Compiling Reductions in Data
Parallel Programs for Distributed
Memory Multiprocessors

Bo Lu

CRPC-TR97723-S
July 1997

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted in November 1997; Also available as Rice Uni-
versity M.S. Thesis

RICE UNIVERSITY

Compiling Reductions in Data Parallel Programs
for Distributed Memory Multiprocessors

by
Bo Lu

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Science

APPROVED, THESIS COMMITTEE:

Dr. John Mellor-Crummey, Chairman
Faculty Fellow
Computer Science

Dr. Ken Kennedy
Noah Harding Professor

Computer Science

Dr. Linda Torczon
Faculty Fellow
Computer Science

Houston, Texas

July, 1997

Abstract

Compiling Reductions in Data Parallel Programs
for Distributed Memory Multiprocessors

Bo Lu

Reduction recognition and optimization are crucial techniques in parallelizing com-
pilers. They are used to detect the recurrences in a program and transform the
originally sequential code into parallel code. Because of the expensive interprocessor
communication cost, reduction recognition and efficient code generation become even
more important for distributed-memory multiprocessors. As part of the dHPF paral-
lel compiler project, we developed reduction recognition and parallel code generation
strategies for distributed-memory multiprocessors.

Using combination of dependence analysis and pattern matching, our reduction
recognition technique can detect a broad range of reduction operations in complex
loop or control flow structures. It recognizes reductions into scalar variable as well
as reductions into one or more elements of an array. To generate efficient code, we
generalize dHPF’s computation partitioning algorithm to assign computations for
reduction statements and apply various techniques to reduce the number of collective
communications. Furthermore, we “factor” some reduction statements into a group
of reduction statements to better exploit data locality.

We have evaluated the effectiveness of our optimization on an IBM Scalable
PowerParallel System SP2. The results indicate that without reduction optimiza-
tion, reduction operations are sequentially executed and become an execution bot-
tleneck; while with reduction support, we get good speedups and the time for re-
ductions is almost negligible as compared to that for the non-optimized version.
Compared to IBM’s xlhpf compiler, dHPF can recognize a larger set of reduction
operations and dHPF achieves 111% to 270% increase in efficiency for combined
extreme value/location reductions. Our experiments show that factorization is an
effective approach which reduces the reduction operation time by 50% or more where

it is applicable.

Acknowledgments

I would like to thank my advisor Dr. John Mellor-Crummey for his guidance and
valuable advice throughout this work. I would like to thank Dr. Ken Kennedy and
Dr. Linda Torczon for serving on my committee in spite of their busy schedules. I
also want to thank Dr. Vikram Adve, Ajay Sethi, Nenad Nedeljkovic, Mike Paleczny,
Nat MclIntosh, Collin McCurdy, Lei Zhou, Lisa Thomas, Monika Mevenkamp, and
other dHPF group members for their knowledge and experience, and for being ex-
tremely helpful and reliable during the implementation of the compiler. My thanks
to Collin McCurdy, for a thorough reading of my thesis and many insightful sugges-
tions. I would like to thank Lennart Johnsson and University of Houston for providing
their SP2 machines for our experiments. I am also grateful to Ellen Butler and Ivy

Jorgensen for their assistance.

Contents

Abstract
Acknowledgments
List of Tables

List of Illustrations
Introduction

Background
2.1 Reduction Optimizations

Compiler Support for Reductions

3.1 Reduction Recognition oL
3.1.1 Single Statement Sum and Product Reductions
3.1.2 Extreme Value Reductions
3.1.3 Multistatement Reduction Groups for Sum and Product

Reductions oo

3.1.4 Reduction Idioms Recognized

3.2 Code Generation
3.2.1 Computation Partitioning for Reduction Statements.
3.2.2 Factorization and Data Locality
3.2.3 Computation Partitioning for Reductions with Privatizables
3.2.4 Code Generation for Distributed Memory Machines

Evaluation
4.1 Reduction Performance in dHPF

4.2 Comparison with Reductions in xlhpt

4.3 Performance Impact of Reduction Factorization

Related Work

i
11l
vi

Vil

INEEIS

© o -1 =~

12
13
15
16
17
17
19

25
25
29
33

40

6 Conclusions

Bibliography

42

52

4.1

4.2
4.3
4.4

Tables

Execution time for erlebacher reduction kernel with and without

reduction optimization L L
Execution time of tomcatv reduction kernels for xlhpt and dHPF . . .
Efficiency of tomcatv reduction kernels for xlhpt and dHPF

Comparison of programs with and without factorization support . . .

2.1

3.1
3.2
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

6.1
A-1

Illustrations

Sum reduction example L Lo

Single statement sum and product reduction algorithm
Algorithms to determine the properties of the rhs variables
Algorithm for extreme value reductions
Algorithm for building reduction groups in a program
CP propagation algorithm for reductions with privatizables

Pseudo-code to encode coordinates for extreme value reductions

Reduction kernels in erlebachero
Code generated for erlebacher reduction kernel with reduction support
Speedups for erlebacher redcution kernel(N=>514, 100 iterations) . . .
Tomecatv reduction kernels o000
Code generated for tomcatv reduction kernel by dHPF compiler . . .
Recoded tomcatv reduction kernels, Version 1
Recoded tomcatv reduction kernels, Version 2
Speedups for tomcatv reduction kernelso
Source program for factorization testo
Code generated by dHPF with factorization support
Code generated by dHPF without factorization support

Time overhead for reductions without factorization support(p=4)

A multi-element reduction example
Code generated for erlebacher reduction kernel without reduction
support, Part 1 of 3 o
Code generated for erlebacher reduction kernel without reduction

support, Part 2of 3o oo

10
11
11
14
18
23

26
27
28
30
31
32
33
35
36
37
38
39

43

46

A-3

A4

A-5

A-6

viil

Code generated for erlebacher reduction kernel without reduction

support, Part 3of 3o o 48
Code generated for tomcatv reduction kernel by xlhpt compiler, Part
Lot 3. . o o 49
Code generated for tomcatv reduction kernel by xlhpt compiler, Part
20f 3. 50

Chapter 1

Introduction

Developing software to obtain good performance on parallel computers has proven to
be a difficult problem because of the programming complexity. Data parallel program-
ming is an attractive programming paradigm where different processes perform the
same operations on different portions of a data structure (such as an array). It reflects
a simple execution model, which has a single-threaded control structure, global name
space and loosely synchronous parallel execution. Data parallel programming scales
well to large machines. Languages such as High Performance Fortran (HPF) provide
mechanisms for specifying the mapping of data elements to processors along with
aggregate operations that can be performed in parallel on data mapped to different
processors. This high-level support aids construction of portable data-parallel pro-
grams. Optimizing compilers are required to exploit the parallelism inherent in data
parallel programs to provide efficient implementations on parallel processors. Among
many of the research issues arising in compiling data parallel programs, reduction
handling is one with great importance.

A reduction is a commutative and associative operation which maps an array of
n dimensions to an array of m dimensions, where 0 < m < n*. Reductions occur
explicitly in HPF programs when one uses FORTRAN 90 intrinsic functions. They
also occur implicitly in programs when a location is updated on each loop iteration
with the result of a commutative and associative operation applied to its previous
contents. Reduction operations appear in many contexts such as kernels for matrix
multiplication, image processing, computational geometry, and sorting among others.

When using a compilation model that discovers parallelism through dependence
analysis, reductions are classified as inherently sequential operations, since the re-
peated updates to the same location are considered to be prohibitive to parallel
execution of a loop. We can parallelize reduction computations safely by noticing

that the ordering of the commutative updates does not need to be preserved. By

*an array of 0 dimension represents a scalar value.

applying program transformations, reductions can be optimized effectively for a va-
riety of architectures. On parallel machines, reductions can be computed efficiently
by having each processor compute a partial reduction result in parallel and then hav-
ing processors synchronize to combine these partial results into the global reduction
result. If we have a reduction of n elements on p processors, and the elements are
evenly distributed, we can compute the result in time O(n/p+ log p) by parallelizing
the reduction. Moreover, in compilers that don’t support loop distribution, this dif-
ference is more substantial when a larger granularity of parallelism is exposed after
“eliminating” the last loop-carried dependence.

HPF includes and extends many of the reduction intrinsic functions in FOR-
TRAN 90. By using these operations, data parallel programs can be coded at a
higher level, with potentially greater efficiency. However, HPF and FORTRAN 90
intrinsic functions are only able to express a limited set of reduction operations di-
rectly. For example, some of the multi-element reductions, which reduce the results
to multiple elements in an array, such as A(index) = A(index) + t and the multi-
dimensional reductions, which carry out the reductions on more than one dimension,
such as S(z1) = S(¢) + A(¢, j, k) are unimplementable using only a single invocation of
an intrinsic function. Because not all programmers are aware of the occurrences of
reductions or the existence of intrinsic functions, many reduction operations appear
in an implicit form written by programmers. Calling to reduction intrinsics can al-
ways be transformed into an equivalent implicit form consisting of a loop nest that
performs the reduction. Therefore, in our dHPF system, we have implemented a re-
duction recognition package that identifies reductions written in F77 sequential form
and generates parallel code for them.

Reduction recognition and optimization are important techniques in an optimizing
compiler for data parallel languages. We believe that with dependence analysis, pat-
tern matching and flexible code generation support, we can provide efficient reduction
support for distributed memory machines. Our goal is to develop a general reduction
recognition method to recognize a broad range of reduction operations, along with
an effective code generation strategy. Because of the high communication cost on
distributed memory systems, we believe it is important to exploit data locality for
generating efficient code.

Many of the previous approaches for detecting recurrences are principally based
on pattern matching. The SUIF [9, 10] compiler uses a simple recognition strategy

based on pattern matching the commonly occurring reductions. A unique strength

of SUIF is that it can recognize inter-procedural reductions. Polaris [4, 13] can rec-
ognize single address reductions’ as well as histogram reductions? using an approach
similar to ours. However, both SUIF and Polaris only generate code for reductions on
shared memory systems, and haven’t addressed the issues of data locality and com-
munication optimization. The IBM HPF compiler [15] recognizes reductions into
scalar variables. It generates code for the distributed-memory machines and has an
optimization approach to coalesce and aggregate multiple reduction communications.
However, it can not deal with multi-element reductions or multi-dimensional reduc-
tions. The need of doing forward substitution and reduction operand prefetching
makes the reduction optimization impossible when the reduction operation is more
closely intermixed with other computations.

