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Abstract

The Solution of a Class of Limited Diversification
Portfolio Selection Problems

by

Gwyneth Owens Butera

A branch-and-bound algorithm for the solution of a class of mixed-integer nonlin-
ear programming problems arising from the field of investment portfolio selection is
presented. The problems in this class are characterized by the inclusion of the fixed
transaction costs associated with each asset, a constraint that explicitly limits the
number of distinct assets in the selected portfolio, or both. Modeling either of these
forms of limiting the cost of owning an investment portfolio involves the introduc-
tion of binary variables, resulting in a mathematical programming problem that has
a nonconvex feasible set. Two objective functions are examined in this thesis; the
first 1s a positive definite quadratic function which is commonly used in the selection
of investment portfolios. The second i1s a convex function that is not continuously
differentiable; this objective function, although not as popular as the first, 1s, in
many cases, a more appropriate objective function. To take advantage of the struc-
ture of the model, the branch-and-bound algorithm is not applied in the standard
fashion; instead, we generalize the implicit branch-and-bound algorithm introduced
by Bienstock [3]. This branch-and-bound algorithm adopts many of the standard

techniques from mixed-integer linear programming, including heuristics for finding



111

feasible points and cutting planes. Implicit branch-and-bound involves the solution
of a sequence of subproblems of the original problem, and thus it is necessary to be
able to solve these subproblems efficiently. For each of the two objective functions,
we develop an algorithm for solving its corresponding subproblems; these algorithms
exploit the structure of the constraints and the objective function, simplifying the
solution of the resulting linear systems. Convergence for each algorithm is proven.
Results are provided for computational experiments performed on investment portfo-
lio selection problems for which the cardinality of the universe of assets available for

inclusion in the selected portfolio ranges in size from 52 to 1140.
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Chapter 1

Introduction

In 1952, investment portfolio selection and mathematical programming were linked
by the pioneering work of Harry Markowitz [36]. Markowitz argued that the probable
success of an investment does not depend solely on the expected rate of return of
that investment, but that it is also a function of the level of risk taken. Furthermore,
he showed that to properly measure the risk of a collection of assets, called a port-
folio, one should consider the pairwise correlations of returns among those assets.
Markowitz developed a mathematical programming model and accompanying algo-
rithm for selecting portfolios with high expected rates of return and low risk. Because
Markowitz described risk as a function of the variances and covariances of the indi-
vidual investments, this optimization problem is referred to as the mean-variance
portfolio selection problem.

The risk of a portfolio can be reduced by including additional assets that are
not perfectly correlated with the existing portfolio. The process of adding assets to
reduce risk 1s known as diversification. This benefit of diversification implies that a
Markowitz-optimal mean-variance portfolio will tend to include many of the available
assets. Because the costs of transacting in many distinct assets are nontrivial, these
costs could outweigh the benefits gained by optimization. To ensure that the costs
of a portfolio are kept low, either an upper limit could be placed on the number of
assets that appear in the selected portfolio or the fixed costs that are independent of
volume could be included in the model, or both. Although these methods for limiting
diversification are not new, much of the work done on such models has resulted in

approximate algorithms or in algorithms that are not applicable when additional



constraints are placed on the portfolio [4, 7, 12, 28, 43]. In this thesis we present
algorithms for the solution of two classes of limited diversification mean-variance

portfolio selection problems with linear constraints.

1.1 The Class of Limited Diversification Problems
The class of problems we focus on are formulated as

minimize  f(z,y)
subject to  H(x,y) > h, (1.1)

v e R"y € B,

where n is the number of available assets, m is the number of constraints in H(x,y) >
h, f : IR?™ — IR is a continuous convex function, H : IR** — IR™ is a linear transfor-
mation, h € R™, z,y,€ IR", and IB = {0,1}. Asin many mixed-integer programming
problems, the variables are divided into two groups: the continuous variables z and
the binary decision variables y; the term mized-integer means that there may be
both integer and continuous variables in the formulation. These variables are coupled
through a subset of the linear inequality constraints, H(z,y) > h. Denoting the jth
component of a vector x by z;, each asset j € {1,...,n}, has both a decision variable
y; and a continuous variable x; associated with it. The decision variable y; is a binary
variable that indicates whether or not a particular asset is included in the portfolio;
the continuous variable z; indicates the proportion of total capital to be invested in
the jth asset. The goal is to find a global minimizer of f(z,y) which satisfies the
constraints of (1.1).

Each of the two nonlinear objective functions f(z,y) examined in this thesis is
comprised of a linear combination of the expected rate of return and a penalty term

based on the variance of return. In the first objective function the penalty term is the



variance; in the second objective function, the penalty term is the square root of the
variance, more commonly referred to as the standard deviation. Although the first has
become quite popular in the literature [44, 45, 51] since it was first introduced in 1962
by Farrar [14], use of the standard deviation evolved from a more precise strategy.
Baumol [2] argued that an investor should not be concerned solely with Markowitz’s
definition of optimality, but also with the degree that the actual rate of return could
be below the expected rate of return of the selected investment portfolio. Given two
portfolios A and B from the set of Markowitz optimal portfolios, if portfolio A has an
expected rate of return of 5% and a standard deviation of .2% and portfolio B has an
expected rate of return of 8% and a standard deviation of 1%, any investor but the
most conservative would prefer portfolio B. Fortunately, Chebyshev’s theorem [15]
helps to quantify this strategy; given a # > 0, this theorem provides a lower bound
on the probability that the actual rate of return will be within 6 standard deviations
of the expected rate of return. The second objective function we examine allows the
investor to choose a € based on his level of risk aversion and maximize the “floor”
of his confidence interval; this floor 1s the level of 8 standard deviations below the

expected rate of return.

1.2 The Algorithm

Although there have been algorithms proposed in the past for solving other mixed-
integer nonlinear programming problems [3, 10, 18, 31, 32], we have developed an
algorithm that exploits the structure of the objective functions and the constraints
of (1.1).

Our algorithm can be divided into two separate algorithms: the outer branch-and-

bound algorithm that works to satisty the binary conditions on the decision variables



and an algorithm for solving the linearly constrained subproblems created by relaxing
or forcing the binary conditions on the decision variables.

Branch-and-bound is a technique that has been used for almost 40 years in the
solution of mixed-integer programming problems with linear objective functions [30].
To find the optimal solution of a mixed-integer linear programming problem, a se-
quence of subproblems of the original problem are solved. A similar algorithm could
be applied to (1.1); although the objective functions are not linear, they are convex
and, as we will show, the convergence results for standard branch-and-bound still
hold. Bienstock [3] introduced an efficient implicit branch-and-bound algorithm for
the class of portfolio selection problems in which the binary variables are incident
only on the 2n coupling constraints and the constraint which enforces an upper limit
on the number of assets in the final portfolio; his algorithm involves removing the bi-
nary variables and approximating the limited diversification constraint using only the
continuous variables. We have extended this method to the allow binary variables to
appear in any number of constraints. Furthermore, we show that the presence of the
binary variables is redundant, and (1.1) can be reformulated such that these variables
are unnecessary.

The performance of the implicit branch-and-bound algorithm can be improved
by the addition of linear inequalities, called cutting planes, that are valid for the
feasible points of (1.1); three classes of cutting planes valid for (1.1) are provided.
We introduce other methods for improving the performance of the algorithm, includ-
ing heuristics for finding feasible points of the problem and for creating the next
subproblems in the sequence of subproblems.

One of the most important aspects of a good branch-and-bound algorithm is the
ability to use the solution of a previously solved subproblem to aid in solving the

current subproblem. The two algorithms we have developed for solving the subprob-



lems created in branch-and-bound are dual algorithms based on the necessary and
sufficient conditions for optimality of the subproblem. Dual algorithms, which can
use information from previous solutions to determine a good starting point, have
been studied in the past for the first objective function. Goldfarb and Idnani [22]
proposed a dual algorithm for the solution of linear inequality constrained quadratic
programming problems. We have extended this method to exploit the structure of
our constraints, particularly the simple bound constraints, /; < z; < u;, on the con-
tinuous variables. For the second objective function, we introduce a dual algorithm
similar to that of the Goldfarb-Idnani algorithm. Convergence results are proven and

numerical stability is discussed for these dual algorithms.

1.3 Organization

In Chapter 2, the results from mathematical statistics needed to build the two ob-
jective functions are introduced and a summary of the history of the mean-variance
portfolio selection problem is provided. A thorough description of the constraints
and objective functions is also presented in Chapter 2. In Chapter 3, our general-
1zed implicit branch-and-bound algorithm is introduced along with the proof that
it 1s guaranteed to converge to the global minimum. The procedures and heuristics
developed for determining cutting planes, finding feasible points, and creating and
choosing the problems in the sequence of subproblems are discussed in Chapter 4.
Chapters 5 and 6 introduce the dual algorithms that we developed to solve the sub-
problems created in branch-and-bound for the first and second objective functions,
respectively. Chapter 7 presents results from computational experiments on portfolio

selection problems where n, the number of available assets, ranges from 52 to 1140.



Chapter 2

The Mean-Variance Model

In this chapter, we review the mathematical statistics associated with investment
portfolio selection and present a condensed history of the mean-variance model for
this problem. Following the background discussion, the two optimization problems

examined in the remainder of the thesis are introduced.

2.1 Results from Mathematical Statistics

In the ex ante evaluation of an investment portfolio, it is necessary to determine
the expected rate of return and the risk of that portfolio; risk of a portfolio can be
characterized by the portfolio’s expected rate of return and variance of return of that
portfolio. The basic statistical tools needed to compute these values are introduced
in this section.

First, however, the concept of a portfolio must be formalized. A portfolio is a
collection of assets; the percentage of total capital invested in each asset uniquely
describes the portfolio. Given a collection of n assets, a portfolio can be represented
by © € IR™ where, for each j € N = {1,... ,n}, z; is the proportion of total capital
invested in asset j. The capital constraint > cx z; < 1 must be satisfied.

The rate of return of asset j € N is a random variable, R;; the expected rate of
return of asset j is represented by E(R;) and the variance of R; is represented by
a?. The covariance of R; and R;, where 7,j € N,i # j, is represented by o;;; since
covariance is a symmetric function, o;; must be equivalent to o;;. The matrix formed

by placing 0]2 in the jth diagonal position Vj € N and placing o;; in the ith row and



jth column Vi,j € N, # j, is called the variance-covariance matriz and is denoted
by V; a variance-covariance matrix is always symmetric.

Approximations of the necessary variances, covariances, and expected rates of
return can be estimated using data describing the past performance of each asset.
The variance-covariance matrix calculated from past data is necessarily positive semi-
definite [33]. Substantial research [19, 35, 38] indicates that past performance is often
not a good indicator of future performance and that the investor’s perceptions of the
future should also be taken into account. Throughout this thesis it i1s assumed that
the investor has not relied solely on past data but has determined the expected rates
of return and the variance-covariance matrix to accurately reflect what he believes
the future holds. It is also assumed that the variance-covariance matrix is positive
definite. Although this may not be a good assumption in general, in §2.2 we show
that in many cases the full variance-covariance matrix is not calculated but is instead
approximated by a positive definite diagonal matrix V.

The rate of return of portfolio x is a random variable R(z) such that

R(.I) = E R]‘,?Z]‘.
7=1

Because expected value is a linear function, the expected rate of return of portfolio

x 15 a weighted sum of the expected rates of return of the available assets:

E(R(z))=E (Zj: Rﬂj) = Zi:E(RJ)%‘-

Letting u; = F(R;), the expected rate of return of portfolio = is u?x. The variance

of return of portfolio = is

n n j—1
Var(R(z)) = Z afjrc? +2 Z Z Ok Ly = 2TV,
=1 j=1k=1

The standard deviation of return is simply the square root of the variance of return.



2.2 History of the Mean-Variance Model

For the past 45 years, the mean-variance model for investment portfolio selection
has been studied by many researchers in both the finance and the mathematical
programming communities. Some have embraced and extended this model, while
others have criticized it. Here we present a short summary of the literature from
both sides. Detail is provided only where necessary for later sections of the thesis.

Before 1952, spreading capital among many assets, called diversification, was
known to be a method for reducing risk. However, no one had developed a theory that
explained this phenomenon until the pioneering paper of Markowitz [36]. Markowitz
proposed that variance is an appropriate measure of risk and that reducing variance
can be accomplished by diversification.

Markowitz defined the efficient frontier as the set of portfolios with minimum
variance for a given expected rate of return or more and maximum expected rate of
return for a given variance or less. In his seminal paper [36], Markowitz provided a
geometric description of the critical line method for solving this problem when the
assets in the portfolio must have nonnegative holdings. It was not until 1956 that
he published a computational technique for determining the efficient frontier of the
portfolios that satisfy general linear equality and inequality constraints supplied by
the investor [37].

Farrar [14] introduced a parametric objective function for the mean-variance port-
folio selection problem. Using the necessary and sufficient conditions for optimality,
which are reviewed in Chapter 5, i1t 1s straightforward to show that for any 8 > 0, the

optimal solution to

maximize  f(z) = plx — 02"V, (2.1)



is on the efficient frontier as defined by Markowitz. The function f(z) is called a
quadratic function and is the objective function we study in Chapter 5.

Concurrently with Markowitz, Roy [48] also determined that the objective of max-
imizing the expected rate of return does not explain the benefits of diversification.
His rule of Safety First states that an investor is concerned that the actual rate of
return, denoted by !z, should not fall at or below a given disaster level, g; thus the
investor should minimize the probability that the actual rate of return is at most p.

In 1963, Baumol [2] developed an objective function that, similar to Roy’s Safety
First rule, 1s based on the probability that the actual rate of return will be above a
certain level. Given g and V associated with the available assets and a probability
0 < P < 1, Baumol’s model determines a feasible portfolio z* and a scalar 6* such
that the actual rate of return, fi’'z*, is greater than 6* with probability at least P,
and the value of 6 is maximized over all 6 € IR. For example, Baumol considers a
portfolio for which the actual rate of return will be above 7% with probability at least
96% to be better than one for which the actual rate of return will be above 5% with
probability at least 96%.

Fortunately, the scalar 6 can be represented as a function of x that is dependent
on the values of the constants p, V, and P. Given any scalar § > 0, Chebyshev’s
theorem [15] states that the probability that the actual rate of return will be within

6 standard deviations of the expected rate of return is at least 1 — 1/6%

1
P(lpte —p'z| < o) > 1 — g

This implies that

1
P(iTe > plz —b0) > 1 — 7%

t.e., the actual rate of return will be greater than € standard deviations below the

expected rate of return with probability at least 1 — 1/6?. We can replace § with
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plz — 0o, where 6 = (1 — P)_l/z. Alternatively, if a joint normal distribution is
assumed, a standard normal distribution table gives the value of 6 such that the
actual rate of return will be greater than p”z — #o with probability P, independent
of x.

Whether a joint normal distribution of return is assumed or Chebyshev’s inequality

is used to determine €, an optimal portfolio 1s a solution to the optimization problem

maximize plz — V2TV

subject to ZI]‘ <1,
J=1

where 6 is chosen by the investor. In the case that the investor wishes to determine
the optimal portfolio for a single value of § > 0 and not for all § > 0, Baumol’s
formulation is clearer than Farrar’s because the value of the risk-aversion parameter
6 has a precise and important meaning. According to Sortino and van der Meer [55],
Baumol’s objective function was adopted by Salomon Brothers in 1989. We study
Baumol’s objective function in Chapter 6.

Markowitz, Roy, and Baumol were concerned with quantifying an objective for
the portfolio selection problem. However, their models include the dense variance-
covariance matrix, which is not easy to manipulate and requires the investor to de-
termine approximately n?/2 covariances. To reduce the amount of work in collecting
the data, Markowitz [38] suggested the single-factor model. In this model, the rate
of return and risk of an asset is divided into two parts: the first, called unsystematic,
captures the idiosyncratic operations of the company and has no relation to the risk
and rate of return of the other assets, and the second, called systematic, is due to
the correlation between that asset and some outside factor, such as the stock market.

Given this division, the expected rate of return of asset j can be written as

R; = pi; + B;F + &5,
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where ji; 1s the expected unsystematic rate of return of asset j, 3; 1s the measure of
the effect of the outside factor on asset j, {; 1s a random variable with expected value
2

zero and variance, ¢;, which is equal to the unsystematic variance of asset j, and F

1s the level of the factor. The future level of F' can be described as

F = ,&n—l—l + fn—l—ly

where fi,4+1 1s the expected rate of return of the outside factor and &,,4; 1s a random
variable with expected value zero and variance equal to the variance of the factor,
which is denoted by 62 ,. In this model of rates of return and variances, the covariance
of & and & where i,j € N U {n + 1},i # j, is zero.

It 1s easy to show that given this model, the following relations hold:
o E(R;)) = ji; + Byitnss for all j € N,

° 0‘? :/3]26'2+1—|—0A']24 for all] EN, and

® 0,5 = ﬁiﬁja—g-l—l for all ‘lj,.]' € N,L 7& ]

Markowitz suggested that the vectors i, 3, and 6 be entered into a computer
which could then easily calculate the expected rate of return of each asset and the
full variance-covariance matrix.

However, manipulating the dense variance-covariance matrix is difficult if n is
large. Sharpe [51] showed that instead of forming the full variance-covariance matrix,
1t 1s possible to add a variable z,1 to represent the factor F' and then to transform the
problem into one with a diagonal variance-covariance matrix. Adding the constraint
Tny1 = 20y Bz, the expected rate of return of a portfolio x 1s E?ill f;z; and the
variance 1s Z?ill &fw?. These alternate expressions can be used in place of the dense
variance-covariance matrix formulation in any of the aforementioned mean-variance

portfolio selection models.
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Cohen and Pogue [6] also suggested that the mean-variance model was not popu-
lar because of the effort required to determine the input data, especially the covari-
ances. They proposed a multi-factor approach which Markowitz had alluded to in
[38]. Unlike Sharpe’s model that has a single factor, their model allows that there
may be multiple factors, such as capitalization weighting and industry type, that
determine the covariance between two assets. Instead of adding a single variable, a
variable 1s added for each factor. Since these factors may be correlated, the trans-
formed variance-covariance matrix is not diagonal, but it is diagonal in the assets and
dense in the factors.

The single-factor, multi-factor, and dense matrix models place no limit on the
number of assets included in the final portfolio. The first step towards limiting di-
versification was made in 1970 by Mao [34]. He stated that it is economical to limit
the number of assets in the portfolio, since the management and transaction costs
are not zero. He did assume that the investor i1s willing to place capital in a sufficient
number of assets to reduce the unsystematic risk to a negligible amount. In 1974,
Jacob [28] proposed that Mao’s strategy may not work for the small investor who
may prefer to take on some unsystematic risk if it helps to keep the transaction costs
down. She modified Sharpe’s linear programming relaxation [53] of the single-factor
model to allow the investor to limit the number of assets in the final portfolio. Her
algorithm forces the final solution to have the capital distributed equally among the
assets chosen. Faaland [12] presented a model similar to Jacob’s, but allowed the
investor to choose positive integers k and ¥, ¥ > k, such that the final portfolio has ¢
equal parts distributed among « assets. To solve this model, he developed a dynamic
programming algorithm that becomes impractical as ¥ gets large. The algorithms
proposed by Mao, Jacob, and Faaland did not allow for fixed transaction costs to be

included.
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Much work has been done since 1974 on algorithms for mean-variance portfolio
selection; however, almost all such work has assumptions such as no linear constraints
other than simple bounds on the variables and the capital constraint [4, 7, 11, 42, 43]
or no fixed transaction costs [44]. The only work we are aware of that allows any
number of linear constraints, minimum transaction levels, and transaction costs, both
linear and fixed, is Bienstock [3]. A few of the ideas in this thesis are similar to
his algorithm; however, he limits the appearance of the control variables y in the
formulation and examines solely the quadratic objective function (2.1).

A discussion of mean-variance models for investment portfolio selection would not
be complete without a short synopsis of the criticisms of these models. Breen and
Savage [5] state that mean-variance models, when viewed as an investor maximizing
the expected utility of return, requires that “the probability distribution of total
portfolio return is one which is completely described by two parameters, usually mean
and variance, or that the investor’s utility function is quadratic in return.” Hanoch
and Levy [25] claim that a cubic utility, which includes skewness, may be preferable
to the quadratic utility. However, Tsiang [57] argued that mean-variance analysis is
a useful approximate method when the risk is a small fraction of total wealth.

Another criticism of the mean-variance model is that variance may be a poor
definition of risk. Volatility alone does not define risk; it may be preferable to consider
the possible consequences corresponding to loss when defining risk [29]. To model the
consequences of loss, some authors have proposed measures of downside risk. We have
already discussed one such model, called shortfall risk or Safety First, which assumes
that the investor’s goal 1s to minimize the probability of falling below a minimum
acceptable rate of return [24, 48]. Other authors believe that neither variance nor
shortfall risk may be an appropriate measure of risk since both fail to measure the

consequences of the degree to which the return falls below the minimum acceptable
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rate of return. To model the different consequences of falling short of the minimum
acceptable rate of return by different levels, they use lower partial moment models,
such as semi-variance [27, 26, 38, 46, 55].

Other authors have proposed that random walks may better describe the behavior
of asset returns because past performance may not be a good indicator of future
performance. In 1965, Fama [13] presented empirical evidence that the past cannot
be used to predict the future and that a random-walk model i1s valid for choosing a
portfolio. Sharpe [52] agreed with Fama’s findings and stated that this implies that
it may be difficult to detect incorrectly priced assets.

Despite these criticisms, many investment managers continue to use some form of
the mean-variance model for portfolio selection. In the words of Shell, “the [mean-
variance| model has been around, is well understood and is relatively well-suited to

computation” [54].

2.3 The Model

The portfolio selection problems studied in this thesis are in the general form

minimize  f(z,y)
subject to  H(x,y) > h, (2.2)

r € R"y € B,

where n is the number of available assets, m is the number of constraints in H(x,y) >
h, H : R*™ — IR™ is a linear transformation, » € IR™, = € IR" represents the
portfolio, and y € IB" is the vector of binary decision variables such that the jth
component of y, y;, indicates if there is a nonzero holding in the jth asset. The
objective function f(z,y) is either Farrar’s formulation, f(z,y) = —p?z + 6027 Vz, or

Baumol’s objective function, f(z,y) = —pulz +6vV2TVz, where u € IR™ is the vector
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of the expected rates of return of the assets, V' is the variance-covariance of returns
matrix, and 6 i1s the risk-aversion parameter whose value 1s chosen by the investor. If
the problem is a single-factor or multi-factor model, the expected rates of return and
the variance-covariance matrix may be in a modified form.

The variable z; represents the proportion of capital invested in asset j; this propor-
tion is bounded above by u; and below by /;. It i1s assumed without loss of generality
that [; < 0 < u; and at least one of [; and u; i1s nonzero. If [; < 0, then short-selling 1s
allowed for the jth asset; a short sale is the sale of an asset not owned by the investor
but borrowed in anticipation that the rate of return will be negative. The decision
variables y; are such that whenever z; is nonzero y; must be one and whenever y; 1s

zero x; must be zero. To enforce these conditions, the linking constraints
z;—liy; >0 and wy; —z; >0

must be included in the constraints H(x,y) > h for each asset j. The linking con-
straints enforce the simple bound constraints /; < z; < u; for each asset j.

