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Abstract

This paper evaluates the High-Performance Fortran (HPF) language as a candidate for
implementing scientific, engineering and computer science software on parallel machines. The
paper reviews major HPF language features and discusses general algorithmic issues common to
broad classes of SPMD applications. It also discusses limitations of the current specification and

the extensions required for effective representation and parallelization of several applications.

This paper is also available on the NPAC web site under the URL:

http://www.npac.syr.edu/hpfa/Papers/HPFforSPMD/
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1 Introduction

From the early 1980’s to the mid 1990’s, parallel computer architectures went through a prolif-
eration in designs, as manufacturers competed to meet the promise of high performance and/or
low hardware costs [41]. The machine from that era typically boasted esoteric hardware fea-
tures with which to distinguish themselves from the existing vector-parallel supercomputers and
other traditional mainframes. This included exotic interconnect topologies (e.g., hypercubes),
specialised processing units (e.g., the Inmos Transputer), high-performance proprietary pro-
cessors (e.g., KSR-1) and large arrays of (also proprietary) bit-processors (e.g., MasPar, TMC
CM-1). However, the increasing sophistication and power of commodity CMOS components
has resulted in a consolidation towards designs which spread research and development costs
through the use of more general-purpose parts. Hence today, the most prevalent parallel com-
puter designs extensively use hardware developed for other markets; currently this is mainly
the workstation market, but it is only a matter of time before Intel x86 processors from the per-
sonal computing world are also exploited. Moreover, communication libraries are now designed
such as to abstract away the underlying topology of the hardware, such that an application
programmer should not be expected to worry whether a machine is wired in a 3-D torus or in
a hypercube. So from the in terms of the machine’s processing units, the coarse grained design
is now the dominant architecture (see §2), whilst developments in software has now made the

question of interconnect topologies an implementation issue. It is because of these software



developments that the question of writing portable parallel applications can be answered, a
task for which the High Performance Fortran language was specifically designed to tackle.

Currently, the most prevalent means of writing parallel applications for coarse grained ma-
chines is by calling message-passing library routines to pass data amongst the processors. A
large number of the codes written in such a manner are single program, multiple data (SPMD) in
nature, where the same program is executed on each of the participating processors. However,
message-passing programming is generally regarded to be tedious and error-prone, as the pro-
grammer has to manage the flow of data to each of the processors at each computation step, by
hand. Furthermore, portability of the code can be a problem when libraries unique to a partic-
ular hardware vendor are used. The acceptance of the machine-independent message passing
interface ‘MPI” [34] has largely relieved the problem of portability for most message passing
codes, but message-passing software development tools are still strangely lacking.

An alternative to hand-coded message-passing is to develop compilers capable of generating
automatically the message-passing instructions required. Unfortunately, attempts to develop
parallelizing compilers for widely-used languages like ‘C” and Fortran have not been successful.
Although fully automatic parallelizing compilers can produce excellent results on isolated loop
nests, they often fail to exploit available parallelism in realistic application because of the

following reasons:

1. The compiler’s analysis can simply fail, reporting a dependence when none exists.

2. An actual dependence may be an artifact of a sequential optimization, such as reusing an
array’s storage to save memory. In these cases, it is often possible to rewrite the program

to allow the parallelization to take place, if the user can detect the problem.

3. The program may use an inherently sequential algorithm, or an algorithm with limited
parallelism. For example, the standard method of solving a tridiagonal system uses a
first-order recurrence that cannot be directly parallelized. In this case, the best option is

to change to a different algorithm.

With items 1 and 2, the failure of the compiler to notice the parallelisation in the code is
due largely to the inherently serial design of the Fortran programming language. That is to say,
given the syntax of the language, the determination of data dependencies at compile time would
necessarily be limited, hence forcing the compiler to make possibly pessimistic assumptions.
Given the Fortran language, a complete analysis of the parallelism in an arbitrary code will
require knowledge only available at run-time.

As a result, efficient use of distributed memory systems requires either the use of message-
passing programming or the development of new languages. To address some of the above
issues, a specification for a language called High-Performance Fortran (HPF) was adopted in
1993 [18]. The HPF language specification is based in part on experience gained with the
research languages such as Fortran D [21, 22, 10] and Vienna Fortran [5]. HPF is based on
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Fortran 90 [1, 33], an extension of Fortran 77 that allows new features to be integrated into
existing code in a controlled, evolutionary manner. Fortran 90 includes major new features
(over Fortran 77) in a broad range of areas, including new control structures, array processing,
dynamic memory management, data types and structures, operators, object-orientated features,
operator overloading, subprograms, and global data. From the perspective of parallelism, the
most significant extension provided by Fortran 90 is the treatment of arrays as individual data
objects. This feature is inherently well-suited to data-parallel operations, which are readily
processed by almost all parallel machines.

A critical issue for parallel computing is the problem of scalability and portability of the
software, since this is the key for protection of software investment. This issue is seriously
addressed by HPF with its minimal set of extensions to Fortran 90 (see §3) for supporting
the data parallel programming model, which is defined as single-threaded, loosely-synchronous
parallel computation using a global name space. One fundamental extension to Fortran 90
provided by HPF concerns the use of compiler directives for specifying the distribution of data
among multiple processors. These directives provide information to the compiler on where
the parallelism of the problem can be exploited, and yet may be safely ignored by a serial
compiler. Indeed, the language only include the ‘FORALL’ first class statement/construct for
more generalised data-parallel computations, and the ‘PURE’ attribute for declaring ‘data-local’
subprograms: both of which have subsequently been adopted for the Fortran 95 standard
(see §3.4).

The Fortran programming language has traditionally been most widely used in the scientific
and engineering fields, and in particular in the solution of multidimensional partial differential
equations. With these problems, the usual procedure is to first map the problem from continu-
ous to discretised space, via a meshing procedure. The problem can then be represented with
state variables at points on this mesh —for example, the fluid pressure value in a computational
fluid dynamics simulation (e.g., in §6.6). By representing these states on the grid points as an
N dimensional vector (where N is the number of grid points), the solution vector for a given
boundary condition can be found through the solution of an N x N matrix. The key point is
that this matrix reflects the topological structure of the underlying mesh, and is hence likely
to be sparse, since very few problems have physics where every point in state space depends
on the state of every other points. Furthermore, in the case of an irreqular mesh, where each
element may be topologically variant, the matrix will also have an arbitrary sparse structure
(see [8] for a more detailed discussion on sparse matrix problems). Such irregular meshes also
require a more complicated data structure (since determining neighbouring nodes is non-trivial)
involving indirect addressing with gather/scatter operations (see §6.3), with the distinct pos-
sibility of load imbalances from the varying sized elements. In contrast, regular mesh problems
with homogeneous topologies involve matrix-vector & vector-vector operations for direct solu-
tion methods (§6.1), or ‘CSHIFT()’ operations for iterative solution methods (§6.2), which are

easier to implement efficiently on current HPF compilers.



The current HPF language specification supports the data parallel programming for sev-
eral practical applications, but has limited support for unstructured problems with irregular
data mappings. A new round of discussions concerning a second HPF specification (‘HPF-2.0)
have just been completed [18], and one of the key areas of discussion concerns better support
for irregular mesh codes (see [19] for the motivating applications, and §3.5 for a discussion of
these new features). It is our belief that HPF will complement —not replace— programming
using message-passing libraries. For many applications, HPF is expected to provide convenient,
compact and relatively-simple programs without recourse to explicit message-passing instruc-
tions. However, other applications are expected to require hand-coded message passing to yield
acceptable utilization of distributed-memory systems.

Although HPF and, to a slightly lesser extent Fortran 90, are comparatively new languages,
it is encouraging to see that many vendors either support, or is highly interested in supporting
HPF, as is seen in documented reports [36, 30, 43] comparing some of these products. This
reinforces the wish to have a language portable across a variety of platforms and compilers.
In particular [43] has observed scalability up to 8 processors on simple application codes, with
modest overheads when running from Fortran 90 to HPF. In these cases, it is difficult to envisage
a hand-tuned message passing code providing appreciably better performances. For real-world
applications in the commercial world, success has also been reported for a large ocean modelling
code [40], where HPF was used in the parallelisation of a multiple tridiagonal matrix solver.

This paper provides a brief overview of High Performance Fortran, general principles of its
compilation and runtime support for scalable code generation for coarse grained machines. The
main focus is on a detailed analysis of HPF features required for the parallelization of a number

of regular SPMD applications.

2 Coarse Grain Parallel Machines

Many of the specifications of the High Performance Fortran language deals with the problem
of mapping the elements of a distributed arrays onto a multiprocessor machine. Specifically,
a coarse grain, general purpose parallel machine —in contrast to fine-grained specialised ma-
chines such as the Illiac-IV, TMC CM-1, 2 & 200 and the AMT DAP, which have their own
custom-designed programming languages and associated restrictions. That this is an important
architecture for HPF to address can be seen by the comparative rarity of fine grained parallel
machines, with respect to their coarse grained counterparts. This in turn is due to the increas-
ing use of commodity components in the construction of high performance computers, which
spreads development costs and helps to protect existing software bases.

Coarse grained parallel machines consist of a set of processing elements (typically tens
to a few thousand) connected through an interconnection network. The memory on these
are either distributed with a fraction local to each processor, or shared through a common

interconnect: the former requires interprocessor communication via message passing calls and



the latter more simply via a shared address space. Topologically, the interconnection network
of these computers are varied. They can be 2D meshes (Paragon, Delta), 3D meshes (Cray T3D
& T3E), hypercubes (nCUBE), fat tree (TMC CMb5, Meiko CS-2), hierarchical networks (cedar,
DASH), hierarchical rings (KSR-1), a common switch unit (IBM SP-2), or a shared bus (SGI
Challenge). Since shared-memory machines are limited by bus to (typically) 32 processors, some
machines have amalgamated distributed memory topologies to achieve scalability beyond that
limit (SGI/Cray Origin). Finally, one may have a physically distributed memory architecture,
but a conceptually shared-memory programming model (KSR-1, HP/Convex Exemplar).

Where the parallel machine has a distributed memory model, its access to local memory are
significantly faster than non-local memory, typically by an integral factor. The cost of accessing
non local data can be simplistically modeled as t; 4 ¢,,m, where ¢, represents the handshaking
latency, ¢,, represents the inverse bandwidth of the underlying network, and m the size of the
message size.

The startup time {5 is often large, and can be several hundred machine cycles or more.
The per-word transfer time ¢, is typically an order to two orders of magnitude larger than t.,
the time to do a unit computation on data available in the local cache or local memory. This
feature of parallel machines requires programs to access local memory as frequently as possible
for efficient computation. Presence of multiple levels of memory forms a memory hierarchy in

some machines. HPF considers only one level of memory hierarchy explicitly.

3 High Performance Fortran

HPF consists of extensions to Fortran 90. One advantage of building a new language on Fortran
is that it is expected to facilitate reuse of the enormous inventory of existing codes written in
Fortran 77 (or earlier versions). In addition, this approach leverages existing skills of experi-
enced Fortran programmers, as well as the significant investment of computer manufacturers,
which have developed highly-optimized Fortran compilers. This section includes a brief over-
view of Fortran 90 and the major extensions to Fortran 90 contained in the HPF specification.

Complete details concerning HPF may be found in references [18, 25].

3.1 Fortran 90 Features

Although Fortran 90 includes major extensions to Fortran 77 in a broad range of areas, the
principal features of interest in the present paper involve array processing. In this area, notable

extensions include:

e Processing of arrays as individual data objects. For example, the Fortran 90 statement
‘A = B + C’ adds corresponding elements of arrays ‘B’ and ‘C’ without requiring do-loop

indexing over each element of the arrays.



e New syntax for array sections, which contain a subset of elements from an array.

e Masked array assignments, which permit selective processing of array elements. For ex-
ample, the Fortran 90 statement ‘WHERE(A=0) B=C’ assigns elements of the array ‘B’ to
be equal to corresponding elements of the array ‘C” only for those locations in which the

corresponding elements of the array ‘A’ are zero.

e Use of arrays and array sections as arguments to a broad case of elemental intrinsic
functions e.g., ‘B=ABS(A)’ sets each element of array ‘B’ to be equal to the absolute value

of the corresponding element of array ‘A’.

e New intrinsic functions that perform transformations or reductions on arrays or array sec-
tions. Examples include ‘SUM()’, which returns a sum of array elements and ‘MAXVAL()’,

which returns the value of the largest array element.