Based on previous reduction recognition work in PFC [5], which was targeted
for synthesizing FORTRAN 90 intrinsic reductions from their implicit form, in dHPF
compiler we implemented reduction recognition for parallel reductions and gener-
ated reduction code for distributed-memory machines. Our work shows that efficient
handling of reductions that takes data locality into account is crucial for obtaining
high performance with HPF on distributed memory machines. On a 64-node SP2
machine, we experimentally evaluated our techniques and demonstrated significant
performance improvements with our reduction optimizations.

The rest of this thesis is organized as follows. In Chapter 2 we give a detailed
description of reduction recognition and briefly introduce some related work in this
area. The implementation for reduction recognition and code generation are described
in Chapter 3. The experimental evaluation are presented in Chapter 4. Chapter 5

presents conclusions of this work.

Tsingle address reductions are the same as scalar reductions in our model.

P . . .
+histogram reductions are the same as array reductions in our model.

Chapter 2

Background

2.1 Reduction Optimizations

A reduction is an operation which maps an array of n dimensions to an array of m
dimensions, where m < n and m > 0. Many reductions occur implicitly in programs
as statements that perform a repeated commutative and associative operation on the
same element. The commutative and associative operations include SUM, PRODUCT,
MIN /MAX, MINLOC/MAXLOC. As an example, the following loop and statement S}

performs a sum reduction on the elements of A to produce a scalar S.

DOk=1,N
S S =25+ A(k)

ENDDO

Figure 2.1 Sum reduction example

Dependence analysis is a fundamental approach to uncover the potential paral-
lelism in a program. There is a data dependence from statement 57 to statement S, if
both statements access the same memory location, at least one of them stores into it,
and there is a feasible run-time execution path from S; to Sy [11]. There are three
types of data dependences: flow, anti, and output dependences. A flow dependence
or true dependence exists if S; stores into a location that is later read by S;. An anti-
dependence exists it 57 reads from a location into which S, later stores. An output
dependence exists if both statements write into the same location. A dependence is
said to be loop-carried if the instances of statements S; and S; that access the same

memory location are in different loop iterations.

In the example, the statement S = S + A(k) reads and writes S in one iteration,
and also in the next iteration. So, there are loop-carried flow, anti, and output
dependences on S between the instances of the statement in different loop iterations.

The Fundamental Theorem of Dependence states that any reordering transfor-
mation that preserves every dependence in a program preserves the meaning of the
program [11]. Thus without knowledge otherwise, loop-carried dependences require
the sequential execution of the loop iterations, and are prohibitive to the paralleliza-
tion of the loop when the dependence is concerned.

However, a sequential order of operations need not always be preserved in the
presence of dependences. Semantically, the code in figure 2.1 accumulates the sum
of elements in array A. Sequential order does not need to be preserved between
statement instances since the sum operation is commutative and associative.

After recognizing statement Sy in Figure 2.1 as a reduction operation, the loop
with statement 57 can be computed more efficiently in several ways depending on the

underlying hardware and software support, for example:

1. For machines with a pipelined addition operation, such as a vector machine,
suppose it has a four-stage addition pipeline, the sum reduction can be decom-

posed into four separate sum reduction computations: [11]

S =0.0
DO k=1,4
SUM(k) = 0.0
DO I =k, N, 4
SUM(k) = SUM(k) + A(I)
ENDDO
S =S8+ SUM(k)
ENDDO

We can then apply loop distribution, loop interchange and vectorization to the

above computation and get:

S = 0.0
DO k=1,4
SUM (k) = 0.0

ENDDO
DO I=1% x4,4
SUM(1:4)=SUM(1:4)+ A(I:1+3))
ENDDO
SUM(1:N - x4)=SUM1:N—-5 x4)+A(f x441:N)

4 4

DO k= 1,4
S =5+ SUM(k)
ENDDO

We can fill the four-stage addition pipeline with computations for SUM (1) +
AN, SUM2)+ AL+ 1),SUM(3) + A(+ 2) and SUM(4) + A(I + 3), and
the vector computation for A(/ + 4) can begin immediately after the vector

computation for A(I) has finished.

Once the four partial sums are available in SUM(1:4), the total sum can be com-
puted by three floating point additions. Thus, sum reduction can be computed

at nearly full vector speed.

2. Parallel reduction On a parallel machine, we can perform reductions in paral-

lel with each processor computing a partial sum and then combining the results

of individual processors at the end.

Chapter 3

Compiler Support for Reductions

Handling reductions in dHPF compiler proceeds in two phases. First we recognize the
reduction patterns corresponding to the operations of SUM, PRODUCT, MIN, MAX,
MINLOC and MAXLOC. Second, we generate parallel code to implement reductions for
message passing systems that use the message passing interface (MPI) communication

standard.

3.1 Reduction Recognition

In the reduction recognition phase, we use three program representations: a data
dependence graph, single static assignment form (SSA) [11], and an abstract syntax
tree (AST). A data dependence graph is used to identify the initial candidates for
reduction statements; we use SSA to trace down the definitions of the right hand side
variables and use AST to examine statement structures to discover the properties of
the right hand side variables in a reduction statement.

There are two parts to the reduction recognition phase. First, for each assignment
statement, we check if it is reducible; if it is reducible, we classify its reduction type.
Then, we gather related reduction statements into reduction groups. For each group,
we check if it is a reducible group (for example, all the statements in the group must
have the same reduction type), and decide the levels that the reduction can be carried
on.

For SUM or PRODUCT reductions, a reduction group is formed by reduction state-
ments with the same left hand side (LHS) accumulator and same reduction operator.
Not all statements need to be at the same loop level. For MIN/MAX reductions, a
reduction group is formed by the assignment statement that record the extreme value
along with any corresponding assignment statements that record the position of the
extreme value. By forming a reduction group at reduction recognition time, we can
use a single collective communication to get the reduction result in the code generation

phase. This effectively eliminates the need of reduction coalescing implemented in

IBM HPF compiler [15], where they first generate separate reduction communication

calls for each statement and then merge them together.

3.1.1 Single Statement Sum and Product Reductions

Consider a statement inside a possibly imperfect loop nest:

DO i, =...
Alar, ag, .oy a,) = X X Alag, ag, .., a,) + Y (3.1)
ENDDO
ENDDO
ENDDO

The statement (3.1) is a candidate for sum reduction if X is equal to 1 and Y is an
expression that is constant with respect to (w.r.t.) A(ay,aq,...,a,)% . Statement (3.1)
is a candidate for product reduction, if Y = 0 and X is constant w.r.t. A(aq, az, ..., o).

The reduction statement can be located anywhere in a loop nest, it can also be

inside a control statement, such as:

DO k=1, upb
IF (A(k).GT.0)
T =T+ A(k)
ELSE
T=T- A(k)
ENDIF
ENDDO

Sz is said to be constant with respect to (w.r.t.) y when z is invariant to y for one or more loop
levels.

Algorithm for the Single Statement Sum and Product Reductions

The outline of the algorithm for single statement sum and product reductions is
shown in Figure 3.1. It takes a single assignment statement as an input and returns
the appropriate reduction type. This single statement reduction algorithm is used by
the reduction group algorithm described in Section 3.1.3 to check every assignment

statement inside a loop.

3.1.2 Extreme Value Reductions

Using the AST, dependence graph and control flow graph data structures, we are also

able to recognize MIN /MAX, MINLOC /MAXLOC reductions. For example:

DO I = 2, 100

IF(C(I) .GT. MAX) THEN
S MAX = C(I)

ENDIF
ENDDO

Sy is recognized as a MAX reduction.

DO I = 2, 100
IF(C(I) .GT. MAX) THEN
S; MAX = C(I)
S, MAXI=1
ENDIF
ENDDO

Sy Sy are recognized as a group of statements for MAXLOC reduction.

Algorithm for Min/Max, MinLoc/MaxLoc Reduction

Figure 3.3 shows the algorithm to determine if statement Sy is MIN /MAX (MINLOC /MAXLOC)

reducible.

10

Input: a single assignment statement.
Output: a reduction type classification.

1. Use the dependence graph to check if there are loop-carried flow, anti and output dependences
on the statement. If not, return RD_NO_REDUCE.

2. If the LHS is an array element, check if it is identical to each use of the variable on the rhs. If

not, return RD_NO_REDUCE.

3. Use the algorithm shown in Figure 3.2 to check each term (X x A(a1, @s,...,a,), Y in equa-
tion (3.1)) on the rhs. Follow the SSA edges and examine the AST structure to determine
their relationships with the induction variable and LHS. This process is used to find out the
corresponding expressions X, A, Y on the rhs. X x A(ai, g, ..., a,) should be the only term
that is not constant w.r.t. LHS, and Y represents the rest of the expressions on rhs. Based on
the properties of X and Y, we can classify the reduction type of the statement.

4. Return the appropriate reduction type classification for this single statement. The five types
are:

(a) RDISSUM: X =1,Y #0, and Y is not constant w.r.t. the induction variable.

(b) RDIS_.PROD: X #1,Y =0, and X is not constant w.r.t. the induction variable.
(¢) RDIS.ALGESUM: X =1,Y # 0, and Y is constant w.r.t. the induction variable. We

can compute the sum directly using a single statement:A = A 4+ Y X iter, where iteris
the number of iterations.

(d) RDIS.ALGE_PROD: X # 1,Y =0, and X is constant w.r.t. the induction variable.
We can compute the product directly using a single statement: A = A x X" where
iter is the number of iterations.

() RD_NO_REDUCE: not reducible. This includes statements that failed the tests in steps
1 and 2, and also the statements that belong to none of the above categories.

Figure 3.1 Single statement sum and product reduction algorithm

11

We use a recursive process to check if X or Y is constant w.r.t. the induction variable and LHS.
For example, if we want to check whether a variable t in expression Y is constant w.r.t. the induction
variable 1,,:

1.

Check if 2, appears directly in ¢, if so, return non-constant.

2. If t is constant or it is not defined in loop with induction variable i,,, return constant.
3. Otherwise, we transitively follow the SSA edge to find the previous definition(s) for ¢.
4.
5

For an assignment defining variable ¢, get the rhs expression.

. Recursively examine each term on the rhs. If every term is constant w.r.t. i,, the variable

defined in this statement is constant w.r.t. i,,. Otherwise if one of the terms is not constant
w.r.t. i,, the variable defined in this statement is not constant w.r.t. i,.

Figure 3.2 Algorithms to determine the properties of the rhs variables

Input: a single assignment statement S;.
Output: reduction type classification and the reduction group formed by the related statements.