If short-selling i1s allowed and there are minimum transaction levels, the model
must be modified. Instead of a single continuous variable indicating the proportion
of asset j in the portfolio, there must be two continuous variables associated with
each asset; one, z;, indicates the long position of the asset in the portfolio and the
other, z,4,, indicates the short position of asset j in the portfolio. Likewise, two
binary variables must be included for each asset j. In effect, we double the number
of variables from 2n to 4n. Because all of the algorithms developed in this thesis are
easily extended to the case of minimum transaction levels, we do not discuss these
extensions explicitly, but develop the algorithms for the case in which there are not

minimum transaction levels.
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Other constraints that may be included in H(xz,y) > h are the minimum allowable
yield constraint, u’x > p, and the capital constraint, 25 yx; < 1. The limited
diversification constraint may also be included. For example, if the investor requires
that no more than k assets to be nonzero in the final portfolio, he would include
the constraint >7_; y; < x. This inequality can be represented in H(z,y) > h as

"_1—Yyj = —k. Although an equality constraint can be represented in H(z,y) > h
by two inequality constraints, our algorithms are designed to take advantage of the
properties of equality constraints.

If any transaction costs are included in the model, the capital constraint must
be modified, since the amount of capital available to be invested in assets is reduced
by the total transaction cost. Two types of transaction costs are considered: volume
related costs and fixed costs. The volume related cost of asset j is $¢; per $1 of asset
J, and the fixed cost of holding any amount of asset j is $¢g;. The fixed costs must be
scaled by the total capital available; if the investor has $x capital, then the capital
constraint is 3.7_, [(1+ ¢;)z; + g;y;/x] < 1.

Although the results in this thesis are derived for the general form of the model, the
computational experiments are performed on real-world data of a specific form which
arises in index-tracking. An investment performance index, such as the Standard &
Poor’s 500, provides a benchmark against which to evaluate any portfolio of assets
[17]. An investment manager whose performance is being compared to a specific
index wishes to avoid falling behind that index; one way to ensure he does not fall
behind the index is, assuming no transaction costs, to invest in the index portfolio.
However, active managers are not willing to forego the possibility of having higher
returns than the index nor are they willing to pay the transaction costs associated
with owning a great number of assets [19]. Instead, the manager would like the

portfolio to consistently outperform the index while only containing a subset of the
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assets in the index. To guard against loss, he also would like his portfolio to deviate
from the index in a manner that minimizes the possibility of it performing worse than
the index. In other words, he i1s aiming for an expected rate of return that is greater
than the expected rate of return of the index, but he also would like to minimize the
variance of the difference between his portfolio and the index portfolio [39, 47, 49].
To formulate this mathematically, the variance of this difference is (z —2°)TV (z —
z%), where x? is the proportion of the total index capital that is invested in asset j.
Using Farrar’s objective function, the model is
minimize —plx + 6(x — :cO)TV(x —zY)
subject to 3% [(1 4 ¢;)x; + g;9;/x] < 1,
phae > p"z® 4 o,
21 Y S,

Ly < a; < wujy; V7,

(2.3)

r€eR", yeB",
where 6 is the risk-aversion parameter chosen by the manager and p7z° + o is the
minimum acceptable expected rate of return. Given a 6 > 0, the difference of the opti-
mal portfolio, z*, and the index portfolio, z°, is on the efficient frontier of differences,
x — 2%, subject to the constraints of (2.3).

The index-tracking data used in computing the results for Chapter 7 is in a mod-
ified multi-factor form; the variance-covariance matrix V' is a diagonal matrix for
which the jth diagonal entry is the variance that can be attributed specifically to
the jth company. However, variables are not added to represent the factors; instead,
constraints are added to mimic the factors. For example, the capitalization weighting
of asset ) 1s the total value of the outstanding shares; if one of the factors i1s whether
or not an asset 1s in the group of assets with large index capitalization weightings

(big-cap), the portfolio should mimic the index in this factor by having the same
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proportion of capital invested in the big-cap assets as the index does. The same can
be domne for other factors, such as an industry factor like technology.

The constraints that mimic the factors of the index may not be strict equalities
but may be “soft”; a slack variable that is bounded above and below is added to
each such constraint. If a term is added to the objective function to penalize these
slack variables for being away from zero, there must be a nonzero coefficient on the
diagonal of V for this variable.

Throughout the thesis, we do not assume a diagonal matrix V' in the objective

function, nor do we assume an index tracking model.
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Chapter 3

The Implicit Branch-and-Bound Algorithm

In this chapter, we review the standard branch-and-bound algorithm for solving
mixed-integer linear programming problems and prove that this algorithm can be
modified to solve the limited diversification portfolio selection problem. We then
introduce our implicit branch-and-bound algorithm, along with improvements that
make the algorithm a more efficient method than standard branch-and-bound for

solving the mixed-integer nonlinear programming problems examined in this thesis.

3.1 Introduction to Branch-and-Bound

The standard linear programming based branch-and-bound algorithm was introduced

in 1960 by Land and Doig [30] for solving problems of the form

minimize  f(z,y) = flz + fyTy
subject to  H,x + H,y > h, (3.1)

v e R"™, ye B,

where n, is the number of continuous variables, f, € IR", n, is the number of binary
variables, f, € R™, 6 H, is an m by n, matrix, H, is an m by n, matrix, m is the
number of linear constraints, and h € IR™. The feastble set of such a problem is
the set of points that satisfy the constraints including the integrality restrictions; the
feasible set of (3.1) is the set 7 = {(x,y) : Hya + Hyy > h, x € R™, y € B™}. A
feasible point is an element of the feasible set. The objective function of this problem
is the function that is to be minimized; in (3.1), the objective function is the linear

function f(x,y) = flz+ fyTy An optimal solution, or minimizer of (3.1) is a feasible
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point (z*,y*) such that for all other (z,y) in the feasible set, f(z*,y*) < f(x,y). If
the feasible set 7 is not empty, then there must exist at least one optimal solution.
Although there may be multiple optimal solutions, they must evaluate to the same
objective function value.

Standard branch-and-bound is a binary-tree search algorithm. Each node in the
tree is a subproblem of (3.1) such that a subset {y; : j € Z} of the binary variables
are fixed to zero and a subset {y;: j € P}, where P is disjoint from Z, of the binary
variables are fixed to one. The root node of the tree is the mixed-integer programming
problem (3.1); the sets Z and P associated with the root node are empty. The leaf
nodes are subproblems of (3.1) for which every binary variable is fixed to zero or one;
the union of the sets Z and P associated with a leaf node contains the indices of all

of the binary variables. Every node that is not a leaf node has two child nodes. Child

Root Node

Figure 3.1 Example of a search tree for a mixed-integer
programming problem with two binary variables

nodes are mixed-integer programming problems that are subproblems of their parent
such that in one child, called the down-branch, a binary variable that was not fixed

in the parent is fixed to zero and in the other child, called the up-branch, that same
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variable 1s fixed to one. Moreover, that binary variable is referred to as the branching
variable. If a node is not a leaf node, then each feasible point of its subproblem is a
feasible point of exactly one of its children. An optimal solution to the subproblem
of that node must then be an optimal solution to one of its two children.

An optimal solution to the original mixed-integer programming problem is a min-
imizer of the optimal solutions of the two children of the root node. Furthermore,
if these children are not leaf nodes, an optimal solution to a child of the root node
1s a minimizer of the optimal solutions of its two children, and so on down to the
leaf nodes. The subproblem corresponding to a leaf node is the linear programming

problem

minimize  flz 4 ffg
subject to  H,x > h — H,j,

x € IR"™,

where § € IB"™ is the vector of zeros and ones based on the sets Z and P that
characterize this leaf node. Although there are efficient algorithms for calculating an
optimal solution to a linear programming problem, solving the 2™ linear programs of
the leaf nodes in a branch-and-bound tree 1s impractical if n, 1s large. For example,
if n, = 52 and we could solve 10,000 linear programs per second, it would take over
140 thousand years to solve the entire set of leaf nodes. Fortunately, it is possible to
reduce the size of the search tree by determining in advance that there is no need to
examine the leaf nodes that are descendants of a given node. A node and all of its
descendants 1s called a subtree, and the process of eliminating a subtree 1s known as
pruning. We can prune the subtree of a given node by determining that the node has
no feasible points or that the node has no feasible point with an objective function

value smaller than that of some known feasible point of (3.1).
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Definition 3.1.1 A lower bound of a function f : IR" — IR over a set
F C IR" is a scalar such that for every v € F, the value of f(v) is no

smaller than that scalar.

Pruning can occur when the lower bound determined for the optimal solution of a
node of (3.1) is greater than the value of some known feasible solution of (3.1). Given
the node defined by the sets Z and P, we can determine a lower bound of the node

by solving the standard relazation,

minimize f(z,y) = flz —I—fyTy
subject to H,x + Hyy > h,
0<y; <1 Vj¢ZUP,
Y > j ¢ (3.2)
y; =0 Vy e Z,
yj=1VYj€eP,

veR™, yeR"™,

of the corresponding subproblem of (3.1); we denote the feasible set of this relaxation
Fzp. The feasible set of (3.2) contains the feasible set of the given node. If this
linear program has no feasible points (Fz p = )), then neither does the given node. If
this linear program has a feasible solution, then any lower bound of f(z,y) over Fz p
is also a lower bound for the node. Given a lower bound on the optimal objective
function value of (3.2), if it is no smaller than the value of the best known feasible
point of (3.1), we can prune the node. It is important to note that although we may
need to calculate the optimal solutions for some of the linear programs at the leaf
nodes, we need only determine lower bounds for the other nodes.

The following algorithm is the simplest form of the branch-and-bound algorithm.



Algorithm 3.1.1 Standard Branch-and-Bound

Step 1: Let Z =0, P =0, and BT = {(Z,P)}. If possible, find a feasible
point (1P yIP) of (3.1) and set ¢!¥ = f(x!P y!”). Otherwise, set
¢IP = 0.

Step 2: If BT = (), goto Step 4. Otherwise, remove some ordered pair
(Z,P) from the list B7 and find a minimizer (z*,y*) of f(x,y) over
the feasible set Fzp. If Fzp = 0 or f(z*,y*) > ¢'7, repeat Step 2.

Otherwise, goto Step 3.

Step 3: Ifyr € {0,1} for all j € NV set (z'F,y'"") — (z*,y*) and ¢'¥" — ¢~
and goto Step 2. Otherwise, choose k € N such that 0 < y; < 1 and
set BT «— BT U(ZU{k},P)U(Z,P U{k}); goto Step 2.

Step 4: If ' = oo, then (3.1) has no feasible points. Otherwise, an

optimal solution to (3.1) is (z!F, yIF).

23

At each step in the algorithm, the best known feasible point (z!Fy!"’) is called

bound and is denoted ¢¥. Once the relative optimality gap,

|77 — ¢
JerPl+17

the algorithm terminates.

the upper bound, since the optimal objective function value of (3.1) can be no greater
than ¢! = f(z!F y!). Furthermore, the minimal optimal objective function value

of the relaxations of the parents of the problems in the set B7 is called the lower

where ¢” is a lower bound of the root node, is smaller than a predetermined tolerance,

Since there are at most 2"**! — 1 nodes in a standard branch-and-bound tree
and associated with each node 1s a linear programming problem that can be solved

in finite time, this algorithm will terminate in finite time. In fact, we have proven
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that standard branch-and-bound will determine an optimal solution in finite time for
any mathematical programming problem with a nonempty feasible set of the form
of the feasible set of (3.1), provided there exists a finite algorithm for determining
optimal solutions of the resulting leaf nodes. In Chapters 5 and 6, we provide efficient
algorithms for solving the leaf nodes and the relaxations of the subproblems associated
with each of the objective functions examined in this thesis. For the remainder of

this chapter, it 1s assumed that these efficient algorithms exist.

3.2 Implicit Branch-and-Bound
The general form of the problem that we examine in this thesis is

minimize  f(x,y)
subject to  H,x + Hyy > h, (3.3)

reIR", y € B",

where the constraints H,x + H,y > h include the linking constraints /;y; < z; < u;y;
for each j € A/ = {1,...,n}. Branch-and-bound may be applied directly to this prob-
lem as long as an algorithm for determining the optimal solution to a leaf node exists.
Instead of using the standard relaxation, however, we have extended a relaxation due
to Bienstock [3] that can be solved more efficiently than the standard relaxation.
Bienstock examined a problem of the form (3.3) where the binary variables appear
only in the linking constraints and the limited diversification constraint 3=;cx y; < k.
He suggested replacing the linking constraints with the simple bound constraints
l; < uj for each j € N, approximating the limited diversification constraint with a
surrogate constraint, and branching implicitly on the continuous variables. Although
we remove the binary variables and use a branching algorithm similar to that proposed

by Bienstock, we propose a relaxation that allows us to approximate any constraint
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on which a binary variable is incident. Furthermore, we prove that, using our approx-
imations, the optimal objective function to the standard relaxation of a subproblem
can be determined.
The wmplicit relaxation of a node defined by the sets Z and P in the branch-and-
bound tree 1s
minimize f(z,y)
subject to H,z > iL,

0<y; <1 VjeN,

(3.4)
zj=y; =0 Vi e Z,
yj=1VvjeP,
v €R", y e R",
where N = {1,... ,n} and the linear constraints H,x > h are the constraints of

H,x + Hyy > h for which no binary variable has a nonzero coefficient. The simple
bounds I; < z; < u; for all j € N are also included in ﬁmr > iL; it can be assumed
without loss of generality that {; < 0 < w; and at least one bound is nonzero for
each j € V. The feasible set of (3.4), denoted ﬁg"p, contains Fz p, and thus it also
contains the feasible set of the node defined by the sets Z and P. A lower bound of
f(z,y) over .71—377) 1s a lower bound on the optimal solution for that node. Since y does
not appear in either objective function considered in this thesis and, in the implicit
relaxation, the binary variables are either fixed or are constrained solely to be on the
interval [0, 1], their presence has no effect on the solution time of (3.4). Thus we can
think of the binary variables as being “implicit”.

The implicit branch-and-bound algorithm is similar to the standard branch-and-
bound algorithm introduced in the first section of this chapter. At each node that
is not a leaf node, a branching variable z; can be chosen such that j ¢ Z U P; in

the down-branch branch, j 1s added to Z and in the up-branch, j is added to P. At
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a leaf node, the set Z U P contains the index of every continuous variable, and, for
these nodes, all of the binary variables and the linear constraints H,x > h — H,j are
included as before: if j € Z, then y; = 0, otherwise §; = 1. The leaf node defined
by the index sets Z and P in the implicit branch-and-bound tree is identical to the
corresponding leaf node in the standard branch-and-bound tree. We now present
the implicit branch-and-bound algorithm and then prove that it will determine an

optimal solution of (3.3).

Algorithm 3.2.1 Implicit Branch-and-Bound

Step 1: Let Z =0, P =0, and BT = {(Z,P)}. If possible, find a feasible
point (2P, yIP) of (3.3) and set ¢! = f(2IP yIP). Otherwise, set

¢IP = 0.

Step 2: If BT = (), goto Step 5. Otherwise, remove some ordered pair
(Z,P) from the list BT. If ZU P = N, goto Step 3. Otherwise,
find a lower bound (z*,y*) of f(z,y) over the feasible set ﬁgy. If

ﬁg;p =0 or f(z*,y*) > ¢!, repeat Step 2. Otherwise, goto Step 4.

Step 3: Determine § based on Z and P and determine the optimal solution
(z*,7) of f(x,7) over the convex set .7-2371>. If f(z*,9) < @7, set

($IP7'!/IP) — (2*,7) and ¢'" — ¢*. Goto Step 2.
Step 4: Choose k € N such that k ¢ Z U P and set BT «— BT U(Z U
{k},P)U(Z,P U{k}); goto Step 2.

Step 5: If ¢!¥ = oo, then (3.3) has no feasible points. Otherwise, an

optimal solution to (3.3) is (z!F, y!F).

y
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Theorem 3.2.1 The optimal objective function value of the mixed-
integer nonlinear programming problem (3.3) found by the implicit branch-
and-bound algorithm is the same as that found by the standard branch-

and-bound algorithm.

Proof: Since the leaf nodes are the same in both algorithms, the objective
function values of the optimal leaf nodes are the same in both algorithms.
It only remains to be shown that the implicit branch-and-bound algorithm
will not prune the subtree of an ancestor of an optimal leaf node unless
an optimal solution to (3.3) is already known. The implicit relaxation
of an ancestor of a leaf node in the new formulation has a subset of the
constraints of that leaf. Also, a lower bound of the ancestor can be no
greater that the optimal objective function value of that leaf. Thus an
ancestor of an optimal leaf node will be pruned only if an optimal solution

to (3.3) is already known.O

The implicit branch-and-bound method works well when the optimal solution of
the implicit relaxation of a node is not much smaller than the optimal solution of the
standard relaxation of that node. We expect this method to perform well when the
binary variables appear in few constraints other than the 2n linking constraints. The
implicit relaxations have half the number of variables as do the standard relaxations,
since the values of the binary variables can be determined before solving the subprob-
lem (3.4). This, along with the removal of the linking constraints, has enabled us to
solve the implicit relaxations in less than a quarter of the time it takes to solve the
standard relaxations.

The freedom in the choice of the y* of the optimal solution of the implicit relaxation
of a node allows for an additional improvement. Given the optimal solution (z*,y*)

determined for the implicit relaxation of the node defined by the sets Z and P, we
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set § € IB" such that i, = 1 for every j € N\Z and g; = 0 for all j € Z. If (2*,7)
is a feasible point of (3.3), then the upper bound of (3.3) can be updated and the

subtree of this node can be pruned.

3.3 Approximating Constraints

In the implicit branch-and-bound algorithm, the feasible set of the standard relax-
ation of the subproblem characterized by the sets Z and P may be strictly contained
in the feasible set of the implicit relaxation of that node. This implies that the lower
bound determined for a node may be greater in the standard branch-and-bound algo-
rithm than in the implicit branch-and-bound algorithm, allowing the possibility that
more nodes may be created in the later algorithm. Instead of completely removing the
constraints which have at least one nonzero coefficient for a binary variable, Bienstock
[3] introduced a surrogate constraint which approximates the limited diversification
constraint using only continuous variables. Since we have placed no limitation on
the sign of the coefficients of the binary variables nor in what constraints they might
appear, we have derived valid approximations of the general linear inequality con-
straints H,x + Hyy > h. These approximations are intended to reduce the size of the
feasible sets of the implicit relaxations, but they are such that the branch-and-bound

algorithm is guaranteed to find the optimal solution to (3.3).

Definition 3.3.1 Given o € IR and a,b € IR", the inequality a’z +
bTy > « is valid for a node in the implicit branch-and-bound tree of (3.3)

if this constraint is satisfied by every feasible point of that node.

If there is a constraint in H,x + Hyy > h for which there is a binary variable

that has a nonzero coefficient, this inequality can be written as o’z + ETy —bly > a,

where a € R, a,b,b € IR", b;,b; > 0, and ETQ = 0. For any index j € N, the

Jr=3
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constraints [;y; < z; < u,y; and 0 < y; < 1 are valid at every node in the implicit
branch-and-bound tree. We know that either /; < 0 or u; > 0. If [; < 0, then the
inequality y; > x;/l; is valid; if u; > 0, the inequality y; > x,/u; is valid. If u; > 0,

we set r; = uj; otherwise, we set r; = [;.

Theorem 3.3.1 Under the above conditions, the approzimating con-

strawnt

b.x;
—]T’) >« (3.5)
T

aT:c + Z (@ —
i=1
is a valid inequality for every node of the search tree of (3.3).

Proof: The inequalities

Y

alz + ETy — by «

?

_T n n —
by=3Yi1byy, < b, and

Jj=1
T n o n ijj
by= j=1 bjy] > =1 "r;

are valid for every node of the search tree for (3.3), thus the inequality

(3.5) is valid for every node.O

Approximating constraints can be strengthened at the node defined by the sets Z
and P. If y 1s in Z, then y; = 0 for every node in the subtree of that node. Likewise,

if j 1s in P, then y; = 1 for every node in the subtree of that node.

Corollary 3.3.1 The updated approrimating constraint

D YRTED S TE Y bﬂ"z@

JEN\Z jeP jeN\(Zup) T

i1s a valid inequality for every node in the subtree of the node defined by

the sets Z and P.
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Example 3.3.1 If the limited diversification constraint > e y; < & 1s
in the set of constraints , then, for the subtree of the node defined by the
sets Z and P, the limited diversification constraint can be approximated
by the inequality

Y. —a/ri > —k+ Pl
JEN\(ZUP)

An updated approximating constraint of a node is not unique, if, for an index
JEN\(ZUP), ; <0< u; and b; 1s strictly greater than zero. If, for the optimal
solution determined for that node, (z*,y"), the values of 27 and r; are of opposite
sign, it may be possible to determine an approximating constraint violated by (z*,y*).
For all j ¢ Z U P such that I; < 0 < u; and the values of z} and r; are of opposite
sign, we can set r; to the opposite bound. If any of these new updated approximating
constraints are violated, a new, possible larger lower bound for the node can be

calculated.

3.4 Improvement for Approximating Constraints

The implicit branch-and-bound method works better than standard branch-and-
bound when the optimal objective function value of the implicit relaxation of a node
is not much smaller than the optimal objective function value of the standard re-
laxation of that node. We prove in this section that it is possible to generate valid
inequalities that guarantee that the optimal solutions of the implicit and standard
relaxations have the same optimal objective function values.

In the following theorem, we let Fz p represent the feasible set of the standard
relaxation of the node defined by the index sets Z and P. Moreover, since the binary
variables y do not appear in either objective function examined in this thesis, the

objective function f(x,y) can be denoted as f(r)
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Lemma 3.1 The point z* € IR" is a minimizer of f(”c) over the set
{z : (z,y) € Fzp} if and only if there exists a y* € R" such that the

point (z*,y*) is a minimizer of f(z,y) over the feasible set Fz p.

Proof: Let 2* € IR" be a minimizer of f(r) over the set {z : (z,y) €
Fzp}. Because v* € {z : (z,y) € Fzp}, there exists a y* € IR" such
that (z*,y*) € Fzp. Assume by way of contradiction that there exists
a point (Z,7) € Fzp such that f(Z,7) < f(«*,y*). Since this implies
Te{r:(x,y) € Fzp} and f(?'c) < f(t*), the point z* is not a minimizer
of f(;v) over the set {z : (x,y) € Fzp}. Because this is a contradiction,

there exists a y* € IR" such that (z*,y*) is a minimizer of f(z,y) over the

feasible set Fz p.

Let (z*,y*) € IR*" be a minimizer of f(x,y) over the set Fz p. Assume
by way of contradiction that there exists a point T € {z : (z,y) € Fzp}
such that f(f) < f(”c*) Since this implies there exists a § € IR™ such
that (Z,7) € Fzp and f(Z,7) < f(z*,y*), the point (z*,y*) is not a
minimizer of f(x,y) over the set Fz p. Because this is a contradiction, z*

is a minimizer of f(;l:) over the set {z: (z,y) € Fzp}. O

Given a set of valid linear inequalities Cx > d such that T € {z : Cz > d}
if and only if z € {z : (z,y) € Fzp}, then by Lemma 3.1 the minimum value of
f("c) over the set {z : Cx > d} equals the minimum value of f(z,y) over Fzp. In
the following theorem, the linear inequalities Cx > d are the simple bounds of the

continuous variables and all of the possible approximating constraints to the rows of

H,x+ Hyy > h. Note that Ca > d includes the constraints H,z > h from (3.4).
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Theorem 3.4.1 If, for every j € N, the coefficient b; is nonpositive for
each non-linking constraint a’z 40"y > « of the constraints H,z +Hyy >
h, then the vector ¥ € IR™ satisfies the inequalities Cx > d if and only if

there exists a § € IR" such that (Z,7) € Fpp.