The processing and manipulation of arrays as individual data objects allows the programmer

to represent bulk data parallelism in a form that can be exploited relatively easily.

3.2 The HPF Extensions to Fortran 90

The HPF extensions provide the compiler with information about locality as well as concur-
rency present in the application code. This information is of utmost importance in achieving
high performance on distributed memory machines. These extensions fall into four categor-
ies: compiler directives, new parallel constructs, library routines, and an escape mechanism for

interfacing with other languages and libraries!.

3.2.1 Compiler Directives

Compiler directives are structured comments that suggest implementation strategies or assert
facts about a program to the compiler. They may affect the efficiency of the computation
performed, but they do not change the semantics of the program. Analogous to Fortran 90
statements, there are declarative directives, to be placed in the declaration part of a scoping unit,
and executable directives, to be placed among the executable Fortran 90 statements. Efficient
execution of data-parallel applications on distributed memory machines requires distribution
of data such that data locality and/or load balance is achieved. HPF data alignment and
distribution directives allow the programmer to advise the compiler how to assign data objects
(typically array elements) to the memories of processors.

HPF uses a two-level mapping of data objects to ‘abstract processors’. Objects (typically
arrays) are first aligned relative to one another, and then groups of aligned objects are dis-

tributed onto a programmer-defined rectilinear arrangement of abstract processors (using the

'HPF also restricts sequence and storage association available in Fortran 90 due to incompatibility with the
data distribution directives (see [18] for further details).



‘PROCESSORS’ directive). The final mapping of abstract to physical processors is not specified
by HPF and is implementation dependent.

The ‘ALIGN’ directive can be used to enforce the co-locality of different arrays. All array
elements aligned with an element of the template are mapped to the same processor. The
template can either be provided explicitly by using the ‘TEMPLATE’ directive or implicitly by
using another array as a template.

The template of an array is distributed among the set of abstract processors by using the
‘DISTRIBUTE’ directive. Several patterns of partitioning are available. The important ones are
‘BLOCK’ and ‘CYCLIC’. The former slices the template elements into uniform contiguous blocks
of elements, while the latter assigns the template in a round-robin fashion. In addition, a
particular dimension of the template may be collapsed or replicated onto the abstract processor
grid.

Figure 1 gives an example of the use of the above HPF directives for distributing an 8 x 8
matrix amongst four processors.

The combination of alignment information of an array and distribution information of its
template defines the mapping of an array. However, this mapping need not be fixed throughout
the code’s execution. Instead, distributed arrays may be remapped at any place in the code
—although this obviously results in large data movements and should generally be avoided.
Distributed arrays which are remapped during runtime are first flagged to the compiler with
the ‘DYNAMIC’ attribute. The actual remapping is then triggered by executing the directives
‘REALIGN’ or ‘REDISTRIBUTE’, as illustrated in the code fragments in §6. Note that in the new
HPF-2.0 specifications (see §3.5) data mapping with these directives have now been moved
from the core language definition over to the list of approved extensions, in recognition of the
efficiency problems their use causes. However, the ‘TRANSPOSE ()’ function still allows arrays to

be remapped, albeit in a very limited manner.

3.2.2 Parallel Constructs

Parallel constructs are provided in HPF to enable the programmer to make explicit assertions
about concurrency in a code. Available features include the ‘FORALL’ statement, the ‘FORALL’
construct and the ‘INDEPENDENT’ do-loop directive.

The ‘FORALL’ statement can be used to express assignments to sections of arrays. It is similar
to the array assignment of Fortran 90, but allows more general sections and computations to
be specified. The semantics of ‘FORALL’ guarantee that array elements may be assigned in an
arbitrary order. To ensure determinism it is required that each array element on the left hand
side (ILHS) is assigned only once. The execution of the ‘FORALL’ statement may require intra-
statement synchronization; the evaluation of the left side expression of the ‘FORALL’ assignment
must be completed for all array elements before the actual assignment is made. A sequence of
‘FORALL’ statements can be combined using the ‘FORALL’ construct with similar semantics.

The ‘INDEPENDENT’ directive asserts that the statements in a particular section of code do



(a) REAL, DI MENSI ON(8, 8) :: ar

(b) ! HPF$ PROCESSORS :: procs(4) D_._D_.

(c) !'HPF$ TEMPLATE, DI MENSI ON(8,8) :: tplate |,
I HPF$ DI STRI BUTE (*, BLOCK) ONTO procs :: tplate | ..

(d) 'HPF$ ALIGN WTH tplate :: ar

Figure 1: Example of the use of HPF directives in distributing an array. (a) The array to be
distributed: ‘ar(8,8)’; (b) The directive for specifying the abstract processor layout, here a
linear chain of four nodes; (¢) The directive for specifying the (zero-storage) ‘TEMPLATE’ array
‘tplate(8,8)’ which is then distributed with the first index dimension local within a processor,
and the second index dimension ‘BLOCK’ spread across the processors; and (d) By aligning the

data array ‘ar ()’ with the template object ‘tplate()’, the data array is distributed across the

four Processors.
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not exhibit any sequentializing dependencies. Although it does not change the semantics of
the code, it can be used to provide information to the language processor in order to allow
optimizations. This directive is useful in cases when traditional dependency-analysis methods

may be extremely difficult, especially because of indirections.

3.2.3 Intrinsics

Experience with massively-parallel machines has identified several basic operations that are
very valuable in parallel algorithm design. HPF has added several classes of parallel operations
to the operations already provided in Fortran 90. Important HPF computational intrinsics

(including the Fortran 90 intrinsics) are the following:

1. Simple reduction functions: These functions can be used to calculate summations and

other related operations along one or more dimensions of an array.

2. Combining scatter functions: These allow for combining non-overlapping subsets of array

elements.

3. Prefix and suffix functions: These functions provide scan operations on arrays and subar-

rays.

4. Array sorting functions: These functions can be used for sorting in increasing or decreasing

order.

5. Array manipulation functions: Many useful operations such as transposing an array or

rotating an array are available.

6. Array location functions: These are useful in finding location of elements in arrays with

maximum or minimum value.

7. Array construction functions: These allow construction of new arrays, potentially of new

size and shape, by using the elements of another array.

8. Vector and matrix multiplication functions: These include dot-product and matrix mul-

tiplication.

9. Elemental intrinsics functions: These functions act on individual elements of an array.

In addition, several system inquiry functions useful for controlling parallel execution are provided.

3.2.4 Extrinsics

An escape mechanism is provided in the form of an interface which can be used by other
languages and possibly supporting other programming paradigms, including explicit message-
passing. The HPF library also provides a set of inquiry functions that return all necessary

information to fully exploit the actual data distribution generated by the HPF program.
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3.3 Anatomy of a typical HPF compiler

In this section, we briefly discuss the important issues for a typical HPF compiler. This section
is limited to parallelization of explicit parallelism available for which we have had extensive
experience [4] and is the main focus of this paper. It is a very brief and simplistic overview of
an HPF compiler.

Efficient parallelization of ‘FORALL’ statement, ‘FORALL’ construct and array assignment

functions on distributed memory machines can be decomposed into three parts
e Computation Partitioning
e Recognition/Generation of Communication
e Performing the Communication generated

We will assume that computation for a given iteration of loop or array assignment would
be performed based on the owner computes rule (based on the LHS) unless otherwise specified.
For the second step, the compilers needs to derive the communication (if any) required for
the parallelization of the parallel constructs. This requires information about the distribution
of variables on the Left Hand Side, Right Hand Side and loop index bounds. A typical HPF
compiler would generate a send processors list, receive processors list, local index list of the
source array(s), and local index list of the destination array. There are two ways of determining
the above information. 1) Using a preprocessing loop to compute the above values or, 2) based
on the type of communication the above information may be implicitly available, and therefore,
not require preprocessing.

The communication generated by most of the constructs is collective in nature. A compiler
can generate send/receives (or other low level constructs) for performing the communication.

However, there are three important reasons for using collective communication:

1. Improved performance and scalability: To achieve good performance, interprocessor com-
munication must be minimized. By developing a separate library of interprocessor com-

munication routines, each routine can be optimized.

2. Increased portability: Separating the communication library from the basic compiler
design enhances portability because only the machine specific low-level communication
calls in the library need to be changed. Note that the compiler communication library
can be optimized for each machine and portability is derived from a common interface so

that the code generation by the compiler does not have to change.

3. Improved performance estimation. Future compilers would require a capability to per-
form automatic data distribution and alignment. Distribution of temporary arrays must
be determined by the compiler. Such techniques usually require computing trade-offs

between exploitable parallelism and the communication costs. The costs of collective

12



communication routines can be determined more precisely than generating point to point
communication for each pair of communicating processors, thereby enabling the compiler

to generate better distributions.

A list of important communication primitives required are as follows [4].

Transfer: Single source sends data to a single destination.

Broadcast: One processor (source node) sends data (scalar variable or multi-dimension

array) to all processors or a subset of processors (destination nodes).

Reduction: It is the inverse of a broadcast. Typically a combining function is used to

combine the inputs from all the processors.

Overlap_shift: Shifting data into overlap areas in one or more grid dimensions. This is
particularly useful when the shift amount is known at compile time. This primitive uses

that fact to avoid intra-processor copying of data and directly stores data in the overlap.

Concatenation: This primitive concatenates a distributed array and the resultant array

ends up in all the processors participating in this primitive.

Many-to-many Communication: Each processors sends a different size message to a

subset of all the processors.

Several algorithms have been studied in the literature for the above communication structures

for different interconnection networks and are part of standard textbooks on parallel computing.

Some of the features which the communication operations have to support are:

Many of the operations have to be performed only along a few dimensions; e.g., a multicast
requires sending a message to the processors along one dimension of a two dimensional
mesh. This requires a compact representation of participating processor lists in each of
the broadcasts.

There 1s a need for moving array sections. Thus, the message in general is as an array
section (with block-sized, stride along each dimension). The communication primitives
available for earlier versions of the communication libraries of parallel machines support
only contiguous blocks of data. When array sections have to be communicated, routines
are required to pack and unpack data into and from a contiguous buffer. These routines
pack data into a contiguous block before passing it to communication network, and unpack

data and place it to the right location upon its arrival of destination processor.

The Message Passing Interface (MPI) standard [34] addresses many of the above issues.

Parallelization of the independent statements may require careful mapping of the iterations

to minimize computations as well as load balance. In this paper, we will limit the use of
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‘INDEPENDENT’ do loops to cases in which each iteration can be assigned to arbitrary processors
such that approximately equal number of iterations is performed on every processor or assigned
using the owner computes rule.

Parallelization of computational intrinsics require tailored libraries to achieve high perform-
ance. An HPF compiler will detect calls to intrinsic functions in the HPF program and replaces
them with calls to these routines. When an array is passed as an argument to an intrinsic
function, it is also necessary to provide some other information such as its size, distribution
among the nodes of the distributed memory machine etc. All this information can be stored in
a table called a Distributed Array Descriptor (DAD) and passed as another argument to the
intrinsic function. The information which is part of this descriptor includes the distribution

type of the array, the size of the local array, the size of the overlap areas (if any) etc.

3.4 HPF and Fortran 95

Fortran has, of course, been evolving since its birth in 1954. Hence shortly after the release of
the Fortran 90 specifications, work began on the Fortran 95 standard to refine and clarify the
work of the previous standard. The preliminary draft of this new standard is currently being
debated, but one can identify the following changes which will have an impact on the HPF
language.

First of all, the HPF ‘PURE’ attribute for functions and subroutines have been adopted.
This guarantees such procedures to have no adverse effect on data outside those explicitly
defined in the interface blocks, and as such can be used to operate on distributed data in
parallel. In addition, the HPF ‘FORALL’ statement and construct has been adopted, enlarging
the current computations available with array expressions and the ‘WHERE’ statement /construct.
Fortran 95 also has generalized the syntax for ‘WHERE’ and ‘FORALL’ so that they may now be
nested together, and expanded the syntax for the ‘WHERE’ construct to allow masks for the ‘ELSE
WHERE’ clause.

On the otherhand, it currently seems that the HPF procedure attribute ‘INTRINSIC()’ (for
selecting subprograms written in a different language such as serial Fortran 90), and many
classes of HPF intrinsic functions (such as for scatter-gather operations) will not be elevated
into the Fortran 95 standard.