Make sure S is immediately control dependent on an ‘if’ statement. Get the conditional
expression for the ‘if” statement.

For each statement immediately control dependent on the ‘if’, check if one of them is MIN /MAX
reduction by looking for an assignment statement that records an extreme value.

If none of them is a possible MIN/MAX reduction statement, S; can not be
MIN/MAX(MINLoc/MaxLoc) reducible. Otherwise

Check all the other statements that are immediately control dependent on the ‘if’ statement,
make sure they are the possible MINLOC/MAXLOC reduction assignment statements recording
the positions of the extreme value. If other statements exist, it is not a possible reduction.

Compare the MIN/MAX statements with the enclosing if statement. By looking at the operator
in the conditional statement and the control dependence label of the branch the MIN/MAX
statement is in, we can decide its reduction type. We can decide if it is MIN or MAX reduction,
and in the case where location is computed, we can decide if it is MINLOC or MAXLOC reduction.
Return the type and the relevant information.

Figure 3.3 Algorithm for extreme value reductions

12

3.1.3 Multistatement Reduction Groups for Sum and Product Reductions

A group of reducible statements with the same LHS accumulator and the same reduc-
tion operator can form a reduction group. For example, the following is a reduction

group of SUM operations with the accumulator of 7"

I'=T+y
T=T+y;

By forming the reduction group, we can store the local reduction result (a local
accumulator for 7" in the example) in the same place for all the reduction statements
in the group, and use a single collective communication operation to get the global
result. The collective communication is effectively a barrier operation, which is quite
expensive. In IBM HPF compiler [15], they first generate a separate communication
event for each reduction operation, and then apply reduction coalescing and aggrega-
tion to merge some of the communication operations. By forming the reduction group
and generating one communication event for each group, we effectively eliminate the
need for communication coalescing in many cases.

In order to be a reduction group, the accumulator 7' can not be modified or ref-

erenced in other statements beyond the group in the same loop level. For example:

Do =1,upb
S1 I'=T+wy
Sy T'=1T+y,

Sh T=T+y,
Q=T
ENDDO

Since the value of T' is needed inside the same loop, we can’t use reduction opti-
mization for statements S; to S,. If the value of T' is referenced or modified in other
statements in an outer level, the final reduction result of 7" must be computed before
the use or modification. So the place of references and modifications of T' by other

statements will decide how many levels the reduction can be carried out.

13

Reduction Levels

In our recognition package, we recognize the reduction groups at different levels in a
program. We use the data dependence graph to detect modifications and references

to the LHS to decide how many levels the reduction can be carried out. For example:

DO k=1, upbl
G S =5+ B(k)

DO ¢ =1, upb2
Gy S=S5+C()
DO j =1, upb3
Gy S =5+ E(y)
ENDDO
Gy S =54 D(z)
ENDDO
ENDDO

The above loop nest contains 2 reduction groups G; and (5 that contain the
statements as labeled. Since S is referenced in Sy, which is not in any reduction
group, we will need the value of S at statement S;. Therefore, reduction optimization
is not possible for statements in group G;. On the other hand, since we can compute
the local S out of order in loop ¢ and j and provide the final reduction result in level
k, before the use of S in statement S;. Therefore, we say group G5 is reducible in the

inner two loops.

Algorithm For Building Reduction Groups

The process for finding reduction groups in a program is illustrated in Figure 3.4.

3.1.4 Reduction Idioms Recognized

As we show in Chapter 4, we can obtain good performance with reduction opti-
mization, while reductions often become a bottleneck of programs without reduction

optimization. So, it is very important to have a powerful reduction recognition pack-

14

Input: a Fortran 77 program.
Output: all the reduction groups in this program.

1. Build reduction groups for statements within the same loop.

e For each assignment statement inside a loop, apply the algorithm shown in Figure 3.1
to get the reduction type for the statement.

e If it is reducible and it is not a member of an existing group, build a group of reduction
statements with the same accumulator, same reduction type within the same loop.

2. Merge reduction groups at different loop levels. If we have two reduction groups: G in level
m and G5 in level n, where m < n. We can merge (G; and G5 if they have the same accumula-
tor and reduction type and there is no reference or modification of the accumulator by other
statements between levels n and m. Otherwise, if the reduction accumulator is referenced or
modified in level &k, where m < k < n, group G in the outer loop is not reducible and we can
not merge the two groups.

Therefore, for each reduction group G; at level m:

(a) Search all of the dependences of the LHS variable to find other statements that have
referenced or modified it. If one such statement is in another reduction group G2 which
has the same accumulator and reduction operator and it is at some level k£ > m, we say
(1 and G4 are compatible and mark G5 as a candidate group to be merged with G,
later. If the statement is not in another compatible reduction group, and it is at some
level k£ > m, mark G; as “not reducible”.

(b) If G1 is not marked as “not reducible”, merge G with all the compatible reduction
groups at levels & > m, such as (G5 in the above example.

(c¢) Decide the level which the reduction can be carried on based on the dependences we
have checked in step (a).

Figure 3.4 Algorithm for building reduction groups in a program

15

age. In dHPF, the algorithms described earlier in this section can recognize a broad

range of reduction operations:

e [t can recognize scalar reductions which accumulate the results into a scalar
variable, and multi-element array reductions which accumulate the reduction

results into one or more elements in an array.

e It can detect reduction operations in any loop level, and can decide how many

levels the reduction operation can be carried out.

e It can detect reduction operations inside any control flow statement, such as
“if a then s = s *a(2)”, and this reduction statement can form a reduction

group with other statements outside the control statement.

o It can detect MIN/MAX and MINLOC/MAXLOC reduction written in different
forms of if structures, and can recognize the MIN/MAX or MINLOC/MAXLOC
for absolute values. We show such an example from the SPEC 92 Tomcatv

benchmark program in the next chapter.

e [t can recognize reductions which are closely intermixed with other computa-
tions. For example, it can use arrays or privatizable variables which are defined
previously in the same loop while in most other compilers, they require the
reduction elements to be prefetchable and they will isolate the reduction com-

putation from other operations.

3.2 Code Generation

Compiling data parallel programs to distributed-memory machines can be separated
into two major phases. The first phase determines how to decompose the computation
and data across the processors. The goal is not just to parallelize the application,
but also to minimize the communication overhead by minimizing the frequency of
messages. In dHPF, data layouts for arrays are specified by HPF data layout direc-
tives in the user program. Based on data layouts, the compiler selects a computation
partitioning, which is a map from each statement instance to a processor or multiple
processors, that minimizes data movements. The second phase of the compilation is
to generate the code so that each processor will execute its allotted computation and

communication correctly and efficiently.

16

3.2.1 Computation Partitioning for Reduction Statements
Computation Partitioning Model in dHPF

dHPF supports a computation partitioning (CP) model [1] in which each statement in
a loop may have a different partitioning. This differs from the CP model supported by
SUIF [2] and Barua, Krans & Agarwal [3] which assigns a single CP to an entire loop
iteration. This is also more general than the widely-used owner-computes rule [14].
Computation partitionings in dHPF allow each statement to have one or more com-
putational “homes” that specify where instances of the statement will execute. For
example, for a statement inside a loop nest with iteration space 7, we can specify the
computation partitioning (CP) to be the owner(s) of one data reference: ON_HOME
Ak(fk(;)) or the owner(s) of several data references: Uge; ON_HOME Ak(fk(Z)), where
1 is a set of integers, and i is the vector of enclosing loop indices.

For programs without reductions, the CP selection algorithm in the dHPF compiler
first assigns CPs for assignment statements, except for assignments to privatizable
variables. For each statement, a CP is chosen to be ON_HOME of one of the references
in the statement. Next, CP is propagated to control flow statements and assignments
to privatizable variables. Control flow statements are assigned union of the CPs for the
statements that are control dependent on them. Our current CP selection algorithm
ensures that there is no communication for the values of privatizable variables by
assigning the CP for the privatizable definition statement to be union of the cps for

all the uses of that privatizable variable.

Computation Partitioning for Reduction Related Statements

There are three steps in parallelizing a reduction operation. If we take sum reduction
S = S+ A(7) as an example, in a preamble that is executed on every processor,
we store the original value of S in a temporary variable 7', and initialize S to be
zero. In the reduction core, on each processor owning a part of array A involved
in the reduction, we compute into S the partial sum of the local values. Finally,
in a postamble, we accumulate the partial sums using a collective communication
operation, and add back the original value saved in T' to get the final sum. We assign
a replicated CP to the preamble and postamble, that is, every processor initializes the
partial sum and participates in adding up the final reduction value. The cP for the
partial sum computation S = 5 4+ A(z) would be ON_HOME A(z) or ON_HOME of one

of the references if there are several references on the right hand side.

17

3.2.2 Factorization and Data Locality

Suppose we have a reduction statement S = S & A1(f1(2)) & Ax(f2(2)) ... B Au(ful?)),
where there is more than one reference, namely n > 1. If not all of the references
are distributed in the same way, we will have to read off-processor data to compute
the partial reduction value no matter how we specify the cp for the above statement.
For example, if we decide to compute the above statement ON_HOME A, (f1(7)), and
As(f2(7)) is not local to some of the processors who own A;(fi(¢)), we have to do a
non-local read to get the value of Ay(f3(7)) to compute the sum ON_HOME A;(f1(2)).

We can eliminate the need to read off-processor data by splitting the above re-

duction statement into a sequence of statements:

S=8®Ai(fi1(1), S=5 A (fa(?)), ..., S=58 A(ful1)) (1)

This way, we can compute each reduction statement S = 5 & Ax(fi(?)) (1 <k <
n) ON_HOME Ag(fi(¢)) and no communication is needed. The factorization process
can be easily accommodated in our model. Each of the statements in (1) will be in
the same reduction group and the final result can be accumulated in the postamble

by a single collective communication operation.

3.2.3 Computation Partitioning for Reductions with Privatizables

If we have a reduction statement S = S & ¢, where ¢ is a privatizable variable defined
in some previous statement in the loop, we can not assign a reasonable CP for this
statement without looking at the CP for the definition of the variable t. Doing forward
substitution is not always possible in the presence of control statements and it requires
some extra preprocessing work, so we try to avoid it in our system.

Without transforming the original program, we extend the original cP algorithm
in dHPF to assign CP for reductions on privatizables. It works to minimize communi-
cation by looking back at the definitions of the privatizables, and also maintains the
invariant previously described for our CP selection algorithm that no communication
will be needed for the values of privatizable variables. The extended algorithm is
shown in Figure 3.5.