Proof: Let # € IR™ satisfy the inequalities Cxz > d. For each j € N,
if ; = 0, set §; = 0 and r; to a nonzero bound of z;; otherwise set
y; = I,/rj, where r; = u; if Z; is strictly positive and r; = [; if Z; is
strictly negative. The point (Z,7) clearly satisfies the bound constraints
0 < y; <1 on the binary variables and the linking constraints /;y; < z; <
u;y,;. We only need to show that (Z, ) satisfies each non-linking constraint
atz + 'y > o of Hyx + Hyy > h. Since 7 satisfies the approximating
constraint a’z + ¥ ep bjzj/r; > a of a'z 4+ by > o and y; = z;/rj, the

point (Z, ) must satisfy o’z + b7y > . Thus (Z,7) is in Fyy.

Let (7,7) satisfy Hyx + Hyy > h and 0 < y; < 1 for all j € V. By the

validity of the approximating constraints, Z must be valid for Cx > d.0

When the binary variables do not all have nonpositive coefficients in the non-
linking constraint rows of H,x + Hyy > h, more work must be done to generate a set
of valid inequalities Cz > d such that T € {z : (x,y) € Fzp} if and ounly if Cz > d.
The Fourier-Motzkin elimination method [50] generates such a set of inequalities. We
present this algorithm and a proof that it generates the appropriate set of inequalities
below.

Before presenting this algorithm, we first introduce some notation. Let C;; repre-
sent the coefficient in the :th row and jth column of C. The symbol C; represents the

Jth column of C, and C;. represents the 1th row of C'. The symbol C; 1., represents the
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first k£ columns of the ith row of C. For vectors, y1.; represents the first & components

of y.
Algorithm 3.4.1 Fourier-Motzkin Elimination

Step 1: Let k = n and C*z + D*y, > d* represent the rows of H,z +
H,y > h,including the linking constraints and the bound constraints
0 <y; <1 on the binary variables. The superscript k represents the
iteration, and m¥ is the number of constraints in C*z + Dkylzk > dk.

Note that m”* does not mean m to the kth power.
Step 2: If k=0, set Cx > d to C%°z > d° STOP.

Step 3: For each ¢ € {1,...,m*}, if |D;| > 0, scale the constraint C¥z +
DYy > df by 1/|D;i| so that the coefficient of the kth binary

k

variable 1s 0, 1, or -1. Represent these new m" constraints by Ckz +

Dkylzk 2 Cik

Step 4: For each constraint of Crz + ZA)kylzk > d* that has a positive
coefficient for the kth binary variable, add it to each constraint that
has a negative coefficient for the kth binary variable. These new
constraints, along with the constraints of ékI+Dky1;k > d* that have
a coefficient of zero for the kth binary variable, make up C* 'z +

DF1ly kg > dF71. Set k = k — 1; goto Step 2.

Theorem 3.4.2 Algorithm 3.4.1 yields a set of constraints Cx > d such
that 7 € {x : Cx > d} if and only if there exists a § such that (z,7) € Fp .
Proof: First, let (Z,7) € Fpg. Since (Z,7) satisfies Hyz + H,y > h and
0 <y; <1forall j €N, then it must also satisfy all linear combinations

of these constraints. Thus Z satisfies the final constraints Cz > d.



To prove the other direction, we need only prove that one iteration of the
algorithm works; this implies that the whole algorithm works. Let the
point (Z,7) satisfy C*~'z + D¥1y; . ; > d*!. We need to show that
there exists § € IR™ such that (z,7) satisfies C*z + DFy,4 > d*. Assume
by way of contradiction that there does not exist a y such that (Z,7)

satisfies C*x + DFyy.,, > d*. Thus there does not exist a 3, € IR such that
Digy > d* — C*z — DF 1. (3.6)

For each 1 < i < m* if [D%| > 0, scale the ith constraint by 1/|Dk|.
Then the infeasibility of (3.6) implies that there does not exist a g such

that

A~

sgu(DE)gx > d¥ — Ckz — DE 5w Vi€ {1,...,mF}.

This in turn implies that either
1. there is an i € {1,...,m*} such that D¥ = 0 and d* — Ckz —
D;k,hk—ﬂjl:k—l > 0 or
2. there are i,j € {1,...,m"} such that [D%| < 0, |D%] > 0, and
(dF — Ckz — DEy g yrwr) + (d5 — CEZ — Dy G1k) > 0.
The first case leads to a contradiction because we know that (Z, 7) satisfies
C’fx + bﬁl;k_l‘yl:k—l > cif, since this constraint is included in C*~'z +

DF1y1.._1 > d*'. The second case also leads to a contradiction because

we know that (Z,7) satisfies
C,kf + Dilzk_1y1:k—1 + C]kf + Df,lzk_1y1:k—1 > df + df

since this constraint is included in C*'z + Dk_lylzk_l > gk,

34
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Thus there exists a yIR" such that (z,7) satisfies C¥z + D*y;., > d*, and

we are done.O

It 1s easy to extend Algorithm 3.4.1 and Theorems 3.4.1 and 3.4.2 to other nodes in
the implicit branch-and-bound tree.

Although Algorithm 3.4.1 provides a method for us to remove the binary variables
from the formulation without losing any of their benefits, it is not a practical algorithm
since 1t possibly could generate an exponential number of constraints! In the next
section we provide a practical algorithm to generate valid inequalities based on the

approximating constraints.

3.5 Practical Improvement of Approximating Constraints

In the standard branch-and-bound algorithm, an inequality of the form 7' H,z +
7' H,y > 7'h is valid at every node, where 7 € IR™, # > 0, and 0 is the zero
vector of the appropriate dimension. Furthermore, this constraint is satisfied by
the optimal solution of the standard relaxation of every node in the search tree.
However, the approximating constraint of this valid inequality may be violated by the
optimal solution (z*,y*) determined for the implicit relaxation of this node. Since
the approximating constraints are derived based on the signs of the coefficients of
the binary variables, we insist that 7 satisfies 77 H, < 0. Under this condition, an
approximating constraint of the valid inequality 77 H,z + 77 Hyy > nThis a1 H,z +
ﬂTﬁyx > 7'h, where the jth column of ﬁy is the jth column of H, scaled by 1/r;,

and r; is a nonzero simple bound of z;.

Theorem 3.5.1 If r > 0 and 7T H, < 0, then the inequality =7 (H, +
ﬁy):c > 7T} is a valid inequality for the entire implicit branch-and-bound

search tree. Furthermore, if €* 1s strictly positive for the optimal solution
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(e*,7*) of the linear programming problem

maximize €
subject to 7TTHy <0

7Z'T(HzI* + ﬁyx* —h)+e<0,

7 > 0,
0<e<,
ee R, e R™,

where (z*,y*) is an optimal solution to the implicit relaxation of the cur-
rent node, then W*T(Hx—l—ﬁy)x > 7*Th is a valid inequality that is violated
by (&%, y7).

Proof: Since 7* > 0, the inequality =*7(H,z + H,y) > 7*Th is a valid
in equality for the current node. Since 7*7H, < 0, by Theorem 3.3.1, the
constraint 77 (H, + I-:Ty)x > 7*Th is valid for the current node. If € > 0,

then 77 (H, + H,)z > 7*Th is violated by (z*,y").0

Example 3.5.1 If the feasible set of a mixed-integer programming prob-

lem 1s

Y
|
N

—Y1 — Y2 — Y3
- + Y2 Z 07

2 .
0< Ty < gy] and y; € {071} \V/] € {17273}7

then the implicit relaxation of the root node of the branch-and-bound tree

has the feasible set defined by

3 3 3 S 5
2351 23?2 2353 = ’
3

——x1 > -1, and
2
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0<z; <

W N

vy € {1,2,3}.

Given the objective to minimize —x; — x3, an optimal solution to the
implicit relaxation of the root node i1s z] = %, x5 =0, 2} =
y; =0 Vj.

Setting 77 = 1 and 7; = 1 gives the valid inequality —2y; — y3 > —2.

The approximating constraint of this valid inequality is —3x; — %Ig > =2,

which is violated by (z*,y*).



38

Chapter 4

Improvements to Implicit Branch-and-Bound

This chapter is devoted to the procedures and heuristics developed to reduce the total
number of nodes that are formed in the implicit branch-and-bound search tree. We
first discuss a variety of classes of valid inequalities designed to allow us to determine
better lower bounds for each node in the branch-and-bound tree. We then describe the
procedures we have derived for finding feasible points; together the valid inequalities
and upper bound heuristics aid in our ability to prune larger subtrees. We also discuss
the branching variable selection heuristics that we have designed to create child nodes

that hopefully can be pruned quickly.

4.1 Valid Inequalities

The approximating constraints derived in §3.3 are beneficial in determining a tighter
formulation of the feasible set of the implicit relaxation of a subproblem in the branch-
and-bound tree. In general, a tighter formulation can be created by deriving a vahd
inequality that is not valid for some feasible point of the relaxation of the current
formulation of the subproblem. This type of valid inequality is called a cutting plane.
Adding a cutting plane and repeating the optimization of the relaxation, the value of
the largest known lower bound of this node may increase enough to prune the subtree
of this node.

To describe this process more fully, we must first develop some terminology. Given
the node characterized by Z and P, the set 7z p C IR*™ contains the points feasible

for that node.
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Definition 4.1.1 Given a set 7 C IR", for any finite set of points v' €
T (1 = {1,...,t}) and scalars \; > 0 such that >!_, \; = 1, the point
v=Y!_, \v'is a convez combination of points of 7. The convez hull of
T is the set of all points that are convex combinations of points in 7; it

is denoted conv(7T).

At the node defined by the sets Z and P, the convex hull of 7z p is the smallest
convex set that contains 7z p. Furthermore, the feasible set of the implicit relaxation
of the node, j:gy, must contain the set 7z p. The closer the set fgy approximates
the convex hull of 7z p, the greater the lower bound calculated for the node will be,
increasing the possibility of being able to prune the subtree of that node. Adding a

valid inequality to .7:—g7p may help to determine a better approximation of conv(7z p).

Example 4.1.1 We would like to find the optimal portfolio that satisfies

the constraints

4
§$1+212 < 1,
1
3
0< 2 < °
4

and has no more than one asset. At the start of the branch-and-bound
algorithm, the feasible set of the implicit relaxation of the root node,
.7}@7@, is the set of points (z,y) that satisfy the constraints (4.1) and the

approximating constraint of y; + y2 < 1, which 1s

4
2.171 + §$2 S 1.

Given the objective function f(z,y) = —0.092, —0.0922+0.0127+0.0123 +

0.01z1z3, an optimal solution i1s ] = 0.3, 23 =03, y7 =1, and y; =1
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with objective function value f(z*,y*) = —0.05373. Examining Figure

4.1, we see that the inequality

0<a,<

N | =

is valid for the set 7z p of the root node. Thus, the approximating con-

straint can be replaced with
2z1 + 2z, < 1,

and the optimal objective function value of f(z,y) over the new feasible

set Fzp is —0.04481.

5
X1

Figure 4.1 Example 4.1.1: Feasible values of x for ]A:g;p vs. conv(Tz p)

For the remainder of this chapter we let Cz px > dzp denote all of the valid
inequalities generated for the node defined by the sets Z and P. The feasible set of

the implicit relaxation of that node is the set

Fep={(z,y): Hox > h, Czpr>dzp, 0<y; <1 VjEN,

zj=y; =0 Vj€Z, y;=1 VYjeP}

where H, and h are as defined in (3.4).
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4.1.1 Disjunctive Cuts

Disjunctive cuts are valid inequalities that were introduced by Balas [1] and discussed
in [3]. In this section, we show how these cuts can be derived at a node in the implicit
branch-and-bound tree.

At the node defined by the sets Z and P in the implicit branch-and-bound tree,
an optimal solution (z*,y*) of f(z,y) over the given feasible set ]A:gy is determined.
If the subtree of this node cannot be pruned, then a branching variable, zj 1s chosen,
and j'—gu{k};p U fgyu{k}, the union of the feasible sets of the two children created by
this branching variable, must contain the set 7z p. Instead of immediately branching
to create the two child nodes, we first determine if the point z* is in the set {z :
(z,y) € conv(ﬁgu{k}y U ﬁgyu{k})}. If it is not, then (z*,y*) is not in conv(7z p)
and Farka’s Lemma [41] can be used to derive an inequality a’z > « that is valid for
this node and such that a’z* < a. Adding this disjunctive cut to the formulation
and solving the augmented subproblem, the value of the largest known lower bound
of this node may increase enough to prune the subtree of this node. Throughout this
section, the projection of the set fgy C IR*" onto the continuous variables is denoted
]i"gy(x) ={z:(z,y) € ﬁz,fp}.

The following derivation determines a system of linear inequalities that are satis-
fied by every x € {z : (z,y) € conv(]:—gu{k}y U ﬁgyu{k})}. Note that {z : (z,y) €

conv(]:—gu{k}y U ﬁgyu{k})} is equivalent to CO’I”L’U(]:—ZU{]C};p(fC) U .ﬁgvpu{k}(:c)).

1. A point # € IR" is in the set {z : (z,y) € conv(]:—gu{k}y U ﬁgyu{k})} if and
only if there exist v € ﬁgu{k}y(:ﬁ), w € fgyu{k}(x), and 0 < A <1 such that

=M+ (1-Nw.
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Equivalently, a point @ € IR" is in the set {z : (z,y) € conv(]:_gu{k}y U
fgyu{k})} if and only if there exist v € )\ﬁgu{k}"p(.f), we (1- )\).7:"Z7pu{k}($),

and 0 < XA <1 such that x = v + w.

. A point v € IR" is an element of Aﬁgu{k};p (z) if and only if

(a) H,ov > )\il,

(b) Czugrypv > AMdzygky,p, and

(c) v; =0V € ZU{k}.

. A point w € IR" is an element of (1 — )\)ﬁgyu{k}(ac) if and only if
(a) Hyw > (1 — A)h,

(b) Czpupmw > (1 — A)dz pugky, and

(¢c) w;=0VjeZ.

. Substituting x—wv for w, the point zisin {x : (z,y) € conv(ﬁgu{k}y Uﬁgyu{k})}

if and only if there exist v € IR" and A € IR which satisfy

Hyoo— Mo > 0
Czury,pv — Mdzupyp = 0
—H,v+ A > _H,z+ h
—Czpupv + Mz ooy = —Czpumr +dzpupy (4.2)
v; = 0 VjeZU{k}
v; = —z; VjeZ

A > 1
A > 0.
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We write system (4.2) as

G < y(z), (4.3)
A

where G is a m by n + 1 matrix, g(z) : R" — IR™, and 7 is the number of linear
inequalities in (4.2). The point € IR™ is an element of {z : (z,y) € conv(.ﬁgu{k}y U

ﬁg7pu{k})} if and only if system (4.3) with right-hand side ¢(Z) is feasible.

Theorem 4.1.1 Let (2*,y*) be the optimal solution calculated for the
implicit relaxation of the node defined by the index sets Z and P and
ke N\(ZUP). Let v* € IR™ be an optimal solution to the linear

programming problem

minimize g(z*) Ty
subject to G'y = o0,
g(z9) 'y > -1, (4.4)
v = 0,
7€ R™,

where O represents the vector of zeros of appropriate dimension and G
and g(x) are as defined in (4.3). Then g(x)T7* > 0 is a valid inequality

for the given node.

Proof: Let T € 7z p(x). Since every feasible point of a node must be valid
in any relaxation of the node, z € {z : (z,y) € conv(ﬁgu{k}y Uﬁg;pu{k})}.

Thus there are 7 € IR" and X € IR such that

<

G < ¢(7).

>~
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Then,

<

vTy(@) > yv"a = 0.

>~

Since, for any Z € Tz p(z), the inequality g(z)¥y* > 0 holds, then for the

given node g(x)T4* > 0 is a valid inequality.O

If the point 2* € IR" is not in {x : (z,y) € conv(.ﬁgu{k}y Uﬁg"pu{k})} then system
(4.3) with right-hand side g(«*) is infeasible. By Farkas’ Lemia we know this implies
that the optimal solution v* to (4.4) is such that g(z*)Tv* = —1. Thus g(z)Ty* > 0
is a valid inequality that is violated by z*.

At a node in the branch-and-bound algorithm, a branching variable is chosen and
the system (4.3) is created. Solving the linear programming problem (4.4) for an
optimal solution v*, if g(z*)T4* < 0, then we have determined a valid inequality that
1s violated. This procedure can be repeated with every possible choice of branching
variable. Adding all of the disjunctive cuts to Cz px > dz p, a new optimal solution
(z*,y*) of the relaxation of this node can be calculated. We include these cuts in the
formulation of the relaxation of every node in the subtree of this node; however, in
order to maintain numerical stability, we use only the original inequalities H(z,y) > h

or their updated approximations when calculating disjunctive cuts.

Example 4.1.2 For this example only, to simplify the discussion, when
we refer the feasible set of the implicit relaxation of a given node, we are
referring to the projected set {z : (z,y) € .7:—371)}. Returning to Example
4.1.1 from above, we have the constraints (4.1) and, at the root node, the

approximating constraint
4
2$1 + §$2 S 1.

As before, the optimal solution i1s z] = 0.3 and 23 = 0.3.



Any point x i1s in the convex hull of the feasible sets of the implicit re-
laxations of the children created by branching on z; if and only if there
exists a 0 < A < 1 and points v,w € IR" such that v 1s in the feasible
set of the implicit relaxation of the down-branch scaled by A, w is in the
feasible set of the implicit relaxation of the up-branch scaled by (1 — ),
and * = v + w. These conditions can be represented by the system of

linear inequalities

%'Ul + 2v, — A <0,
o — A <0,
%‘Ug — A S 0,
—U2 S 07
—dy = 20 + XN < 1-—%2z, —22
3 1 2 - 3L 1 e 27
(%]} S L1,
—U1 —I' %)\ S % L1,
—U2 —I' %)\ S % T2,
0 < v < 07
T3 < vy < Ty,
0 < A< 1

which is solvable if and only if = is in the convex hull of the feasible sets

of the implicit relaxations of the child nodes.

These constraints are unsolvable for z* because z* violates the valid in-
equality x; 4+ x5 < % which 1s produced by taking the linear combination
of the four constraints %vl +2v—A <0, <0, —v; + %)\ < % — 1, and
—vy < —xy with the multipliers 5, 10/3, 10, and 10, respectively. With
the addition of this new constraint, we have a complete description of the

set {z: (z,y) € conv(Tzp)}.

45
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4.1.2 Cover Inequalities

Given a constraint a’z + bTy > « of (3.3), where @ > 0 and a,b € IR", then at least
one binary variable y; where j € V = {j € N : a; # 0 or b; > 0} must be nonzero for
every feasible point of (3.3). Furthermore, it is possible to determine a lower bound
on the number of binary variables that must be nonzero in order to cover, or satisfy,
that constraint. For each ) € V, we calculate the maximum value of a;z; 4 b;y; based
on the simple bounds on z;, and set n; to this maximum value. Sorting the values
n;, J € V, from largest to smallest, we easily can calculate a lower bound on the
number of nonzero binary variables required to make o’z 4+ b7y > . The constraint
> jev¥; = &, where ¢ is the minimum number of nonzero binary variables needed to
cover the constraint, is valid for every node of the implicit branch-and-bound tree.
The cover inequalities can be included in the original constraints H(x,y) > h.
Inside the implicit branch-and-bound tree, if any of the indices of V are in P or
Z, then new cover inequalities that are valid for the subtree of the current node can

be determined based on the sets Z and P.

4.1.3 Knapsack Cuts

The discussion in this section is a derivation of a similar discourse in Bienstock [3],
and it is valid only if the limited diversification constraint 3- ¢ —y; > —+ 1is present.
Given a constraint a’z + 'y > a of (3.3), where a > 0 and a,b € IR", we examine

the system

ale + 07y > «,
Eje./\/ —Y; 2 —K,
Ly <xj <wy; VjeN,

y € IB".
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It is assumed without loss of generality that for each j € NV, I; <0 < u; and at least
one of these simple bounds is nonzero. For each j € N let n; be the maximum value

of a;x; + b;y;, based on the simple bounds on z;.

Definition 4.1.2 Let V = {j € N :n; > 0}. A subset V of V is critical

if 3 ;c7n; < a for every subset J of V such that |J| = &.

Given a set V that is critical, there must be at least one binary variable y;, j ¢ V,
that is nonzero, thus the inequality > ;cy y; < £ — 1 1s valid.

Given the optimal solution (z*,y*) determined for the current node, we have
derived the following heuristic to determine a critical set V' associated with the con-
straint a’x + by > « for which the approximating constraint of Yevyi S k—1is

violated.
Algorithm 4.1.1

Step 1: For each j € N, determine the associated value of 7;, and set r;

to u; if 25 > 0 or I; if % < 0. Let V be the set {j : n; > 0}.

Step 2: Let V be the set of indices of the x smallest values of n; for which
x7 1s nonzero; as a tie-breaker, choose the j with the larger value
of x3/r;. If 3;eyn; > a, STOP. Otherwise, V is a critical set. Let

6=Yjeyx;/r; — K+ 1. If 6 >0, goto Step 5.

Step 3: Let k € V be the index of the smallest ;, 7 € V. If there exists
an i € M\V such that

it Y, n<a
JEV\{k}

and 6 + x7/r; > 0, then V « YV U {i} is a critical set; goto Step 5.

Step 4: Let k1,k; € V be the indices of the two smallest 7;, j € V. If

there exist i1,7; € N'\V such that
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U + Niy + Z n <«
JEV\{k1 k2}

and & + x} /ry, + @}, /ri, > 0, then V « V U {11,175} is a critical set;

otherwise STOP.

Step 5: The set V is a critical set for which 3=,y @}/r; > £ — 1. For each
index k£ in NM\V such that n; > 0, if the sum of 5 and the x — 1
largest n;, where j € V, is less than «, let V « V U {k}; repeat Step

5 until V cannot be augmented further.

Similar to the cover inequalities, new knapsack cuts can be determined at a node

based on the sets Z and P that are valid for the subtree of that node.

4.1.4 Symmetric Dominance Inequalities

Although the symmetric dominance inequalities can be calculated before the implicit
branch-and-bound procedure has begun, these inequalities can be derived only in the
case that the variance-covariance matrix V is diagonal. Indices j,k € N are said to
be symmetric if the jth and kth columns of H, are identical and the jth and kth
columns of H, are identical, other than in the linking constraint rows. This type of
symmetry is prevalent in the index-tracking data when only a few factors are being
mimicked. Removing the symmetry, if possible, reduces the number of nodes created
in the implicit branch-and-bound procedure.

