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Abstract — Two paradigms for distributed-memory parallel computation that free the applica-
tion programmer from the details of message passing are compared for an archetypal structured
scientific computation — a nonlinear, structured-grid partial differential equation boundary
value problem — using the same algorithm on the same hardware. Both paradigms, parallel
libraries represented by Argonne’s PETSc, and parallel languages represented by the Portland
Group’s HPF, are found to be easy to use for this problem class, and both are reasonably effec-
tive in exploiting concurrency after a short learning curve. The level of involvement required
by the application programmer under either paradigm includes specification of the data par-
titioning (corresponding to a geometrically simple decomposition of the domain of the PDE).
Programming in SPMD style for the PETSc library requires writing the routines that discretize
the PDE and its Jacobian, managing subdomain-to-processor mappings (affine global-to-local
index mappings), and interfacing to library solver routines. Programming for HPF requires a
complete sequential implementation of the same algorithm, introduction of concurrency through
subdomain blocking (an effort similar to the index mapping), and modest experimentation with
rewriting loops to elucidate to the compiler the latent concurrency. Correctness and scalability
are cross-validated on up to 32 nodes of an IBM SP2.

Keywords: Parallel languages, parallel libraries, parallel scientific computing, nonlinear ellip-

tic boundary value problems

1 Introduction

Parallel computations have advanced, and con-
tinue to advance, through innovations in both
numerical algorithms and system software tech-
nology. These advances can be appropriated
by application programmers through the some-
what complementary means of libraries and lan-
guages. Unfortunately, the development and
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tics and Space Administration under NASA Contract
Nos. NAS1-97046 and NAS1-19480, while the authors
were in residence at ICASE MS 403, NASA Langley Re-
search Center, Hampton, VA 23681-0001. Access to the
NASA SP2s was provided under the NASA High Perfor-
mance Computing and Communication Program.

tuning of a parallel numerical code from scratch
remains a difficult and time-consuming task.
The burden on the programmer may be reduced
if the high-level programming language itself
supports parallel constructs, which is the philos-
ophy that underlies the High Performance For-
tran [18] extensions to Fortran. With varying
degrees of hints from programmers, the HPF
approach leaves the responsibility of manag-
ing concurrency and data communication to the
compiler and runtime system.

Libraries offer a mid-level solution, and are
based on the philosophy that, for high per-
formance, programmers must become involved
in the concurrency detection, process assign-



ment, interprocess data transfer, and process-
to-processor mapping — but only once for each
algorithmic archetype. A library, perhaps with
multiple levels of entry to allow the application
programmer to employ defaults or to exert de-
tailed control, is the embodiment of algorithmic
archetypes. One such popular parallel library is
PETSc [2], under continuous expansion at Ar-
gonne National Laboratory since 1991. PETSc
provides a wide variety of parallel numerical rou-
tines for scalable applications involving the solu-
tion of partial differential and integral equations,
and certain other regular data parallel applica-
tions. It uses message passing via MPI and as-
sumes no physical data sharing or global address
space.

In this study we consider a simple problem
representative of low-order structured-grid dis-
cretizations of nonlinear elliptic PDEs — the so-
called “Bratu” problem — and we implement
the same popular solution algorithm using both
paradigms, i.e., the PETSc library and the HPF
language. The algorithm is a Newton-Krylov
method with subdomain-concurrent ILU pre-
conditioning, also known as a Newton-Krylov-
Schwarz (NKS) method [15]. Its basic compo-
nents are typical of other algorithms for PDEs:
(1) sparse matrix-vector products (together with
Jacobian matrix and residual vector evalua-
tions) based on regular multidimensional grid
stencil operations, (2) sparse triangular solution
recurrences, (3) global reductions, and (4) DAX-
PYs. Our goal is to examine the performance
and scalability of these two different program-
ming paradigms for this broadly important class
of scientific computations.

With relatively modest effort, we obtain sim-
ilar and reasonable performance using both
paradigms. Taking the perspective that the
PETSc library represents a state-of-the-art
message-passing implementation, we conclude
that HPF compilers have achieved their promise
on the class of structured index-space computa-
tions targeted by the HPF 1 standard.