The extended CP selection algorithm extends the original algorithm to assign

CPs for reduction statements, including reductions for privatizable variables. It is not

18

The CP algorithm assigns CP for statements one scope level at a time. For each level:

The statements that need CPs are classified into three sets:

atomNodeSet: includes all the assignments whose LHS is not privatizable.

propNodeSet: all the other statements, including the definition for the privatizables, the loop nodes,
and if statements. We need to do propagations to get CPs on these statements.

unknownNodeSet: The statements in atomNodeSet, which do not have any CP choices. The set is
initially empty, we will fill it up when going through statements in atomNodeSet at the following
step 1.

The algorithm works in three steps to assign CP for statements at each level:

1. For each statements in atomNodeSet, try to assign CP for it:
e Compute the CP choices for the statement. If no choice for the statement, put it to
unknownNodeSet.
o [terate through the choice map, using a cost estimator to choose the CPs for the state-

ments in set: atomNodeSet-unknownNodeSet.

2. Propagate CPs from the set of atomNodeSet-unknownNodeSet to propNodeSet based on two
rules:

(a) The CP for the definition of the privatizable is the union of the CPs for the uses of the
privatizable. So, we can make sure no communication is needed for the privatizables.
(b) The CP for the loop node or the guard statement is the union of the CPs for the nodes

that are control dependent on them.

3. Compute CPs for statements in the unknownNodeSet.

For each statement in unknownNodeSet, we call function ComputeCPForNode() to get the

CP.

ComputeCPForNode(node):

e If CP is already computed, return;

o If there are arrays on the RHS, choose the CP to be on-home of one of them, which will
cause the minimum amount of non-local data read for the right hand arrays;

o If the above two fail, then the statement is in the form of t = ¢; +t5+ ... +¢,,. Find the
definition of the privatizables ¢;, ¢, ..., t,,. Choose a “majority CP” from the CPs we get
from ComputeCPForNode(t;), ComputeCPForNode(ts), ... ComputeCPForNode(t,).

4. Do a propagation again, this time. we propagate CP from the whole set of atomNodeSet to
propNodeSet, to make the CP satisfy the two rules in 2.(a), 2.(b)

Figure 3.5 CP propagation algorithm for reductions with privatizables

19

globally optimal¥, but it will work well for the typical programs while still comforming

to the CP propagation invariants.

3.2.4 Code Generation for Distributed Memory Machines

As described in the previous section, there are three steps in a parallel reduction:
preamble, local reduction computation and postamble. Implementing them is archi-
tecture specific. In the current dHPF compiler, we generate message-passing code for
distributed-memory machines. The output is the F77 code with MPI communication

primitives.

Code Generation for Sum/Product Reductions

The implementation for scalar reductions is straightforward. Since each scalar is
replicated on every processor, we can use it to store the local reduction value. In
the preamble, we store the original value of the scalar to a temporary variable and
initialize the local reduction value to be ®!l. In the reduction core, we compute a
partial reduction result on each processor using contributions from local data. In
the postamble, we call MPI_ALLREDUCE to compute the global reduction value by
combining all of the partial reduction results from different processors, and to return
the global reduction value to all the processors. Finally, each processor combines the
global reduction value with the original value stored in the temporary variable to get
the final result.

For a multi-element array reduction, the array is distributed among the processors.
In the buffer space of each processor, we allocate a contiguous region for the whole
array to store the partial reduction results. In the preamble, we initialize them to
®. In the reduction core, we compute the partial reduction results in the buffer
using contributions from local data. In the postamble, we call MPI_ALLREDUCE to
propagate the global reduction results to every processor. Finally, for every element in
the array, the owner(s) of that element is(are) responsible for combining the original
value with the global reduction result, and storing the final result. Since the partial
reduction values for all the array elements are stored in a contiguous space, we only

need a single MPI_ALLREDUCE call to accumulate the global reduction result for all

If we have privatizable variable assignment statementS : ¢ = A(i) + ¢;, we will not look at the
definition of ¢; to decide the CP for S, which may not be optimal.

ll® is 0 for sum reduction and 1 for product reduction

20

the elements in an array. This is much more efficient than calling MPI_ALLREDUCE
separately for each element in the array, since each MPI_ALLREDUCE call is effectively

a barrier involving a tight synchronization between processors.

Code Generation for Min/Max, MinLoc/MaxLoc Reductions

The code generation for a MIN/MAX reduction is similar to code generation for
SUM /PRODUCT scalar reductions, except that the initial value will participate in the
partial MIN/MAX selections, and the global reduction result from MPI_ALLREDUCE
will be the final result.

The semantics of MPI_ALLREDUCE for MPI_MINLOC/MPI_MAXLOC is to compute a
global minimum/maximum and also the index attached to that value. The operation

that defines MPI_MAXLOC is:

N
~.
S——
o
N
<. o
S——
Il
N
> 8
S———

where
w = maz(u,v)
and
? ifu>w
k=4 min(i,7) ifu=v
J ifu<w

If we only need to get one index in the MINLOC/MAXLOC reduction and if the
minimum index is desired when there are multiple locations possessing the same
extreme value, we have each processor compute a pair of (local extreme value, index
of local extreme value), and apply reduction operation MPI_MINLOC /MPI_MAXLOC to
get the global min/max result along with the minimum index among all the indices
for the global min/max values.

If multiple indices are needed for the final result, such as the following loop nest:

DO K=I,N
DO J=1.N
DO I=1,N

IF(C(1, J, K) .GT. MAX) THEN
Sy MAX = (L, J, K)

21

S2 MAXI =1
S MAXJ =1
S MAXK =K
ENDIF
ENDDO
ENDDO
ENDDO

which computes the global maximum value and its location coordinates, a straight-
forward way to parallelize this computation is to form a pair of (local max, processor
rank) on each processor. After applying MPI_MAXLOC, we will get the global MAX
result along with the lowest rank of the processor(s) that owns(own) an element with
the maximum value. Then, that processor can broadcast the values of MAXI, MAXJ,
MAXK to other processors and every processor can get the final result. It takes 2
collective communication operations: a reduction call followed by a broadcast.

We can eliminate the need for the broadcast by having each processor “encode”
the coordinates of its local extreme value into a linearized coordinate space:

codeForCoordinates=

(MAXK — LBy)* (UB; — LB;) + (MAXJ — LB,)) * (UB; — LB;) + (MAXI — LB,)

and form the pair (local max, codeForCoordinates) on each processor. After applying
MPI_MAXLOC, we will get the global MAX result along with the encoded coordinates
for the first global MAX value in a sequence of processors. Then we can decode the
value to get the final result. Compared to the previous approach, this one only takes
one collective communication.

The above encoding strategy gets the maximum value and the location for the
maximum value. If there are more than one elements that have the same maximum
value, it gets the smallest coordinates (I,J,K) in dictionary order. However, there are
more complicated cases where we have different operators, such as operator “GE”
instead of “GT”, or we may iterate through one or all of the loops in a descending
order. Below, we describe an encoding strategy that accommodates each of these
variations and enables the reduction program to produce the same coordinates as we
would get in a sequential execution order.

For example, in the following program:

22

DO J=1, N
DO I=N,1,-1
IF(C(L, J) .GE. MAX) THEN
MAX = C(1, J)
MAXI = I
MAXJ = J
ENDIF
ENDDO
ENDDO

the operator “GE” decides that we should get the coordinates appearing last. Since
loop J iterates in an ascending order, and loop I iterates in a descending order, we
should get the coordinates with the biggest J and the smallest 1 when J is equal.

Therefore, we can encode the coordinates this way:
code ForCoordinates = (UB; — MAXJ)* (UB; — LB;) + (MAXI — LB;)

and get the same location result as that in a sequential execution order.
In general, it we have a loop nest of level n, and UB,,,, L B,, are the upper bound
and lower bound values for the induction variable at loop level m (0 < m < n, and

m = 1 for the innermost loop), then codeForCoordinates=:
((On * (UBn_l — LBn_l) + Cn—l) * (UBTL_Q — LBTL_Q) +)(UBl — LBl) + Cl

The coefficient), is determined by the type of the operator and the traversal order
at loop level m. The pseudo code in Figure 3.6 describes the iterative procedure to
produce codeForCoordinates.

The encoding strategy can also be used in some other places. For example, in
tomcatv reductions (Figure 4.4), we want to get the value and location of the ele-
ment that has the maximum absolute value. We generate a pair of (local absolute
max, 2xcodeForCoordinates+sign) on each processor, where “local absolute max”
is the maximum absolute value on each processor. codeForCoordinates is generated
the same way as described before, and sign represents the actual sign of the element
that contributes the maximum absolute value on each processor where “0” stands
for positive number and “1” stands for negative number. We can therefore decode
“2x codeForCoordinates+sign” to get the sign and the codeForCoordinates. By com-

bining the sign with the global “absolute max”, we can get the correct value of the

23

Input: an extreme value reduction.
Output: codeForCoordinates for the reduction.

Procedure Encode()

begin
Boolean FIRST := (operator¢{GE,LE} 7 true , false);
for loop nest at level m, m from n to 1

begin
Boolean ASCENDING := (loop at level m traverses iteration in an ascending order ? true , false);
Boolean SMALLEST := (ASCENDING && FIRST) || ({ASCENDING && 'FIRST);
if(SMALLEST)
Coeflicient := gencode(“-”, “Locy,”, “LBy”);
else
Coeflicient := gencode(“-”, “UBp,”, “Locy”);
if(m = n)
Code := Coefficient;
else
begin

Code := gencode(“*”, Code, gencode(“-”, “UBy,”, “LBp”));
Code := gencode(“+”, Code, Coefficient);
end
end
return Code;
end

Figure 3.6 Pseudo-code to encode
coordinates for extreme value reductions

24

element that contributes the maximum absolute value. By decoding the codeFor-
Coordinates, we can get the location of the maximum element. Using the encoding
strategy, we can invoke a single MPI_ALLREDUCE call to get the extreme value along
with the location of the value. The generated code for the tomcatv reductions is

shown in Figure 4.5.

25

Chapter 4

Evaluation

We have evaluated the effectiveness of our reduction optimization strategy on an
64-processor IBM Scalable PowerParallel System SP2. We use the message passing
interface (MPI) communication standard and the SP2 US communication subsystem
library implementation which supports user-space messaging and requires the user to
have dedicated use of a high-performance switch adapter.