For symmetric indices j and k, index j dominates index k if it is possible to
determine from the input data that if there i1s an optimal solution with y; nonzero,
there must be one with y; nonzero. If indices j and k are symmetric, the simple
bounds on the continuous variable z are tighter than on z; (I; < I, wr < uy),

the linear objective term for the continuous variable x; is larger (p; > p), and the
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quadratic term for the continuous variable z; is smaller (V}; < Vi), then j dominates
k and the inequality y; > yi leaves at least one optimal solution feasible in the implicit
branch-and-bound tree. This may not be a valid inequality because there may be a
point in 7y g that violates this inequality. We do not add these cuts to the formulation;
instead, if a symmetric dominance cut is violated by fixed binary variables at a node,

we prune the subtree of that node.

4.2 Upper Bound Heuristics

In the implicit branch-and-bound search tree, many unnecessary nodes may be created
if a good upper bound is not known. We have developed two methods for determining
a good upper bound.

The first upper bound heuristic involves calculating an upper bound to a mixed-
integer programming problem with a linear approximation to the objective function
f(z,y). Branch-and-bound algorithms for solving mixed-integer linear programming
problems are highly sophisticated and software packages for solving these problems are

numerous. A “good” feasible point of the mixed-integer linear programming problem

minimize  f(x,y)
subject to  H,x + Hyy > h, (4.5)

veR", ye B,

where f(z,y) is a linear function and H,, H,, and h are as in (3.3), can be found
quickly using a mixed-integer linear programming problem solver. In determining a
linearization that approximates f(x,y), we see that if short-selling is not allowed, and
either the fixed transaction costs are large, or the limited diversification constraint
has a small , then the continuous variables in a feasible solution to (3.3) will tend

to be close to or at their upper bounds. Based on this conjecture, for the first
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objective function, f(z,y) = —uTz + 62TVz, a possible linearization is f(z,y) =
(—p + 8Vu)Tz. For the second objective function, f(z,y) = —uTz + 6v/2TVz, two
possible linearizations are f(z,y) = —plz and f(z,y) = (0Vu — p)’z.

If the mixed-integer linear programming solver finds no feasible point of (4.5),
then (3.3) is infeasible as well. Any feasible point (2!, y!) of (4.5) is also feasible
for (3.3) and could be good upper bound. An optimal solution, (z*,y?), to the leaf
node of (3.3) defined by the sets Z and P which are described by y!”" is probably a
better upper bound.

The second upper bound heuristic is based on the implicit branch-and-bound
algorithm, and it 1s performed after the first upper bound heuristic has terminated.
In this heuristic, implicit branch-and-bound is performed on a reduced set of the
variables until a feasible point of the original problem (3.3) is found. In order to
ensure that this heuristic encounters an upper bound, the value of ¢!F is assumed to
be oo at the start. The reduced set of variables on which the heuristic is performed
is chosen based on the upper bound (z!¥,y’") determined by the first upper bound
heuristic and the optimal solution (z*,y*) determined for the root node of the implicit
branch-and-bound tree. Any index j such that y]lp = 0 and the absolute value of
7 1s sufficiently near zero 1s placed in the set Z and the set P is set to (. Implicit
branch-and-bound is performed on the subtree of the node defined by the sets Z and
‘P until an upper bound is encountered. Once this upper bound is found, all of the
information other than the upper bound itself 1s discarded and the implicit branch-
and-bound procedure is restarted on the full index set. Restarting the algorithm is
important because the branching variables were chosen based on the fact that a good
upper bound was not available.

In practice we have found that it is useful not to terminate the second heuristic

immediately upon encountering a feasible solution of (3.3). Instead, it may be wise
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to continue this depth-first search branching procedure for a fixed number of nodes

after the first upper bound is encountered.

4.3 Branching Variable Selection

The method for deciding the branching variable at a node is crucial to the success of
the branch-and-bound algorithm. A good choice of branching variable may make it
possible to prune both child nodes; a series of poor choices may result in the creation

of a large subtree of the current node.

Example 4.3.1 The optimal solution to the relaxation of the root node
in the standard branch-and-bound algorithm of the integer programming

problem

maximize —y; + 2y
subject to —2y; 4+  5yy < 1.5,
=3y + Sy <1
y1,y2 € B,
1s y; = 0.5, y; = 0.5, with objective function value 0.5. As seen in Figures
4.2 and 4.3, branching on y; first forces the standard branch-and-bound
algorithm to solve six more nodes, but branching on y, first allows the
optimal solution to be determined after solving the relaxations of only

two more nodes.

Ideally, as in the example above, the choice of branching variable leads to two children
that can be pruned. However, since the knowledge of a “good” upper bound is helpful
in determining that a node can be pruned, the method for choosing a branching
variable in our algorithm is dependent on the value of the current upper bound.

During the implicit branch-and-bound procedure, if the current upper bound has
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y3=0.5, %=0.5 f(y*)=0.5

y*=0.2 f(y*)=0.4 f(y*)=0.4

y2:1 y2:1

f(y*)=0.0 Infeasible f(y*)=-0.1 Infeasible

Figure 4.2 Branch on y; first

yi=0.5, =0.5 f(y*)=0.5

f(y*)=0.0 Infeasible

Figure 4.3 Branch on y, first

objective function value ¢'¥ and the current lower bound is ¢, the relative optimality

gap 1s defined to be
6" — ¢
¢+ 1

if no upper bound is known, the relative optimality gap is considered to be co. An

upper bound is said to be “good” if the relative optimality gap is smaller than some

predetermined tolerance.
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If no feasible point of the original problem is known, or if the relative optimality
gap 1s larger than the tolerance, finding a good upper bound is the most important
task. Given the optimal solution, (z*,y*), to a node defined by the sets Z and P, a
good guess for the sets Z and P of the optimal leaf node of the subtree of the current
node is that the indices j € A'\P which currently have a small value of [z}| will be in
Z. Thus, the method of branching on the variable xj, where k& minimizes the absolute
value of z7 over all j € N\(Z UP), and choosing the down-branch as the next node
to be examined performs well in practice for finding a good upper bound.

If the relative optimality gap i1s smaller than the tolerance, then pruning the
subtrees of one or both of the children of the current node defined by the sets Z
and P will keep the tree small. Given the optimal solution (z*,y*) for this node, the
method of branching on the variable xy, where k£ maximizes the absolute value of z;
over all j € N\(Z UP), works well for raising the optimal objective function vale of
the down-branch.

Instead of forcing the algorithm to choose the branching variable solely on the
values of 2, we have implemented a version of a branching variable selection heuristic
called strong branching. In this heuristic, a subset V of the indices j € N'\(Z U P)
is selected. Each such index defines a tentative down-branch, DOWN(j), and up-
branch, UP(j), for this node. The optimal objective function values for all 2|V| of
these possible child nodes are calculated, and we let (ﬂ,gj) represent the optimal
solution to DOW N (j) and (z7,%”) represent the optimal solution to UP(j). In the
best case, there i1s a k € V such that the subtrees of both child nodes created by
branching on z; can be pruned. If there is no such k£ € V, then, of the variables
for which the subtree of one child node can be pruned, the one that maximizes the
optimal objective function value of the other child is chosen as the branching variable.

If no choice of variable leads to a child that can be pruned, then x; is chosen as the
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branching variable, where k£ € V maximizes the value of
F@,59) + flad,y') VieV.

Because of the nature of the problem, the optimal objective function values
of UP(j) V5 € V tend to be the same as the optimal objective function value
of the current node. Thus we have also chosen to implement a one-sided strong

branching routine which calculates only the optimal solutions to the down-branches

DOWN(j) Vj € V.

4.4 Node Selection

In the implicit branch-and-bound algorithm, the relaxation of a node and the relax-
ation of its up-branch will very often have the same optimal objective function value.
Thus, a depth-first search method which chooses the up-branch of the current node as
the next node to examine closely resembles a breadth-first search method that chooses
the node whose parent has the objective function value equal to ¢r. Unfortunately,
the stack of open problems grows much larger when we examine the up-child first
than when we examine the down-child first. Furthermore, if the upper bound heuris-
tic has determined as upper bound that has an objective function value close to the
optimal objective function value, the method for choosing the next node to evaluate
has little or no effect on the number of nodes that are created. This is because our
branching variable selection routines do not depend on the order in which the nodes
are processed. Thus, if a node cannot be pruned, we work on its down-branch first,
and the up-branch i1s placed on a last-in first-out stack. This minimizes the memory
requirements and the amount of time needed to store the necessary information about

the node.



55

Chapter 5

The Quadratic Objective Function

In this chapter we present our algorithm for finding the optimal solution to a sub-
problem of (3.3) in the implicit branch-and-bound tree where f(x,y) is the objective
function introduced by Farrar. We first review the necessary and sufficient conditions
for optimality. We then extend the Goldfarb-Idnani [22] algorithm for solving strictly
convex quadratic programming problems in order to handle the simple bounds on
the variables in an efficient manner. Convergence results are proven and numerical

stability 1s discussed for this algorithm.

5.1 The Quadratic Programming Problem

At a node in the implicit branch-and-bound tree, the optimal solution to the implicit
relaxation of the subproblem defined by the sets Z and P must be determined; this
relaxation is

minimize  f(z,y) = —plz + 02T Vz

subject to Cx > d,

0<y; <1 VjeN,

(5.1)
zj=y; =0 VjeZ,
y;=1VjeP,
x€eR", yelR",
where N = {1,... ,n}, §is a strictly positive scalar, V is a symmetric positive definite

matrix, and the linear constraints C'z > d include the simple bounds [; < z; < u;
for all j € NV, the constraints of H,x + H,y > h for which no binary variable has a

nonzero coefficient, and other valid inequalities derived in Chapter 4.
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To simplify the notation in this chapter, (5.1) is formulated to include the equality
constraints explicitly, and the continuous variables that are fixed to zero are removed.
Since we predetermine the values of the binary variables at a node in the implicit

branch-and-bound tree, the binary variables are all removed. The optimization sub-

problem 1is
minimize f(r) =yl 46TV
subject to  Hx = h,
Cx >d, (5.2)
I <z <u,
r € R",
where n is the number of remaining variables, N' = {1,...,n}, m; is the number of
equality constraints, M; = {1,...,m;}, my is the number of inequality constraints

(excluding the simple bounds on the variables), My = {1,... ,my}, H is an my by n
matrix, b € IR™, C is an my by n matrix, and d € IR™. Without loss of generality,
we can assume the matrix H has full row rank, and no inequality constraint or
remaining simple bound can be represented as a linear combination of the rows of H.
The feasible set of this problem is denoted by F.

As stated in the second chapter, the matrix V' is positive definite. Since f(;l:) is
twice continuously differentiable and the Hessian matrix, sz(x) = 20V, is positive
definite for all = € f, f(t) 1s a strictly convex function over F. If Fis not empty,
this implies that (5.2) has a unique optimal solution. It is interesting to note that

the objective function f(z,y) may not be strictly convex over the feasible set of (5.1),

and thus f(z,y) may not have a unique minimizer over the constraints of (5.1).
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5.2 The Optimality Conditions

Before reviewing the necessary and sufficient conditions for optimality, we must first

define the terms active and nullspace.

Definition 5.2.1 Given a point Z, the inequality o’z > « is active if

alz = a.

An equality constraint a’z = « is considered active for any point Z such that 'z = .

Definition 5.2.2 The nullspace of a matrix W is the vector space com-
prised of all vectors v such that Wv = 0, where 0 is the vector of zeros
of the appropriate dimension. The matrix Z is a nullspace matriz of W if
for every vector v in the nullspace of W, there exists a vector w such that

Zw = v.
The Lagrangian function of (5.2) is
’C($77TJ7—77710) = fl(I) - 7TT(I{:[j - h) - TT<C:C - d) - ’}/T(T - l) - pT(u - I)v
where 7 € IR™, 7 € R™ and v, p € IR". The four vectors =, 7, =, and p are called

Lagrange multipliers or dual variables. Differentiating this function with respect to x

results in the function
V. L(z,7,7,7,p) = —p+ 20V — Hx T+ _ v+ p.

The following theorem is adapted from pages 430 and 441 of Nash and Sofer [41]; the

inequality 7 > 0 means that every component of the vector 7 is nonnegative.

Theorem 5.2.1 In problem (5.2), if #* is a minimizer of f(z:) over the
feasible set ﬁ, then there exist vectors 7#*, 7%, ~4*, and p* of Lagrange mul-

tipliers such that
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o V. L(z*, 7", 77,7, p") =0,
e 7 >0,7* >0, and p* > 0,
o 7 I(Ca*—d)=0,vT(2* —1) =0, and p*’(u — 2*) = 0, and
o ZTVZf(:c*)Z is positive semi-definite,
where Z is a nullspace matrix for the active constraints at x*.
Since V is a positive definite matrix, the condition that ZTVZf(;E*)Z be positive
semi-definite is satisfied by any matrix Z with n rows.
Because (5.2) has a convex objective function, the above necessary conditions for

optimality are also sufficient. The following theorem and proof are adapted from

Theorem 19 on page 90 of Fiacco and McCormick [16].

Theorem 5.2.2 The sufficient conditions for z* € F to be an optimal
solution of the convex programming problem (5.2) are that there exist

vectors 7%, 7%,7*, and p* such that
. V$’C(I*77T*7T*77*7p*) = 07
o 7 >0,~7* >0, and p* > 0, and
° T*T(CI* o d) — 0’ ,Y*T(:C* o l) — 0’ and p*T(u . "C*) —0.

Proof: Let Z be any other point satisfying the constraints of (5.2). Since
f(r) is convex, f(?'c) > f(r*) +(z — ”C*)TVf(”C*) [16]. Then
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The necessary and sufficient conditions are typically divided into three categories:
Primal feasibility: Hx =h, Cx >d, | <z <u
Dual feasibility: —u +20Ve — H'z —CTr —~y4+p=0
Complementary slackness: 71 (Cz—d) =0, vI(z—1)=0, pl'(u—2z) =

The method we have chosen to solve (5.2) is a dual method; at every iteration, the
dual feasibility conditions and the complementary slackness conditions are satisfied,
along with the primal equality constraints. We have chosen this method because it
allows for a quick “restart” after a new constraint is added. The optimal solution
to the parent problem or to the current problem before the addition of a new valid
inequality satisfies dual feasibility, complementary slackness and the primal equality
conditions, so no procedure to regain feasibility is necessary. This is an active set
method that may force many iterations to regain optimality; fortunately, this has not

been the case in practice.

5.3 The Extended Goldfarb-Idnani Algorithm

The Goldfarb-Idnani[22] algorithm is a dual algorithm for solving quadratic program-
ming problems; it calculates the optimal solution to the problem

minimize —,uTJ: + 92TV

subject to Cx > d
by solving a series of subproblems which have the same objective function but are
subject to only a subset of the inequality constrains. The dual feasibility and com-
plementary slackness conditions are satisfied at every iteration.

Unfortunately, this method forces the simple bounds to be included in the con-

straint matrix as the 2n constraints —/x > —u and Ix > I, where [ is the n by n
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identity matrix. Furthermore, as part of the implicit branch-and-bound procedure,
the storage requirements, which are on the order of n? for Goldfarb-Idnani, are un-
reasonable. Our algorithm attempts to reduce the storage requirements to the order
of (my + my)?.

In order to describe our extensions to the Goldfarb-Idnani algorithm, it is nec-
essary to introduce some notation. Given a matrix C whose rows are indexed on
M, and columns are indexed on A, if 4 C M, and J C A, the matrix C7 is
comprised of the rows of C that correspond to the indices in A and the columns of
C that correspond to the indices in 7. The entire index set is represented as “:”; for
example, Cpy, 7 is wiitten as C.7. Moreover, C%; = (Caz)".

Our algorithm, like the Goldfarb-Idnani algorithm, is based on the quadratic

programming subproblem D(A, £,U) which is

minimize f(r) = —ple 402"V
subject to Hx = h,
Caz > da,
re > g,
—Ty = —uy,
z e R",

where A C M; and £,/ C N. If this subproblem of (5.2) is not infeasible, there
exists a feasible solution Z and associated Lagrange multipliers 7, 7, 4, and p such
that the dual feasibility and complementary slackness conditions are satisfied. Given
working sets A C A, £ C £, and U C U such that C 47 = dy , Tmod =0, 7z =1z,
e = 0, Ty = uy, pprg = 0, and the rows of H, Cg., I, and —I, are linearly
independent, the ordered list (z, A, L,U) is called an S-list, and Z is the optimal
solution to the subproblem D(A, L,U). We prove the following theorem in the next

section.
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Theorem 5.3.1 If the subproblem D(A,L,U) is not infeasible, then

any optimal solution Z to D(A, L,U) has an associated S-list.

At each step in the algorithm, we start with an S-list («*, 4, L,U). If 2* is feasible
for (5.2), then z* is the optimal solution to (5.2). Otherwise, there is some constraint
or simple bound that is violated. Selecting one such violated constraint, a new S-list
(z, A, L,U) is determined such that the new objective function value, f("?:), is strictly
greater than f(?;*) Furthermore, each working set A, £, and U of the new S-list is a
subset of the corresponding working set of the previous S-list, except that the selected
constraint violated by x* is satisfied at equality by Z and its index is a member of the
appropriate working set. Since the objective function value increases at each iteration
and there are finitely many subsets A of M, and £ and U of N, the algorithm will
terminate with the optimal solution after a finite number of iterations.

This is similar to the algorithm discussed in [22]. Our algorithm takes advantage
of the structure of simple bounds by observing that setting B = N\ (L UU), the rows
of H, Cy., I¢., and —Ij. are linearly independent if and only if the rows of H.z and

C 45 are linearly independent.

5.3.1 The Algorithm

We first prove the theorem introduced in the last section.

Theorem 5.3.1 If the subproblem D(A,L,U) is not infeasible, then

any optimal solution Z to D(A, L,U) has an associated S-list.

Proof: Since T is the optimal solution to the quadratic programming
problem D(A, L£,U), there are associated Lagrange multipliers 7, 7, 7, and
p such that the dual feasibility and complementarity slackness conditions

are satisfied. Let L ={j € L :%;,=1;, 7, >0}, U={j €U :%; =
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uj, pj >0}, and A ={i € A: C;z = d;, 7; > 0}. If the rows of H,
C 4., Ir., and —Iy, are linearly independent, then (Z, A, L,U) is an S-list.
Otherwise, we need to construct subsets of A, £ and ¢/ that, along with

T, are an S-list such that Z is feasible for this subproblem.

Case 1: There exists an i € A such that C;. is a linear combination of the
rows of H, C 4 (;3:; Iz. and —1I.. This implies that there exist Ar € IR™,
ATy € IR'“‘{'_I, Avg € IR|E|, and Ap; € IR'm, such that

Let A7; =7 and w = min{g—ﬁk (ke A, At > 0),

A;{—f/k (l€ € Za A’}/k > 0)7

Aﬁ—;k (kelU, App > 0)}.
Clearly @ > 0 and there is at least one dual variable 7, k € A, such that
T — wAT, = 0, or 3, k € L, such that 7, — wAv, =0, or i, k € U,

such that gy — wApr = 0. Since

20V — p— H' 7 — wAx] — CL[7q — wA74) — IL[7z — wAyz)+
LilPu — = Apy]
= 20V —p—H'z - Ci7a—I[7+ I} pu+
w[HTAﬂ' + C£:ATA + Ig:A’yg + (—Ig:)TA,Dg]

= 0+ wl|Ar,Cl —7CH =0,
dual feasibility is maintained after updating 7 «— 7 — wAnr, T4 «— T4 —
wATg, 7 — g — wAvz, and py — py — wApy. Dropping the indices
of all constraints for which the corresponding dual variable is now zero
from the appropriate sets A, £, and U, we are left with z, 7, 74, 7z,

and pz that satisfy primal feasibility, dual feasibility, and complementary

slackness.
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Case 2: There is no such 7 € C4.. Then there must be a j € £ such that
I]T 1s a linear combination of the rows of H, Cy,, Iz\(;. and —I, or a
j € U such that —I];C 1s a linear combination of the rows of H, Cy., Iz
and —I\gj).- A similar process as in Case 1 can be done to reduce the

size of at least one of the sets A, £ or U.

In either case, some constraint is dropped from a working set and the
process can be repeated until the rows of H, C 4., Iz., and —Ij;, are linearly

independent, resulting in the S-list (7, A, £,U/).0

To start the dual algorithm for solving (5.2), an S-list for (5.2) must be known.
At the root node in the implicit branch-and-bound, an S-list is (z*,0,0,0) where z*
is the minimizer of f("c) over the set {x : Hx = h}. For other nodes, the optimal
S-list of the parent of that current node is a valid S-list. Moreover, the optimal S-list
to the same problem before the addition of a violated cutting plane 1s a valid S-list.

The process of determining the optimal solution to a subproblem of (5.2) is called
an iteration. At each iteration, the algorithm starts with an S-list (z*, A, £,U) and
its corresponding Lagrange multipliers 7%, 7%, v*, and p*. If 2* 1s primal feasible for
(5.2), then z* is the optimal solution to (5.2). Otherwise, a violated constraint is
chosen; if the violated constraint is a lower bound zy > I where k € N\ L, then we
let @ = I, and a = Ii; if it is an upper bound —zj > —uy where k € N'\U, then we
let ¢ = —Igz and o = —uy; else it is a constraint Cy.x > dj where k € M3\ A, then
we let a = C,z and o = di.

The algorithm then determines a primal step direction Azp towards the hyper-

plane ayrp = a — akx} — a}x;, in the nullspace of the matrix

W — H:B

Cas
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where B = M\(L UU). It also determines corresponding dual step directions that

keep the complementary slackness conditions and dual equality constraint
—p+20Ve—H'z—Clr—~+p=0

satisfied. Since Ta\a = 0s Yane =0, piny = 0, Hz* = h, Cpa™ =da, x; = I, and
xj = uy, this is equivalent to determining step directions Azg, An, AT4, Ay, and

Apy such that

AIL: = 0, A,?ju = 07 H:BASL’B = 0, CABA:L’B = 07 and

(5.3)
20VAz + HEA7 + CTAT + Ay —Ap = a.
Simplifying (5.3), we see that it is equivalent to
20VegAup + HEAx + ChsAtq = agp,
20VegAxp + HL A + CL AT+ Ay = ag, and
20VyusAzg + HEAx + CYyAta — Apy = ay.
Thus the algorithm determines Az, An, and A7y that satisfy the system
Azpg
20Vgg wT ap
Ar | = , (5.4)
w 0 0
ATy

where 0 is a matrix of zeros of the appropriate dimensions, and then it sets Ay, =
ar —29V£BAIB—H£A7T—C££ATA and Apy = —au—{—ZOVuBA:cB—{—H:ITJAW—{—CfguATA.
Since the matrix Vgg is a principal submatrix of V', both it and its inverse are

positive definite. Performing Gaussian elimination on (5.4), we see that

Aﬂ— -1 Ty—1 -1
TA
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and

1_._
A@;::§?@;@B—HTAW—Q%AnO

1
= Ve (I-WI(WVg W) Wag ) as

1
= —Zag;
20 ag;

the matrix
Z = VB_Bl - VB_Bl WT(WVB_Bl VVT)_IVVVB_B1
1s a symmetric positive semi-definite nullspace matrix for W. Since ap 1s in the range

of W1 if and only if Zag = 0, Azp = 0 implies that the matrix

| w
W =
ag

does not have full row rank. If Az = 0 and a step cannot be taken in the dual space
such that a constraint can be dropped from A, £ or U, then (5.2) is infeasible, as we
show in Theorem 5.3.2.