The organization of this paper is as follows.

Section 2 describes a model nonlinear PDE
problem and its discretization and solution al-
gorithm. Sections 3 and 4, respectively, discuss
the PETSc and HPF implementations of the al-
gorithm. The performance of the implementa-
tions is compared, side-by-side, in Section 5, and
we conclude in Section 6.

2 Problem and Algorithm

Bratu’s Problem

Our test case is a classic nonlinear elliptic PDE,
known as the Bratu problem. In this problem,
heat generation from a combustion process is
balanced by heat transfer due to conduction.
The model problem is given as

—V?u — \e* =0, (1)

with v = 0 at the boundary, where u is the tem-
perature and A is a constant. The Bratu prob-
lem is a part of the MINPACK-2 test problem
collection [1] and is implemented in a variety of
ways in the distribution set of demo drivers for
the PETSc library, to illustrate different features
of PETSc for nonlinear problems. For our model
case, we consider a square domain of unit length
and A = 6. We use a standard central difference
scheme on a uniform grid to discretize (1) as

flu) =

4Ui,j — Uj—1,5 — Uig1,5 — Ujj—1
—j j41 — WX = 0, (2)
where f is the vector function of nonlinear resid-
uals of the vector of discrete unknowns u, de-
fined at each interior and boundary grid point:
wi; ~ u(z;,y); xp = th,i = 0,1,...,n; y; =
jh,j = 0,1,...n, h = 1. The discretization
leads to a nonlinear algebraic problem of dimen-
sion (n + 1)2, with a sparse Jacobian matrix of
condition number O(n?), asymptotically in n,
for fixed A. The typical number of nonzeros
per row of the Jacobian is five, with fewer in
rows corresponding to boundary points of the
physical domain. The algorithmic discussion in



the balance of this section is sufficient to under-
stand the main computation and communica-
tion costs in solving (2), but we defer full parallel
complexity studies, including a discussion of op-
timal parallel granularities, partitioning strate-
gies, and running times to the literature, e.g.
[11, 16].

Newton-Krylov-Schwarz

We solve (2) by an inexact Newton-iterative
method with a cubic backtracking line search [9)].
Typically the RHS of the linear Newton correc-
tion equation, which is the negative of the non-
linear residual vector, is evaluated to full preci-
sion. The inexactness arises from an incomplete
convergence employing the true Jacobian ma-
trix or from the employment of an inexact or a
“lagged” Jacobian.

We terminate the nonlinear iterations when
the norm of the nonlinear residual first falls be-
low a threshold defined relative to the initial
residual. Our tolerance is loose in order to keep
total running times modest in the unprecondi-
tioned cases considered below, since the asymp-
totic convergence behavior of the method has
been well studied elsewhere.

A Newton-Krylov method uses a Krylov
method to solve the Newton correction equa-
tions. From a computational point of view, one
of the most important characteristics of a Krylov
method is that information about the system
matrix needs to be accessed only in the form
of matrix-vector products in a relatively small
number of carefully chosen directions. When
the matrix is the Jacobian of a discretized sys-
tem of PDEs, each of these matrix-vector prod-
ucts is similar in computational and communica-
tion cost to a stencil update phase of an explicit
method applied to the same set of discrete con-
servation equations. Periodic nearest-neighbor
communication is required to “ghost” the values
present in the boundary stencils of one proces-
sor but maintained and updated by a neighbor-
ing processor. We use the restarted generalized

minimum residual (GMRES) [21] method for the
iterative solution of the linearized equation. We
terminate GMRES when the norm of the linear
residual first falls below a threshold defined rel-
ative its initial value or at which it falls below
an absolute threshold.

A Newton-Krylov-Schwarz method combines
a Newton-Krylov (NK) method, with a Krylov-
Schwarz (KS) method. If the Jacobian is ill-
conditioned, the Krylov method will require an
unacceptably large number of iterations. The
system can be transformed into a more con-
vergent form through the action of a precon-
ditioner. It is in the choice of preconditioning
where the battle for low computational cost and
scalable parallelism is usually won or lost. In KS
methods, the preconditioning is introduced on a
subdomain-by-subdomain basis through conve-
nient concurrently computable approximations
to local Jacobians. Such Schwarz-type precon-
ditioning provides good data locality for parallel
implementations over a range of parallel granu-
larities, allowing significant architectural adapt-
ability [12, 14].