IBM xlhpt is a High Performance Fortran compiler for machines running the AIX
operating system such as the IBM SP2. It’s one of the few compilers that supports
reduction optimization for distributed-memory machines. We compared the available
xlhpf 1.1.0.0 compiler with dHPF for the effectiveness of the reduction recognition
and optimization. We also evaluated the speedups achieved by reduction support and

measured the performance gain of the factorization strategy in dHPF.

4.1 Reduction Performance in dHPF

Erlebacher is an 600 line, ten procedure benchmark program from ICASE that per-
forms three-dimensional tridiagonal solves. It includes a number of fully parallel com-
putations, interleaved with multi-dimensional reductions and computational wave-
fronts in all three dimensions that are caused by forward and backward substitutions.
We tested our dHPF compiler on a multi-dimensional reduction kernel extracted from
erlebacher as shown in Figure 4.1.

Without reduction support, S will be computed ON_HOME tot(i,j), which is repli-
cated on all processors. Figures A-1, A-2 and A-3 in the Appendix show the code
generated by dHPF without reduction support. There are sends and recvs between
every two processors to provide each processor with a full local copy of array duz,
then every processor will do the computation and get the final results.

On the other hand, applying the dHPF compiler with reduction support enabled,
we get the generated code as shown in Figure 4.2. The figure shows only the reduction

preamble, reduction core and postamble. Code preceding and following it has been

26

program erlebacherKernel

integer n

parameter (n=64

real duz(n,n,n), tot(n,n), d(n)

parameter (n$proc = 4)
CHPF$ processors p(n$proc)
CHPF$ template dtempl(n,n,n)
CHPF$ template vtempl(n$proc)
CHPF$ distribute dtempl(*,*,block) onto p
CHPF$ distribute vtempl(block) onto p
CHPF$ align duz(i,j,k) with dtempl(i,j,k)
CHPF$ align d(*) with vtempl(*)
CHPF$ align tot(*,*) with vtempl(*)

do 30 j=1,n

do 30 i=1,n
tot(i,j) = 0.

30 continue

do 40 k=1,n-1

do 40 j=1,n
do 40 i=1,n
S
tot(i,j) = tot(i,j) + d(k)*duz(i,j,k)

40 continue

end

Figure 4.1 Reduction kernels in erlebacher

elided. In the preamble(lines 8 to 21), we allocate a temporary for array tot on the
heap on each processor(lines 8 to 14), and initialize all the values to be zero(lines
15 to 21). In the reduction core(lines 22 to 30), we compute the partial reduction
results into the temporary. Finally, in the postamble(lines 31 to 40), we invoke a
MPI_ALLREDUCE to get the global reduction results for all the elements, get the final
value and store them back into tot(lines 35 to 40).

We compare the execution time for the above programs generated by dHPF com-
piler with and without reduction optimization. Table 4.1 shows the timing results
in seconds, and Figure 4.3 shows the speedups. The speedup is computed by t,/t,,
where 1 is the sequential execution time and ¢, is the parallel execution time.

Without reduction support, we send and receive O(p x (p—1)) messages of size %3,
if we assume there are p processors. The frequency and total volume of communication

will increase as the number of processors increases. In our current implementation,

14
15

21
22

30
31

35

40

do j =1, 64
doi=1, 64
tot(i, j) = 0.
enddo
enddo

counter_tot_6 = 4096
call hpf_buffer_alloc(counter_tot_6 * 4, send_buf_tot_6)
call hpf_ptr_to_index(hpf_heap, send_buf_tot_6, 4, send_buf_tot_

*6_index)

call hpf_buffer_alloc(counter_tot_6 * 4, recv_buf_tot_6)
call hpf_ptr_to_index(hpf_heap, recv_buf_tot_6, 4, recv_buf_tot_

*6_index)

counter_tot_6 = 0
do iv_1 =1, n
do iv. 0 =1, n
hpf_heap_real(send_buf_tot_6_index + counter_tot_6) = 0
counter_tot_6 = counter_tot_6 + 1
enddo
enddo
k_end__dhpf = min(16 * p_myidl + 16, 63)
do k = 16 * p_myidl + 1, k_end__dhpf
doi=1, 64
hpf_heap_real(send_buf_tot_6_index + i * 64 + j - 65) = hp

*f_heap_real(send_buf_tot_6_index + i * 64 + j - 65) + d(k) * duz(i
*, j, k - p_myidl * 16 - 1)

enddo
enddo
enddo
call mpi_allreduce(hpf_heap_real(send_buf_tot_6_index), hpf_heap

*_real(recv_buf_tot_6_index), counter_tot_6, mpi_real, mpi_sum, mpi
*_comm_world, ierr)

call hpf_buffer_free(send_buf_tot_6)
do iv_1 = 1, 64
do iv_0 = 1, 64
tot(iv_0, iv_1) = tot(iv_0, iv_1) + hpf_heap_real(recv_buf_t

*ot_6_index + iv_0 * 64 + iv_1 - 65)

enddo
enddo
call hpf_buffer_free(recv_buf_tot_6)

Figure 4.2 Code generated for erlebacher
reduction kernel with reduction support

27

nprocs 1 2 4 8 16 32
without reduction 0.04 6.29 | 25.25 11.60 | 22.72 | 27.80
with reduction 0.0405 | 0.0285 | 0.0201 | 0.0275 | 0.1671 | 0.6263

Table 4.1 Execution time for erlebacher reduction
kernel with and without reduction optimization

28

5.0
4.0 - : .
with reduction
3.0 - i
o
>
°
[0
(O]
o
w
2.0 r :
1.0 :
| ‘\
\\ without reduction
0.0 -Le—e ° o °
12 4 8 16 32

number of processors

Figure 4.3 Speedups for erlebacher
redcution kernel(N=514, 100 iterations)

29

since the communication is among multiple processors, we unpack the data from the
system buffer and put each array element value into a hash table accessed by element
index. When the number of processors is small and there is a large amount of data,
we spend a large portion of time inserting data into a hash table, which involves
many rehashing operations as the table is resized dynamically to accomodate all of
the data. In the results, we can see a peak time for 4 processors, and a stable increase
for 8 processors and more. We can’t get any real speedup and reduction computation
becomes a program bottleneck.

The time for programs with reduction support is almost negligible compared to
programs without reduction support. The computation time is O(%), while the
reduction commmunication time is O(r*x log p). So, we see a time decrease to
the lowest point at 4 processors and a gradual increase afterwards. In spite of the
expensive collective communication cost, we still can get real speedups up to large
number of processors.

We apply xlhpf on the same erlebacher reduction kernel program. xlhpt fails to
recognize the multi-dimensional reduction operation, and generates the code similar
to the one in dHPF without reduction support where the reduction operation is

computed on every processor.

4.2 Comparison with Reductions in xlhpf

Compared to the dHPF compiler, xlhpf recognizes a smaller set of reductions. It does
not recognize multi-dimensional reductions and or reduction operations in which pri-
vatizable variables appear on the right hand side, such as: t = A(7), S = S+t. It only
recognizes MIN /MAX, MINLOC/MAXLOC reductions written in FORTRAN 90 intrinsic
functions while dHPF can recognize the reduction written in implicit sequential form
with different forms of control flow structures. We compare the two compilers using
a reduction kernel from tomcatv program from the SPEC92 floating-point benchmark
suite. It has two groups of MAXVAL, MAXLOC reduction operations. The code in
Figure 4.4 shows the reduction kernels in the original FORTRAN program for 4 pro-
cessors, and we use it as the input to dHPF compiler:

dHPF recognizes the above as two groups of reduction operations, and generates
two MPI_ALLREDUCE calls to get the maximum values along with the locations. The

code is listed in Figure 4.5.

30

CHPF$ PROCESSORS P(4)

CHPF$ ALIGN RX(I,J) with T(I,J)
CHPF$ ALIGN RY(I,J) with T(I,J)
CHPF$ DISTRIBUTE T(BLOCK,*) ONTO P

IIP =2

JiIP = 2

I2M = N-1

J2M = N-1

M =J2M - J1P + 1

RXM = 0

RYM = 0

DO w =1, iterations

DO 270 J=1,M
DO 270 I = I1P,I2HM
IF(ABS(RX(I,J)).GT.ABS(RXM)) then
RXM = RX(I,J)

IRXM = I
JRXM = 7J
endif

IF(ABS(RY(I,J)).GT.ABS(RYM)) then
RYM = RY(I,J)

IRYM = I
JRYM = 7J
endif
270 CONTINUE
C use of RXM, IRXM, JRXM,... here
ENDDO
END

Figure 4.4 Tomcatv reduction kernels

xlhpt compiler does not recognize the tomcatv reductions in their implicit form.
For a performance comparison, we recoded the original reduction kernel to use the
FORTRAN 90 intrinsic functions, forms that xlhpf can recognize (Figure 4.6 and Figure
4.7).

There is a slight difference between the two versions in Figure 4.6 and 4.7. Version
1 gets the maximum absolute value while version 2 gets the value of the element who
has the maximum absolute value as in the original program.

In xlhpf, for program in version 1, it generates two separate loop iterations to get
the local maxval and maxloc, then it invokes _xlhpf_reduce maxval, xlhpf_reduce_maxloc

calls to get the global result. For program in version 2, it invokes xlhpf_reduce_maxloc

C

C

do w=1,100
do j = 1, 512
i_start__dhpf = max(129 * p_myidl + 1, 2)
i_end__dhpf = min(129 * p_myidl + 129, 513)
do i = i_start__dhpf, i_end__dhpf
abs_result_0__dhpf = abs(rx(i - p_myidl * 129 - 1, j))
abs_result_1__dhpf = abs(rzm_tmp(1))
if (abs_result_O__dhpf .gt. abs_result_1__dhpf) then
rxm_tmp(1) = rx(i - p_myidl * 129 - 1, j)

irxm = i
jrxm = j
endif
same code here for ‘y’ to get the local extreme value
enddo

enddo
rxm_tmp(2) = (jrxm - 1) * 513 - 1 + irxm
rxm_tmp(2) = 2 * rxm_tmp(2)
rxm_tmp_rxm_tmpO__dhpf = rxm_tmp(1)
if (rxm_tmp_rxm_tmpO__dhpf .1t. 0) then
rxm_tmp(2) = rxm_tmp(2) + 1
endif
rxm_tmp(1) = abs(rxm_tmp(1))
call mpi_allreduce(rxm_tmp, rxm_res, 1, mpi_2double_precision, m
*pi_maxloc, mpi_comm_world, ierr)
rxm = rxm_res(1)
codeForCoordinates = rxm_res(2) / 2
sign = rxm_res(2) - codeForCoordinates * 2
if (sign .gt. 0) then
rXm = -rxm

endif

jrxm = codeForCoordinates / 513 + 1

irxm = codeForCoordinates - (jrxm - 1) * 513 + 1
same code here for ‘y’ to get the global extreme value

enddo

Figure 4.5 Code generated for tomcatv
reduction kernel by dHPF compiler

31

32

INTEGER, DIMENSION (2) :: MAX_LOCX

INTEGER, DIMENSION (2) :: MAX_LOCY
DO w = 1, iterations

RXM = MAXVAL(ABS(RX(1:M, I1P:I2M)))
MAX_LOCX = MAXLOC(ABS(RX(1:M, I1P:I2M)))
IRXM = MAX_LOCX(1)

JRXM = MAX_LOCX(2)+I1P-1

RYM = MAXVAL(ABS(RY(1:M, I1P:I2M)))
MAX_LOCY = MAXLOC(ABS(RY(1:M, I1P:I2M)))
IRYM = MAX_LOCY(1)
JRYM = MAX_LOCY(2)+I1P-1

ENDDO

END

Figure 4.6 Recoded tomcatv reduction kernels, Version 1

to get the location value and the processor who owns the element of RX(IRXM,
JRXM) will broadcast the extreme value to all the other processors. Therefore, xlhpf
will generate 4 collective communication calls for either one of them, instead of 2 in
our compiler. We use the program in Figure 4.6 as the source program for xlhpf, and
Figure A-4 through A-6 list the code generated by the compiler.