3.5 HPF-2.0 —The Next High Performance Fortran Standard

The round of meetings for the next release of the HPF standard concluded shortly before
the conference Supercomputing-96 in Pittsburgh. This subsection discusses the improvements
made, based upon the document (version 2.0.3) released in mid-November, 1996 [20]

The round of meetings for HPF-2.0 was motivated by three needs: to make corrections
and clarifications to the original definition, to provide any new features requested by the HPF

community, and to recognise that compiler vendors have to provide efficient implementations of
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the full language specification. In response to these issues, the language has been organised into
two parts: the HPF language itself, and a set of approved extensions. The latter are described
in separate chapters in the HPF standards document, and actually contain some features that
were part of the HPF 1.1 standard (for example, the ‘REDISTRIBUTE’ directive). The rationale
being that whilst HPF-2.0 is a complete language, it has also been streamlined to contain
features which can be efficiently implemented within a year (as estimated with the vendors’
agreement ) of the release of the language; whilst the list of approved extensions refer to features
which have been debated and approved by the forum, but are acknowledged to be harder to
implement efficiently. Also, note that the definition for subset HPF has been left invariant from
the HPF-1.1 standard, and moreover that it is still a subset of the HPF-2.0 standard.
HPF-2.0 language features that were not in the HPF-1.1 standard are:

e Data Parallel Execution: The clause ‘REDUCTION’ has been added in the ‘INDEPENDENT’
do-loop directive for declaring that a given variable will be updated during that loop.
Currently, only a certain set of reduction operations and functions are supported, not

arbitrary user-defined ones.

e New intrinsic functions in the ‘HPF_LIBRARY’ module: ‘SORT DOWN’, ‘SORT_UP’ for sorting

the elements in an arbitrary-ranked array.

As well introducing new features, the list of approved HPF-2.0 extensions also contain

constructs from the HPF-1.1. The approved extensions are listed in the following subsections.

3.5.1 Data mapping

e The HPF-1.1 directives ‘REDISTRIBUTE’, ‘DYNAMIC’, and ‘REALIGN’, distribution of point-
ers (i.e., arrays with declared with the attribute ‘POINTER’), have been moved here.

e Objects may be distributed onto a subset of the processors. This would be invaluable for
multi-resolution codes, such as in the multigrid algorithm. Processor subsets are declared

with the Fortran 90 triplet array notation.

o Arrays of Fortran 90 derived datatypes may be distributed, or the elements within an
array of Fortran 90 derived datatypes may be distributed, but not both. Hence it is

illegal to have a distributed array containing elements which are in turn distributed.

e New distribution formats: ‘GEN_BLOCK’ and ‘INDIRECT’. ‘GEN_BLOCK(S)’ allows takes an
array parameter ‘S’ describing the number of elements in a given array which should be
distributed to a given processor. ‘INDIRECT(M)’ uses an array argument which specifies
which processor number (from ‘1’ to the value returned by the intrinsic enquiry function
‘NUMBER_OF _PROCESSORS()’) a given distributed array element should reside on. Hence
the extent of the mapping array ‘M’ must match that of the array to be distributed.
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e The new subprogram interface directive ‘RANGE’, for use in transcriptive and ‘INHERIT’

mappings, and informs the compiler to expect one of a possible set of array distributions.

e A ‘SHADOW keyword added to some of the distribution formats, for telling the compiler
the ‘depth’ of any stencil operations in the code. This allows a compiler to set the optimal

shadow width in domain decomposition codes.

3.5.2 Data and Task Parallelism

e The ‘ON HOME()’ directive. This provides advice to the compiler on the data locality of a
block of code by informing it which processor should compute which part of a computation,
based on the distribution of an array argument. Note that specifying processor subsets
are allowed.

e The ‘RESIDENT()’ directive. This is used as an additional clause to the ‘ON HOME()’
directive, and is an assertion that the stated list of variables will remain local throughout

the computation and will not require communications.

e The ‘TASK REGION'...‘END TASK REGION’ directives. These bracket a region of code con-
taining a number of ‘ON HOME()’ code blocks. This then provides information to the
compiler that these ‘ON HOME()’ sub-regions may operate over disjoint processor subsets,

and hence maybe able to execute in parallel.

3.5.3 Extensions to the HPF Intrinsic and Library Procedures

Many of the mapping enquiry functions have been upgraded to reflect the additional map-
pings allowed. In addition, the intrinsic function ‘TRANSPOSE()’ can now transpose an array of

arbitrary rank.

3.5.4 Miscellaneous

Other Extensions approved in HPF-2.0 are:

e Asynchronous I/O represents a departure from the single-threaded computation model,
but is a welcomed acknowledgement of the imbalance between 1/O and CPU speeds in
modern machines. This feature will allow a separate thread to be created for each 1/0
operation that has been flagged with a new control specifier (‘ID="), that is then joined
back onto the main control thread with the ‘WAIT()’ statement: this pauses the execution

until the /0 transfer has been completed.

o Generalisation of the HPF-1.1 extrinsic libraries ‘HPF_LOCAL’ and ‘HPF_SERIAL’ for differ-
ent computational models and languages. For example, there is now the extrinsic library
‘FORTRAN LOCAL’ to support interactions between Fortran 77 and HPF subprograms.
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4 Application Classification

It is convenient to use the classification of problems into embarrassingly parallel, synchronous,

loosely synchronous, asynchronous, and metaproblems [11, 13].

1. The class of embarrassingly parallel problems require little communication or synchron-

ization and can be parallelized using straightforward approaches.

2. In synchronous problems, we have data parallelism with: identical algorithms applied to
each point in the data domain, plus identical data dependency patterns between the data

domain points.

3. Loosely synchronous problems are data parallel but different data points evolve differently.

Points are also often connected in an irregular, data-dependent manner.
4. Asynchronous problems are very irregular and require tailored parallelizations.

5. The class of metaproblems have two or more subtasks; each of the subtasks belong to one
of the above categories. Each of the subtasks in such an application can be parallelized

individually, and there may be parallelism between them.

In the following sections, we provide an analysis of important applications which can be
used for solving applications using HPF. Most of the codes presented are kernels from real
applications and are provided to show the specific HPF construct or directive. However, we
should stress that due to the range of codes at our disposal, and the restriction of the HPF 1.1
standard implemented by today’s compilers, the applications here are largely embarrassingly
parallel or synchronous in nature. The need for more general task-parallelism constructs and
irregular mapping of data has been addressed in the HPF 2.0 standard [20], following feedback
from the initial HPF-1.0 process [19]. These shortcomings in HPF-1.1 have impacted work
in General Relativity simulations [24], where the problem mesh is irregular, and where the

simulation’s adaptive mesh refinement algorithm causes load imbalances.

5 Embarrassingly Parallel Applications

This class of applications require execution of several independent instances of the problems and
can be parallelized relatively easily. This information about independence can be provided to
the compiler by using the ‘INDEPENDENT’ directive. At the end of the computation of statistical
properties of several runs needs to be evaluated. This can be done by use of the reduction,

gather/scatter intrinsic functions.
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5.1 Conversion between Random Numbers

Many applications require the use of random numbers with nonuniform distribution. The
system provided random numbers are typically generated using a uniform random number
generator and a simple algorithm like the Box-Muller method can then be used to generate a
set of Gaussian distributed deviates this set. This code assumes that the system random number
generator (or some other) can supply a vector of uniform deviates, and applies a vectorized Box-
Muller algorithm to obtain Gaussian deviates. Such a generator is readily available from the
‘RANDOM _NUMBER’ Fortran 90 intrinsic function.

This algorithm uses an accept/reject approach and not all generated random number pairs
are useful. Statistical fluctuations in the accept/reject mechanism require extra deviates to be
computed. A simple approach is to generate a larger (say twice) the number of potential deviates
as are requested by the caller. Since, the Box-Muller algorithm has an intrinsic efficiency of
about 2.0/1.27, this would typically be large enough for a large set.

The NAS EP (‘Embarrassingly Parallel’) benchmark [2] in appendix A.1 follows the Box-
Muller approach, converting vectors of uniform-deviate random numbers into vectors with a
Gaussian distribution. However, because the benchmark specifies how these numbers are gen-
erated, the system-dependent random number generator has to be replaced with a portable
implementation. In addition, the EP benchmark is typified by the need to histogram or tab-
ulate random deviates with a particular correlation property. The code illustrates how this
might be achieved compactly in HPF. A distribution template is set up to spread samples from
some random process across processors. Temporary arrays are set up to allow processors to
make a partial summations and counts of those samples which fail some test in their own local
memory.

The ‘WHERE’ construct is used to express the potential independent processor operation to
partially sum the samples. The ‘SUM’ intrinsic function can then be used to sum the partial
summations.

However, there is a potential problem with the above approach because packing generates
unnecessary communication. In a message passing implementation each processor would gener-
ate its own set of random numbers without any communication. This problem can be solved by
using a code that generates P independent streams of random numbers (where P is the number
of processors). FEach stream generates enough random numbers such that enough Gaussian
deviates are generated. This can be done using a do loop with the ‘INDEPENDENT’ directive.

5.2 Data Analysis

Several applications require the use of statistical analysis over several measurements. High
energy physics applications require such analyses over a very large number of events. These

applications can make use of the HPF features:

1. ‘INDEPENDENT’
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2. Reducing intrinsics such as ‘SUM’, and ‘SCATTER/GATHER’ for histogramming.

In addition, the HPF-2.0 [20] specifications have added the ‘REDUCTION’ clause has been
added to the ‘INDEPENDENT’ directive to allow more generic reduction operations to be written
(see §3.5). In particular, a given variable is marked down by this clause as to be only accessible in
a reduction-like operation statement (such as ‘X = X + A(D) ’). However, the range of reduction

operations allowed are currently limited to:

e Arithmetic binary operators: ‘+’, ‘=7, ‘¥’ ¢/’

e Logical operators: *.AND.’, *.0R.’, *.EQ.” and ‘.NE.’
e Reduction intrinsic functions: ‘MAX’, ‘MIN’, ‘TAND’, ‘IOR’, ‘IEOR’.

We demonstrate the use of HPF for such statistical analysis using the calculation of Hough
transform. The general technique of Hough transform is computationally very intensive and
has been used to detect lines, circles and arbitrary shapes in images. In the following we briefly
describe this technique for detecting lines.

The general equation of a straight line can be given by the parametric equation:

r=zcosf+ysinb (1)

where 6 is the angle that the normal to the line given by equation 2 makes with the = axis, and

r is the length of the normal. Any edge point (x;,y;) on this line satisfies the equation:

r=uz;cosf + y;sin b (2)

The above equation represents a sinusoidal curve in the (r, ) space. Any point on this curve
corresponds to a line passing through (z;,y;). Thus, the curves corresponding to all the points
on a line in the (z,y) space must intersect at the same point in the (r,0) space. Each edge
point contributes ‘1’ to the (r,8) cells given by equation 2 and the cells corresponding to local
maxima give the desired lines.

Thus, each edge pixel votes for bins in (p, ) space. A bin which receives a large number of
votes represents the presence of a line (or other feature) in the image. The code in appendix A.2
illustrates how this might be achieved compactly in HPF. The input to this program is and edge
image (a pixel is ‘17 if it is and edge pixel). This is typically derived by using simple template
matching algorithms [3]. The first phase of the code packs all the edge pixels in a compact
array. This removes a conditional check which will otherwise be required to determine whether
this pixel can vote for the resultant Hough array. Edge pixels are non-uniformly distributed in
the edge array. This also leads to a load balancing for the voting stage.

The next stage of the algorithm creates a voting array of size equal to the number of pixel
times the number of angles. This array is used to determine the resultant Hough array by using
a ‘COUNT_SCATTER()’ intrinsic.
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Also, for realistic images suitable runtime support and redistribution of edge pixels can be
used to reduce the communication overhead generated by the ‘COUNT_SCATTER()’ [28]. The
‘COUNT_SCATTER ()’ may generate hot spots if most of the votes are for a few bins in the Hough

array.

5.3 Unindexed Search

Several application require searching of a specific pattern in a database. The type of search
depends on whether the data is stored using indexes or unindexed. In the former case, the index
could be used to accelerate the search process. The latter requires searching the whole database.
Typically an unindexed search of full text held in the form of many documents. Each entry in
the document database is abstracted with a sophisticated algorithm. These compressed files
are then compared to the query (such as “Find me all newspaper articles on Mickey Mantle”)
in parallel and a match score extracted. The scores are sorted (or thresholded) and the user
receives a list in order of decreasing (or thresholded) scores.