Two-level Additive Schwarz preconditioning
[10] with modest overlap between the subdo-
mains and a coarse grid is optimal for this prob-
lem, for sufficiently small \. However, for con-
formity with common practice and simplicity
of coding, we employ a “poor man’s” Addi-
tive Schwarz, namely single-level zero-overlap
subdomain block Jacobi. We further approxi-
mate the subdomain block Jacobi by perform-
ing just a single iteration of zero-fill incom-
plete lower/upper factorization (ILU) on each
subdomain during each preconditioner phase.
These latter two simplifications (zero overlap
and zero fill) save communication, computa-
tion, and memory relative to preconditioners
with modest overlap and modest fill that possess
provably superior convergence rates. Domain-
based parallelism is recognized by architects
and algorithmicists as the form of data paral-
lelism that most effectively exploits contempo-
rary multi-level memory hierarchy microproces-



sors 7, 17]. Schwarz-type domain decomposi-
tion methods have been extensively developed
for finite difference/element/volume PDE dis-
cretizations over the past decade, as reported in
the annual proceedings of the international con-
ferences on domain decomposition methods (see,
e.g., [4] and the references therein). The trade-
off between cost per iteration and number of it-
erations is variously resolved in the parallel im-
plicit PDE literature, but our choices are rather
common and not far from optimal, in practice.

3 PETSc Implementation

Our library implementation employs the “Port-
able, Extensible Toolkit for Scientific Comput-
ing” (PETSc) [2, 3|, a freely available soft-
ware package that attempts to handle through
a uniform interface, in a highly efficient way,
the low-level details of the distributed mem-
ory hierarchy. Examples of such details in-
clude striking the right balance between buffer-
ing messages and minimizing buffer copies,
overlapping communication and computation,
organizing node code for strong cache local-
ity, allocating memory in context-sized chunks
(rather than too much initially or too little
too frequently), and separating tasks into one-
time and every-time subtasks using the inspec-
tor/executor paradigm. The benefits to be
gained from these and from other numerically
neutral but architecturally sensitive techniques
are so significant that it is efficient in both the
programmer-time and execution-time senses to
express them in general purpose code.

PETSc is a large and versatile package inte-
grating distributed vectors, distributed matrices
in several sparse storage formats, Krylov sub-
space methods, preconditioners, and Newton-
like nonlinear methods with built-in trust re-
gion or line search strategies and continuation
for robustness. It has been designed to pro-
vide the numerical infrastructure for applica-
tion codes involving the implicit numerical so-

Main Routine
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Figure 1: Schematic of call graph for PETSc on a
nonlinear boundary value problem

lution of PDEs, and it sits atop MPI for porta-
bility to most parallel machines. The PETSc li-
brary is written in C, but may be accessed from
application codes written in C, Fortran, and
C++. PETSc has as “built-ins” features rele-
vant to computational fluid dynamicists, includ-
ing matrix-free Krylov methods, blocked forms
of parallel preconditioners, and various types of
time-stepping.

Data structure-neutral libraries containing
Newton and/or Krylov solvers must give con-
trol back to application code repeatedly dur-
ing the solution process for evaluation of resid-
uals, and Jacobians (or for evaluation of the ac-
tion of the Jacobian on a given Krylov vector).
There are two main modes of implementation:
“call back,” wherein the solver actually returns,
awaits application code action, and expects to
be reinvoked at a specific control point; and
“call through,” wherein the solver invokes appli-
cation routines, which access requisite state data
via COMMON blocks in conventional Fortran codes
or via data structures encapsulated by context
variables. PETSc programming is in the context
variable style.