We compare the execution time for programs generated by xlhpf and dHPF on
an IBM SP2. Table 4.2 and Figure 4.8 show the timing results and speedups while
table 4.3 compares the efficiencies. The efficiency is computed by s/p, where p is the

number of processors and s is the speedup on p processors.

nprocs 1 2 4 8 16 32
xlhpt | 4.21 | 7.79 | 4.58 | 2.46 | 1.41 | 1.47
dHPF | 4.21 | 3.37 | 2.08 | 1.17 | 0.66 | 0.40

Table 4.2 Execution time of tomcatv

reduction kernels for xlhpf and dHPF

The time for dHPF is less than half of the time for xlhpf in almost all the cases.
As discussed in the end of section 4.1, the computation time is O(%) while the

communication time is O(log p). We can see a time decrease to the lowest point

33

INTEGER, DIMENSION (2) ;. MAX_LOCX

INTEGER, DIMENSION (2) :: MAX_LOCY
DO w = 1, iterations

MAX_LOCX = MAXLOC(ABS(RX(1:M, I1P:I2M)))
IRXM = MAX_LOCX(1)

JRXM = MAX_LOCX(2)+I1P-1

RXM = RX(IRXM, JRXM)

MAX_LOCY = MAXLOC(ABS(RY(1:M, I1P:I2M)))
IRYM = MAX_LOCY(1)
JRYM = MAX_LOCY(2)+I1P-1
RYM = RY(IRYM, JRYM)
ENDDO
END

Figure 4.7 Recoded tomcatv reduction kernels, Version 2

nprocs 1 2 4 8 16 32
er(xlhpf) |1 0.270 | 0.230 | 0.210 | 0.190 | 0.089
ea(dHPF) | 1 0.620 | 0.505 | 0.451 | 0.401 | 0.329
€2 — €1 0 0.350 | 0.275 | 0.241 | 0.211 | 0.240

Table 4.3 Efficiency of tomcatv reduction kernels for xlhpt and dHPF

at 16 processors and a gradual increase afterwards for xlhpt compiler and a time
decrease up to 32 processors for dHPF compiler. We also get better speedups for
dHPF compiler. The efficiency for dHPF compiler ranges from 0.329 to 0.620, while
the efficiency for xlhpf ranges from 0.089 to 0.270, with an 111% to 270% increase in

efficiency for dHPF compiler.

4.3 Performance Impact of Reduction Factorization

As discussed in 3.2.2, we use factorization to divide one reduction statement into a
group of reduction statements to exploit the data locality. We test the reduction with
and without factorization for the program in Figure 4.9.

There are more than one reduction components on the right hand side: a(n-j+1)

and b(j). The two array elements are distributed in a different way. By doing reduc-

34

tion factorization, we can split the reduction statement into a group of two statements:
s=s+13 and s=s+b(j). s=s+t3 will get the CP of ON_HOME a(n-j+1) as specified by
the computation partitioning algorithm for reductions with privatizable variables,
and s=s+b(j) will get the cP of ON_HOME b(j). All the assignment statements are
computed locally without the need for any communication. The generated code is
shown in Figure 4.11:

On the other hand, if we don’t have factorization support, statement s = s +
t3 + b(j) will get the cp of ON_HOME b(j). t3=a(n-j+1) will get the same CP of
ON_HOME b(j) by the CP propagation for privatizable variables. In this case, we need
pairwise communications to get the non-local data of a(n-j41) to compute statement
t3=a(n-j+1) (Figure 4.10).

If there are p processors, the computation time will be O(%), the time for the global
reduction will be O(log p). If there is no factorization support, we will need to send
and receive non-local data between processors, and it will take an extra time of O(%).
We measure the execution time of the above program for 4 processors with different
values of n. We measure the code generated by the dHPF compiler, with and without
factorization support enabled. In table 4.4, we list the execution time for programs
with and without factorization support and also show the extra communication time
for the one without factorization support.

Figure 4.12 shows the extra communication overhead incurred for not having fac-
torization support for the reduction. In the programs without factorization support,
the time for the non-local data communication takes about half of the total execution
time.

We apply xlhpf compiler on the above program. It fails to recognize the reduction
in the original form . We recode the source program by adding s = 0 inside loop
do w = 1,100. xlhpf recognizes the reduction in the transformed program. However,

it generates code similar to our code without reduction factorization.

14.0 _
12.0 B
10.0 _
-g_ 8.0 _
gg_ L dHPF compiler
? 60| 1
4.0 - xlhpf compiler |
i —
2.0 r B
O-O L L L L L L
12 4 8 16 32
number of processors
Figure 4.8 Speedups for tomcatv reduction kernels
n 4096 | 4096*4 | 4096*8 | 4096*16 | 4096*32

t1(with factorization) 0.0379 | 0.0843 | 0.1489 0.2765 0.5250
to(without factorization) | 0.0669 | 0.1883 | 0.3285 0.5933 1.0364
A=t —t; 0.0290 | 0.1040 | 0.1796 0.3168 0.5114
p= % 0.765 1.219 1.205 1.146 0.974

Table 4.4 Comparison of programs with and without factorization support

CHPF$
CHPF$
CHPF$
CHPF$

CHPF$

program facTest
integer n, w
parameter (n=4096)
real a(n), b(n)

real s, t3
processors p(64)
template t(n)

align a(i) with t(i)
align b(i) with t(i)

distribute t(block) onto p
s=0

do w=1,100
do j=1,n
a(j) =3
b(j) =]
enddo

do j=1,n
t3 = a(n-j+1)
s =s + t3 + b(j)
enddo
enddo
end

Figure 4.9 Source program for factorization test

36

s =0

do w=1,100
s_tmp = s
s =0

if (p_myidl .le. 1) then
do j = 1024 * p_myidl + 1, 1024 * p_myidl + 1024
s = s + b(j - p_myidl * 1024 - 1)
enddo
endif
do j -(1024 * p_myidl) + 3073, -(1024 * p_myidl) + 4096
t3 = a(n - j - p_myidl * 1024)
s =8 + t3
enddo
if (p_myidl .ge. 2) then
do j = 1024 * p_myidl + 1, 1024 * p_myidl + 1024
s = s + b(j - p_myidl * 1024 - 1)
enddo
endif
call mpi_allreduce(s, s_res, 1, mpi_real, mpi_sum, mpi_comm_worl

*d, ierr)

s = s_res + s_tmp
enddo
end

Figure 4.10 Code generated by dHPF with factorization support

37

38

s =0
do w=1,100
p_ql = -p_myidl + 3
****xx MPI SEND STMT FOR NONLOCAL READ *¥¥xx
counter_a_4 = 0
1b = -p_ql * 1024 - p_myidl * 1024 + 3072
ub = min(4096, -p_ql * 1024 + 4096) - p_myidl * 1024 - 1
counter_a_4 = ub - 1b + 1
if (counter_a_4 .gt. 0) then
call mpi_bsend(a(-p_myidl * 1024 - p_ql * 1024 + 3072), counte
*r_a_4, mpi_real, p_ql, 1, p_cmap, ierr)
endif
s_tmp = s
s =0
p_ql = -p_myidl + 3
——< Loop Counters >--
counter_a_4 = 0
counter_a_4 = counter_a_4 + 1024 * p_ql + 1024 - (1024 * p_ql +
*1) + 1
call hpf_buffer_alloc(counter_a 4 * 4, recv_buf_a_4)
call hpf_ptr_to_index(hpf_heap, recv_buf_a_4, 4, recv_buf_a_4_in
*dex)
if (counter_a_4 .gt. 0) then
call mpi_recv(hpf_heap_real(recv_buf_a_4_index), counter_a_4,
*mpi_real, p_ql, 1, p_cmap, status, ierr)
endif
do j = 1024 * p_myidl + 1, 1024 * p_myidl + 1024
if (p_myidl .eq. (n - j) / 1024) then
Inltmp0 = a(n - j - p_myidl * 1024)
else
1nltmpO = hpf_heap_real(recv_buf_a_ 4 index + n - j - p_ql *
*1024)
endif
t3 = 1nltmpO
s = s + t3 + b(j - p_myidl * 1024 - 1)
enddo
call mpi_allreduce(s, s_res, 1, mpi_real, mpi_sum, mpi_comm_worl
*d, ierr)
s = s_res + s_tmp
enddo

Figure 4.11 Code generated by dHPF without factorization support

extra communication time(sec)

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

0.0

50000.0 100000.0

Figure 4.12 Time overhead for reductions
without factorization support(p=4)

150000.0

39

40

Chapter 5

Related Work

Our reduction recognition work is based on the recognition techniques developed by
Darnell in prc [5]. We use a similar pattern matching approach, and incorporate
dependence analysis. The previous technique recognizes the reductions and trans-
forms it into FORTRAN intrinsic function calls, so it can only handle a small set of
reductions and requires the reduction operations be isolated from other computations.
Techniques implemented by Darnell recognize sum and product reductions within the
same loop level, but haven’t considered the extreme value reductions.