These applications would require use of a do loop with an ‘INDEPENDENT’ directive or a
‘FORALL’ loop for comparing the pattern with all the documents. This would be followed by
a sorting operation (‘GRADE’ function in HPF) to order the documents based on the quality of
the match. Additional features may have to be added to HPF for execution on larger data sets
to improve the efficiency of 1/O required.

5.4 Methods for Stock Pricing Models

Stock options are contracts that give the holder of the contract the right to buy or sell the
underlying stock at some time in the future. Option contracts are traded just as stocks are
traded, and models that quickly and accurately price option contracts are valuable to traders
and financial managers. Speculators participate in the option market to capture potential high
profits with relatively small investment capital. Financial managers buy and sell options to
hedge risk in their investment portfolios.

A binomial model uses binary trees to represent possible up/down movements in asset price
over the life of an option contract, and are more efficient than Monte Carlo methods. Finucane
([9]) demonstrated that binomial methods provide comparable price estimates as Monte Carlo
models for market observations with known model parameters. The computational structure
of these models can be represented as a binomial tree. There are three phases in the American

stochastic volatility model:

1. The tree starts with a root. At each time step, a leaf node of the tree generates two
nodes. Thus, at each time step, the number of levels of the tree increases by one. The
computational structure guarantees that the value of each child depends only on its parent.

This is repeated for several time steps.
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2. The call values at each of the leafl nodes is calculated.

3. A reverse binomial tree is executed to collect the values at the root node.

Only the values of leaf nodes are useful in later computations. The second step is embar-
rassingly parallel. The last step is the inverse of the first step. The first step can be parallelized

as follows:

1. Declare a two dimensional array of size p x (2/**°* /p).

2. The tree is grown for log(p) iterations using ‘FORALL’ with appropriate masks for operating

on the first row of the matrix. This would in general result in communication.

3. Fach column stores a subtree of the binomial tree for the remaining iterations. Using a

block distribution would ensure that no communication is generated.

The program fragment which uses the above strategy is given in appendix A.3.

Another approach relies on the direct stochastic integration of the Langevin equation for
the security price process [31]. It generates the probability distribution of security prices using
a Metropolis algorithm. Similar Monte Carlo methods have been successfully used in many
financial modeling applications and are notoriously computationally intensive. The basic com-
putational structure requires calculating the probability of transition from one path to another.
Transition probability is a product of local transition probabilities of the segments of a path,
which are in turn related to the local curvatures of the paths.

The algorithm has several levels of parallelism each of which can be exploited in HPF:

1. The same code is run for all stocks independently.

2. For each stock there are several parameters of interest (the same ones for each stock)

which can be computed independently.

3. For each parameter a path integral has to be obtained of length proportional to the

number of time steps. All the odd (and even) time steps can be updated concurrently

This code can be easily represented in HPF using ‘INDEPENDENT’ loops and ‘FORALL’ state-

ments.

5.5 Summary

A summary of important HPF features required for the different embarrassingly parallel ap-
plications is provided in Table 1. From the point of view of a user with existing Fortran 77
code, casting the problem as embarrassingly parallel is especially attractive as this would be

the simplest means of exploiting parallelism in the algorithm. In the simplest case, this might
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Application F90/HPF Features

Binomial Stock Pricing (A.3) Array syntax, ‘WHERE’, ‘EOSHIFT()’

Box-Muller Gaussian random numbers (A.1) | Array syntax, ‘WHERE’, ‘SUM()’

Hough image transformation (A.2) Array syntax, ‘FORALL’, ‘PACK’, ‘COUNT_SCATTER()’

Table 1: Embarrassingly parallel applications discussed in this paper with the appendices where
their HPF implementations can be found, and the key FO0/HPF features which they exploit.

just be declaring the computational heart of the code as a HPF ‘PURE’ subroutine, which is
then called from within an ‘INDEPENDENT’ declared do-loop.

It should also be noted that there are provisions within HPF for applications to be written
in a more traditional SPMD with message passing calls paradigm, via the use of the ‘HPF_LOCAL’
extrinsic library call. Inside this call, non-distributed data are no longer shared across all the

processors, but instead each processor holds its own —in general variant— version of that data.

6 Synchronous Applications

HPF is targeted largely towards the solution of synchronous problems where the decomposed
dataset is regular (has identical data dependencies), data locality is maintained, and the same
operation is performed on all data points. These problems use multidimensional arrays as the
basic data structures which can be manipulated by the explicit parallel constructs as well as by
the intrinsics described in the earlier sections. Data-locality and/or load balancing information
can be provided by distribution directives such as ‘BLOCK’ and ‘CYCLIC’. For most applications,
a program can be decomposed into several stages. It is important to observe that real industrial
applications codes involve more than one basic algorithm to be applied to the problem data.
Depending on the data access patterns, the layout of data required for one phase may be different
than the other [16]. For this reason the data remapping features of HPF are particularly
important —although these are not in the subset HPF standard [18] nor in the core HPF-
2.0 specifications (see §3.5). In HPF this is done directly with the ‘REDISTRIBUTE’ and the
‘REALIGN’ mapping directives; upon the arrays being re-mapped first begin given the HPF
‘DYNAMIC’ attribute. So, for example, the following code fragment will redistribute an array
from a ‘BLOCK’ to a ‘CYCLIC’ distribution:

REAL ,DIMENSION(N) :: array
'HPF$ DYNAMIC :: array
'HPF$ DISTRIBUTE (BLOCK) :: array
. Computation with BLOCK distribution on array ...
'HPF$ REDISTRIBUTE (CYCLIC) :: array
. Computation with CYCLIC distribution on array ...

alternatively, it may be more convenient to do the redistribution by realigning the designated

array with another object, viz:
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REAL ,DIMENSION(N) :: array
REAL,DIMENSION(N) :: distl, dist2
'HPF$ DISTRIBUTE (BLOCK) :: distl
'HPF$ DISTRIBUTE (CYCLIC) :: dist2
'HPF$ DYNAMIC :: array
'HPF$ ALIGN WITH distl :: array
. Computation with BLOCK distribution on array ...
'HPF$ REALIGN WITH dist2 :: array
. Computation with CYCLIC distribution on array ...

An alternative to explicitly redistributing the above arrays is to use the Fortran 90 ‘TRANSPOSE()’
intrinsic function, as is illustrated in the Fast Fourier transformation case in § 6.8.4 and the
ADI algorithm in §6.6.1. This could be useful in algorithms where computations act in altern-
ating directions of the, as for example in the x and y directions of a two dimensional image.
Unfortunately this is only defined for rank-2 matrices, but a generalization for other larger
ranks have been proposed for the HPF 2.0 standard [20].

6.1 Full Matrix Algorithms

Algorithms involving matrices and vectors are applied in several scientific and non-scientific
applications. Matrices can generally be classified into dense or sparse matrices. The former
contain few or no zero entries. The latter class deals with matrices where a majority of elements
are zero. This sparsity can be exploited to achieve better algorithms such as the conjugate
gradient method; the suitability of the current HPF-1.1 standard for which have been examined
[7]. The shortcomings for sparse matrix problems are largely to do with load distribution for
solving matrices with arbitrarily sparse structures (see the discussion on regular and irregular
problems in §1), and have better addressed with the approved extensions in HPF-2.0 (see §3.5).

Examples of full matrix algorithms include Gaussian elimination, Cholesky factorization
and matrix multiplication. The parallelism available in many of the full matrix algorithms is
structured and HPF can be effectively used to represent the concurrency available. Further,
effective parallelization of these applications on coarse grained machines require block, cyclic
or block-cyclic distributions along one or more dimensions. Matrix Multiplication and Vector
Dot Product are also part of the HPF intrinsic library.

For example, the following is a code fragment from Gaussian elimination, and can be effect-

ively parallelized using a cyclic distribution.
dok=1, 1
forall(i=1:N, j=k:NN, indx(i).EQ.-1)

% a(i,j) = a(i,j) - fac(i) * row(j)
end do

However, getting high performance for these applications requires careful fine tuning for a
particular architecture. For example, efficient implementation of Gaussian Elimination may

involve pipelining. This may depend on the underlying communication network. Effectiveness
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of hardware tailored libraries have been clearly demonstrated for these algorithms where order
of magnitude improvements can be obtained over simplistic code. Although these applications
can be effectively used to demonstrate important features of HPF and modest performance can
be achieved, it is our belief that many of them would be available as libraries. HPF, with a
rich set of data distribution directives and interfacing functions, should be able to provide an

easy parallel interface to these libraries.

6.1.1 Gaussian Elimination

The Gaussian elimination algorithm lies at the heart of many direct solvers for general non-
symmetric matrices. Appendix A.4 gives a code which performs this operation, for an example
matrix with element generated by the Fortran 90 random number intrinsic routine. The aim
is to factorise a matrix A into upper and lower triangular parts, from which solutions to the
matrix equation Az = b can be solved for arbitrary right hand side vectors b.

The parallelism in the code comes through distributing columns of the problem array across
the processors. This is done in a cyclic manner since as the algorithm progresses, fewer number
of columns become involved with the computation, and hence the balance of load will be
maintained longer than with the block distribution (as illustrated in figure 1).

Stability of the algorithm is ensured by the use of partial pivoting is performed by the code,
which requires a search for the location of the largest absolute value of an element along a given
matrix column. This is done by the Fortran 90 intrinsic ‘MAXLOC()’ with a ‘MASK’ argument
to ignore the rows which have already been computed upon. Once the pivot has been found,
the computation involves an update of the a part of the matrix with the outer product of the
pivot column and pivot row vectors —this computationally intensive part is where much of the

available parallelism is exploited.

6.1.2 Matrix and Vector Multiplications

Fortran 90 provides two intrinsic functions for the multiplication of matrices and/or vectors: the
scalar function ‘DOT_PRODUCT ()’ for evaluating the inner product of two vectors, and the array
function ‘MATMUL ()’ for more general arrays. In theory, the compiler vendors should be able to
implement these intrinsics more efficiently than hand-coding by the users. This subsection will
discuss how these are used via a few of the more common BLAS routines, and how the arrays
should be distributed in the context of HPF.
BLAS 1 Multiplications

This class of operations are between vectors, and produce a single scalar for the result, as
typified by the functions ‘xDOT’. In terms of HPF, it is obviously best for the two vectors to
be distributed equally amongst the processors, and aligned with respect to each other. The
sum over the multiplied elements should then be the only part requiring communications. In
principle, the function ‘MATMUL ()’ can be used, but the function ‘DOT_PRODUCT ()’ would remove
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the need to copy a 1 x 1 array to a scalar.
BLAS 2 Multiplications

These operations are between a matrix and a vector, or the outer product of two vectors.
In either cases, this is done with the intrinsic function ‘MATMUL()’.

For BLLAS operations of the type ‘xGER’ where a matrix A is given by the outer product of two
vectors zy”, the most computationally efficient distribution would be for A to be distributed,

but x and y to be replicated over all the processors. Hence the code fragment may look like:

REAL,DIMENSION(N) :: x,y
REAL ,DIMENSION(N.N) :: A

'HPF$ DISTRIBUTE(#,BLOCK) :: A
A = MATMUL( RESHAPE(x,(/N,1/)), RESHAPE(y, (/1,8/)) )

which should require no communications. This would obviously not hold if for memory reasons
either one of the two vectors has to be distributed. Note that ¥ and i could not be used directly
by the ‘MATMUL ()’ intrinisc; instead, they have to be ‘RESHAPE()’-ed so as to become N x 1 and
1 x N maftrices, respectively. In this way, the function can be told how the two vectors should
be combined.