Figure 3 (reproduced from [12]), depicts
the call graph of a typical nonlinear appli-
cation. Our PETSc implementation of the
method of Section 2 for the Bratu problem
iS petsc/src/snes/examples/tutorial/ex5f.F
from the public distribution of PETSc 2.0.17 at
http://www.mcs.anl.gov/petsc/. The figure



shows (in white) the five subroutines that must
be written to harness PETSc via the Simplified
Nonlinear Equations Solver (SNES) interface: a
driver (performing I/0, allocating work arrays,
and calling PETSc), a solution initializer, a non-
linear function evaluator, a Jacobian evaluator,
and a post-processor (for extraction of relevant
output from the distributed solution). All of the
logic of the NKS algorithm is contained within
PETSc, including all communication.

The PETSc executable for an NKS-based ap-
plication supports a combinatorially vast num-
ber of algorithmic options, reflecting the adap-
tive tuning of NKS algorithms generally, but
each option is defaulted so that a user may in-
voke the solver with little knowledge initially,
study a profile of the execution, and progres-
sively tune the solver. The options may be spec-
ified procedurally, i.e., by setting parameters
within the application driver code, through a
.petscrc configuration file, or at the command
line. The command line may also be used to
override user-specified defaults indicated proce-
durally, so that recompilation for solver-related
adaptation is rarely necessary. (For instance, it
is even possible to change matrix storage type
from point- to block-oriented at the command
line.) A typical run was executed with the com-
mand:

mpirun -np 4 ex5f -mx 512 -my 512 -Nx 1
-Ny 4 -snes_rtol 0.005 -ksp_rtol 0.5
-ksp_atol 0.005 -ksp_gmres_restart 60
-ksp_max_it 60 -pc_ilu_inplace -pc_type
bjacobi -ksp_right_pc -mat_no_unroll

This example invokes (default) ILU(0) precon-
ditioning within a subdomain-block Jacobi pre-
conditioner, for four strip domains oriented with
their long axes along the x direction. For a pre-
cise interpretation of the options, and a catalog
of hundreds of other runtime options, see the
PETSc release documentation. Further switches
were used to control graphical display of the so-
lution and output file logging of the convergence

history and performance profiling, the printing
of which was suppressed during timing runs.

The PETSc libraries were built with the
options BOPT=0 PETSC_ARCH=rs6000, which in-
voke the -03 -garch=pwr2 switches of the the
x1lc and x1f compilers on the SP2. IBM’s own
MPI was employed as the communication li-
brary:.

4 HPF Implementation

High Performance Fortran (HPF) is a set of ex-
tensions to Fortran, designed to facilitate ef-
ficient data parallel programming on a wide
range of parallel architectures [13]. The ba-
sic approach of HPF is to provide directives
that allow the programmer to specify the dis-
tribution of data across processors, which, in
turn, helps the compiler effectively exploit the
parallelism. Using these directives, the user
provides high-level “hints” about data locality,
while the compiler generates the actual low-level
parallel code for communication and scheduling
that is appropriate for the target architecture.
The HPF programming model provides a global
name space and a single thread of control al-
lowing the code to remain essentially sequential
with no explicit tasking or communication state-
ments. The goal is to allow architecture-specific
compilers to transform this high-level specifica-
tion into efficient explicitly parallel code for a
wide variety of architectures.

HPF provides an extensive set of directives to
specify the mapping of array elements to mem-
ory regions referred to as “abstract processors.”
Arrays are first aligned relative to each other
and then the aligned group of arrays are dis-
tributed onto a rectilinear arrangement of ab-
stract processors. The distribution directives al-
low each dimension of an array to be indepen-
dently distributed. The simplest forms of distri-
bution are block and cyclic; the former breaks
the elements of a dimension of the array into
contiguous blocks that are distributed across the



target set of abstract processors while the latter
distributes the elements cyclically across the ab-
stract processors.

Data parallelism in the code can be expressed
using the Fortran array statements. HPF itself
provides the independent directive, which can
be used to assert that the iterations of a loop
do not have any loop-carried dependencies and
thus can be executed in parallel.

HPF is well suited for data parallel pro-
gramming. However, in order to accommodate
other programming paradigms, HPF provides
extrinsic procedures. These define an explicit
interface and allow codes expressed using a dif-
ferent language, e.g., C, or a different paradigm,
such as an explicit message passing code, to be
called from an HPF program.