Fisher and Ghuloum [8, 7] have a unique and powerful technique for recognizing
reductions and scan operations. They model complex scan and reduction operations
as function applications and extract parallelism by exploiting the associativity of func-
tional compositions. However, their recognizer implicitly assumes that the recurrence
loops are separated from other code. Their code generation model is simple in that
they initialize the template variables with array values prior to composition without
considering the locality of the array elements. Their techniques are especially useful
for parallelizing scan operations which are not handled by most compilers. However,
reductions, as a special case, are not handled as efficiently as in our compiler.

The SUIF compiler [9, 10] supports inter-procedural reduction recognition. It
recognizes summation, multiplication, minimum and maximum reduction operations
inter-procedurally. However it can only cope with a set of simple reductions. For
example, it does not recognize reduction operations that span multiple statements,
namely the “reduction group” in our compiler, as well as some other nested reductions.

Polaris [4, 13] uses a pattern-matching approach along with dependence analysis
to recognize single address reductions as well as “histogram reductions”(corresponding
to scalar reduction and array reductions in our model). The recognition approach is
similar to ours, except that it does not recognize reductions that occur at multiple

loop levels and hasn’t considered reductions inside predicates.

41

Both SUIF and Polaris only generate code for reductions on shared memory sys-
tems, and haven’t addressed the data locality and communication optimization prob-
lems.

Suganuma, Komatsu, and Nakatani [15] have implemented reduction detection
and optimization in the IBM xlhpf compiler for distributed-memory machines. Their
recognition algorithm identifies non-privatized variables as reduction candidates and
then extracts the reduction operator and predicates for the target. They find the
reduction candidates from non-privatized variables without considering array reduc-
tions.

Suganuma, Komatsu, and Nakatani generate code for distributed-memory ma-
chines, and have a very effective global communication optimization approach to coa-
lesce and aggregate multiple communication events for reduction operations. However,
they require that reduction operands be prefetchable, and then in the code generation,
they transform the loop to separate the reduction operation from other computations.
This excludes a set of reductions which are more closely intermixed with other com-
putations. Forward substitution is used to merge assignments in a loop body to form
a single reduction, whereas in our model, we can deal with statements at different
loop levels nicely without any program transformations. Also, by forming reduction
groups, we can eliminate the need for reduction coalescing or aggregation in many of

the cases.

42

Chapter 6

Conclusions

This thesis describes reduction recognition and code generation techniques for dis-
tributed memory multiprocessors in dHPF compiler, the research compiler for data-
parallel programming languages being developed at Rice University.

Study has shown that reduction operations appear in many contexts and reduction
optimization is an important technique for achieving real speedups on shared memory
architectures [6].

Because of the high communication cost, we expect a bigger difference between
programs with or without reduction support on distributed memory machines. Our
work shows that without optimization, reduction operations can become a program
bottleneck; however we can get good speedups with appropriate reduction support
and the time is almost negligible as compared to the non-optimized version.

With dependence analysis, pattern matching and flexible code generation support,
we can handle a broad range of parallel reductions in general loop nests, even those
that contain conditionals. We find that minimizing communication cost is a very im-
portant issue in generating efficient reduction code for distributed-memory machines.
We use various techniques to reduce the number of collective communications, such
as forming reduction groups and index encoding for MINLOC and MAXLOC reduc-
tions. To further reduce the communication, factorization is used to exploit data
locality in reduction statements. We have performed experiments on IBM Scalable
PowerParallel System SP2. The results indicate that without factorization, the ex-
tra communication took about 50% the time where factorization is applicable. Our
compiler compares favorably to IBM’s xlhpf compiler on reduction optimization, with
as much as a 111% to 270% increase in efficiency on reductions for some programs
for which dHPF saved a collective communication using its encoding strategy for
combined MAX /MAXLOC operations.

Our techniques of exploiting data locality to reduce communication costs can
also be used to generate efficient code for other recurrence parallelization techniques

on distributed memory machines. For example, optimizations similar to ours can be

43

applied to utilize data locality in Fisher and Ghuloum’s work [8, 7]. We can partition
the computations of the local function compositions based on the data distributions
and we may apply “factorization” to transform some composite function into the

composition of a group of smaller composite functions. For example:
H=Xta2+B(t-1)+Ct—1)=Xde.(e+B(i—-1)+Ci—1)=F, oG,

where G; = Az.x+ B(i—1) and F; = Az.x+ C(i—1). Notice that the composition
is commutative. If array B and C have different distributions, we can compute the
operations for F; and G; separately to exploit data locality respectively for array B
and C' and then combine them to get the final results.

We have shown that reduction optimization is an important technique in paral-
lelizing compilers. We also show that it can be implemented efficiently for distributed
memory systems. However, there is still room for improvement and interesting ques-

tions to be addressed.

Future Work

Consider the multi-element reduction example in Figure 6.1. Let the data array A be

of size n x n x n and distributed with (BLOCK, BLOCK, BLOCK) distribution, and
array S be of size n x n and distributed with (*, BLOCK, BLOCK) across a p x p x p

processors grid.

DO:=1,n
DOjy=1,n
DOk=1,n
S S(i,7)=5(i,7)+ A(2,7, k)
ENDDO
ENDDO
ENDDO

Figure 6.1 A multi-element reduction example

The code generation strategy used by the dHPF compiler as described in this thesis
requires every processor to allocate a contiguous buffer space of size n X n to store

the local reduction results for array S. This enables us to use a single collective

44

communication to get the global reduction results for all the elements in array S.
However, we may have the potential problem of running out of buffer space. It
requires n? buffer space on each of the p® processors. The space needed on each
processor does not decrease as number of processors increases using the strategy we
have discussed in this thesis.

Since the CP for statement S; is ON_HOME A(%, j, k), the processor will not need
a non-local copy of S(z,7) unless it is the owner of A(,j, k) for some 1 < k < n.
Therefore, we can form subgroups of processors to compute different sections of the
reduction. For example, p processors who own the array section A(1:n/p,1:n/p,*)
can be grouped together to compute the reduction results for S(1 : n/p,1 : n/p).
So each processor will only need a non-local buffer space of size n?/p?. It decreases
quickly as p increases. However, to implement it in MPI, we need to form p? subgroups
and invoke MPI_ALLREDUCE p? times, each for every single subgroup reduction. The
p? MPI_ALLREDUCE communication calls can be performed in parallel if there is no in-
tersection among the subgroups, while we need to maintain the correct orders to avoid
deadlocks if there are intersections among the subgroups and the p; collective commu-
nication calls can not be executed completely in parallel. There is a conflict between
resource constraints(e.g. better space availability) and communication optimization.
However, it is necessary to consider machine-dependent resource constraints to ensure
the correctness of the communication placement. Some of the resource-based commu-
nication placement techniques developed by Kennedy and Sethi [12] can be adapted
here to further analyze and solve the problem. However, when there are strided or
irregular array accesses, the difficulties of forming subgroups and handling possibly a

large number of collective communications may further complicate the problem.

45

Appendix

There are 6 figures in this appendix.

Figure A-1 through A-3 list the code generated for erlebacher reduction kernel
by dHPF without reduction support. There are sends and recvs between every two
processors(lines 11 to 72) to provide each processor with a full local copy of array
duz. After receiving all the data, every processor will do the computation and get
the final results(lines 76 to 130).

Figure A-4 through A-6 list the code generated for tomcatv reduction kernel by
xlhpt compiler. From lines 9 to 17, it iterates over the local elements and get the

“ xlhpf_reduce maxval” to get

local maximum absolute value. At line 22, it invokes
the global maximum absolute value and store it in rxm. Then, from lines 28 to 39, it
builds another loop to get the location for the local maximum absolute value. From
lines 44 to 50, it invokes “_xlhpf reduce_maxloc” to get the location coordinates irxm
and jrxm for the global maximum absolute value. In the second half of the program,

it goes through the same process to get the results for rym, irym, and jrym.

Q

do j

=1, 64

doi=1, 64

tot(i, j) = 0.

enddo
enddo

Loop section ---[0 <= p_q1 <= 3 J---

do p_q1 =0, 3
if (p_myidl .ne. p_ql) then

*ierr)

*6

p_coord_comm(1) = p_qi
call mpi_cart_rank(p_cmap, p_coord_comm(1), q_id_comm, ierr)
call mpi_cart_coords(p_cmap, q_id_comm, 1, p_coord_comm(1),

p_ql = p_coord_comm(1)

****x* MPI SEND STMT FOR NONLOCAL READ k%3

counter_duz_2 = 0

1b = max(p_myidl * 16 + 1, 1) * 4096 - p_myidl * 65536 - 409

ub = min(p_myidl * 16 + 16, 63) * 4096 - p_myidl * 65536 - 1
counter_duz_2 = ub - 1b + 1
if (counter_duz_2 .gt. 0) then

call mpi_bsend(duz(1l, 1, max(p_myidl * 16 + 1, 1) - p_myid

*1 * 16 - 1), counter_duz_2, mpi_real, p_ql, 1, p_cmap, ierr)

endif

endif
enddo

Loop section -—-[0 <= p_q1 <= 3 J---

do p_q1 = 0, 3
if (p_myidl .ne. p_ql) then

*ierr)

p_coord_comm(1) = p_qi
call mpi_cart_rank(p_cmap, p_coord_comm(1), q_id_comm, ierr)
call mpi_cart_coords(p_cmap, q_id_comm, 1, p_coord_comm(1),

p_ql = p_coord_comm(1)

-—< Loop Counters >-—-

counter_duz_2 = 0

min_result_O__dhpf = min(16 * p_ql + 16, 63)

Figure A-1 Code generated for erlebacher reduction
kernel without reduction support, Part 1 of 3

46

C
C

if (16 * p_ql + 1 .le. min_result_O__dhpf) then
counter_duz_2 = counter_duz_2 + 64 * 64 * (min(16 * p_ql +
* 16, 63) - (16 * p_ql + 1) + 1)
endif
call hpf_buffer_alloc(counter_duz_2 * 4, recv_buf_duz_2)
call hpf_ptr_to_index(hpf_heap, recv_buf_duz_2, 4, recv_buf_
*duz_2_index)
if (counter_duz_2 .gt. 0) then
call mpi_recv(hpf_heap_real(recv_buf_duz_2_index), counter
*_duz_2, mpi_real, p_ql, 1, p_cmap, status, ierr)
endif