If ||Azg||z > 0, then a step size such that the dual variables remain nonnegative
is determined. If the step size is shorter than (o — a’z*)/akAzp, then the step is
stopped short at a point that does not satisfy complementary slackness. However,
this point does satisfies primal feasibility of the constraints associated with A, L,
and U and dual feasibility. The constraint whose dual variable went to zero can be

dropped from the appropriate working set and the nullspace of the new matrix

- Hy
e :
Cas
can be determined. The process of determining primal and dual steps and drop-
ping active constraints from the working sets is repeated until a full primal step 1s

taken and the constraint e’z > « is satisfied at equality. These inner “iterations”,
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where complementary slackness for the constraint a’z > « is not satisfied, are called
subiterations.
We now present a formal description of our dual algorithm for solving quadratic

programming problems.

Algorithm 5.3.1

Step 1: Initial Conditions: Assume that some S-list (z*, A, L,U) is

given, along with associated Lagrange multipliers 7*, 7%, 77, and

*

Pu -

Step 2: Begin an iteration: Set the Lagrange multiplier, v, for the
violated constraint to be 0. Choose k € AN\ L such that zj <l and
set al'z > o to that violated constraint and goto Step 3. Otherwise,
choose k € N'\U such that =} > u; and set a’z > a to that violated
constraint and goto Step 3. Otherwise, choose k € M,\ A such that
Cr.2* < dj, and set a”z > o to that violated constraint and goto Step

3. Since we have determined that there are no violated constraints,

z* is optimal for (5.2); STOP.
Step 3: Begin a subiteration:

Step 3a: Let B = N'\(L UU). Calculate the dual step directions

Ax H.
— WV W) " WVslas, where W = | ||
ATy Cas

and the primal step direction

1

Azg =
B = 5

Vg (as — H' Ar — CligAra) .

Step 3b: If £ 1s empty, or if the dual step Ay, = ag — 20VegAxp —

HLA7—C%.A74 <0,let w; = cc. Elselet @, = min{y;/A~, :



Jj € LAy, > 0} and p; be the element of £ that achieves this

minimuin.

Step Sc: It U 1s empty, or if the dual step Apy = —ay +20VypAzp+
HIAxr+CL At4 <0, let @y = oo. Elselet @y, = min{p;/Ap; :
J €U, Ap; > 0} and p; be the element of U that achieves this

minimum.

Step 3d: If A is empty, or if A74 < 0, let w3z = oo. Else let w3 =
min{7;/A7; : ¢ € A, A7; > 0} and p3 be the element of A that
achieves this minimum.

Step Se: If Azg =0, wy = oo. Else let wy = (a — al'z*)/afAxp.

Step 3f: Set w = min(w;, w2, ws, @a).

Step 4: Update primal and dual vectors:

Step 4a: If o = oo then (5.2) is infeasible. STOP.

Step 4b: Set v — v+ wAxg, 7" — 1" — WA, T} — T}y — WATY,
Vo = V=AY, pf — py—wApu, [ frmagAes(v+w/2),
and v «— v + w.

Step 4c: The subiteration is complete:

If w = w3, then set A — A\{k}; goto Step 3. Else if w = w,,
then set U — U\{k}; goto Step 3. Else if w = w;, then set
L — L\{k}; goto Step 3.

Step 4d: The iteration is complete:

If the constraint a’z > « is a simple lower bound, then set
L — LU{k};ifit is a simple upper bound, then set « — UU{k};

otherwise set A «— AU {k}. Goto Step 2.
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The proofs of the next three theorems for our extended algorithm are modeled on

the proofs of the theorems in Goldfarb and Idnani [22].

Theorem 5.3.2 If @w = oo in Step 4a of the algorithm, then (5.2) is

infeasible.

Proof: Since wy = oo, we know that Axg = 0 and the dual step directions
Ar € R™ and A7y € RM are such that H5Ax 4+ C43A74 = ag. Since
w; = oo then either ap < H?;Aﬂ' + CiﬁATA or L = (. Since wy, = o0
then either ay > H}ZA?T + C.Z;HATA or U = (). Since w3 = oo, then either
A4 <0or A=1.

Assume there exists an & such that @*+ & satisfies H(z*+ &) = h, C(a* +
) >d, 1 < (z*+2) <uand a’(z* + 2) > a. In other words, Hi = 0,

Cai>0,2:,>0,3; <0, and aT& > 0.
Given the existence of such a z,
0 > (AnTH 4+ ATICL)E
= (A7THpg + ArtiCup)in + (AnTHopip + AT5C )i
AT Hydy + AtiCau)iu
> a%;:EB + aigig + aZ;i:u.
Since this contradicts the choice of &, no such & exists and the quadratic

programming problem (5.2) is infeasible.O

Theorem 5.3.3 If (5.2) is not infeasible, then starting with an S-list
(z*, A, L,U) and having chosen a constraint a’z > « violated by z* in
Step 2, the iteration will terminate with a new S-list such that the selected
constraint violated by z* is satisfied at equality and the index of that

constraint is in the appropriate working set.



Proof: As long as (5.2) is feasible, at least one subiteration will occur.
After each subiteration, there are updated dual variables v, 7, 7%, ~*,
and p*, a primal variable z*, and working sets A, £, and 4 such that
the dual feasibility constraint —u + 20Vz* — HIx* — CL 7y — IE~; —
(—Iu.)Tp;; — va = 0 and the nonnegativity of the dual variables 7%, 75,
py, and v are satisfied. The complementary slackness condition of every
primal constraint, except possibly of the constraint a’z > «, is satisfied.
If the iteration is not done, then the complementary slackness condition
v(a®z — a) = 0 may not be not satisfied since the full primal step was not
taken. Thus the dual variable of some constraint previously in a working
set A, L, or U reached zero and was dropped from the appropriate working

set. Only a finite number of subiterations can be taken before the iteration

1s complete since the working sets are of finite cardinality.

Eventually a full primal step must be taken and o’ z* > « will be satisfied
at equality. Since a full primal step was taken, |Azg|ls > 0. Thus we know
the rows of H.p and C4p and the vector ag are linearly independent. The

complementary slackness condition of the new active constraint is satisfied

so the updated (z*, 4,L,U) is an S-list. O

Theorem 5.3.4 Let (z*, A,£,U) be an S-list for (5.2) and a’z > a be
a constraint of (5.2) such that a’'z* < a. If (5.2) is not infeasible, then
after every subiteration the objective function value does not decrease and

after the final subiteration, the objective function value strictly increases.

Proof: At the beginning of a subiteration, we have primal variables z*,
dual variables v, 7*, 7%, 4%, and p*, and working sets A, £, and U such

that the dual feasibility constraint —u +20Va* — Hn* — Ch 74 — IZ~} —
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(—Iu.)T p;; — va = 0 is satisfied. Let Z represent the appropriate nullspace
matrix; then ZHY = 0 and ZCLz = 0. Let Axg = ;—GZaB be the primal

step direction calculated during the subiteration. Then

flz*+ wAz) — f(z*) = wAz'(20Vz* — p) + @?0AzTV Az

= wag(ZHVB;;U* — ug) + WZHASE%;VBBAe?B
2

v}

= %aBZ(ZHVB ™ — ug) + EagszBZGB
o2

= ZeaBZ(C'ABTA—}—HBW —}—I/aB)—}— 10 aBZaB

2

w w
ﬁd%Z(Z/CLB) + 7G£ASL’B

= wagaB(Z/ + %)

Since Axkas = zeaBZaB >0, v >0 and w > 0, we have that f(a* +
wAxzg) > f(z*). Since ||Azg|lz > 0 in the final subiteration, we know

that wak Zag > 0 and thus f(z* + wAzg) > f(z*).0

5.3.2 Matrix Factorization Updates

In each subiteration of the algorithm, the working sets A C My and L,/ C N are

given, and B is set to N'\(L UU). To determine the dual steps

Ax H.
— WV W) " WVtas where W= |
ATA C.AB

a factorization of WV;3 W' must be calculated. Instead of factoring this matrix
from scratch in every subiteration, we update the factorization whenever one of the
working sets A, £, and U is changed. Goldfarb and Idnani [22] update an orthogonal

factorization

R
Q
0
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of S712L W7, where LEYL" is the Cholesky factorization of V., Q is an N by N
orthogonal matrix and Ris an upper triangular matrix on the order of the number
of active constraints. The space required to store the orthogonal matrix () associated
with this factorization is on the order of the square of the number of columns in
W so storing this matrix for each node of the implicit branch-and-bound tree may
not be possible. Instead, we store and update a unit upper triangular matrix R and
a diagonal matrix D such that RT DR is the Cholesky factorization of the current
WV WT.

At the start of the current subiteration, we have a unit upper triangular matrix
R and a diagonal matrix D such that RETDR = WV;; WY, During a subiteration,
either a row or column is added to or dropped from the matrix W. If a row 1s added
or dropped, then there is a new set of active working constraints A; if a column is
added or dropped, there is a new set of nonworking variables B. In either case, the
matrix W is updated to W, where W has full row rank. To calculate the dual steps
in the next subiteration or iteration, we need a new unit upper triangular factor R
and a new diagonal matrix D such that RDRT = WVB_BIWT. These factorizations
take on the order of (m; +|.A|)? storage, which is typically much less than the storage
needed for the Goldfarb-Idnani algorithm.

Add an inequality Cj.z > d; to the working set of active constraints:

At the end of the subiteration, A «+ AU {k} and WT = [WT CL;]. We need

the Cholesky factorization of WV;; W7, which can be written as

w WV WT WV, Cls

Vas [ wT cl,

Cis CrsVas W' CrsVigg Cls
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To calculate the new Cholesky factorization RT DR, we determine a vector

r € R™*H and a constant n > 0 such that

WV Wt Wyl RT 0 D 0 R r = =
BB BEYVEB | _ DR

The vector r = D™*R™TW V4 Cl; was computed in the process of determining

the dual steps and

n = CwVaaCils —rTDr
= CisVapCls — CosVag WIRT DI RTWV i CLy
= Cus(Vig — Vgg WIRT'D'RTTW V4 )Tl

= CywsZCly.
Since n = CygZV ZCly = 40? Azl V Axg, we know that > 0.

Drop an inequality Cj.z > d; from the working set of active constraints:
At the end of the subiteration, we set A «— A\{k}, thus we need to drop the
row Cig from W. If we were to remove the corresponding column from R and

let D = D, we would have

However this R is not square nor upper triangular. Using a sequence of modified
Givens rotations we first annihilate the nonzeros on the diagonal in the columns

of R that follow the column of R corresponding to Cyg.



73

Algorithm 5.3.2 Modified Givens Rotations
If |R;js1y/Djsl > |Rjs1 14/ Dy, | let
-S>
5 . 7+1,5+1 1+ g = 1/ /1 + 52; c = 55‘

- — — )

R;jy1y/ Dyj

Otherwise let

Rt/ Da
¢ = — 53+1 73 : c:l/\/l—l-fz; s =ct.

Rt jv1y Djtr+1

Algorithm 5.3.3 Annihilate Off-Diagonal Elements
Step 1: Let j represent the position of the column of R that is to be
deleted. Set R = R and D = D.

Step 2: If j = n, STOP. Otherwise, calculate ¢ and s based on R; ;1

and Rj, ;11 using the Modified Givens Rotation.

Step 3: For each k=) +1,...,n we let

w = cRjr— sRjt1k\/Djp1 41/ Dy,
Ripie = cRjpan+ 5B/ Djj/Djsa 41, and

Ry = w.

Step 4: Scale D;; = Dj;R

R2 .
Jid+

yand R;, = Rj./R;jy1. Let j =5 +1;

goto Step 2.

The jth column of R, the last row of R and the last column and row of D can
be dropped, and we are left with the appropriate Cholesky factorization. Step

4 is necessary so that the diagonal elements of R are all equal to one.
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Drop a column from some working set of active columns

At the end of the subiteration, B «— B U {k} and A has not changed.

We first need to update the Cholesky factorization LY LT of Vg to a Cholesky

factorization LELT of Vgz. Since

VB B ng L 0 > 0 LT r
VﬁB = = )
Vis Vik rf 1 0 7 0 1

solving for r = X7'L7'Vp, and setting n = Vig — rI'Yr results in the correct

Cholesky factorization LELT of V.

To determine the Cholesky factorization RY DR of WVB%I W, we first let

H:k -
w = sothatW:[Ww].
C Ak

Then we see that

-1

TV = [wow 11 Vs Vak wT
| Vi Vi w’

- 1| VB_B1 + ' LT TLY —p LTy wT

B —n =L N~ w’

= WVggW! 497" WL " LW — g~ hwr ' LT WT
— WL Trw? 4+ 7 tww?
= R'DR+ 7 'WL T r —w)(WL Tr —w)?,
which is a Cholesky rank-one update. Letting v = n_l/z(WL_Tr — w), then

WVg_BIWT = RT(D + ppT)R, where RTp = w. Algorithm 5.3.4 is taken from

21].
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Algorithm 5.3.4 Cholesky Rank-One Update

Step 1: Let tg =1 and j = 1.

Step 2: If j > n, STOP. Let p; = v;, t; = t;_y 4 p3/D;;, and Dj; =
Djjt;/ti—1. Let r =5 4 1.

Step 3: If r > n, let 3 = j + 1 and goto Step 2. Otherwise, let
v, = v, — p;Rj, and R;, = Rj, + pjv,/(Dj;t;). Let r = r + 1 and

repeat Step 3.

Add a column to a working set of active columns

At the end of the subiteration, B « B\{k} and A has not changed.

We assume that the index of the column being dropped from B is in the last
position in B. If it is not, then we can permute ¥ and the columns of L and

annihilate any nonzeros below the diagonal with modified Givens rotations.

We first need to update the Cholesky factorization LY LT of Vg to a Cholesky
factorization LELT of Vig.

Vs Vi L o £ 0 LT r
Vi rT o1 0

Vik n 0 1

o]

The correct Cholesky factorization of Vgg is LELT and we set r = S71L™1Vpg,

and n = Vi — 1S
To determine the Cholesky factorization RT DR of WVB_BI W we first let

H:k _
w = SothatWZ[Ww].
C Ak

Then we see that

WV Wh = [ W
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Vig +n 'L~ e L7 —p= LTy wt

B [ W w T - wl
= WVL{L%WT + WL T LYWT — ptwrT LAWY
WL Trw? 4 ww?
= R'DR4n Y (WL Ty —w)(WLtr —w)?,
which 1s a Cholesky rank-one downdate. Letting v = n_l/z(WZ_}_Tr —w), we
see that WVB%IWT = RT(D — pp")R, where RTp = v. Algorithm 5.3.5 is taken

from [21].

Algorithm 5.3.5 Cholesky Rank-One Downdate

Step 1: Let p = R™Tv and let t,py = 1 — p! D7 1p; if £, < e, set
tn+1 = €, where € i1s the machine precision. Let j = n.

Step 2: If j < 1, STOP. Let v; = pj, t; = tj11 + p5/Dy;, and Dj; =
Djjtiz1/t;. Let r =5 4 1.

Step 3: If r > n, let 3 = j — 1 and goto Step 2. Otherwise, let

Rj. = Rj, — pjv, [(Djjtj41) and v, = v, + pjRj,. Let r =7 +1

and goto Step 3.

5.3.3 Numerical Stability of Updates

Although in our experience these factorization updates perform well, in theory they
may not be stable. In Step 3a of Algorithm 5.3.1, we solve (5.5) for the dual step

directions. This can be seen as the zero residual full-rank least squares problem
AT

win Vg "W | 27| = Vi asll

such that Ax € IR™ and A74 € R, According to Golub and Van Loan [23], for

the full-rank least squares problem, a normal equations method produces a solution
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whose relative error depends on the square of the condition of VB_Bl PWT and may
result in a solution that is not as accurate as the orthogonal Householder approach.
This is in part due to the fact that the matrix WV;; W' has a condition number
that is square the condition number of VB_BI/ ‘W, However, the normal equations
approach involves about half the arithmetic and requires much less storage than the
orthogonal approach. We have chosen to use a method comparable to the normal
equations and have instituted checks to help ensure stability. The least stable update
in the previous section i1s the Cholesky downdate used when adding a column to one
of the working sets. The Cholesky rank-one downdating algorithm we described is
derived in [20], and although not backwards stable, is preferable to the method of
hyperbolic transformations [56].

After determining the optimal solution to (5.2), we check that the final values
of the primal and dual variables satisfy all of the optimality conditions. If any of
the optimality conditions are violated, we return to the S-list given at the start of
Algorithm 5.3.1, calculate from scratch the Cholesky factorization of the appropriate
matrix, and resolve the quadratic programming problem. If the optimality conditions
are not satisfied by the final values of the primal and dual variables again, then
we return to the original S-list and solve the quadratic programming problem using
the more computationally expensive orthogonal factorization. The algorithms for
updating the orthogonal factorization after adding or dropping an inequality or a row

are straightforward and can be found in [9].
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Chapter 6

The Confidence Interval Objective Function

In this chapter we present our algorithm for finding the optimal solution to a sub-
problem of the mixed-integer nonlinear programming problem (3.3) in the implicit
branch-and-bound tree, where the objective function is the confidence interval objec-
tive function. We first examine the properties of this problem subject to only equality

constraints, and then we extend the results to a more general problem.

6.1 The Nonlinear Programming Problem

At a node in the implicit branch-and-bound tree, the optimal solution to the implicit
relaxation of the subproblem defined by the sets Z and P must be determined; this

relaxation 1s

minimize  f(z,y) = —p'x + V2TV

subject to Cx > d,
0<y; <1 VjeWN, (6.1)
zj=y; =0 VjeZ,
yy=1VjeP,

veR", ye R,

where V' = {1,...,n}, §is a strictly positive scalar, V is a symmetric positive definite
matrix, and the linear constraints Cz > d include the simple bounds [; < z; < u;
for all j € NV, the constraints of H,x + H,y > h for which no binary variable has a

nonzero coefficient, and the valid inequalities derived in Chapter 4.
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To simplify the notation in this chapter, (6.1) is formulated to include the equal-
ity constraints explicitly, and the continuous variables that are fixed to zero are re-
moved. Since we predetermine the values of the binary variables at a node in the
implicit branch-and-bound tree, the binary variables are removed. The optimization

subproblem 1is

minimize f(r) = —ple +6VaTVa

subject to  Hax = h,

Cz > d, (6.2)
[ <z <u,
z € R",
where n is the number of remaining variables, N' = {1,...,n}, m; is the number of
equality constraints, M; = {1,...,m}, my is the number of inequality constraints

(excluding the simple bounds on the variables), My = {1,... ,my}, H is an my by n
matrix, b € IR™, C is an my by n matrix, and d € IR™. Without loss of generality,
we can assume the matrix H has full row rank, and no inequality constraint or
remaining simple bound can be represented as a linear combination of the rows of H.
The feasible set of this problem is denoted by F.

The nonlinear programming problem (6.2) is more interesting than the quadratic
programming problem (5.2) because the function Vf(x) : IR" — IR" may not be
defined over the entire feasible set, since Vf(r) = —pu+0(z"Va)"/?Vz is not defined
for + = 0. Another interesting aspect of (6.2) is that f(x) is not strictly convex, and

thus (6.2) may not have a unique solution. Fortunately, f(z) is convex; so any local

minimizer of (6.2) is a global minimizer of that problem as well.

Theorem 6.1.1 The function f(r) = —uTz 4+ 02TV zx is convex over

the convex feasible set F C IR"™.
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Proof: We need to show that for any v,w € F and 0 < A < 1, the
inequality f(Av + (1 — Mw) < Af(v) + (1 — A)f(w) holds. For simplicity
of notation, we note that vVaTVz = ||z||v for any « € IR", where || - ||v
is the weighted 2-norm and that f(x) = —uTz + 6||z||v. By the triangle

inequality,

Ff(Av 4+ (1 = Nw)
= —MTv— (1= X)p"w+0[|(Av + (1 = Mw)llv
< o= (1= X)pTw + 0] Aoy +6[(1 = Nwllv
= v — (1= Nplw + 0\|vllv +6(1 = A)|wllv
= M)+ (1= Nf(w),

and we are done.O

6.2 The Equality Constrained Problem

As in Chapter 5, we solve the general problem (6.2) by solving a sequence of equality

constrained problems. It is thus useful to examine the equality constrained problem

minimize —uTx 4+ 0vVzTVz

subject to Wz = w,

(6.3)

where ||g||2 > 0, W has full row rank, and m is the number equality constraints. For
the rest this section, we let the matrix Z represent the n by n positive semi-definite
matrix V! — VIAWT(WVAWT) ='WV~ which is a nullspace matrix for W. It is
easy to show that given some Z € F = {z : Wz = w}, the vector z is in F if and only
if there exists a v € IR" such that + = T + Zv. In this section, we prove the following

four theorems which provide the conditions for the existence of a minimizer of (6.3),

based on the relationship between the values of # and /u? Zpu.
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Theorem 6.2.1 If § < \/u?"Zyu, then f(r) is unbounded below on the
feasible set F = {z : Wz = w}.

Theorem 6.2.2 If § = /u"Zy and w = 0, then the set of minimizers

of f(z) over F = {& : Wz = w} has infinite cardinality.

Theorem 6.2.3 If § = +/u"Zy and ||w|, > 0, then f(z) is bounded

below on the feasible set F = {z : Wz = w}, but has no minimizer.

Theorem 6.2.4 If 6 > /u?Zp, then f(x) has a unique minimizer on
the feasible set F = {z : Wz = w},

Once we have completed the proofs of these theorems, we present the necessary

and sufficient conditions for an optimal solution of (6.3).

Theorem 6.2.1 If § < /u?'Zy, then f(r) is unbounded below on the
feasible set F = {z: Wz = w}.

Proof: =~ We first show that the point Z = NTw + aZu, where N =
(WVIWH)=1WV-1 and a > 0, is in F:

Wz=W(N"w+aZuy)=WN'w+0=uw.

For simplicity of notation, we note that vV27Vz = ||z||v for any = € R",
where || - ||y is the weighted 2-norm. Evaluating f(z) at Z and using the
triangle inequality, we get
f@ = —p"N'w—ap"Zp+6|N"w + aZplly
< —uyINTw —aptzvzy
+0||N " wllv + 6lall|Zullv

= f(NTw) +al Zullv (8 | Zullv).
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Since ||Zu|lv = pt'ZVZyu = ptZp > 6 > 0 and 6 — || Zp|lv < 0, the value

of f(NTw + aZp) approaches —oo as the scalar o approaches +o00.0

Example 6.2.1 In the unconstrained case, Z is equivalent to V~!. The
function f(r) = —4x;—.6x,+ .5\/.25$% + ”C% 1s unbounded below because
6 is strictly smaller than 1/ V =1y, In this surface plot, the contour lines

of the objective function are shown on the base for emphasis.

Figure 6.1 No minimizer

The case where § = \/m 1s quite interesting. If w = 0, then 2 = 0 1s a
minimizer of f (z), and the set of minimizers of f (z) has infinite cardinality. However,
if ||w]|z > 0, the function f(r) is bounded below on the feasible set, but it has no
minimizer.

Theorem 6.2.2 If § = \/m and w = 0, then the set of minimizers
of f(z) over F = {& : Wz = w} has infinite cardinality.