For BLLAS 2 operations like ‘xGEMV’ where a matrix A is multiplied with a vector = to
produce a vector y, communications can be avoided by distributing & aligning A and y, but
with x replicated. With this scheme, each element in y maybe computed in parallel, as in the

code fragment:

REAL,DIMENSION(N) :: x,y
REAL ,DIMENSION(N.N) :: A
'HPF$ DISTRIBUTE(BLOCK) :: y
'HPF$ ALIGH (:,*) WITH y(:) :: A
y = RESHAPE( MATMUL( A, RESHAPE(x,(/N,1/)) ),(/N/) )

where the result of the ‘MATMUL ()’ operation has also been ‘RESHAPE()’-ed so as to translate
from an 1 x N row-vector to an N-dimensional vector, to match the shape of ¥.
BLAS 3 Multiplications

The class of BLAS 3 operations is typified by the matrix-matrix multiplication routine
‘XGEMM’. One can treat the parallelisation by thinking of this as a generalisation of the matrix-
vector case above, such that in the operation €' = AB, the matrix B is replicated whilst A
& C are distributed. This may not be feasible if the matrices are very large, and machine
memory limited; in this scenario, one can minimize the communications in the multiplication’s
inner-loop by distributing B in the other dimension to that which A and C are distributed.
This is illustrated in the fragment:

REAL,DIMENSION(N.N) :: A,B,C
'HPF$ DISTRIBUTE(BLOCK,*) :: A,C
'HPF$ DISTRIBUTE(*,BLOCK) :: B

C = MATMUL( A,B )

All three arrays here have the same ranks and shapes, so there is no need to invoke the
‘RESHAPE ()’ intrinsic.
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6.2 Structured Sparse Linear Systems

Most scientific applications represent a physical system by a mathematical model. A continuous
domain of the system to be modeled is discretized by imposing a grid or a mesh over the domain.
Solution of the model requires obtaining the values of physical quantities at all the points of
the domain. Each grid point is typically directly influenced by the grid points within a small
neighborhood. The simulation of each single grid point yields a linear equation relating the
value of desired variables based on the values of grid points in a neighbourhood. These result

in systems of linear equations with matrices which are very sparse in nature.

6.2.1 Single Grid Methods

Stencil methods are widely used in many direct solution methods for partial differential equa-
tions as well as in many cellular automaton and other models in computational physics and
also for many simple image processing algorithms. The key feature of stencil based applications
is their use of relatively localized data on a regular mesh to update individual variables on the
mesh.

For example, the very simple Forward Time Centered Space solution of the Laplace Equation
involves the discretization of the field variable ¥ on a mesh of some dimensionality —we use a

2d mesh here for illustration— and the iterative update of values 1); ; according to:

Vi = Yiv1j + Yic1y — 4+ i + i (3)

Equation 3 can be expressed as the code fragment:

psi = CSHIFT(psi,1,1) + CSHIFT(psi,-1,1) +
% CSHIFT(psi,1,2) + CSHIFT(psi,-1,2) - 4.0 * psi

This shows the use of the ‘CSHIFT()’ intrinsic function which cyclically shifts the data by
+1 in the data dimension stated.

In cases where the application calls for non-periodic boundary conditions, the ‘FORALL’ state-
ment /construct may be more appropriate. The below fragment shows how such an explicitly
parallel construct may be used to set up the update rule for interior points:

FORALL(i=2:m-1,3j=2:n-1)
psi(i,j) = psi(i+1,j) + psi(i-1,j) - 4.0 * psi(i,j) +

& psi(i,j+1) + psi(i,j-1)
END FORALL

Where additional code sections can be used for the boundary values.
In general the mesh variable data would be distributed across the processors’ memories in
‘BLOCK’ fashion for such an application. Providing the data array was significantly larger in size

than the number of processors, then the actual communications needed to move data across
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processor boundaries would be low. Most mesh points would be in fact interior to the processors
OWN Memory.

For some applications, however it is necessary to carry out the mesh updates in a particular
order. Some examples are the red-black solver algorithm used for diffusion problems or another
well know case is that of Monte Carlo models in computational physics where the update
algorithm requires updating alternate mesh variables in each dimension at once. Generally this
reduces the parallelism by a factor of two, but since mesh sizes are (usually) much larger than
the number of processors, this does not affect the exploitable parallelism.

HPF provides a suitable mechanism for such a red-black checkerboard update. The ‘BLOCK’
data distribution —or ‘CRINKLE’ mapping as it was originally known when first implemented on
the Distributed Array Processor (DAP) in the early 1980’s— allows the data to be ‘staggered’
across the processors’” memories and thus updates to be ordered to suit the applications al-

gorithm while still exploiting data locality.

Figure 2: Red-Black mesh coloring.

The following code fragment illustrates how red-black ordering (Figure 2) can be done using

a pair of ‘FORALL’ constructs:

FORALL(i=2:m-1:2,j=2:n-1:2)
psi(i,j) = psi(i+1,j) + psi(i-1,j) - 4.0 * psi(i,j) +

& psi(i,j+1) + psi(i,j-1)

psi(i+1,j+1) = psi(i+2,j+1) + psi(i,j+1) - 4.0 * psi(i+l,j+1) +
% psi(i+1,j+2) + psi(i+1,j)
END FORALL

FORALL(i=2:m-1:2,j=2:n-1:2)
psi(i+1,j) = psi(i+2,j) + psi(i,j) - 4.0 * psi(i+1,j) +

& psi(i+l,j+1) + psi(i+1,j-1)

psi(i,j+1) = psi(i+1l,j+1) + psi(i-1,j+1) - 4.0 * psi(i,j+1) +
% psi(i,j+2) + psi(i,j)
END FORALL
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where the two separate ‘FORALL’ constructs are used for the ‘red’ and ‘black’ interleaving
meshes. Note the use of stride-2 to construct the red-black ordering. In this example only the
interior points are dealt with. Separate code would be needed to loop over the edge points to
ensure the correct boundary conditions were applied.
A similar stride structure can be used to construct other more complex mesh ‘color’ group-
ings, such as are used for Monte Carlo simulations where longer range interactions are involved.
All of the above is general for one, two, three or higher dimensional data structures, and the

only major changes are the data distribution directives.

6.3 Unstructured Sparse Linear Systems

The applications described in the previous subsection use structured grids to model the under-
lying physical quantities. The access pattern of each node in the grid is localized and is on a
regular mesh. In many applications the access pattern though localized is on a irregular or an
unstructured mesh. Example of such applications include iterative solvers using sparse matrix
vector multiplications and explicit unstructured mesh fluids calculations.

Consider the solution of a Laplace Equation on an unstructured mesh shown in Figure 3.
It will be similar to Equation 3; however, each node of the mesh will potentially have different
number of neighbors. Unlike, the structured grids the addressing of these neighbors has to
be explicit. This requires the use of two data structures: node array and edge array. It also
prevents the direct use of parallel constructs such as the FORALL statement and requires the
use of a combining SCATTER function. In appendix A.5 we describe a code that represents a
simple edge sweep on an unstructured mesh 2. The flux at every node is updated based on the
array values corresponding to its neighboring nodes. The neighbor nodes are stores explicitly
in a separate array.

The code in appendix A.5 partitions the nodes using a BLOCK distribution. Unlike regular
grids this may result in a large amount of interprocessor communication. Effective paralleliz-
ation of these applications require partitioning the nodes such that most of the accesses are
local to the processor and the computation on each node is balanced. An example of such a
partitioning for four processors is given in Figure 3. The amount of communication generated
will depend on the locality of access. The cost of the communication will be low if the nodes
are reordered such that most of these accesses are local. This reordering can be potentially
achieved in HPF 1.1 by use of extrinsic functions to perform graph partitioning using the edge
array [37]. This reordering can also take into account the computational load associated with

every node.

2A similar kernel code was made available to us by Saltz’s group at University of Maryland
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Figure 3: Unstructured Mesh (partitioned for 4 processors)

6.4 Crystalline Monte Carlo

Many simulations in condensed matter physics such as the Ising, Potts and Heisenberg mod-
els and calculations in Quantum Chromodynamics use a Monte Carlo statistical mechanical
algorithm to explore the phase space. These applications typically involve a regular structure
and can be effectively represented using a Fortran multidimensional array, with any parallelism
in the update dynamics exploited by distributing the array via HPF directives. The computa-
tion would then be expected to make use of the ‘FORALL’ and ‘WHERE’ constructs/statements,
and the ‘CSHIFT()’ intrinsic.

6.4.1 Potts Model

The Potts model describes a spin system whereby each site may take on one of () states, with

the local field at a site ¢+ computed by the expression:

h; = Z SZJ”S] (4)
<G>
where the sum ‘< j > is over the near-neighbour sites. The interaction J;; for this model is

non-zero for only when S; and S; have the same state; i.e.,

JZ']' = J55¢,SJ (5)
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where 9§, is the Kronecker delta function and .J is the constant coupling constant.

This algorithm requires ensuring that interacting degrees of freedom are not updated sim-
ultaneously. A four-colour variation of the red-black chess board update scheme (cf. §6.2) is
used to exploit the near-neighbour nature of the interactions, so as to ensure the update is
performed correctly. The HPF/Fortran 90 ‘WHERE’ construct is hence used to pick out those
sites being considered for updating. The ‘MERGE()’ and ‘CSHIFT()  intrinsic functions are used
to calculate the local fields according to equations (4) and (5). These concepts are illustrated
in appendix A.6 for a simple 2-dimensional Potts model.

A historically important variation of the Potts model is the Ising spin model, where the states
of a site take on one of two values, representing a magnetic spin system’s ‘up’ and ‘down’ state.
The Ising model is the exemplar for a whole family for statistical mechanical problems including
spin glass and neural network associative memory models. The computational structure of this

application is similar to the Potts model.

6.5 Quenching Algorithms

The solution of of 2-D Binary Phase Quenching uses a random binary phase mixture and applies
the Cahn Hilliard Cook equation to quench the system into a cooled state. It evolves a random
mixed phase configuration, through an intermediate nucleating phase into a quenched two phase
system with a quenched slowing down effect.

The Cahn-Hilliard equation can be formulated as follows:

(Z—f = mV? (=b¢ + u¢® — KV29) (6)
where the field variable ¢;; is on a regular mesh as before, but since the equation involves
VZ%(V?), the update procedure requires next and next-next nearest neighboring mesh point
data.

Some interesting tradeoff situations occur when applications use more complex stencil op-
erations with longer range communications. This can either be formulated explicitly in terms

of a single update line using some twenty ‘CSHIFT ()’ operations as shown in:

phi = phi + dtby2 * (

-16.0 * phi
+ 7.0 * ( cshift(phi, 1,1) + cshift(phi, 1,2)
+ cshift(phi,-1,1) + cshift(phi,-1,2) )
- ( cshift(phi, 2,1) + cshift(phi, 2,2)
+ cshift(phi,-2,1) + cshift(phi,-2,2) )
- 2.0 * ( cshift(cshift(phi, 1,1), 1,2)
+ cshift(cshift(phi, 1,1),-1,2)

+ cshift(cshift(phi,-1,1), 1,2)
+ cshift(cshift(phi,-1,1),-1,2)
- 4.0 * phi ** 3
+ ( cshift(phi, 1,1)#*3 + cshift(phi, 1,2)**3
+ cshift(phi,-1,1)**3 + cshift(phi,-1,2)**3 )

BRI RRR R R R R R
~

30



which is memory-efficient but communications inefficient; or an intermediate data array ‘f’ can

be used to reduce this to only eight ‘CSHIFT ()’ operations:

£ = 3.0 * phi - ( cshift(phi,1,1) + cshift(phi,-1,1) +

% cshift(phi,1,2) + cshift(phi,-1,2) ) + phi ** 3
phi = phi + dtby2 * ( cshift(f,1,1) + cshift(f,-1,1) +
& cshift(f,1,2) + cshift(f,-1,2) -4.0 * f)

which sacrifices memory efficiency for better communications performance. This represents a
clear tradeoff between memory and communications speed. For a very large size of simulated
mesh, memory may be at a premium even in a parallel computer with a lot of distributed
memory and the slower communications-intensive algorithm may be preferred. Interestingly,
the physics of the problem is such that the natural intermediate variable is a free-energy like
quantity and may be of interest as an intermediate calculated quantity in its own right.

The full code for this algorithm can be found in appendix A.7.

6.6 Computational Fluid Dynamics

The solution of Computational Fluid Dynamics (CFD) simulations has traditionally been a
major user of high performance computing technologies, from weather predictions [15], flow
behaviour around aircrafts [38], to blood flow in a human heart [35]. Hence it is almost inevitable
that the HPF language should be explored for its relevance in this arena. The following §6.6.1—
§6.6.2 examines the use of HPF for two techniques in the CFD field. Other work has been done in
evaluating HPF [12, 39], particularly for where the computational mesh is regular with elements
of equal topologies. Moreover, HPF has also recently been used for the large, real-world CFD
problem of modelling ocean currents [40], and it is not too unrealistic for the language to replace

hand-written message passing codes for parallel CFD applications on regular mesh topologies.