We have provided only a brief description of
some of the features of HPF. A full description
can be found in [13] while a discussion of how
to use these features in various applications can
be found in [6, 19, 20.

Conversion of the Code to HPF

The original code for the Bratu problem was a
Fortran 77 implementation of the NKS method
of Section 2, written by one of us (DEK), which
pre-dated the PETSc NKS implementation. In
this subsection we describe the changes made to
the Fortran 77 code to port it to HPF, and the
reasons for the changes.

Fortran’s sequence and storage association
models are natural concepts only on machines
with linearly addressed memory and cause inef-
ficiencies when the underlying memory is phys-
ically distributed. Since HPF targets architec-
tures with distributed memories, it does not sup-
port storage and sequence association for data
objects that have been explicitly mapped. The
original code relied on Fortran’s model of se-
quence association to re-dimension arrays across
procedure in order to allow the problem size, and
thus the size of the data arrays, to be determined

at runtime. The code had to be rewritten so that
the sizes of the arrays are hardwired throughout
and there is no redimensioning of arrays across
procedure boundaries. The code could have
been converted to use Fortran 90 allocatable ar-
rays, however, we chose to hardwire the sizes of
the arrays. This implied that the code needed
to be recompiled whenever the problem size was
changed. (This is, of course, no significant sacri-
fice of programmer convenience or code general-
ity when accomplished through parameter and
include statements and makefiles. It does,
however, cost the time of recompilation.)

During the process of conversion, some of the
simple do loops were converted into array state-
ments; however, most of the loops were left
untouched and were automatically parallelized
by PGI’s HPF compiler. That is, we did not
need to use either the forall construct or the
independent directive for these loops — they
were simple enough for the compiler to analyze
and parallelize automatically. Along with this,
two BLAS library routines used in the original
code, ddot and dnrm2, were explicitly coded
since the BLAS libraries have not been con-
verted for use with HPF codes.

The original solver was written for a system
of equations with multiple unknowns at each
grid point. To specialize for a scalar equa-
tion we deleted the corresponding inner loops
and the corresponding indices from the field
and coefficient arrays. We thereby converted
four-dimensional Jacobian arrays (in which was
expressed each nontrivial dependence of each
residual equation on each unknown at each point
in two-dimensional space) into two-dimensional
arrays. This, in turn, reduced some dense point-
block linear algebra subroutines to scalar oper-
ations, which we inlined.

We also rewrote the matrix multiplication
routine to utilize a single do loop instead of nine
small loops, each of which took care of a differ-
ent interior or side boundary or corner boundary
stencil configuration. Some trivial operations
are thereby added near boundaries, but check-



ing proximity of the boundary and setting up
multiple do loops are avoided. The original nine
loops caused the HPF compiler to generate mul-
tiple communication statements. Rewriting the
code to use a single do loop allowed the compiler
to generate the optimal number of communica-
tion statements even though a few extra values
had to be communicated.

The sequential ILU routine in the original
code was converted to subdomain-block ILU
to conform to the simplest preconditioning op-
tion in the PETSc library. This was done by
strip-mining the loops in the - and y-directions
to run over the blocks, with a sequential ILU
within each block. Even though there were no
dependencies across the block loops, the HPF
compiler could not optimize the code and gen-
erated a locality check within the internal loop.
This caused unnecessary overhead in the gener-
ated code. We avoided the overhead by creat-
ing a subroutine for the code within the block
loops and declaring it to be extrinsic. Since
the HPF compiler ensures that a copy of an
extrinsic routine is called on each processor,
no extraneous communication or locality checks
now occur while the block sequential ILU code
is executed on each processor.

Most of the revisions discussed above do noth-
ing more than convert Fortran code written for
sequential execution into an equivalent sequen-
tial form that is easier for the HPF compiler to
analyze, thus allowing it to generate more effi-
cient parallel code. The only two exceptions are:
(a) the mapping directives, which are comments
and are thus ignored by a Fortran 90 compiler,
and (b) the declaration of two routines, the ILU
factorization and forward /backsolve routines, to
be extrinsic. We are currently investigating
whether the use of the extrinsic feature can be
avoided thus leaving a purely Fortran 90 code.
The HPF mapping directives, themselves, con-
stitute only about 5% of the line count of the
total code.