Proof: Let 2 = 0. We first show that z* 1s a minimizer by showing

that f(.r* + Zv) — f(.r*) = f(Zv) >0 for all v € R"™. If yTZv < 0, then



f(Z'U) = —utZv 4+ 0vvTZv > 0. If, on the other hand, x? Zv > 0, then
by the Schwarz inequality

~

f(Zv) = —/LTZ’U+9"Z'U""
> —u"Zv+ 0" ZV Z0|| Zp|)"
= —pZv+ P Zo|| Zpllv - | Zu|V"

0.

Thus z* = 0 is a minimizer of f(x) over F. Since 0 = /uTZu = || Zpl|2,

we know that ||Zy|lz > 0. Then

f(Zp) = —W"Zp+0yp"2V Zp
= —u Zp+ |1 Zuly

= 0

?

so Zu is another minimizer. Since f(ozZ,u) = ozf(Z,u) =0 for all a > 0,

the set of minimizers of f (x) over F is of infinite cardinality.O

Example 6.2.2 The set of minimizers of the function f(r) = —4x; —

625 +4/.252% + 22 has infinite cardinality since both 6 and /uTV 1y are

equal to 1.

The following plot is seen from the side to emphasize that the function

never decreases below zero.
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Figure 6.2 Infinitely many minimizers

Theorem 6.2.3 If 6 = /u"Zyu and ||w|; > 0, then f(z) is bounded

below on the feasible set F = {z : Wz = w}, but has no minimizer.
Proof: We first show that f(x) i1s bounded below on the feasible set F
by the value —u? NTw, where N = (WVIWT) ='WV~ Let # = NTw.

Then for any v € IR", such that || Zv]|[; > 0,

A~

f(@+2v) = —4"z — 4T Zv 4 0/ (WV-1WT)Lw 4 o7 Zo.

If u?Zv < 0, clearly f(?; + Zv) > —pt' NTw. If pT'Zv > 0, then, since

|wl]|2 > 0 and WV =IWT is a positive definite matrix,

~

fz+2v) = —p'z—p'Zv+ \/Gz'wT(WV—le)—lw + uTZ vt Zv
> —p'NTw — pT Zv 4+ /(4T Zv)?

= —uI'NTw.

Thus —p" NTw is a lower bound for f(:c) on the feasible set F, but no

feasible point attains this bound.

34



We next show that for every e > 0, there exists a v € IR" such that
f(f—{—Zv)—}—uNT'w < e. Let € > 0 be given. Since § = || Zullv, p?Zp > 0.

Letting
wl (WVITWT) "1y €
2¢ 2ut Z

o =
and setting v = apu, we get

f(i +aZp) + I NTw

= —aplZp+ 0\/wT(WV_1WT)_1w + a2yt Zp

1/2
6 Wl (WVIWH) " wut Zy e 2\
2e 2

T
= —ap Zp+ +
1Zullv
= —wl(WVWH wul Zu/2e 4+ €/2
—I—wT(WV_lWT)_lw/LTZ,u/Ze +¢€/2

= e
It 1s easy to see that f(i + aZp) approaches —u NTw asymptotically as

« approaches +o00. This infimum 1s never attained since f(”c) > —ptNTw

for all z € F.O

Theorem 6.2.4 If 6 > /u?Zp, then f(a:) has a unique minimizer on
the feasible set F = {2 : Wa = w},

Proof: The point

o WV—IWT —1.
. \/w ( ) CZp+ VW Wyl (6.5)

T =
02 — uTZpu
is an element of F. To prove that z* is the unique minimizer of f over

F we only need to show that for any v € IR" such that ||Zv|l; > 0,
flz*+ Zv) — f(z") > 0.
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We first note that

T Wv—le -1,
:E*TVJC* — w (02 — /LTZ/B w,u/TZ,U/ + 'U)T(WV_IWT)_I

an D WV—IWT -1,
_|_2\/w (92 TZ ) w/LTZWT(WV_IWT)_l
—uTZp
02wT(WV_1WT)_1
02 —utZpu

Then,

f(a™ + Zv) = f(27)

= —,uTZ'v + 9\/H1;*||%, + 20T ZVar + 0T Zv — 0||z"||v

= —,uTZ'U —8)|z||lv + \/HZH"L‘*H%; + 20||z*||v pT Zv + 820T Zv

> 1" Zv = 6)|27|lv + 02|27 |[} + 28] 2*|lv T Zo + uT ZpoT Zo

> " 20— Bl + O [E + 2]yt Zo + (4T Z0)?

= —u"Zv = Ol llv + [Oll"llv + 17 20

~

If 8||z*||v + T Zv > 0, then f ("L‘ + Zv) — f(z*) > 0. Furthermore, if
f||z*||v + uT Zv < 0, then f("l:* + Zv) — ( *) > 0.0

Example 6.2.3 The function f(a:) = —.4xy — .62y + 24/.252% 4 22 has

a unique global minimizer at zero.

In this surface plot, the contour lines of the objective function are shown

on the base for emphasis.
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Figure 6.3 Unique minimizer

The choice for * in the proof of Theorem 6.2.4 1s not surprising if one examines
the necessary and sufficient conditions for optimality. If x = 0 is not in the feasible set
F ={r € R": Wz = w} of this problem, then, since sz(:v) is positive semi-definite,

Theorems 5.2.1 and 5.2.2, can be combined to give the following theorem.

Theorem 6.2.5 The necessary and sufficient conditions that z* € F,
where 0 ¢ F, be an optimal solution of the convex programming problem
(6.3) are that there exists a vector of Lagrange multipliers 7* € IR™ such

that
0

A /:C*TV.I*

In fact, if # > /u” Zu, then solving the system of nonlinear equations

Ve —Whz* = 0.

—p+ 2L Ve-WTr = o0,

VzTVz (66)
Wz = w,
gives
r=—(WVIIWh)'wv-l, + (WVIwT) 1y
TV



and

U Zu+ VW T Wy twT) ey,

_ [WT(WVIWT)L
= 02 — T Zpu
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which is exactly (6.5). If 8 < /u?Zp, then (6.6) has no solution. The following

theorem gives the necessary and sufficient conditions for an optimal solution of (6.3)

ifoeF

Theorem 6.2.6 Let 0 € F. Then a necessary and sufficient condition
that z* € F be an optimal solution of the convex programming problem

(6.3) is that

either 1. 0 = 4/uTZu and there exists an o > 0 such that z* = aZp,

or 2. 8> +/uTZyu and 2" = 0.

Proof:  First we assume that z* 1s a minimizer of f(r) over the set
{z : Wz = 0}. This implies that 6 > \/m

Case 1: Let 0 = \/m For any feasible point 7, there exists 7 € IR"
such that £ = Zv. In Theorem 6.2.2 we showed that the minimum value
of f(z) over {x : Wa = 0} is zero. A sufficient condition for © to be a
minimizer is that f(Z'l_)) = 0. In (6.4) we see that f(Z'l_)) = 0 if and only if

1T Z% > 0 and Z© is a scalar multiple of Zy. Thus Zt = aZu for a > 0.

Case 2: Let 8§ > /uTZu. In Theorem 6.2.4, we showed that z* =

s—1 -1 1/2
(wT(‘Z;_MTHZA) w) / Zu+VIWITWVIWT)~lw = 0 is the unique min-
imizer of f(z) over the set {z : Wz = 0}. Thus z* must be equal to

0.

Now we assume that the two conditions hold and show that z* i1s a mini-

mizer of f(z) over the set {z : Wz = 0}.
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Case 1: Let 8 = y/uTZy and z* = aZu, where a > 0. Since f(r*) =0
and ¥ = 0 is a minimizer of f(;l:) over {z : Wz = 0} by Theorem 6.2.2,

we have that z* 1s also a minimizer.

Case 2: Let 8 > /u”Zyu. In Theorem 6.2.4, we showed that

anT WV—lWT -1,
; \/w ( S VW WY W)

= 02 —ut'Zyu
is the unique minimizer of f(z) over the set {z : Wz = 0}. Thus z* = 0

1s the minimizer.O

6.3 The Inequality Constrained Problem

Given the necessary and sufficient conditions for the existence and optimality of a
minimizer of the equality constrained problem, we now can extend the dual algorithm
from Chapter 5 for solving quadratic programming problems to an algorithm for

solving the inequality constrained problem

minimize —,uT:c +60vVzTVz

subject to Cua > d,

(6.7)

where ||p]l2 > 0, My = {1,2,...,mz}, and my is the number of inequality constraints.
We let F represent the feasible set {z : Cax > d}. In this section we assume that
6 > /uTV—1p; although this assumption is not true in general, it makes the derivation
of our algorithm for solving (6.7) simpler. We discuss the extensions to the more
general case in §6.3.4. Given that 6 > /uTV 1y, if the zero vector is an element of
F, then by Theorem 6.2.6 the point z* = 0 is the optimal solution to (6.7). Thus we

assume for §6.3 that the point x = 0 does not satisfy Cx > d.
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6.3.1 The Optimality Conditions

Although the feasible set for (6.2) is closed and bounded, the algorithm we have
developed to solve this problem solves a series of subproblems that have a subset
of the constraints of (6.2). Since these subproblems may not have bounded feasible
regions and since the confidence interval objective function is not strictly convex, we

must prove that an optimal solution exists for any subproblem of (6.7).

Theorem 6.3.1 Let A C M,. Then there exists an z* € {z : Cqx >

d4} such that f(z*) < f(z) for all z € {z : Cgx > du}.

Proof: We know that f(a:) is bounded below by zero since & = 0 is the
unique unconstrained minimizer of f( ). Let & € {z : Cqx > da}, and
let F = {z: Caz > da, f(z) < f(&)}. Given some v € IR" such that
|v]]2 > 0 and an « > 0, we know that f(U) > 0 and that f(av) = ozf('v).
This implies that there exists a finite o, > 0 such that f(ozvv) = f(%)
Thus F is closed and bounded, and there must exist an z* € F such that
f(r*) < f(x) for all z € F. But such an z* is also a minimizer of f(a:)

over {z: Cqx > dy}.0

As in Chapter 5, the necessary and sufficient conditions for optimality of (6.7)

involve the Lagrangian function; the Lagrangian function of (6.7) is

’C(IvT) = fA(r) - TT(C:Ij - d)7
where 7 € IR™2. The vector 7 is called the vector of Lagrange multipliers or dual

variables. Differentiating with respect to = results in the function

0
V.L(x,7)=—p+—=Vz—CTr.
(@7) : ViV

The following theorem is similar to Theorem 5.2.1; the inequality 7 > 0 means that

every component of the vector 7 i1s nonnegative.
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Theorem 6.3.2 In problem (6.7), if #* is a minimizer of f(”c) over the
feasible set F, then there exists a vector 7* of Lagrange multipliers such
that

o V. L(z*,7%) =0,

o 7 >0,

o 7I(Caz*—d) =0, and

o ZTVZf(m*)Z is positive semi-definite,

where Z 1s a nullspace matrix for the active constraints at x*.

Since the matrix

. 6 Vaa*Tv
2 ; ) V -
Vaf(z") NG ( TV o )

1s positive semi-definite, the condition that ZTVZf(J:*)Z be positive semi-definite is
satisfied by any matrix Z with n rows.
Because (6.7) has a convex objective function, the necessary conditions for opti-

mality are also sufficient. The following theorem is similar to Theorem 5.2.2.

Theorem 6.3.3 The sufficient conditions for z* € F to be an optimal
solution of the convex programming problem (6.7) is that there exists a
vector 7* such that

o V. L(z*,7%) =0,

e 7" >0, and

° T*T(Cx* —d) =0.
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Proof: Let Z be any other point satisfying the constraints of (6.7). Since

~

f(x) is convex, and the point 0 ¢ F, we have f(f) > f(t*) + (z —
2*)'V f(2*) [16]. Then

f@) = f@)-77(Cz - d)

IV

~

fla®) + (2 — ")V f(2") — (2 — 2)TCT7

Y

F@®) + (2 — 2V Lz, 77)

I
s,

(+7).0

As in Chapter 5, the necessary and sufficient conditions can be divided into the

following three categories:

Primal feasibility: Cx > d,

Dual feasibility: —u + ﬁ;’,ﬁv;p —CTr=0, 7>0, and

Complementary slackness: 77 (Cz — d) = 0.

The method we have chosen to solve the inequality constrained problem (6.7) is
a dual method; at every iteration, the dual feasibility conditions and the comple-
mentary slackness conditions are satisfied. We have chosen this method because it
allows for a quick “restart” after a new constraint is added. The optimal solution
to the parent problem or to the current problem before the addition of a new valid
inequality satisfies dual feasibility and complementary slackness, so no procedure to
regain feasibility is necessary.

Our dual algorithm is based on the nonlinear programming subproblem D(A),

which 1s
minimize f(r) = —ple4+0vaTVa
subject to Cyx > dy,

x eR",
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where 4 C M,. If the feasible set of this subproblem of (6.7) is not empty and does
not contain the point x = 0, then there exists a solution ¥ and a vector of associated
Lagrange multipliers 7 such that optimality conditions for subproblem D(A) are
satisfied. Given the working set § # A C A such that CqZ = dg, Tana = O,
ld4]l2 > 0, and the rows of C 4 are linearly independent, the ordered list (z,A4) is
called an S-list. Not only is Z is an optimal solution to the subproblem D(A), but z
and 7 are dual feasible and satisfy complementary slackness for (6.7).

We prove the following theorem in the next section.

Theorem 6.3.4 If the feasible set of the subproblem D(.A) is not empty
and does not contain the point # = 0, then any optimal solution T to D(.A)

has an associated S-list.

At each step in the algorithm, we start with an S-list (2*,.4) such that A # () and
|dal|2 > 0. If * is feasible for (6.7), then * is an optimal solution to (6.7). Otherwise,
there 1s some constraint violated by z*. Selecting one such violated constraint, a new
S-list (Z,.A) is determined such that the objective function value of the new iterate,
f(f), is strictly greater than f(x*) Furthermore, the working set A of the new S-
list is a subset of A except that the selected constraint violated by z* is satisfied
at equality by Z and its index is a member of A. Since the objective function value
increases at each iteration and there are finitely many subsets A of M, the algorithm

will terminate with the optimal solution after a finite number of iterations.

6.3.2 The Dual Algorithm

We first prove the theorem introduced in the last section.



Theorem 6.3.4 If the feasible set of the subproblem D(.A) is not empty
and does not contain the point & = 0, then any optimal solution Z to D(.A)

has an associated S-list.

Proof: The feasible set of D(A) does not contain 0, thus ||d4l[2 > 0.
Since T 1s the optimal solution to the nonlinear programming problem
D(A), there exists a vector of associated Lagrange multipliers 7 such
that the dual feasibility and complementarity slackness conditions are
satisfied. Let A = {i €¢ A : C;T = d;, 7 > 0}. If the rows of Cy
are linearly independent, then (Z,.4) is an S-list. Otherwise, we need to
construct a subset of A that, along with Z, is an S-list such that Z is feasible
for this subproblem. If the rows of C 4 are not linearly independent,
then there exists an ¢ € A such that C;. is a linear combination of the
rows of C g .. This implies that there exists a A7,y € RM-! such
that Cg\{i}:ATA\{Z»} = —7CL Let A1, = 7; and @ = min{7/A7, : k €
A, A7, > 0}.

Clearly @ > 0 and there is at least one dual variable 7, k € A, such that
T — wAT7, = 0. Since

0 0
Vi—Cllig—wAry = ——=Vz-Ci7s+wCLAT4

ZTVz ’ VilVz
= 0+wm[AnCl —7Cl] =0,
dual feasibility is maintained after updating 75 <« 74 — wA7 4. Dropping
from A the indices of all constraints for which the corresponding dual vari-
able is now zero, we are left with ¥ and 77 that satisfy primal feasibility,

dual feasibility, and complementary slackness.

This process can be repeated until the rows of C . are linearly indepen-

dent, resulting in the S-list (z,.4).0

94
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To start the dual algorithm for solving (6.7), an S-list for (6.7) must be known.
Since the point & = 0 is not feasible, there must be at least one inequality, Cy.x > d,
that is violated by z = 0. Because # > {/u?V~1yu, there is a minimizer, z*, of
f(z) over the set {z : Cp.z = di}. Thus (z*,{k}) is an S-list for (6.7). Within the
branch-and-bound tree, if the optimal solution of the parent node is not * = 0, then
the optimal S-list of the parent of that current node is a valid S-list. Moreover, an
optimal S-list to the same problem before the addition of a violated cutting plane is
a valid S-list.

The process of determining the optimal solution to a subproblem of (6.7) is called
an iteration. In each iteration, the algorithm starts with an S-list (z*,.A4) and its
corresponding Lagrange multipliers 7*. If 2* is primal feasible for (6.7), then z* is
the optimal solution to (6.7). Otherwise, we can determine a violated constraint
Cr.x > dj where k € M3\ A. At the start of the iteration, the dual variable v
associated with this violated constraint is such that v* = 0.

In each subiteration, a primal step towards the hyperplane Cy.x = dj in the
nullspace of the matrix C 4. 1s determined. Corresponding dual steps associated with
the working set A and the “entering” row k are determined to keep the complementary

slackness conditions and dual equality constraint
0
VaTVa

satisfied. A step size w that maintains the nonnegativity of the dual variables 1s also

—p+ Ve—CTr =0

determined; if possible, a full step is taken such that Cp.x = di, 1s satisfied at equality
by the new primal iterate. A full step is not possible if C[L is in the range of C%,, and
a full step may not be possible if a dual variable becomes negative. When a full step 1s
not possible, an index is dropped from the working set A. Unlike the dual algorithm
in Chapter 5 for solving quadratic programming problems, the step directions for this

problem are dependent on the step size. The primal and dual steps functions are,
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respectively, Az(w) and A74(w). For any step size w > 0 such that Cp.Z(w) < d,

we 1nsist that the nonlinear system

it e VE(w) - Chra(®) = (v +®)CE

Z(w)TVz(w)

CA:i‘(w) = dy

be satisfied.

If ||d 4|z > 0, solving system (6.8) gives the step direction functions

A p*¥ TV o
ATp(w)=|1- v Ve (fV(I/*C]{: +u) + T::l) +wNC,
(@) 'Vz(w)
and
#(w)'Vi(w) Vo TV o=
Az(w) = 7 ((l/* + @) ZCL + Zu) - %(V*ch: + Zu),
where

N = (CA;V_IC,E;)_ICA:V_Ia

1
Z = v71i_- V_IC.£: (C’A:‘/_IC.E:) C.A:‘/_lv and
0> — (v Cii+ W' Z(v Ci + 1)

@) 'Vi(w) = «*TVa*.

02 — (v + @) CL+ )" Z (v +@)CE+p)

(6.10)

Letting g(w) = 6* — ((1/* + w)C,Z + M)TZ <(1/* + w)C,Z + ,u), we see that the

system (6.8) has a solution if and only if 2*TVz* = 0 or ¢(0)/g(xw) > 0. In Theorems

A.1.6 and A.1.7 and Corollary A.2.1, we show that at the beginning of every subiter-

ation, g(0) > 0. In Theorems A.1.2 and A.2.1 of Appendix A, we show that ¢(0) > 0

implies that g(w) > 0 for all @ > 0 such that Cy.Z(w) < di.

We first present the formal algorithm and then prove that these step directions

satisfy the system (6.8).



Algorithm 6.3.1

Step 1: Initial Conditions: Assume that some S-list (z*,.4) is given,

along with associated Lagrange multipliers 77%.

Step 2: Begin an iteration: Set the Lagrange multiplier, v*, for the
violated constraint to be 0. Choose k € My\ A such that Cr.2* < dy
and goto Step 3. Otherwise, there are no violated constraints, and

x* is optimal for (6.7). STOP.
Step 3: Begin a subiteration:

Step Sa: Let Z =V 1 -VICL(C VICEL)ICA VL. H ZCE = 0,
let w; = oo. Else determine the primal and dual step functions
Az(w) and A74(w), and let @y be such that Cy.(x*+Ax(wy)) =
dg.

Step 3b: If wy = oo, goto Step 3c. If 74 — A74(w) has no roots
smaller than wq, let wy = oo. Else let @y be the smallest root
of 74 — At4(w) and p, be the element of A that achieves this
minimum. Goto Step 3d.

Step 3c: If NCL <0, let @, = oo. Else let wy, = min{r;/(N,;.CL) :
i € A,N;.CL > 0} and p; be the element of A that achieves this
minimum.

Step 3d: Set w = min(wy, ws).

Step 4: Update primal and dual vectors:

Step 4a: If @ = oo, then (6.7) is infeasible. STOP.
Step 4b: Set a* «— a* + Ax(w), 7} «— 74 — AT4(w@),

and v* «— v* + w.
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Step 4c: The subiteration is complete:
If @ < @, then set A — A\{k}. If A % 0 or ||dallz > 0, goto
Step 3. Otherwise, this is the degenerate case. STOP. (Refer to
§6.3.3).

Step 4d: The iteration is complete:

Set 77 «— v* and A — AU {k}. Goto Step 2.

The algorithm may fail in the case that a degenerate working set is encountered;
in §6.3.3, we discuss how to determine a valid S-list in this case. In Appendix A, we
show how to determine the value of the step size variable w;, where w; is the smallest
positive root of 7;(w) = 77 — Ar;(w) for all i € A. We also show that if | ZCE||, > 0,
the value of @y, such that Cy.(2* + Ax(wy)) = dy, is strictly positive.

We now prove that the step direction functions (6.9) and (6.10) satisfy system
(6.8), and then we prove that each iteration will terminate with a new S-list, with a

degenerate working set A, or with the conclusion that (6.7) is infeasible.
Theorem 6.3.5 Given that

—u+ Va* — CLri=v'CL and Cyz* = dy,

0
A /$*TV$*

where ||d 4|2 > 0, the step direction functions A74(w) and Az(w) as given
in (6.9) and (6.10), respectively, satisfy the system (6.8) for all @ > 0 such

that Ckf(w) < dg.
Proof: In Theorems A.1.2 and A.2.1 of Appendix A, we show that
T
6% — ((1/* + w)C,z? + u) Z ((1/* + w)C,z? + /L) >0

for all @ > 0 such that C.(z* + Az(w)) < di, so we know that

Z(w)TVz(w) is in IR and is strictly positive.



First, we show that C 4.7(w) = d 4 by proving that the primal step Az(w)

is in the nullspace of C 4. Since Z is a nullspace matrix for C 4.,

H(w)TVi(w)
Caula(w) = ; Ca. ((y* +w)ZCT + Zﬂ)
IV *TV *
—%CA;(Z/*ZC]Z + Zu)

= 0.

We now show that for all @ > 0 such that Cy.(z* + Az(w)) < di,

0
—u 4+ Vi(w) - Ctis(w)= (v + Cg
e Va(®) i) = (4 )

Based on the step direction functions, we see that

Chial@) = (VZ-D)((v" +=)CL+n)
CL’*TVJ?*
— VZ 1) ((vCL+
i‘(w)TV:E(w)( ) (( /L))

*T *
'V T

and

0Vi(w) = OVa" +4/i(@) Va(@)VZ (v + =)CL + 1)

N TV 2V Z (V*C,Z + ,u) .
Thus,
—K Tt ﬁ‘/f(w) — Ch7a(=)

= h e TG

— e (Ot ChE)

#(w)TVz(w)

= (v +=)C

VTV > [ * T _* * T

= (v +=)CL,



100

and we are done.O

The following three theorems prove that each iteration of Algorithm 6.3.1 will
terminate either with the conclusion that (6.7) is infeasible, with an S-list such that
the objective function value of the new iterate is strictly greater than the objective

function value of the previous iterate, or with a degenerate working set A.