6.6.1 Poisson Equation using ADI

The time dependent Navier-Stokes equation can be written in terms of the vorticity (() and

stream (¢) functions by the coupled equations:

o0 1o, [000C A
a—ﬁvc—[ ————— ] 7)

Vi = ¢ (8)
where equation (8) states that we are dealing with the incompressible problem.
A common approach to this problem is to use a split operator technique such as the Altern-

ating Direction Implicit (ADI) method [14]. This technique assumes that the five star stencil

operator L for the finite difference scheme can be split into two line operators:
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Lo = —Pigr;+ 2905 — i1 (9)
Lo = —tijpr+ 205 — i ja (10)

which are invoked alternatively at each half-time step. This formalism effectively ‘decouples’
the data dependency in the orthogonal direction to each of the two operators £, and £, to
allow the computation to be carried out in parallel in the orthogonal directions.

The code kernel in appendix A.8.1 illustrates this technique. For simplicity this code solves
only the time-independent equation (8), but since the essence of the ADI method is to solve
each one of the operator equations (9) & (10) alternatively at each half-time step, a fictitious
time variable { was introduced, such that the equation to solve became:

A

to be iterated until the equilibrium solution was found. Associated routines are also listed for

solving the resulting tridiagonal matrix (appendix A.8.2) and for calculating the right hand
side to solve for (appendix A.8.3), at each half-time step.

The exchange between the two ADI directions mean that some form of data redistribution
has to be performed between each half-time step in order for the parallelism in the computa-
tion to be maintained. In HPF, the most obvious solution would be to declare the relevant
distributed arrays with the ‘DYNAMIC’ attribute, and then call the ‘REDISTRIBUTE’ directive to

alternate between the two orthogonal distribution directions. For example:

REAL ,DIMENSION(N,N) :: psi,zeta
'HPF$ DYNAMIC :: psi,zeta
'HPF$ DISTRIBUTE (*,BLOCK) :: psi,zeta

DO WHILE( .NOT. converged )
CALL tridiag_psi_x(zeta,psi)
CALL find_rhs_psi_x(zeta,psi)
'HPF$ REDISTRIBUTE (BLOCK,*) :: psi,zeta
CALL tridiag_psi_y(zeta,psi)
CALL find_rhs_psi_y(zeta,psi)
'HPF$ REDISTRIBUTE (*,BLOCK) :: psi,zeta
END DO

Alternatively, the approach in appendix A.8.1 can be used, which calls the Fortran 90
‘TRANSPOSE()’ intrinsic function on the same distributed arrays to make the exchange between
the two spatial directions. At the time of writing, the use of the ‘TRANSPOSE()’ intrinsic
function is better supported on the current crop of HPF compilers, and has the added bonus of
being within the Subset HPF specifications. As this matrix remapping/transpose contains the
costliest part of the communications, an effective parallelization of ADI-like applications would

depend on the compiler’s implementation of this step.
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6.6.2 Panel Methods

Panel methods are widely used in the aerospace and automotive industry and are effectively
boundary-element methods for computational fluid dynamics problems. These methods employ
the surface of the body over which fluid is flowing to be used as the computational domain rather
than using the whole region in which the body is embedded. This is not only computationally
more efficient than a finite difference method, for example, but also allows more complicated
body shapes to be studied than would be tractable if the body were embedded in a regular
mesh.

The computational structure required for solving the above set of equations and is the same

as Gaussian elimination:

e converting the matrix into a diagonal form where the lower part is zero. Here the row
used to eliminate lower diagonal parts is chosen to improve numerical stability, a process

known as pivoting.

e forward elimination where the transformations and multiplications performed on the mat-

rix are repeated on the RHS vector.
e Removing the above diagonal terms by back substitution.

The use of HPF for Gaussian Elimination is described in §6.1.

6.7 Particle Dynamics

An important problem in astrophysics and molecular dynamics is that of N-body interactions,
where a number of particles or bodies, interact and some dynamical scheme such as Newton’s
laws of motion is used to integrate the equations of motion of the particles under the given
interaction force. Typically some empirical model such as the inverse-square force law of gravity
or some other potential model of interaction is used to specify how any given pair of particles
interact. The principle of superposition is used to combine pair-wise forces to produce the total
force or potential on a given particle. Generally it is the calculation of this total force that is
the most computationally intensive. Thereafter the motion equations are usually updated by
a time stepping algorithm that is embarrassingly data parallel as it involves exactly the same

operations for each particle.

6.7.1 Direct Methods

These method is useful when the number of particles to be be simulated are small. They involve
calculation of all O(N?) interactions between the particles. An example of such a calculation

is vortex methods in hydrodynamics. For small number of particles they outperform other
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methods. The crossover point where using other techniques are better than this approach is of
order of 10,000 particles.

A simple version of this method can be implemented by using a simple do-loop which shifts
the array representing the bodies by one step in each of its N iterations. The ‘CSHIFT()’
communications intrinsics function can be used to rotate data for the j’th particle past the
processor holding data for the :’th particle. Thus the i—j’th contributions can be built up in
turn, as is illustrated in Figure 4. When the pairwise interactions are commutative, for example
as would be found in classical molecular dynamics and Newtonian gravitational interactions,
the total amount of computation can be reduced in half by calculating the interaction only once
and using Newton’s third law of motion to automatically determine the other half [29]. This
requires a simple modification of the N-Body code, with the main complication being an explicit
check on whether an even or an odd number of particles are being considered. The code in
appendix A.9 is such an example of a commutative N-Body direct simulation. It calculates the
forces between a given number of particles at a single time step, for a system of gravitationally
interacting particles.

However, the code given is not expected to generate good performance on distributed
memory machines as the number of messages generated is large: essentially, a message is sent
for each of the (roughly) % ‘CSHIFT()’ operations. The resulting setup overhead of these mes-
sages would dominate the total communication cost on most machines. An intelligent compilers
can perhaps combine several of these ‘CSHIFT()’ operations together to reduce this overhead.

Alternatively, one can re-express the algorithm by making use of the block distribution of the

N

data arrays. The number of ‘CSHIFT()’ operations would then be decreased from % to 25

where p is the number of participating processors.

Figure 4: Use of successive CSHIFT operations to rotate vector of particle separations past

each element in turn.

6.8 Image and Signal Processing

Image processing is the computationally intensive part of several applications in scientific com-
puting, data compression, computer vision and robotics. Images are typically stored as two or
three dimensional arrays. Many of the image processing kernels have are highly data parallel

and can be effectively represented using High Performance Fortran.
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6.8.1 Windowing Applications

These applications require performing simple operations at every point on the image using all
the pixels in a small window (typically 3 x 3 to 5 x 5). These can be represented by a template
matching operation which requires convolving the image, I (of size say N x N), with a two

dimensional template, T' (of size say M x M), using the following:

M-1M-
C2D]i, 5] Z Z [(2 4+ u)modN, (5 + v)modN] * T'(u,v)

A high value of C’QD(Z,]) 1mphes that the M x M subimage at (7,j) is similar to the
template. Different templates can be used to perform operations such as edge detection and
mean filtering. Similar windowing operations are also required for calculating the effective shift
for MPEG based data compression.

These calculations can be effectively represented in High Performance Fortran using ‘FORALL’
loop or ‘CSHIFT’ intrinsic. The image is distributed among the processors using ‘BLOCK’ dis-
tribution along one or more dimensions. The code fragment for template matching is given in
appendix A.10.

The computation cost per pixel these operations is limited. Careful mapping of com-
munication is required for high performance and scalability because the ratio of computa-
tion/communication required is small. Limited performance may be achieved for small images

for architectures with high startup latency costs.

6.8.2 Histogramming Applications

Filtering operation based on histogram equalization require calculation of the number of pixels
of different gray levels (number of levels vary from 2 to 256). This can be achieved using
‘“* SCATTER()’ / ‘*_GATHER()’ intrinsics. Such an application is very similar to that already
discussed in §5.2 for the Hough transformation.

In HPF, the key computation in building up the histogram would be done with the intrinsic
function ‘COUNT_SCATTER()’, as illustrated in the following code fragment, for an image of NV
pixels by N pixels of 1-P possible gray levels:

INTEGER ,DIMENSION(N,N) :: image,ind2
INTEGER ,DIMENSION(P,N) :: distHistogram
INTEGER ,DIMENSION(P) :: histogram
'HPF$ DISTRIBUTE (*,BLOCK) :: image,ind?2
'HPF$ DISTRIBUTE (*,BLOCK) :: histogram
FORALL( k=1: ) ind2(:,k) = k
countMask = .TRUE.
countBase = 0

distHistogram = COUNT_SCATTER( countMask, countBase, image, ind2 )
histogram = SUM( distHistogram,DIM=2 )

where a temporary 2-dimensional array ‘distHistogram’ is used to exploit the parallelism in

the code, by distributing the counts over the pixel values amongst the available processors.
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These counts are then summed into the final histogram along the distributed rank-2 direction
by another intrinsic function. The other workspace array ‘ind2’ are the rank-2 indices, set so

as to keep references to the ‘distHistogram’ array to be local to each processor.

6.8.3 Image Transformations

Image Transformations include operations such as image translation, rotation, and scaling.
Translation can be represented by a simple ‘FORALL’ loop or an array assignment statement.
Rotation can be represented using a ‘FORALL’ loop. However, it involves highly unstructured
as well as a large amount of data movement (unless the amount of rotation is small) and
may requires careful mapping of data movement to the underlying communication network for

achieving good performance.

6.8.4 Fast Fourier Transform

The Fast Fourier Transform (FFT) is the most widely known example of the Spectral method
for computational problems. In all such methods, one performs a linear transformation of the
stated problem into another physical domain where it is hoped will be more tractable. In
Fourier transformations, the mapping is from the time-domain to the frequency-domain. This
pattern appears in diverse applications such as medical imaging and synthetic aperture radar
imaging.

An example code (appendix A.11.1) performs a two-dimensional FFT in the following man-

ner:

1. Perform FFT across the leading dimension of the matrix.
2. Transform the matrix, using the F90/HPF ‘TRANSPOSE()’ intrinsic function.

3. Perform FFT again, across the new leading dimension.

The 2-D matrix is distributed in a one-dimensional manner, over the second dimension of the
2-D matrix. This allows a 1-D FFT (appendix A.11.2 across the memory-contiguous leading
dimension index to be performed in parallel.

The basic mechanism to allow the computation to be parallelized is the HPF ‘INDEPENDENT’
directive. The called subroutine is given a slice of the array ‘a()’, and performs each 1-D FFT
in parallel with the other columns. The quantity ‘sign’ is a flag to indicate whether an FFT,
or the inverse operation should be performed.

A simple way to calculate 1-D FFT is similar to the above calculation of 2-D FFT. An
n = niny FFT is computed as an n; x ny array A, stored in column major order. This is
followed by an application of 2D-FFT algorithm described above. A simple implementation
requires three redistributions. However, this can be reduced to only one redistribution by

using a different algorithm. It requires changing the view from ‘BLOCK’ to ‘CYCLIC’ distribution
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locally and can only be achieved by an explicit reordering by data copying in the current HPF
standard.

Another way to implement the 1-D FF'T is a direct parallelization of radix 2 FFT algorithm
[27]. A representative code is given in appendix A.12. Most of the communication is generated
in the last phase of the program. It can be shown that the scalability of this algorithm is than
the transpose based FFT due to asymptotically larger amount of communication required [27].

The FFT algorithm can be used to compute 2-D convolution (appendix A.13). Let two
equal-sized images ‘A’ and ‘B’ are represented in a (complex) matrix of square dimension ‘NN’.

The convolution of these images are stored in the matrix ‘C’, and is calculated by the steps:
1. Perform 2-D FFT for Image ‘A’.
2. Perform 2-D FFT for Image ‘B’.
3. Perform matrix multiplication ‘C’ = ‘FFT(A) * FFT(B)’.

4. Perform inverse 2-D FFT on ‘C’ to obtain the convolution. where the Fast Fourier Trans-

forms (FFT) are calculated using the method described in the HPFA 2-D FFT kernel.