The compilation command, showing the au-
toparallelization switch and the optimization

level used in the performance-oriented execu-
tions, is:
-0 bratu bratu.hpf

pghpf -Mpreprocess -Mautopar -03

5 Performance

To evaluate the effectiveness of language and li-
brary paradigms, we compare the demonstra-
tion version of the Bratu problem in the PETSc
source-code distribution with an algorithmically
equivalent version of this numerical model and
solver in HPF. All performance data reported in
this study is measured on the IBM SP2 at the
NASA Langley Research Center. To attempt
to eliminate “cold start” memory allocation and
/0 effects, for each timed observation, we make
two passes over the entire code (by wrapping a
simple do loop around the entire solver) and re-
port the second result. To attempt to eliminate
network congestion effects, we run in dedicated
mode (by enforcing that no other users are si-
multaneously running on the machine). To spot
additional “random” effects, we measure each
timing four times and use the average of the
four values. We also check for outliers, which
our precautions render extremely rare, and dis-
card them.

Cases without Preconditioning

We discuss first experiments for simulations
without any preconditioning. Execution times
and speedups for computations on a 256 x 256
grid for this case are shown in Figs. 2 and 3.
Results are shown for one-dimensional and two-
dimensional blocking in HPF and PETSc on up
to 32 processors. These adjectives correspond
to the (*,block) and (block,block) distri-
butions, respectively, in HPF notation. With
the exception of the 32-processor case, one-
dimensional blocking gave better timings than
two-dimensional blocking for HPF. In contrast,
two-dimensional blocking was slightly better for
PETSc. For large numbers of processors, one-



dimensional blocking results in higher commu-
nication volume, but each processor has at most
two neighbors. On the other hand, communica-
tion volume is lower in two-dimensional blocking
but each processor may have up to four neigh-
bors. On 16 processors, we observed speedup
of approximately 7.0 for HPF and about 8.5 for
PETSc. The dependence of execution times for
the HPF implementation on the specified data
distribution are highlighted in Fig. 4 where ex-
ecutions were made on sixteen processors with
varying subdomain granularity in the x and y
directions. For the HPF code, the execution
time with one subdomain in the y-direction, i.e.,
(block,*) distribution, was about twice that
of the case with one subdomain in z-direction,
i.e., (*,block) distribution. We believe that
this is due to the column-major storage order
of Fortran, which leads to non-unit stride ac-
cess for both computation and communication
in the “wrong” direction. Differences in PETSc
execution times for different data distributions
are small compared to HPF.

We also report experiments in which the
memory-per-node remains constant as the
number of processors is increased (so-called
Gustafson scaling).  We solve the unprecon-
ditioned problem on 64 x 64, 128 x 128, and
256 x 256 grids on 1, 4, and 16 processors, re-
spectively. Timing results are shown in Fig. 5.
Note that our physical domain size is fixed, and
therefore mesh resolution is finer as the num-
ber of processors is increased. This results in
a larger condition number and higher numbers
of iterations to reach the same level of con-
vergence. To isolate communication overhead,
we made simulations with a fixed 40 GMRES
steps for 65536 grid points per processor (i.e.,
256 x 256, 512 x 512, and 1024 x 1024 grids on
1, 4, and 16 processors, respectively). Results
are shown in Figs. 6-8. On 16 processors, the
best scaled efficiencies are about 90% for HPF
(one-dimensional blocking) and about 70% for
PETSc (two-dimensional blocking). Of course,
since the PETSc single-node execution time is

about 60% of that of the HPF execution time,
PETSc performs better in an absolute sense at
16 processors, despite its poorer self-scaling, but
the self-scaling data are interesting, in conjunc-
tion with runtime profiling, for further perfor-
mance debugging. As shown in Fig. 8, esti-
mated overheads for communication as fractions
of computations were higher in the more compu-
tationally performant PETSc than in HPF. (For
the purpose of this figure, we made the simple
assumption that computation time remains the
same as the single processor case and additional
execution times on multiple processors are be-
cause of overheads associated with synchronous
communications. )

Cases with Preconditioning

We next examine subdomain-block Jacobi LU
preconditioning, a zero-communication form of
Additive Schwarz. A popular way of paralleliz-
ing this solver is to keep number of subdomains
same as the number of processors, thereby using
the best algorithm for each number of proces-
sors, even though the preconditioner therefore
changes. The effect of the changing-strength
preconditioner and the effect of the parallel over-
head are often separated into an algorithmic ef-
ficiency and an implementation efficiency.