Theorem 6.3.6 If w = oo in Step 4a of the algorithm, then (6.7) is

infeasible.

Proof: Since @w; = oo, we know that ZC,Z = 0. Since w; = oo and

wy = o0, we have that NC,Z < 0.
Assume there exists an = such that z* 4+ z satisfies CA;(SC* + i) > dy, and

Cr.(x* + &) > dg. In other words, C 4.2 > 0 and Cy.z > 0.

Given the existence of such a z,

0 > Cp.NTCi
= Cpi—CnLZVi

= Ck:$,

since NTC 4 V™' = V-1 — Z. This contradicts the choice of &, thus no

such & exists and the nonlinear programming problem (6.7) is infeasible.O

Theorem 6.3.7 If (6.7) is not infeasible, then starting with an S-list
(z*,A) and having chosen a constraint Cyp.x > dj, violated by z* the iter-
ation will terminate with a degenerate working set A or a new S-list such

that Cp.x > di 1s satisfied at equality and £ is in the new working set.

Proof: As long as (6.7) is feasible, at least one subiteration will occur.

After each subiteration, there are updated dual variables v* and 7%, a



primal variable z*, and a working set A such that the dual feasibility

constraint

0
A /I*TVCC*

and the nonnegativity of the dual variables 7} and v* are satisfied. The

—u+ Va* — C;Ft:r; — Z/*C',Z =0

complementary slackness condition of every primal constraint, except pos-
sibly of the constraint Cy.x > di, 1s satisfied. If the iteration is not done,
then the complementary slackness condition v*(Cy.x — di) = 0 may not be
satisfied since the full primal step was not taken. Thus the dual variable
of some constraint previously in the working set A reached zero and was
dropped from the appropriate working set. Since the working sets are of
finite cardinality, only a finite number of subiterations can be taken before

a degenerate working set 1s encountered or the iteration is complete.

If a degenerate working set is not encountered, then eventually a full
primal step must be taken and Ci.x* > di will be satisfied at equality.
Since a full primal step was taken, |ZC[L||; > 0, and we know the rows
of C4. and the vector Cy. are linearly independent. The complementary

slackness condition of the new active constraint is satisfied so the updated

(z*,A) is an S-list. O

Theorem 6.3.8 Let (z*,A) be an S-list for (6.7) and Cp.x > dji be
a constraint of (6.7) such that Cy.a2* < di. If (6.7) is not infeasible,
then, provided a degenerate working set is not encountered, after every
subiteration the objective function value does not decrease and after the

final subiteration, the objective function value strictly increases.

Proof: = At the beginning of a subiteration, we have primal variables

x*, dual variables v* and 7, and the working set A such that the dual
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feasibility constraint

—p+ Vet —Chmi—vielt=0

0
1s satisfied. Let Z represent the appropriate nullspace matrix of C 4.; then
ZC%. = 0. Let Az(w) be the primal step direction calculated during the
subiteration. Since 6% > (Z/*Cg: + /L)TZ(Z/*CZ + 1) we see that differenti-

ating f(Z(w)) with respect to @ gives

f@(=) = [fl(a"+ Aw(w))
T
= —¢Cp.Zu (02 — ((1/* + w)C,{z + ,u) A ((z/* + w)C,{: + ,u))
+q ((V* + w)C'k;ZC,{: + Ck;Zu) (02 - (V' +w)CrZp — ,uTZu)
= g + @) (CkZp)? + 0 Cr2CE — Cr2CTu" Zp)
> q(v'+w) ((C'k;Zu)2 + C’k;ZC‘,{:(V*ZC’k;ZC,{: + QV*Ck;ZM))
* * T 2
= qv" +w) ((Ck:Z:u) +v Ck:ZCk:)

> 0,

where

B (w)'Vz(w)
q - T > 0
0 (62 — (v + =)CL + )" Z((v* + @)CL + )

The scalar g is strictly positive since ||d ||z > 0 implies that ||Z(w)||v > 0.
Thus f(r* + Az(w)) is an increasing function on the interval (0, ). Since
|ZCE|l2 > 0, @ > 0, and ¢ > 0 in the final subiteration, f’(i‘(w)) is

strictly positive in the final iteration. O

The algorithms for updating the Cholesky factorization of C4.V~'CY are the

same as in Chapter 5.
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6.3.3 Degenerate Case

If, after dropping an index from the working set, the new working set A is either
empty or d4 = 0, the algorithm as written above will terminate before the optimal
solution i1s determined. After an index i1s dropped, we have primal variables z* and
dual variables 73 and v* > 0. Since we assume that this is the first degenerate
subiteration of this iteration, we can assume that d;, where ¢ is the index that was
dropped from A, is nonzero, and thus z* # 0. Moreover, the variables z*, 74, and v*

are such that

Cupx* = 0
Crax® < dy.
This primal iterate evaluates to
fl@*) = —pla” + |||y

= ijtTC'A:x*—}—l/*C'k;x*
= v'Cpz"

< v¥dg.

Assuming that 6% > 7V =14, we know that f(r*) > 0. Since f(t*) = v*Cy.a*,
we know that Cp.x* > 0. Setting the primal step to be Az = z*, the dual step
to be At4 = 0, and the step size to be w = (dp — Cr.2*)/Cr.x*, we see that the
dual feasibility and complementary slackness conditions are satisfied, since Cy.(x* +

wAz) = di. Moreover, since the step size w is strictly positive,

~

fa"+wAz) = f(1+=)e)
= (1+@)f(z")
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Clearly, we satisfy the conditions of a new iterate, since dy, > 0 and (z*+wAz, AU{k})
is an S-list. Based on the theorems from §6.2, we know that % > u’Zp, where Z is

the nullspace matrix for C 4, and A= AU {k}.

6.3.4 Assumption that 62 > 7V~y

In §6.3.2 and §6.3.3, we made the assumption that 62 > x?V~='y. Although this is
not a good assumption in general, we use this assumption in two places. The first
time is in the process of determining a starting S-list. We conjecture that if z* = 0
is not the optimal solution to (6.7), it would not be difficult to determine an S-list
(z*, A) such that «* is the optimal solution to D(A). The only other place we use the
assumption that #% > p?V~='y is in the degenerate case to ensure that the function

evaluation of the iterates are nonnegative.
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Chapter 7

Computational Results

7.1 The Problems

In this chapter we report computational results on two problems. The first problem,
called prob.52, has 11 rows and 62 columns; the variables associated with the columns
are partitioned into a set of 52 asset variables and a set of 10 penalty variables.
The second problem, called prob.500, has 11 rows and 510 columns; the variables
associated with the columns are partitioned into a set of 500 asset variables and a set
of 10 penalty variables. The computational tests for prob.52 were run on a 200MHz
Sun Ultra-2 with 262M of memory. The computational tests for prob.500 were run on
a 143MHz Sun Ultra-1 with 131M of memory. In both cases, the code was compiled
using cc and the -x04 optimizer flag. Furthermore, wherever CPLEX [8] is used, it is
version 4.0.9 for the Ultra. For all problems, the process time is measured in seconds.
All tests are run for the quadratic objective function unless otherwise stated.

In each section, computational tests are performed for various values of x, where
k is the factor that limits diversification, i.e., > ;cpry; < k. The optimal solution is

denoted (z*,y*).

7.2 Implicit Branch-and-Bound

The first set of computational results compare the standard branch-and-bound algo-
rithm to the implicit branch-and-bound algorithm. The code used to generate these
results uses the CPLEX QP solver to solve the quadratic programming problems at

the nodes with no warm start. The only difference between the two codes is that the
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binary variables are included explicitly in the standard branch-and-bound code and
the binary variables are removed in the implicit branch-and-bound code as discussed
in Chapter 3. Tables 7.1 and 7.2 give the timings for various values of k for prob.52

and prob.500, respectively.

prob.52 Standard B&B Implicit B&B

K flz*,y*) Nodes!  Time Time/Node Time Time/Node
31 -4.915392e-02 28825 946.49 3.31e-02 198.13 6.87e-03
34 -6.743432¢-02 8928 275.07 3.08e-02  56.25 6.31e-03
37 -7.965479¢-02 1832  56.41 3.08e-02 10.77 5.88e-03
40 -8.658508e-02 407 11.69 2.87e-02 1.98 4.86e-03
43 -8.951690e-02 256 7.12 2.78e-02 1.17 4.57e-03
46 -9.157293e-02 103 3.08 2.99e-02 0.42 4.08e-03

t Node = subproblem in search tree

Table 7.1 Standard Branch-and-Bound vs. Implicit Branch-and-Bound

prob.500 Standard B&B Implicit B&B

K flz*,y*) Nodes' Time Time/Node Time Time/Node
127 -4.131053e-01 3635 1792.61 4.93e-01 168.05 4.62e-02
130 -4.132057e-01 852  436.49 5.12e-01 38.44 4.51e-02
133 -4.132662e-01 301 157.89 5.25e-01 13.35 4.44e-02
136 -4.132888e-01 282 148.13 5.25e-01 12.45 4.41e-02

t Node = subproblem in search tree

Table 7.2 Standard Branch-and-Bound vs. Implicit Branch-and-Bound

As expected, the implicit branch-and-bound algorithm spends much less time
per node than does the standard branch-and-bound algorithm. This is because a
quadratic programming subproblem in the implicit branch-and-bound tree has many
fewer variables and constraints than does the corresponding subproblem in the stan-

dard branch-and-bound tree.
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7.3 Branching Variable Selection Strategy

The computational tests in this section use our implicit branch-and-bound algorithm
and our extended Goldfarb-Idnani algorithm to solve the quadratic programming
subproblems at the nodes of the search tree.

The first branching variable selection strategy is based on the desire to find a good
upper bound and then to prune quickly any nodes remaining in the branch-and-bound
tree. We expect that the continuous variables that are nonzero for the optimal solution
will contain a subset of the continuous variables that are nonzero in the optimal
solution of the implicit relaxation of the root node. The first strategy is to branch
recursively on the continuous variable with the smallest absolute value and then to
work on the down-branch until a feasible solution for the mixed-integer quadratic
programming problem is found. Since the goal is no longer to find a good upper
bound, we continue to branch through the tree, but now branch on the continuous
variable with the largest absolute value. This strategy is denoted “Change Criteria”.

Unfortunately, this strategy could create a much larger tree than necessary, since
we have made many choices based on the fact that an upper bound was not known. To
rid ourselves of these poor choices, we instead throw away any of the tree that has been
created and start the branch-and-bound tree again. This leads to the second strategy
which is to branch recursively on the continuous variable with the smallest absolute
value and to work on the down-branch until a feasible solution for the mixed-integer
quadratic programming problem is found. We then restart the tree from the root, this
time recursively branching on the continuous variable with the largest absolute value.
This branching variable selection strategy is denoted “Restart Tree”. Although this
strategy could be interpreted as an upper bound heuristic, we prefer to think of it as

a strategy for choosing good branching variables based on the current value of the
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upper bound. Tables 7.3 and 7.4 give the timings for various values of k for prob.52

and prob.500, respectively.

prob.52 Change Criteria  Restart Tree

K flz*,y*) Nodest  Time Nodes'  Time
25  2.801919e-02 850757 495.13 345857 248.55
28 -2.044631e-02 312219 171.92 224030 143.08
29 -3.095907e-02 236789 144.10 69701  42.68
31 -4.915392e-02 106527  60.58 28827  18.83
34 -6.743432e-02 32115  18.20 8930 5.32
37 -7.965479¢-02 7059 3.76 1835 0.96

40 -8.658508e-02 1993 1.00 410 0.20
43 -8.951690e-02 1083 0.57 259 0.14
46 -9.157293e-02 541 0.29 106 0.08

t Node = subproblem in search tree

Table 7.3 Branching Variable Selection Strategy

prob.500 Change Criteria  Restart Tree

K fla*,y*) Nodes! Time Nodes! Time
127 -4.131053e-01 822783 2489.36 3995 20.89
130 -4.132057e-01 213167  642.25 1212 6.58
133 -4.132662e-01 103431  324.00 661  3.95
136 -4.132888e-01 99009  304.04 642  3.74

t Node = subproblem in search tree

Table 7.4 Branching Variable Selection Strategy

As expected, the strategy that restarts the tree after finding an upper bound
performs much better than the strategy that changes the branching variable selection
criteria without restarting the tree.

We implemented both a strong branching routine and a one-sided strong branching

routine that examines only the possible down-branches. For both of these codes,
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however, the tree size rarely was smaller than if we had used the “Restart Tree”,

strategy and the time spent per node increased dramatically.

7.4 Upper Bound Heuristics

We have built other techniques for determining a good upper bound into the branch-
ing variable selection strategy that restarts the tree. The first technique, discussed in
4.2, involves linearizing the objective function and solving the resulting mixed-integer
linear programming problem (MILP) using the CPLEX [8] mixed-integer linear pro-
gramming solver. The set of continuous variables that are nonzero in the optimal
solution to the implicit relaxation of the root node of the branch-and-bound tree is
augmented by the set of continuous variables that are nonzero in the optimal solution
to the MILP; the strategy is to perform depth-first search (DFS) on this reduced set
until a feasible solution i1s found. As in the second branching variable selection strat-
egy discussed in §7.3 above, the tree is restarted after a feasible solution is encountered
in the tree.

The second upper bound heuristic we have implemented is the same as the first,
but this heuristic does not stop immediately upon encountering a feasible solution in
the tree. Instead, it continues through the tree for an extra predetermined number
of nodes in hopes of finding a better upper bound. Once the number of extra nodes
allotted have been examined, the tree is restarted as before. Because the optimal
solution may be the first feasible solution encountered, this technique may force the
heuristic to enumerate more nodes than necessary. However, the upper bound deter-
mined by this “Subtree” approach is at least as good as determined by the “Reduced
DFS” approach.

Comparing Tables 7.3 and 7.5 we see that for prob.52 calling CPLEX on the

MILP and doing depth-first search on the reduced set of nodes until an upper bound
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1s encountered 1s not a large improvement over solely doing depth-first search until an
upper bound is encountered. However, in comparing Tables 7.4 and 7.6 we see that
for prob.500, doing depth-first search on the reduced set works much better. This is
because in prob.52 there are 48 of the 52 assets nonzero at the root node, while in
prob.500 there are 139 of the 500 assets nonzero at the root node, so working on the
reduced set makes a difference for prob.500. By examining Tables 7.5 and 7.6, we see
that continuing the depth-first search though a small subtree before restarting after
encountering the first upper bound 1s also a good idea in practice. Tables 7.7 and 7.8
give the optimality gap

|f($IP7yIP) — f(‘x*ay*”
| f(z*,y%)]

(7.1)

for each of the two upper bound heuristics, where (z*,y*) is the optimal solution to

the problem and (z!F, y!F) is the upper bound determined by the heuristic.

prob.52 Reduced DFS “Subtree”

K fla*,y) Nodes!  Time Nodes! Time
19  2.220023e-01 499564 405.87 148830 126.30
22 9.498409e-02 925197 702.95 617431 477.89
23 7.080893e-02 953382 718.72 354545 278.01
25  2.801920e-02 345854 247.40 340935 251.67
28 -2.044631e-02 224027 147.30 93734  62.92
31 -4.915392e-02 28824 18.26 28861 18.39
34 -6.743432¢-02 8927 5.30 7750 4.71
37 -7.965479¢-02 1832 1.03 1551 0.90
40 -8.658508e-02 407 0.20 426 0.25
43 -8.951690e-02 256 0.18 231 0.17
46 -9.157293e-02 103 0.10 110 0.10

t Node = subproblem in search tree

Table 7.5 Upper Bound Heuristics: Node Count
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prob.500 Reduced DFS “Subtree”

K fla*,y*) Nodest Time Nodest Time
118 -4.124560e-01 764854 4988.49 511015 2993.57
119 -4.125602e¢-01 418799 2403.87 286972 1816.63
121  -4.127616e-01 102495  558.08 102578  623.10
122 -4.128442e-01 80246  419.16 41481 215.51
124  -4.129730e-01 14114 70.25 14191 69.46
127 -4.131053e-01 3657 19.02 3500 18.08
130 -4.132057e-01 874 5.52 309 5.08
133 -4.132662e-01 323 3.13 382 3.31
136 -4.132888e-01 304 3.05 357 3.22

t Node = subproblem in search tree

Table 7.6 Upper Bound Heuristics: Node Count

prob.52 Reduced DFS “Subtree”

K fla™y7) fEP ™) Gap't o f(@!” )T Gap't
19 2.220023e-01  2.579059e-01 1.62e-01  2.237245e-01 7.76e-03
21  1.289750e-01  1.461169e-01 1.31e-01  1.354677e-01 5.03e-02
22 9.498409e-02  1.198860e-01 2.62e-01  1.092015e-01  1.50e-01
23 7.080893e-02  8.601420e-02 2.15e-01  7.123676e-02 6.04e-03
25 2.801919e-02  2.953775e-02 5.42e-02  2.935869e-02 4.78e-02
28 -2.044631e-02 -1.280505e-02 3.74e-01 -2.044631e-02 0.00
31 -4.915392e-02 -4.915392¢-02 0.00 -4.915392e-02 0.00
34 -6.743432¢-02 -6.689961e-02 7.93e-03 -6.743432e-02 0.00
37 -7.965479e-02 -7.912163e-02 6.69e-03 -7.965479e-02 0.00
40 -8.645956e-02 -8.658508e-02 1.45e-03 -8.645956e-02 0.00
43 -8.951690e-02 -8.931161e-02 2.29e-03 -8.951080e-02 6.81e-05
46 -9.157293e-02 -9.157293e-02 0.00 -9.157293e-02 0.00

t Upper bound determined by heuristic

1t Gap is relative difference between upper bound heuristic objective function

value and optimal solution; see (7.1).

Table 7.7 Upper Bound Heuristics: Optimality Gap
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prob.500 Reduced DFS “Subtree”

K fla*y) fEP )T Gap™t f@”y™P)T Gap't
118 -4.124560e-01 -4.124007e-01 1.34-e04 -4.124383e-01 4.29e-05
119 -4.125602e-01 -4.125217e-01  9.33e-05 -4.125543e-01 1.43e-05
121  -4.127616e-01 -4.127410e-01 4.99e-05 -4.127410e-01 4.99e-05

122 -4.128442e-01 -4.128008e-01 1.05e-04 -4.128442e-01 0.00
124  -4.129730e-01 -4.129730e-01 0.00 -4.129730e-01 0.00
127  -4.131053e-01 -4.131016e-01 8.96e-06 -4.131053e-01 0.00
129 -4.131739e-01 -4.131665e-01  1.79e-05 -4.131739e-01 0.00
130 -4.132057e-01 -4.131991e-01 1.60e-05 -4.132057e-01 0.00
133 -4.132662e-01 -4.132662e-01 0.00 -4.132662e-01 0.00
136 -4.132888e-01 -4.132888e-01 0.00 -4.132888e-01 0.00

t Upper bound determined by heuristic
it Gap is relative difference between upper bound heuristic objective function

value and optimal solution; see (7.1).

Table 7.8 Upper Bound Heuristics: Optimality Gap

7.5 Node Selection Strategy

If the upper bound heuristic does not return the optimal solution, the optimal solution
may be “pushed” to be one of the last ones evaluated when the tree is restarted and we
work on the down-branch first. Choosing the up-branch instead of the down-branch to
work on first may alleviate this effect. If the upper bound determined by the upper
bound heuristic is the optimal solution, exactly the same number of nodes will be
enumerated by choosing the up-branch first as by choosing the down-branch first. If
the upper bound found by the upper bound heuristic is not the optimal solution, fewer
nodes may be enumerated. From Tables 7.9 and 7.10 we see that while the number
of nodes 1s either the same or fewer in most cases, the time per node is increased. As

conjectured in §4.4, the list of open nodes becomes much larger when we examine the
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up-branch first. Since we update the approximating constraints at the up-branches
and store the updated approximating constraint of the parent for the down-branches,
the set of inequalities that are valid for at least one node on the list becomes very

large. This slows the code tremendously as the set of stored inequalities grows.

prob.52 Down-Branch First Up-Branch First

K fla*,y*) Nodes! Time Nodest Time
17 3.943248e-01 236885 222.51 180109 186.21
18  2.948757e-01 223117 182.01 140347 126.63
19 2.220023e-01 148830 126.30 139528 122.31
21  1.289750e-01 324343 250.27 222837 182.49
22 9.498409e-02 617431 477.89 251697 214.15
25  2.801920e-02 340935 251.67 304945 255.37
28 -2.044631e-02 93734 62.92 93734 70.18
31 -4.915392e-02 28861 18.39 28861 21.59
34 -6.743432e-02 7750 4.71 7750 5.56
37 -7.965479e-02 1551 0.90 1551 1.03
40 -8.658508e-02 426 0.25 408 0.31
43 -8.951690e-02 231 0.17 231 0.18
46 -9.157293e-02 110 0.10 110 0.12

f Node = subproblem in search tree

Table 7.9 Node Selection Strategy

7.6 Valid Inequalities
7.6.1 Symmetric Dominance Inequalities

The code found 32 symmetric dominance cuts for prob.52 and 15335 for prob.500.
The computational tests in this section use the implicit branch-and-bound method

and the extended Goldfarb-Idnani method to solve the quadratic subproblems at the
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prob.500 Down-Branch First Up-Branch First

K flz*,y*) Nodes! Time Nodest Time
121 -4.127616e-01 102578 623.10 76754 3292.12
122 -4.128442e-01 41481 215.51 41481 1913.82
123 -4.129134e-01 23996 120.65 23996 1031.08
124 -4.129730e-01 14191 69.46 14191 618.26
125 -4.130203e-01 9266 45.64 9188 399.08
126  -4.130662e-01 5709 28.33 5575 258.63
127 -4.131053e-01 3500 18.08 3500 148.42
130 -4.132057e-01 809 5.08 809 28.68
133  -4.132662e-01 382 3.31 382 10.42
136 -4.132888e-01 357 3.22 357 8.79

t Node = subproblem in search tree

Table 7.10 Node Selection Strategy

nodes. For both problems, we use the “Reduced DFS” upper bound heuristic and

work on the down-branch first.

7.6.2 Other Cuts

Although we have implemented the knapsack cuts, the disjunctive cuts, and the cuts

discussed in §3.5, the code found none of these cuts.

