly and were included here
only for the sake of completeness

REFERENCE GUIDE 111

ARrcStdEig

arrseig.h

Declaration
template<class FLOAT> class ARrcStdEig

Description
Defines a generic sandard eigenvalue problem.

Default constructor
ARrcStdEigQ)

ARrcGenEig

arrgeig.h

Declaration
template<class FLOAT> class ARrcGenEig

Description
Defines a generic generdized eigenvalue problem.

Parent class
public virtual ARrcStdEig<FLOAT, TYPE>

Default constructor
ARrcGenEigQ

ARStdEig

arseig.h

Declaration
template<class FLOAT, class TYPE, class FOP > class ARStdEig

Description

Defines a generic stlandard eigenvalue problem, supposing that class FOP contains a
member function that performs a matrix-vedor product.

Parent class
public virtual ARrcStdEig<FLOAT, TYPE>

Default constructor
ARStdEig()

112 ARPACK++

ARGenEig

argeig.h

Declaration
template<class FLOAT, class TYPE, class FOP, class FB> class ARGenEig

Description
Defines a generic generdized eigenvalue problem Ax = BxA, supposng that
information about matrices A and B is provided by classes FOP and FB.

Parent classes

public virtual ARrcGenEig<FLOAT, TYPE>
public virtual ARStdEig<FLOAT, TYPE, OP>

Default constructor
ARGenEigQ)

Matrix classes.

Although the user is encouraged to use his own matrix classes, ARPACK++ includes
some predefined classes that can e used to crede dense matrices and sparse matrices
in compressed sparse @lumn (CSC) or band formeat.

The main purpose of these dasss is to help the user to define @genvalue problems,
but some of them can aso be used to solve linea systems or to perform metrix-vedor
products.

There ae eght matrix classes and another eight classes that represent pencils. They are
divided acmrding to the presence of symmetry and also acrding to the library that is
used to solve linea systems.

M atrices.

ARbdSymMatrix

arbsmat.h
Declaration
template<class TYPE> class ARbdSymMatrix

Description
This classdefines ared symmetric band matrix.

REFERENCE GUIDE 113

Warning Two member functions of this class FactorA and FactorAsI, cdl
LAPACK to perform a matrix decompostion. These two functions are used by
ARPACK++ to solve generdized eigenvalue problems and dso standard problems in
shift and invert mode. Although ARbdSymMatrix should only be used to define
symmetric matrices, a LU fadorizaion with partid pivoting is used. Since many
nonzero elements are generated duing the matrix decompostion, memory avail abili ty
must be taken in aceunt when using these member functions.

Default constructor
ARbdSymMatrix()

L ong congtructor
ARbdSymMatrix(int n, int nsdiag, TYPE* nzval, char uplo = 'L"')

Condructor parameters

n
nsdiag

nzval

uplo

number of columns.
number subdiagonals (or superdiagonas), not including the main diagonal.

pointer to an array that contains the nonzero eements of the upper or
lower triangular part of the matrix. The nonzeo eements must be
supdied by columns and, within ead column, they must aso be in
ascending order of row indices.

nzval can be viewed as a matrix with n columns and nsdiag+1 rows,
where the ®lumns are stored sequentidly in the same vedor. In this
representation, ead row of the (nsdiag+1) xn meatrix contains a
diagonal from the origind matrix. If the upper triangular part of the matrix
is supdied, the main diagonal is dored in the last row. On the other hand,
the main diagonal isthefirst row if uplo = ’L’.

charader variable that indicates if the user intends to define the matrix by
supfying its lower (uplo = ’L’) or upper trianguar (uplo = ’U’)
nonzero elements.

Public member functions
int nrows()

returnsn.

int ncols()

returnsn.

void FactorA()

Perfor