In this study we performed simulations in two
ways: (a) with number of subdomains same as
number of processors (greater algorithmic effi-
ciency with fewer processors), and (b) number
of subdomains fixed (unchanging algorithmic ef-
ficiency as the number of processors varies). Re-
sults are shown in Figs. 9 11. As in the case
of no preconditioning, one-dimensional block-
ing gives better timings for HPF, while two-
dimensional blocking gives slightly better re-
sults for PETSc. With the number of subdo-
mains frozen at 32, both HPF and PETSc give
speedups of approximately 13 on 16 processors.
On 32 processors speedup is approximately 20
for HPF and approximately 21 for PETSc.



As with the unpreconditioned case, we also
show speedup results for a fixed amount of mem-
ory (and computation) on a processor by tak-
ing a predetermined number (40) of GMRES
steps and maintaining a fixed number of grid
points per node. As shown in Fig. 12, on
16 processors, scaled speed up for HPF is ap-
proximately 14 and for PETSc it is approxi-
mately 11. Except for two-dimensional block-
ing in HPF, estimated overheads for commu-
nication as fraction of computation were lower
in ILU-preconditioned case than in the unpre-
conditioned case (Fig. 13), reflecting the greater
useful computational work per iteration of the
preconditioned version. Communication over-
heads are about as exposed on this scalar prob-
lem, with work per iteration only linear in the
number of degrees of freedom per processor, as
one ever sees solving PDEs with preconditioned
Krylov solvers.

6 Conclusions

For structured-grid PDE problems, contempo-
rary MPI-based parallel libraries and contem-
porary compilers for high-level languages like
HPF are easy to use and capable of compara-
ble good performance, in absolute walltime and
relative efficiency terms, on distributed-memory
multiprocessors. The target applications must
possess an intrinsic concurrency proportional,
at least, to the intended process granularity.
This is an obvious caveat, but requires empha-
sis for parallel languages, since the same source
code can be compiled for either serial or par-
allel execution, whereas a parallel library auto-
matically restricts attention to the concurrent
algorithms provided by the library. No com-
piler will increase the latent concurrency in an
algorithm; it will at best discover it, and the
efficiency of that discovery is apparently at a
high level for structured index space scientific
computations. The desired load-balanced con-
currency proportional to the intended process
granularity may always be obtained with the

Newton-Krylov-Schwarz family of implicit non-
linear PDE solvers employed herein through de-
composition of the problem domain.

With either a parallel language or a parallel li-
brary, the applications programmer with knowl-
edge of data locality should or must become
involved in the data distribution. As on any
message-passing multiprocessor, performance is
limited by the ratio of useful arithmetic oper-
ations to remote memory references. The rela-
tively easy-to-precondition, scalar model prob-
lem employed in this paper has a relatively low
ratio, compared with harder-to-precondition,
multicomponent problems, which perform small
dense linear algebra computations in their inner
loops. It will therefore be necessary to compare
both paradigms in more realistic settings — and
also to await compiler/runtime systems with ca-
pabilities for block-structured and unstructured
problems — before drawing broader conclusions
about the paradigm of choice. It has already
been demonstrated (in the references) that the
PETSc library gracefully accommodates such
realistic settings, and that it requires a modest
amount of user recoding and tuning, relative to
a legacy code free of side-effects, to take full ad-
vantage of the capabilities of high-performance
hardware, such as the SP2, the Origin, and the
T3E. We look forward in similar future studies
to seeing whether and how much of this burden
can be lifted by writing in a high-level language.
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