7.7 Extended Goldfarb-Idnani Algorithm

In this section, we demonstrate the extent to which using a dual quadratic program-
ming method, which allows a “warm start” of the children nodes, 1s preferable to
discarding the information and solving the children nodes from scratch. Although
not reported, the number of nodes evaluated for each problem is slightly different for
each algorithm due to a slight difference in the implementations. By examining Tables

7.13 and 7.14, it 1s clear that the solution time per node is greatly reduced when we



prob.52 Without SD Cuts  With SD Cuts
K fla™,y*) Nodes Time Nodes'  Time
27 -8.005632e-03 1681490 1045.73 280922 194.48
28 -2.044631e-02 1255707 755.09 224027 147.30
31 -4.915392e-02 120900 69.24 28824 18.26
34 -6.743432¢-02 28361 15.15 8927 5.30
37 -7.965479¢-02 4316 2.13 1832 1.03
40 -8.658508e-02 647 0.34 407 0.20
43 -8.951690e-02 304 0.18 256 0.18
46 -9.157293e-02 103 0.08 103 0.10

t Node = subproblem in search tree

Table 7.11 Symmetric Dominance Cuts

prob.500 Without SD Cuts  With SD Cuts

K fla*,y*) Nodes! Time Nodest Time
118 -4.124560e-01 764854  4988.49 28420 1058.99
119 -4.125602e-01 418799  2403.87 19925 752.73
120 -4.126638e-01 209414 1175.01 13086  498.46
121  -4.127616e-01 102495 558.08 8227  319.87
124  -4.129730e-01 14114 70.25 2582 101.82
127 -4.131053e-01 3657 19.02 1267 51.99
130 -4.132057e-01 874 5.52 552 24.48
133 -4.132662e-01 323 3.13 291 14.25
136 -4.132888e-01 304 3.05 274 13.73

f Node = subproblem in search tree

Table 7.12 Symmetric Dominance Cuts

115
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use a warm start algorithm such as our quadratic programming problem solver versus
using a “cold start” procedure, such as the CPLEX quadratic programming problem

solver.

prob.52 CPLEX QP Restart QP

K flz*,y*) Time Time/Node! Time Time/Nodef
25 2.801919e-02  2480.88 7.17e-03  247.40 7.15e-04
28 -2.044631e-02 1592.85 7.11e-03  147.30 6.58e-04
31 -4.915392e-02 198.13 6.88e-03 18.26 6.34e-04
34 -6.743432¢-02 56.25 6.30e-03 5.30 5.93e-04
37 -7.965479¢-02 10.77 5.88e-03 1.03 5.62e-04
40 -8.658508e-02 1.98 4.86e-03 0.20 4.91e-04
43 -8.951690e-02 1.17 4.57e-03 0.18 7.03e-04
46 -9.157293e-02 0.42 4.08e-03 0.10 9.71e-04

f Node = subproblem in search tree

Table 7.13 Cold Start QP vs. Warm Start QP

prob.500 CPLEX QP Restart QP

K fla*,y") Time Time/Node! Time Time/Node
126  -4.130662e-01  260.50 4.64e-02 29.55 5.24e-03
127 -4.131053e-01 168.05 4.62e-02 19.02 5.20e-03
130 -4.132057e-01 38.44 4.51e-02 5.52 6.32e-03
133 -4.132662e-01 13.35 4.44e-02 3.13 9.69e-03
136 -4.132888e-01 12.45 4.41e-02 3.05 1.00e-02

f Node = subproblem in search tree

Table 7.14 Cold Start QP vs. Warm Start QP

Table 7.15 shows the results from a MATLAB [40] implementation of our ex-
tended Goldfarb-Idnani algorithm. The code that gives these results is a truncated

tree; 1t only processes the down-branches until there are no more than x assets that
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are nonzero. The Goldfarb-Idnani code treats violated bounds as full inequality con-
straints, while the extended Goldfarb-Idnani (extended G-I) algorithm exploits the
structure of the simple bounds as discussed in Chapter 5. In both cases a Cholesky
factorization of the appropriate matrix is updated. It is clear that treating the simple
bounds as full inequality constraints is much less efficient than our method which

exploits their structure.

prob.52  Goldfarb-Idnani  Extended G-I

K Time Flops Time  Flops
25 5.6333 1544653 3.8333 252591
26 5.5667 1463405 3.6667 245916
27 5.0833 1383955 3.5833 239101
30 3.4667 1015330 2.5667 200054
33 2.9167 888358 2.1833 188669
36 2.2000 712667 1.7000 169586
39 1.6500 565275 1.3000 153979
40 1.4667 525623 1.2333 149949
43 1.0833 408245 0.9167 137703
46 0.6833 293108 0.5833 125223

Table 7.15 Simple Bounds as Explicit Constraints
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7.8 Graphical Presentation of Results

In this section, we include a few graphical representations of our results from solving
problems prob.52 and prob.500.

In Figures 7.1 and 7.2, we plot each value of k against the time in seconds for the
code to complete. For prob.52, it is clear from looking at Figure 7.1 the “Subtree”
and “Up-First” heuristics with symmetric dominance cuts take the least amount of
time to complete. Although if our code were implemented differently this would also
be true of prob.500, we see that that the down-first “Reduced DFS” approach with
symmetric dominance cuts works best for prob.500. Although not included in the
results, the down-first “Subtree” approach with symmetric dominance cuts performs
slightly better in practice.

In Figures 7.3 and 7.4, we see similar results as seen in Figures 7.1 and 7.2,
respectively. One observation that can be made by comparing the two is that for
prob.500 the time per node increases when symmetric dominance cuts are added.
This 1s because there are 15335 of these cuts, and a large amount of time is spent
processing these cuts at each node. A better implementation may alleviate this reason
for an increase in time per node.

In Figures 7.5 and 7.6 we compare the time per node for three different algorithms.
It 1s clear from examining these figures that the implicit branch-and-bound approach
is more efficient than the standard branch-and-bound approach. Furthermore, the
warm restart of our extended Goldfarb-Idnani is an even better method than a cold

start method which uses no previous information.
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7.9 Larger Problems

For prob.500, the size of the branch-and-bound tree becomes much larger when we
examine smaller values of k. Table 7.16 show results for smaller values of x than we
have shown in the previous sections. For this problem, we set the maximum number
of nodes to be 1.5 million; f(z!F yF) is the objective function value of the best
upper bound found by the code and f(z,y”) is the value of the lower bound at the
time the code completes. This code uses the “Subtree” upper bound heuristic, the

“Down-First” node selection criteria and symmetric dominance cuts.

prob.500

K f(zP P f(zt yY)  Nodes' Time

60  -1.022380e-01 -2.450006e-01 1500000 6.449166e+04
70 -3.039158e-01 -4.033516e-01 1500000 6.264430e+04
80  -3.837499e-01 -4.132943e-01 1500000 5.741596e+04
100 -4.068966e-01 -4.132943e-01 1500000 5.360170e+-04
110 -4.111856e-01 -4.111856e-01 268647 9.804920e4-03

t Node = subproblem in search tree

Table 7.16 Upper and Lower Bounds for prob.500

Table 7.17 shows results for a larger problem. This problem has 1194 columns and
97 rows, with a universe of 1140 assets. Here f(z! y!?) is the objective function
value of the best upper bound found by the code and f(z%,y") is the value of the
lower bound at the time the code completes. Since there are no valid symmetric
dominance cuts for this problem, this code is run with the “Subtree” upper bound

heuristic and the “Down-First” node selection criteria.
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prob.1140

K f(zIP I f(zt y")  Nodes' Time
1133 8.608667e-07 8.608667e-07 210538 2.0289%e+04
1135 8.157303e-07 8.157303e-07 21068 2.0433e+03
1137 7.830330e-07 7.830330e-07 2404 2.3295e+02
1138 7.673880e-07 7.673880e-07 2285 2.1510e+02
1139 7.561090e-07 7.561090e-07 3 1.5230e+01

f Node = subproblem in search tree

Table 7.17 Upper and Lower Bounds for prob.1140

7.10 Effect of Changing 6

It 1s an interesting experiment to examine the effects of changing 6. It appears that
the smaller the value of 6 is, the fewer nodes that need to be enumerated in order to

determine the optimal solution.

prob.52

0 fla*,y) Nodes!  Time
1.40 1.721255e-02 507413 309.89
1.20 -1.565444e-02 113450 73.04
1.00 -4.915392e-02 28824  20.61
0.80 -8.376025e-02 5373 3.71
0.60 -1.212010e-01 870 0.70

f Node = subproblem in search tree

Table 7.18 Different Values of 8

7.11 Confidence Region Objective

Tables 7.19 and 7.20 show the results from a MATLAB [40] implementation of the

dual algorithm for solving the nonlinear programming problem resulting from using
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Baumol’s objective function, f(”c) = —uT2 + 0/2TVz. The code that gives these
results 1s a truncated tree. The results in Table 7.19 are from a code that processes
the down-branches until k assets have been branched down. The results in Table 7.20
are from a code that processes the up-branches until x assets have been branched
up. The 2-norm of the gradient of the Lagrangian function at the solution is denoted
IVzL]2; in theory, the value of ||V, L]|2 should be zero at the optimal solution. The

number of iterations of the dual algorithm 1s also reported.

prob.52 Down-Branches

K IVoL||2 Iterations Time Flops
27  8.428e-12 50 9.45 3968702
30 2.382e-11 14  3.87 1332384
33 2.299%e-15 0 1.85 500945

Table 7.19 Confidence Interval Objective

prob.52 Up-Branches

K IVoL||2 Iterations Time Flops
24  6.6T5e-15 36 6.10 3412672
27 6.216e-15 29 4.68 2712113
30 4.113e-15 22 3.52 2058257
33 3.87T4e-15 19 2.90 1770012

Table 7.20 Confidence Interval Objective
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Chapter 8

Conclusions and Future Work

In this thesis we have made both theoretical and computational advances in the so-
lution of limited diversification portfolio selection problems. We have applied many
of the techniques used in the solution of mixed-integer linear programming problems
to enhance our ability to solve the mixed-integer nonlinear programming problems
arising from the field of portfolio selection. Some of these techniques include pro-
cedures for determining feasible points, for deriving cutting planes and for choosing
the next subproblem on which to work. Moreover, we have shown that, similar to
mixed-integer linear programming, the relaxations of the subproblems in the branch-
and-bound tree can be solved efficiently using dual algorithms. We have provided
dual algorithms for both objective functions examined in this thesis; these dual al-
gorithms can be implemented to exploit the structure of the simple bounds on the
variables.

The work on this problem is by no means done. More procedures for determining
valid inequalities and feasible solutions can be developed. Improvements in either of
these areas would result in a branch-and-bound tree with fewer nodes. Moreover, if
the implementation of the valid inequalities, including the symmetric dominance cuts
and the updated approximating constraints, is improved, the time spent solving each
subproblem could be decreased enough that the node selection strategy of choosing
the up-branch first is better that the node selection strategy of choosing the down-
branch first.

It may be possible to extend the dual algorithms to the case where the variance-

covariance matrix V 1s positive semi-definite, but not positive-definite. Although we
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have made much progress on developing a dual nonlinear programming algorithm for
solving models with the confidence interval objective function, future work on this
problem could include proving that Algorithm 6.3.1 does not fail in the degenerate
case when 62 > /uTV 14, so long as the feasible region is bounded.
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Appendix A

Derivation of Step Size for Dual NLP Algorithm

For this appendix, we assume that we are at the beginning of a subiteration in
Algorithm 6.3.1. This means that we have primal variables z*, a working set () #

A C My, an index k € M\ A, dual variables 7%, and a v* € IR such that
0

02 > (v*CL + W) Z(v*CL + 1), C4. has full row rank, Cg.2* = da, Cr.2* < dy, and

— i+ Va* — CLrmi —v'Cp. =0,

||dal|z > 0, where
Z=V'-VICL(CaVTICL)ICaV

In the first section of this appendix, we examine the case that |ZCL|; > 0. For
this case, we derive the full primal step size, w;, and show that it i1s strictly positive.

Moreover, we prove that for all 0 < @w < wy, and
T
6% > ((1/* + w)C'g + ,u) Z ((1/* + w)C'g: + ,u) )
We also show how to determine the maximum dual step size w; such that 74(w,) > 0.

In the second section, we examine the case that ZC{ = 0. Given the dual step size

wy, we prove that for all 0 < @w < @y, and

6% > ((1/* + w)Cg + ,u)T Z ((1/* + w)CZ + ,u) )

A.1 Case 1: [|ZCE], > 0

Given the above conditions, we need to determine a step size wq, primal variables

and dual variables 74 that satisfy the system of nonlinear equations
0
VzlVz

—p+ Vi—-Clia = (v +@)CL
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CaZ = da
Cr.z = dg.

Setting A = AU {k}, this is equivalent to determining the optimal solution to the

equality constrained problem

minimize —,uT:c +0vVxTVz
(A.1)
subject to Cir=dg.
Since ||ZCL]|2 > 0, we know that C 4 has full tow rank. By Theorem 6.2.4, we know

that (A.1) has a unique solution if and only if 2 > u?'Zu, where

Z=V"'-VICL(CaVvTICh) OV

Theorem A.1.1 The nullspace matrix
Z=V1—VICL(CVTICL) O V!

of Cy, is such that 6% > u? Zy.

Proof: Since

(CaVoR)™
- CoZCL(CAVICL) 1 + NCLCNT —NCT |
—C.NT 1
where N = (C4V~1C%)71C4 V™!, it is straightforward to show that

_ zZCre.z
7=z kBT A2
Cy.ZCL (4.2)

Because Z is a nullspace matrix for C 4., we know that ZCE = 0. Thus,
w'Zp = (VC+n)' Z(vCp + )
2
= (VCL+ w2 O+ p) — (v Cl + wZCl) J(CrzC)
< (VCL+ )" Z(v Cr + )

< 6
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since 62 > (v*CL + )T Z(v*CL + p) and Z is a positive semi-definite

matrix.O
Theorem 6.2.5 from §6.2 gives us that the solution to (A.1) is

T o= sZptVIICL(CAVTICh) s
o L1 1T -
Ta = —(CaVTICH)TICAV T+ S(CaVTICh) My,

where

dg(C@V‘lcgz)‘ldA 2
02 —ut'Zu
- (dﬂ(csz—lci)—ldA 4 (CuNTdy — dk)z/(Ck:ZC,Z)) :
0* — u"Zp + (CrZp)* /[ (CrZCr) '

The dual variable associated with the constraint Cr.x = dj, 1s

v T =

C’k;Z,u 1 (Ck;l TTdA—dk)

CCrZCL s Cr.ZCL

Thus @wy; = 7 — v* 1s the full primal step size; we show in Theorem A.1.4 that

Cr. (x + Az(wy)) = d. In order to prove that @y > 0, we first need to prove the

following theorem.

Theorem A.1.2 Let
9(@) =0 — (v + @)CL + )" Z((v* + =)C; + ).

Then the function g(w) > 0 for all @w between 0 and w;.

Proof: We first show that ¢(0) > 0 and ¢(cw;) > 0, and then show that
g(w) is a strictly concave function.
Since ¢(0) = 02—(1/*C,£—|—/L)TZ(1/*C,£—I—/L) and 6% > (V*C]z?—I-/L)TZ(I/*C]z?—{-

1), we know ¢(0) > 0.



130

Since g(wy) = 0* — T Zu+ (g::ZZg); — (C’“iv;;dgc_,gk)2, it 1s easy to show that
: k: s : k:
dT(CA:V_ICT.)_ldA
() = AT _Ca)

Since ||d4l|2 > 0, g(w1) > 0.
The function g(w) is strictly concave since

¢ (w) = —2C.ZCL..

Thus ¢g(w) > 0 for all @ between 0 and ;.0

To prove that the step size w; > 0, we first show that the function c¢(w)
Cr.(z* + Az(w)) is a strictly increasing function on the interval between 0 and wy,
without specifying an ordering of 0 and w, and then show that ¢(0) < ¢(wy).

Theorem A.1.3 Let ¢(w) = Cr.(z* + Az(w)). Then ¢(w) is a strictly

increasing function on the interval between 0 and w;.

Proof:

VitVz
(" + =) ZCE + Cr.Zp) —

c(w) = Cra™+
VA *TVL *
%(V*Ckzc;f + CLZp)
The first derivative of VZ1V z with respect to @ is
ViTVi (v + =) Cr ZCF, + CaZp)
9(=) '

2
, Ve (v +@)ChZCL + CaZp)
C (w) = .
0 9(=@)

ViTVz

+ - CLZC
ViTVz

| cnzel +

2
(" + ®)CLZCL + CuZp)
9(@)
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Since g(w) > 0 for all @w between 0 and w;, ¢(w) is strictly increasing

between 0 and w,;. O

Theorem A.1.4 Let ¢(w) = Cr.(z* + Az(w)). Then ¢(0) < c(w).
Proof: Since Z(w) = 2* at w = 0, ¢(0) < di.

At @y, we see that

c(wy) = Cr(a™+ Azx(wr))

ViTVz

= Ck::[;* +

—%(y*ckzzcg + CLZp)

((v" + @1)CLZCL + CrZp)

= Cra” — T(f@j(},ﬁ + Cr.Z )
VTV x* \/9(0)

_|_

; ()«w+wm%ﬂ£+qz@
g \@1

= Ck:ATTdA + SCk:Z:u
C’k;Z,u 1 Ck;ANTdA — dy, T
.t — v | CrZC
i (” CrZCT s ( CLZCT V) TRE Tk
= CuNTds— Cu.NTd4 + d,

= d.
Thus ¢(0) < ¢(wwq).0

Corollary A.1.1 The scalar w; 1s strictly positive.

Proof: Since ¢(w) is a strictly increasing function on the interval between

0 and @y and ¢(0) < ¢(w1), we know that cw; > 0.0

Thus we have determined the full primal step, Az(w;). We now need to determine
a wy in the interval [0, o] such that 7y — A74(wy) > 0 and either wy = w; or there
exists a j € A such that 77 — Ar;(@;) = 0. We first show that the function 7;() as

a function of @ is either convex or concave.
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Theorem A.1.5 The dual variable 7j(w) = 77 — A7j(w), j € A, as a

function of w, is either convex or concave.

Proof: Since

(1 A /$*TVCC*

differentiating 7;(cw) with respect to w gives

Fiw) = —NCL
o ((v' + @) Ch ZCL + CiZp)

AN (O + )+ 77,

where o = (¢*TVe*)'/2 . (zTVz)~Y/2. Differentiating 7;(zw) again with

respect to w gives
#(@) = —a (N CL+p) +77).

where

2
((V* + @)CrZCE + Ck;Z,u) Ck;ZC,Z?

a—=(TvVaz* 1/2 #VE -1/2
(@ Va) - @ va) o= o(=)

Since & > 0, 7j(w) is either convex or concave.O

This means that 7;(cw) changes from being positive to being negative at most once
as @ increases from 0 to w;.

If 7;(w) is strictly concave, then it evaluates to zero no more than once on the
interval [0,c0;]. If 7;() is strictly convex and 7/(0) > 0, then 7;(w) is nonnegative
on the interval [0, ]. If 7;(ww) is strictly convex and 7/(0) < 0, then 7;(w) evaluates
to zero at most twice on the interval [0,z0;1]. In each case for which we know that
7j(w) evaluates to zero at least once on the interval [0,c;], we can use a line search

technique to find the first such zero.



133

Letting @ be the minimum value of @y and @w,, if @ = @, then a full primal step
is taken and the set of working constraints is updated to A = AU{k}. In this case we
need to show that % > u? Zy, where Z is the nullspace matrix for C 4. If, on the other
hand, a partial step i1s taken such that the set of working constraints is updated to
A = A\{i}, then we need to show that 67 > ((1/* +@)CL + ,u)T Z ((1/* +@)CL + u),
where Z is the nullspace matrix for C 5. Moreover, if A = () or d5 = 0, we are now
in the degenerate case as discussed in §6.3.3. Since that special case 1s treated in a

different manner, here we assume that we are not in a degenerate case.

Theorem A.1.6 If a full primal step is taken (& = @), then

0> > uT Zp.

Proof: Since a full primal step was taken, we know || ZCy.||2 > 0, so from
Theorem A.1.1, we see that

_ ZCICwZ

7=z . A3
Cr.ZCT (4.3)

Because Z is a nullspace matrix for C 4., we have that ZC{ = 0. Thus,
w'Zp = (VCL+ )" Z(vrCL + p)
2
= (CL+ w2 O+ p) = (v CE+ wZCl) [(CrzC)
< (CL+ )" Z(v Cr + )
< 6
since 82 > (v*CL + )T Z(v*CE + 1) and Z is a positive semi-definite

matrix.O

Theorem A.1.7 If a partial primal step is taken such that : € Mj is
dropped from the working set, then A = A\{:i}. If A # 0 and ||d 4|2 > 0

6% > ((1/* + 'JU)C,? + ,u)T 7 ((1/* + @)C,z? + ,u) ,
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where Z is the nullspace matrix for C 4.

Proof: = The updated primal and dual variables satisfy the system of

nonlinear equations

it VE(®) - Chia(®) = (v +)CE
(@) 'Vi(@) 4 ¢
Caz™ = dg
Ck:.fl?* = Jk,
where dy = Cr.z*. Let A= AU {k},
C . dx
ca=| "] anddg=] °
Ch. dy,

The matrix C 4 has full row rank since ||ZCy.||; > 0.
This implies that Z(&) is an optimal solution to the problem
minimize —plz +6VaTVa

subject to Crrx=dg

Ck:fc = Jk

Then, since ||d4]|2 > 0, we know that #* > u? Zyu and, by Theorem 6.2.5,

&I
Il

8Zp+ Ndy
. 1
i o= —NM—|—§(CA:V_10£:)_1dA,
where
N = (cgviel) e v,
Z = V?'-VCIN, and

(dfi(CA:V*Cﬁ:)‘ldA) 2
02 — uTZu

w>
|
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_ [ dA(CAVTICE) a4 (CeNTd g — di)?/(CrZCH)

As in the proof for Theorem A.1.2, since

(CkZ/’L)Z (CkJVTd./{ - Cik)2

V=0 T2 _ - ad
9(=) WAt e ZCT 20,2CF

it 1s easy to show that

L d(CVTICT )y
g(w): A = A: ]

Since ||d4]|2 > 0, g(&@) > 0.0

A.2 Case 2: | ZCE|l2 =0

We now discuss the case that ZC{L = 0. Since in this case a partial step is taken such

that Az(@) = 0, we only need to show that g() > 0 and
T _
6% > ((1/*—|—€t)C,§—|—,u) A ((1/*—|—@)C,€—I—u) ,

where Z is the nullspace matrix for A = A\{i} and index i € M, was the index
0

dropped from the working set. If A = () or d 4 = 0, we are now in the degenerate case

as discussed in §6.3.3. Since that special case is treated in a different manner, here

we assume that we are not in a degenerate case.
Theorem A.2.1 If ZCL =0, then for any @ € IR,
T
6% > ((1/* + w)C’,Z + ,u) Z ((1/* + w)C'g: + ,u) ,

where Z is the nullspace matrix for Cy4..
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Proof: Since ¢(0) = 6? — (v*CL + )T Z(v*CL + ) > 0 and ZC. = 0,

we know that

oz = = (" +2)CL+4u) Z((v +E)CE+n)
= ¢(0)

> 0.0

We present the next result as a corollary to Theorem A.1.7.

Corollary A.2.1 If a partial step is taken such that : € M, is dropped
from the working set, then A= A\{i}. If A # () and ||d 4]l > 0

T _
6% > ((f—l—c‘t)C’Z—{—,u) Z ((1/*—|—'@)C,£—I—,u) ,
where Z is the nullspace matrix for C 4.

Proof: The proot of Theorem A.1.7 is applicable in this case as long as

we show that the matrix C 4 has full row rank, where A= AU {k},

Ca dg
Ci= and dg =
Ck: dy,
We know that Cz has full row rank, so we just need to show that

1ZC. > 0.

0 = CpzCt

= Cnzcl—(ci.zchy?)(c.zch

1

S CkZng

with strict inequality occurring if and only if C;. ZCY # 0. Because i € A
was the index that was dropped, we know that N,.CL > 0. But since

N;. = ZCF, we get that C;.ZC}L > 0.0
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