6.9 Neural Networks
6.9.1 Hopfield Networks

These networks have been used as models for auto-associative memory, as is conjectured to be
found in the hippocampus region of the brain, and for optimization tasks ([23]). For simplicity,
we assume that input (and output) patterns are binary vectors, and each of the N nodes’ state
is +1 or —1. The activation functions of nodes are step functions, applied to the sum of external
inputs and the net weighted inputs from other nodes. Node output values may change when an
input vector is presented, until the state of the network converges to an attractor. The update

dynamics of each site from time ¢ to ¢t 4+ 1 is given by the function:

Si(t + 1) = Sgn (i\f: wi7j5j(t) + [z) (12)

=1
where sgn(z) =1 if > 0 and sgn(z) = —1 if # < 0. According to the traditional definition of
the sigma function, sgn(0) = 1. The term [ is the external input vector, and can be used to
bias the network with a persistent guess of the image to be retrieved ([42]).
The Hopfield prescription for the setting of the network’s weights w;; are derived from
the biologically based Hebbian ([17]) learning process. Namely as a sum over the g = 1---P

patterns the network is asked to store:
1 P
Wiy = NZ@“@T (13)
u=1
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which is of course the outer product of each of these patterns. Since this weight matrix is the
square of the number of nodes (and the number of image pixels), it dominates the memory
requirement of a Hopfield network code which HPF’s paradigm of distributing arrays across
different processors would alleviate. Note that the Hebbian training phase may represent a
substantial contribution to the overall execution time, as it is difficult to parallelize without
replicating each pattern g“ over the processors —which may be prohibitively expensive if large
number of nodes and patterns are to be stored in the simulation for measuring the ‘performance’

of the network via the overlap measure:

() = 3 S0 (14)

If all the nodes are updated synchronously, the update can be easily completed by matrix
vector multiply distributing the weight matrix using a ‘BLOCK’ or ‘CYCLIC’ distribution and
aligning the solution vector with the first row of the weight matrix. However, an important
assumption in the traditional Hopfield model is updates are asynchronous: i.e., at every time
instant, precisely one node’s output value is updated. The selection of a node for updating
may be random. Very often the selection is made in a cyclic manner, updating one node after
another. This would reduce the amount of available parallelism significantly. This can be
approximated by generating a random vector which only updates a subset of all the nodes
in a given iteration. This would require using a ‘CYCLIC’ distribution of the weight array
to maintain good load balance. The convergence properties of such an algorithm is not well
defined. A representative Hopfield code, including the storage and retrieval phases, is given in
appendix A.14.

6.9.2 Learning Vector Quantizers

Unsupervised learning and clustering can be useful preprocessing steps for solving classification
problems. A learning vector quantizer ([26]) is an application of winner-take-all networks for
such tasks, and illustrates how an unsupervised learning mechanism can be adapted to solve
supervised learning tasks in which class membership is known for every training pattern.
Each node in an LV(Q) is associated with an arbitrary class label. The number of nodes chosen
for each class is roughly proportional to the number of training patterns that belong to that
class, making the assumption that each cluster has roughly the same number of patterns. The
update rule in an LVQ is slightly different from that of the competitive learning rule discussed

earlier for winner-take-all networks:

Let pattern @ from class C'(7) is presented to the network, and the winner node j*
belongs to class C'(j). The winner is moved either towards or away from the pattern

depending on whether C'(i) = C(j%).
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The algorithm is presented in figure 5 [32]. The learning rate n(t) is a decreasing function
of time ¢, such as n(t) = not =4 or n(t) = no[l — At] where 1y and A are positive constants. This
allows the network to ‘converge’ to a state in which the weight vectors are stable and change

little with further input sample presentations.

Algorithm LVQ1();

Initialize all weights to some random values in the range [0,1].
repeat

for each input pattern z; in the training setdo
find the node jx whose weight vector w4 is closest to .
for each node j in the current neighborhood of jx do
/* change the weight vector w; by an amount Awj, */
for:=1,...,n do
Awji = n(t)(zr — wj;) if the class label of
node j = the desired class of xy,
Awj; = —n(t)(zg; — wy; ) otherwise.

Adjust the correction factor 7(t).

until the network has converged or computational bounds are exceeded

Figure 5: LVQ1 algorithm

6.10 Evolutionary Computation

Evolutionary algorithms are stochastic state-space search techniques modeled on natural evolu-
tionary mechanisms. These methods have been successful in solving many difficult optimization
problems. However, they are computationally very intensive and can effectively use parallel ma-
chines.

They maintain a population of feasible solutions, and attempt to improve the overall quality
of these populations as time progresses. Each individual in the population represents one po-
tential solution for the optimization problem. Evolutionary computing methods follow roughly

three lines, among which distinctions become increasingly blurred.

1. Evolutionary Programming (EP) emphasizes direct representations of individuals, and

mutation as the primary mechanism for generating new individuals.

2. Fvolutionary Strategies use real-valued genes and self-adapting strategy variables (such

as covariances) in the search process.

3. Genetic Algorithms traditionally manipulate the genetic makeup of individuals, using
fixed-length binary string representations, and ‘crossover’ operators which combine gene

segments of parent individuals to generate offspring.
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Figure 6.10 describes a generic evolutionary computation algorithm [32]. P(¢) denotes the
population of size N at time ¢ > 0. O4,---,0, are operators that can be applied to sets of
individuals to generate other individuals. The quality of an individual is gauged by a fitness
function f. Members of P(0), the initial population, are often chosen randomly; this is always
the case in evolutionary programming and strategies.

Procedure Evolutionary Computation:
Initialize the population P(0);
while termination criterion is not satisfied, do
Reproduction: Obtain subsets C; of individuals from the
current population P(¢)
(where | C; |= 1 for mutation and 2 for crossover);
Operator Application: To each C;, apply operators
that result in new individuals,
and let Q(¢) be the resulting offspring set;
Selection: Obtain P (¢ 4 1) by selecting | P(t) |
individuals from P (t) U Q(2);
end-while
return the best individual from the current population.

Figure 6: A generic evolutionary computation algorithm

Parallelism in each step of the evolutionary computation algorithm can be represented using
High Performance Fortran. The reproduction step requires performing an ‘INDEPENDENT’ loop
or a ‘FORALL’ loop. The operator application can be completed using an independent do loop.
Typically the fitness evaluation of the offspring is the most computationally intensive part of the
whole algorithm. The selection operation requires sorting (using ‘GRADE’ operation) of all the
offsprings generated based on their fitness. This is followed by selecting the offsprings with the

highest fitness (there is a small amount of randomness involved) followed by a ‘PACK’ operation.

6.11 Graph Algorithms

Many applications can be expressed and solved using graphs. In this section we discuss the
usefulness of HPF for expressing many of these algorithms. The algorithm described below
are asymptotically and practically efficient only when the input graph is dense (i.e., most of
the edges are present). Graphs for a large number of real applications tend to be sparse. The
algorithms for such graphs are difficult to parallelize and require efficient implementation of

data structures such as priority queues. Many of these algorithms are difficult to represent

with HPF.

6.11.1 All-pairs shortest path algorithm

This problem involves finding the shortest path between all vertices v;,v;,1 < j for a weighted
graph G(V, E). Let w(v;,v;) represent the weight between vertex v; and v;. There are three

parallel methods which can be used for the solution of this problem:
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1. Assuming the number of nodes in the graph is n, the single source shortest path algorithm
can be applied n times using the ‘INDEPENDENT’ directive. A good implementation of this
would require maintaining a copy of the whole graph on every processor. This can be
achieved by using replication of the graph array but may high memory requirements. This

approach is limited to small sized graphs.

2. A dynamic programming-based approach can be used to calculate the shortest paths using

the following problem formulation:

Let d(1, j) represent the shortest distance between ¢ and j such that the largest

intermediate vertex is less than or equal to k.

w(v;, v;) k=0

min (k—1) 4(k-1) (k—1)
e {dE AT +dTY k>
where w(v;, v;) is the weight of the edge S(v;, v;), and dgf;) represents the desired

solution.

This can be computed using the following algorithm
d?,j = w v;, V.
do k=1tondo
forall 2 = 1 to n do
forall 7 =1 ton do
) = min{d; ;, 5} + di '}
Minimizing the Communication requires a ‘(BLOCK, BLOCK)’ distribution of d array.

3. The third algorithm is based on matrix multiplication. It can be shown that the all-pairs
shortest path can be solved using log n iterations of matrix multiplication. This can be
easily code in HPF using the ‘MATMULT () " intrinsic. This algorithm is work inefficient and
would not perform well unless the number of processors is much larger than the size of

the matrix.

6.11.2 Minimum spanning tree

A minimum spanning tree of the graph is a spanning tree (a tree which contains all the vertices)
with minimum weight. An algorithm for calculating the minimum spanning assumes that set
S initially contains an arbitrary vertex r [6, 27]. The initial weight of the remaining vertices is
given by the cost of the edge (if any) to the vertex r. The following steps are executed n — 1

times (i.e. till the set S contains all the vertices):

Step 1: Find the vertex with minimum weight to any vertex in set 5.
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Step 2: Move the vertex to set S.

Step 3: Update the weight of the remaining vertices based on a potentially new shortest distance

via the newly moved vertex.

This algorithm can be implemented using a mask array of size n. The mask of vertex ¢ is set to
0 if vertex 2 € S. Initially the mask of all vertices except r is set to 0. Step 1 can be completed
using the computational intrinsic ‘MIN()’ in HPF. Step 2 updates the mask array using an
assignment statement. Step 3 can be completed using a forall loop.

The above algorithm representation requires checking the mask vector of all the elements
participating at each step. Once the mask value of a vertex changes, it does not participate in
Step 1 or Step 3. This check can potentially be performed using a ‘WHERE’ construct. Good
load balancing can typically be achieved by using a ‘CYCLIC’ distribution.

6.11.3 Single Source Shortest Path

This problem requires calculating the shortest path from a given vertex to all the remaining
vertices in the graph. The single source shortest path algorithm for dense graphs is a variant of
of the minimum spanning tree algorithm described above [6]. The parallelization requirements

are also similar [27].

6.12 Summary of Synchronous Applications

Computational problems where the algorithm is synchronous, i.e., data parallelism with regular
data and identical operations on all data points, are easily expressable in a parallel manner with
High Performance Fortran. This is illustrated in this section with the algorithms discussed
above, and summarised in table 2.

In these applications, data mappings are largely static and can be described with the ‘BLOCK’
or ‘CYCLIC distribution formats. Where remappings are required, they are simple enough to be
expressable via the ‘TRANSPOSE) ’ intrinsic function. Other communication demands are via the
use of the ‘CHSIFT()’ function, reduction operators such as ‘MAXVAL()’, and matrix & vector
multiplication functions. The parallelism in the algorithms can be expressed using the language
constructs (i.e., ‘FORALL’and ‘WHERE’), Fortran 90 array syntaxes and the calling of (parallelised)
intrinsic functions. The efficient implementation of these features can probably be regarded as
a minimum requirement for those wishing to express their synchronous application in HPF. Our
experience [43] is that these requirements are being seriously addressed with today’s available

compilers.
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Application HPF Features

Gaussian Elimination (A.4) ‘CYCLIC’ distribution, ‘FORALL’, ‘MAXLOC()’

2-D Potts model (A.6) ‘CSHIFT()’, ‘MERGE()’, ‘WHERE’

2-D Cahn-Hilliard (A.7) ‘CSHIFT()’

Poisson solution by ADI (A.8) Descriptive interface, ‘TRANSPOSE()’

Direct N-body (A.9) ‘CSHIFT()’

2-D FFT & Convolution (A.11,A.13) | Array syntax, ‘INDEPENDENT’, ‘TRANSPOSE()’

Hopfield Neural Network (A.14) ‘WHERE’, ‘MATMUL ()’, ‘RESHAPE()’, ‘MAXVAL()’,
‘DOT_PRODUCT()’, ‘RANDOM _NUMBER()’

Table 2: Synchronous applications discussed in this paper with the appendices where their
HPF implementations can be found, and the important F90/HPF features which they exploit.
Intrinsic functions are differentiated from keywords by the ‘() postfix. The use of array syntax

is common to all these codes and so have been left out for brevity.

7 Conclusions

The intent of this paper has been as a motivation to programmers to consider the High Perform-
ance Fortran language as a means of exploiting the data parallelism in their problems. This has
been done by first explaining the key features of HPF: how it builds on the Fortran 90 standard,
and how its single-threaded execution model allows the user to run the same code for one or
for many processors. That is, and in contrast to the traditional parallelisation methodology of
inserting calls to message passing subroutines, the changes made to the code in the name of
HPF may be considered essentially benign®.

We have also seen in this paper a range of applications for which the High Performance
Fortran language has shown itself to be suitable. From these applications we hope to have
either provided concrete examples on how they may be programmed in HPF, or have provided
fragments demonstrating the pertinent language features. These have included applications in
magnetic spin models, computational fluid dynamics, financial simulations, image processing,
particle dynamics, and the solution of matrix equations. The codes are part of the NPAC HPF
Applications suite, and the further expanding and benchmarking them is an ongoing process.
But we can already state that for many of the codes in this paper, we have seen good scalability
up to eight processors.