-—< Unpack Loop From Recv For Nonlocal Read >-—-
counter_duz_2 = 0

Loop section ——-[((16 * p_q1) + 1) <= i3 <= min(((16 * p_ql) + 16),

C 63), 1 <= i2 <= 64, 1 <= i1 <= 64]-—-

C

72

QO

76

QOO0

i3_end__dhpf = min(16 * p_ql + 16, 63)
do i3 = 16 * p_ql + 1, i3_end__dhpt
call hpf_nonlocal_insertr(hash_nonlocals, duz_data, i3
* % 4096 + i2 * 64 + il - 4161, hpf_heap_real(recv_buf_duz_2_index
*+ counter_duz_2))
counter_duz_2 = counter_duz_2 + 1
enddo
enddo
enddo
call hpf_buffer_free(recv_buf_duz_2)
endif
enddo

Loop section ---[1 <= k <= 63]-—-
dok =1, 63

--<< Iterations that access only local values >>--—

Loop section -——-[1 <= 1 <= 64, 1 <= j <= 64]-—-

Figure A-2 Code generated for erlebacher reduction
kernel without reduction support, Part 2 of 3

47

if (16 * p_myidl .le. k - 1 .and. 16 * p_myidl .ge. k - 16) th

*en
do j =1, 64
doi=1, 64
tot(i, j) = tot(i, j) + d(k) * duz(i, j, k - p_myidl * 1
*6 - 1)
enddo
enddo
endif
C
C --<< Iterations that read (but do not compute) non-local values >>--
C
C
C Loop section -——-[1 <= 1 <= 64, 1 <= j <= 64]-—-
C
if (16 * p_myidl .ge. k) then
do j =1, 64
doi=1, 64
if (p_myidl .eq. (k - 1) / 16) then
Inltmpl = duz(i, j, k - p_myidl * 16 - 1)
else
Inltmpl = hpf_nonlocal_lookupr(hash_nonlocals, duz_dat
*a, k * 4096 + j * 64 + i - 4161)
endif
tot(i, j) = tot(i, j) + d(k) * 1lnltmpl
enddo
enddo
endif
C
C Loop section -——-[1 <= 1 <= 64, 1 <= j <= 64]-—-
C
if (16 * p_myidl .le. k - 17) then
do j =1, 64
do i=1, 64
if (p_myidl .eq. (k - 1) / 16) then
InltmpO = duz(i, j, k - p_myidl * 16 - 1)
else
InltmpO = hpf_nonlocal_lookupr(hash_nonlocals, duz_dat
*a, k * 4096 + j * 64 + i - 4161)
endif
tot(i, j) = tot(i, j) + d(k) * 1lnltmpO
enddo
enddo
endif
enddo
130 ...

Figure A-3 Code generated for erlebacher reduction
kernel without reduction support, Part 3 of 3

w = 1d0 + 040
IVAINIT_ 72 = w
C 1585-501 Original Source Line 34
do I_39=140,(100d0 - 140 + 1d0) / 1d0,dble(1)
rxm = -1.7976931348623157d+308
SCALAR_43 = -1.7976931348623157d+308
15685-501 Original Source Line 35
do i_12=1,514,1
15685-501 Original Source Line 35
do i_13=iown_1_24,MINO(iown_u_25,514),1
C 15685-501 Original Source Line 35
if ((DABS(rx_61(i_13,i_12)) .gt. SCALAR_43) .ne. 0) then
SCALAR_43 = DABS(rx_61(i_13,i_12))
end if
end do
17 end do
Recv_index_44(1) = (-2)

Q O O

DS_SAS_45(1) = 0
DS_SAS_45(2) = 3
DS_SAS_45(3) = 1

22 call _x1lhpf reduce_maxval(10,SCALAR_43,rxm,PG_23,1,0,DS_SAS_45,
&Recv_index_44)
T_17 = -1.7976931348623157d4+308
T_18_66(1) = 0
T_18_66(2) = 0
C 15685-501 Original Source Line 36
28 do i_12=1,i2m - ilp + 1,1
C 15685-501 Original Source Line 36
do i_13=iown_1_24,MINO(iown_u_25,m),1
C 15685-501 Original Source Line 36
if ((DABS(rx_61(i_13,i_12 + (ilp - 1))) .gt. T_17) .ne. 0)
&then
T_17 = DABS(rx_61(i_13,i_12 + (ilp - 1)))
L0OC_46(1) = i_13
L0OC_46(2) = i_12
end if
end do
39 end do
Recv_index_49(1) = (-2)
DS_SAS_50(1) 0
DS_SAS_50(2) MINO((m - 1) / 129,3)
DS_SAS_50(3) 1
44 call _xlhpf reduce_maxloc(10,2,L0C_46,T_17,%val(T_18),PG_23,1,0
&,DS_SAS_50,Recv_index_49)

Figure A-4 Code generated for tomcatv
reduction kernel by xlhpf compiler, Part 1 of 3

49

C 15685-501 Original Source Line 36
do i_12=1,2,1
max_locx_64(i_12) = T_18_66(i_12)

end do
irxm = max_locx_64(1)
50 jrxm = max_locx_64(2)

rym = -1.7976931348623157d+308

SCALAR_51 = -1.7976931348623157d+308
C 15685-501 Original Source Line 40

do i_12=1,514,1
C 15685-501 Original Source Line 40

do i_13=iown_1_24,MINO(iown_u_25,514),1
C 15685-501 Original Source Line 40
if ((DABS(ry_62(i_13,i_12)) .gt. SCALAR_51) .ne. 0) then
SCALAR_51 = DABS(ry_62(i_13,i_12))

end if
end do
end do
Recv_index_52(1) = (-2)
DS_SAS_53(1) = 0
DS_SAS_53(2) = 3

DS_SAS_53(3) 1
call _x1lhpf reduce_maxval(10,SCALAR_51,rym,PG_23,1,0,DS_SAS_53,
&Recv_index_52)

T_19 = -1.7976931348623157d+308

T_20_67(1) = 0

T_20_67(2) = 0
C 15685-501 Original Source Line 41

do i_12=1,i2m - ilp + 1,1
C 15685-501 Original Source Line 41

do i_13=iown_1_24,MINO(iown_u_25,m),1
C 15685-501 Original Source Line 41
if ((DABS(ry_62(i_13,i_12 + (ilp - 1))) .gt. T_19) .ne. 0)

&then
T_19 = DABS(ry_62(i_13,i_12 + (ilp - 1)))
LOC_54(1) = i_13
L0OC_54(2) = i_12
end if
end do
end do

Recv_index_55(1) = (-2)

DS_SAS_56(1) = 0
DS_SAS_56(2) = MINO((m - 1) / 129,3)
DS_SAS_56(3) = 1

call _xlhpf reduce_maxloc(10,2,L0C_54,T_19,%val(T_20),PG_23,1,0
&,DS_SAS_56,Recv_index_55)

Figure A-5 Code generated for tomcatv
reduction kernel by xlhpf compiler, Part 2 of 3

20

C 15685-501 Original Source Line 41
do i_12=1,2,1
max_locy_65(i_12) = T_20_67(i_12)

end do
irym =
jrym =

max_locy_65(1)
max_locy_65(2)

w=w+ 1d0

end do

Figure A-6 Code generated for tomcatv
reduction kernel by xlhpf compiler, Part 3 of 3

ol

(1]

2]

3]

[4]

[5]

[6]

(7]

[8]

52

Bibliography

V. Adve, J. Mellor-Crummey, and A. Sethi. HPF analysis and code generation
using integer sets. Technical Report CS-TR97-275, Dept. of Computer Science,
Rice University, April 1997.

S. Amarasinghe and M. Lam. Communication optimization and code generation
for distributed memory machines. In Proceedings of the SIGPLAN 93 Confer-
ence on Programming Language Design and Implementation, Albuquerque, NM,

June 1993.

R. Barua, D. Kranz, and A. Agarwal. Communication-minimal partitioning of
parallel loops and data arrays for cache-coherent distributed-memory multipro-
cessors. In Proceedings of the Ninth Workshop on Languages and Compilers for
Parallel Computing. Springer-Verlag, August 1996.

W. Blume et al. Effective automatic parallelization with polaris. In International

Journal of Parallel Programming, May 1995.

E. Darnell. Special reductions in PFC. Supercomputer Software Newsletter 13,
Dept. of Computer Science, Rice University, October 1986.

R. Eigenmann, J. Hoeflinger, Z. Li, and D. Padua. Experience in the automatic
parallelization of four Perfect benchmark programs. In U. Banerjee, D. Gel-
ernter, A. Nicolau, and D. Padua, editors, Languages and Compilers for Paral-
lel Computing, Fourth International Workshop, Santa Clara, CA, August 1991.
Springer-Verlag.

A. Fisher and A. Ghuloum. Parallelizing complex scans and reductions. In
Proceedings of the SIGPLAN 94 Conference on Programming Language Design
and Implementation, Orlando, FL, June 1994.

A. Ghuloum and A. Fisher. Flattening and parallelizing irregular, recurrent loop
nests. In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Santa Barbara, CA, July 1995.

23

[9] M. Hall, S. Amarasinghe, B. Murphy, S. Liao, and M. Lam. Detecting coarse-

[10]

[11]

[12]

[13]

[14]

[15]

grain parallelism using an interprocedural parallelizing compiler. In Proceedings
of Supercomputing ‘95, San Diego, CA, December 1995.

M. Hall, S. Amarasinghe, B. Murphy, S. Liao, and M. Lam. Interprocedural
parallelization analysis: Preliminary results. Technical Report CSL-TR-95-665,
Dept. of Computer Science, Stanford University, March 1995.

K. Kennedy and R. Allen. Advanced Compilation for Vector and Parallel Com-
puters. Morgan Kaufmann Publishers, San Mateo, CA, 1997.

K. Kennedy and A. Sethi. Resource-based communication placement analysis.
In Proceedings of the Ninth Workshop on Languages and Compilers for Parallel
Computing. Springer-Verlag, August 1996.

B. Pottenger and R. Eigenmann. Parallelization in the presence of generalized
induction and reduction variables. CSRD Rpt. No. 1396, Center for Supercom-
puting Research and Development, University of Illinois at Urbana-Champaign,
January 1995.

A. Rogers and K. Pingali. Process decomposition through locality of reference. In
Proceedings of the SIGPLAN 89 Conference on Programming Language Design
and Implementation, Portland, OR, June 1989.

T. Suganuma, H. Komatsu, and T. Nakatani. Detection and global optimization
of reduction operations for distributed parallel machines. In Proceedings of the
1996 ACM International Conference on Supercomputing, Philadelphia, PA, May
1996.