In this study we have restricted ourselves to synchronous or embarrassingly parallel prob-
lems, a constraint brought on by the lack of available application codes and by the capabilities
of the current crop of HPF 1.1 compilers. With the recent publication of the HPF 2.0 stand-
ard, it is hoped that compilers will shortly be expanded so as to allow the HPF language to

3Subject to the language differences between Fortran 90 and HPF outlined in
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tackle the more general irregular case. This new standard also offers the possibility of allowing
the programmer to express the code in a task-parallel manner, in lieu of the current data-
parallel model. In theory, this offers a better opportunity to explore parallelism without a prior

conversion to the array syntax of Fortran 90, as is the current case with HPF 1.1.
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A Example Codes

The following subsections are codes written as part of the NPAC HPF Application Kernel suite,
and represent instances of the applications and HPF features described in earlier in this paper.
Those codes which were originally written in Fortran 77 usually required extensive rewriting;
but those ported from existing data parallel languages such as Thinking Machines” CM-Fortran,
or MasPar’s Fortran were more straightforward. Similarly, a code written in Fortran 90 would
fall somewhere between these two cases.

The latest versions of these codes may be found in the URL:

http://www.npac.syr.edu/hpfa/kernels/number.html

A.1 NAS EP Benchmark - Tabulation of Random Numbers

This is the NPAC version of the NAS Embarrassingly Parallel benchmarks code, and generates

random numbers with a Gaussian probability distribution, based on the Box-Muller algorithm.

PROGRAM ep
IMPLICIT NONE
INTEGER, PARAMETER :: M =20, MK = 4
INTEGER, PARAMETER :: MM = M-MK
INTEGER, PARAMETER :: NK = 2%*MK
INTEGER, PARAMETER 0 NN = 2%*MM
INTEGER, PARAMETER :: HQ = 10
M = log2 number of [0,1] uniform random pairs to create.

MK = log2 size of each batch of [0,1] uniform pairs to create.
Where NK = 2**MK.

MM = log2 number of independent batches to create, divisible with
the number of available processors.
Where NN = 2:**MM.

HQ = Number of bins with which to gather statistics on the Gaussian

Qoo

deviates.
DOUBLE PRECISION, DIMENSION(NN) :: X,Y
DOUBLE PRECISION, DIMENSION(NN) :: X1,X2,T2,T3,T4,GC

INTEGER, DIMENSION(NE) 11 KK
INTEGER, DIMENSION(O:NQ,NN) :: QQ
INTEGER, DIMENSION(O:NQ) 10 Q

INTEGER I,J,NGCI
INTEGER iStep
DOUBLE PRECISION NGC
DOUBLE PRECISION, PARAMETER :: A 1220703125 .D0
DOUBLE PRECISION, PARAMETER :: S = 271828183.D0
REAL :: ti,tf
REAL :: tstart,tend
REAL :: tcomms, tcomp
REAL :: randComp
'HPF$ PROCESSORS procs( NUMBER_OF_PROCESSORS() )
'HPF$ TEMPLATE TTT(NN)
'HPF$ DISTRIBUTE TTT(BLOCK) ONTO procs
'HPF$ ALIGN (:) WITH TTT(:) :: X,Y,X1,X2,T2,T3,T4,GC,KK
'HPF$ ALIGHN QQ(+*,:) WITH TTT(:)
INTERFACE
SUBROUTINE random_seed(s, a, x, MK, NN)
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DOUBLE PRECISION, DIMENSION(:), INTENT(OUT) :: x
'HPF$ DISTRIBUTE *(BLOCK) :: x

DOUBLE PRECISION, INTENT(IN) 11 a,s

INTEGER, INTENT(IN) :: MK,NN

END SUBROUTINE RANDOM_SEED

SUBROUTINE randlc (x, a, y, HN, myComp)

DOUBLE PRECISION, DIMENSION(:), INTENT(INOUT) :: x

DOUBLE PRECISION, DIMENSION(:), INTENT(OUT)

DOUBLE PRECISION, INTENT(IN) ra

INTEGER, INTENT(IN) :: ON

REAL, INTENT(INOUT) :: myComp
'HPF$ DISTRIBUTE *(BLOCK) :: x,y

END SUBROUTINE randlc
END INTERFACE

INTERFACE
SUBROUTINE timer(return_time, initial_time)
REAL, INTENT(IN) :: initial_time

REAL, INTENT(OUT) :: return_time
END SUBROUTINE timer

END INTERFACE

C Begin Executable
tcomms = 0.0
tcomp = 0.0
randComp = 0.0
iStep = NK / 10
IF( iStep .EQ. O ) iStep = 1
X =0.0
Yy =
X1 =
X2 =
T2 =
T3 =
T4 =
GC =
KK =
Qq =
Q =0

C start_timer
CALL timer(ti, 0.0)
CALL random_seed(S,A,X,MK,NN)

©C O C O O O O o O
C O ©C O O o O

QQ=0
DO I =1, HK
IF( MOD(i,iStep) .EQ. O )THEN
WRITE(UNIT=# ,FMT=>(’’Status i = ’’,18)°) i
END IF

C Compute Gaussian deviates by acceptance-rejection method and
C tally counts in concentric square annuli.
CALL randlc (x, a, y, NN, randComp)
CALL timer(tstart,0.0)
X1 =2.D0 * Y - 1.DO
CALL timer(tend,tstart)
tcomp = tcomp + tend
CALL randlc (x, a, y, NN, randComp)
CALL timer(tstart,0.0)
X2 = 2.D0 * Y - 1.DO
Y = X1 %% 2 + X2 %% 2
WHERE (Y .LE. 1.DO)
GC = GC + 1.DO
T2 = SQRT (-2.D0O * LOG (Y) / Y)
T3 = ABS (X1 * T2)
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T4 = ABS (X2 * T2)

KK = MAX (T3, T4)
ELSEWHERE

KK = HQ

Y = -10.0DO
ENDWHERE

DO J =0, NQ - 1

WHERE (KK .EQ. J) QQ(J,:) = QQ(J,:) + 1

ENDDO

CALL timer(tend,tstart)

tcomp = tcomp + tend
ENDDO
CALL timer(tstart,0.0)
Q = suM(QQ,DIM=2)
NGC = SUM(GC)

CALL timer(tend,tstart)

tcomms = tcomms + tend
C Stop timer.
CALL timer(tf,ti)

tcomp = tcomp + randComp
C This is done so the WRITE statement works

NGCI = INT(NGC)
PRINT #*,’time taken is

’,tf,’seconds’

WRITE(6,1001) M,NGCI,(I,Q(I),I=0,HQ-1)

WRITE(UNIT=* ,FMT=6004)
1
STOP

NUMBER_OF_PROCESSORS () , NN,
tcomms ,tcomp, (tf-tcomms—tcomp) ,tf

1001 FORMAT(’BENCHMARK 1 RESULTS:® // N = 2,18/
& ’NO. OF GAUSSIAN PAIRS =’,I15/’COUNTS:’/(I3,I15))

2001 FORMAT(12E12.3)

6004 FORMAT(’Number of Processors = ’,I4/

1 Problem size = ’,I8/

2 ‘Communications = ’,F9.3/

3 ’Compute = ?,F9.3/

4 ’Others =’ F9.3/

5 ’Total time = 7,F9.3)

END
C

SUBROUTINE random_seed(s, a, x, MK,NN)
C
Cl

C| Routine to generate array x(NN) of seeds for parallel random number |

C| generator.

C| As with RANDLC, compute R23 = 2 = -23, R46 = 2 ~ -46,

C| T23 = 2 ~ 23, and T46 = 2

C| than by merely using the ** operator, in order to insure that the
C| results are exact on all systems.

C| represented exactly.

C| H W Yau. 15th of August,

" 46. These are computed in loops, rather]|

1996.

C| Northeast Parallel Architectures Center.

C| Syracuse University.

C| Edit record:

C| 15/Aug/1996: Corrected comments.
cl Corrected generation of the seeds x(HN).

IMPLICIT NONE

DOUBLE PRECISION, DIMENSION(:), INTENT(OUT) :: x
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DOUBLE PRECISION, INTENT(IN) it a, s
INTEGER, INTENT(IN) :: MK,NN
'HPF$ DISTRIBUTE #(BLOCK) :: x
DOUBLE PRECISION :: ti1,t2,zz1,zz2,z
DOUBLE PRECISION R23, R46, T23, T46, an, anl, an2
DOUBLE PRECISION, DIMENSION(HNN) :: zz
INTEGER I
C Begin Executable
R23 = 1.DO
R46 = 1.DO
T23 = 1.DO
T46 = 1.DO
DO I 1, 23
R23 = 0.5DO * R23
T23 = 2.0DO * T23
ENDDO
DOI =1, 46
R46 = 0.5DO * R46
T46 = 2.0DO * T46
ENDDO
C Calculate: an = a"MK mod 2746.
an = a
DO i =1, MK+1
C Perform (an * an) MOD 2°46. First, split ‘an’ into two parts such that
C an = 2723 * anl + an2.
anl = AINT( R23 * an )
an2 = an - T23 * anl
C Compute z = ani*an2 + an2+%anl (mod 2°23), and then
C an = 2723 * z + an2*an2 (mod 2746).

tl = anl * an2 + an2 * anl

z = tl1 - T23 * AINT( R23 * t1 )

t2 = T23 * z + an2 * an2

an = t2 - T46 * AINT( R46 * t2 )
END DO

C Now compute the seeds, into a non-distributed array zz(). First,

Q

split ‘an’ into two parts such that
C an = 2723 * anl + an2.
AINT( R23 * an )
an2 = an - T23 * anil
zz(1) = s
DO i = 2,NN
C Break z(i-1) into two parts, such that z(i-1) = 2723 * zzl + zz2.
zz1 = AINT( R23 * zz(i-1) )
zz2 = zz(i-1) - T23 * zzl
C Compute z = anl*zz2 + an2#%zz2 (mod 2°23), and then

anl

C zz(i) = 2723%z + an2#%zz2 (mod 2746).
t1 = anl * zz2 + an2 * zzl
z = tl1 - T23 * AINT( R23 * t1 )
t2 = T23 * z + an2 * zz2

zz(i) = t2 - T46 * AINT( R46 * t2 )
END DO
C Copy into distributed array.
X = zz
RETURN
END

SUBROUTINE RANDLC (X, A, Y, NN, myComp)

IMPLICIT NONE

DOUBLE PRECISION, DIMENSION(:), INTENT(INOUT) :: X
DOUBLE PRECISION, DIMENSION(:), INTENT(OUT) DY
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DOUBLE PRECISION, INTENT(IN):: A

INTEGER, INTENT(IN) :: NN

REAL, INTENT(INOUT) :: myComp

DOUBLE PRECISION, DIMENSION(SIZE(X)) :: A1,A2,T1,T2,T3,T4,X1,X2,Z
DOUBLE PRECISION R23, R46, T23, T46

REAL :: tstart, tend

INTEGER I ,KS

SAVE KS, R23, R46, T23, T46

DATA KS /0/

'HPF$ DISTRIBUTE #(BLOCK) :: x,y
'HPF$ ALIGH (:) WITH x(:) :: A1,A2,T1,T2,T3,T4,X1,X2,Z

C
C
C
C
C
C
C
C

C

C
C

A is constant
given array X(NN) of seeds
generate array Y(NN) of random numbers
If this is the first call to RANDLC, compute R23 = 2 = -23, R46 = 2 ~ -46,
T23 = 2 ~ 23, and T46 = 2 ~ 46. These are computed in loops, rather than
by merely using the ** operator, in order to insure that the results are
exact on all systems. This code assumes that 0.5D0 is represented exactly.
Begin Executable

CALL timer(tstart,0.0)

IF (KS .EQ. 0) THEN

R23 = 1.DO
R46 = 1.DO
T23 = 1.DO
T46 = 1.DO
DO I =1, 23
R23 = 0.5D0 * R23
T23 = 2.D0 * T23
ENDDO
DO I =1, 46
R46 = 0.5D0 * R46
T46 = 2.D0 * T46
ENDDO
Ks =1
ENDIF
Break A into two parts such that &4 = 2723 * A1 + A2.
T1 = R23 * A
Al = AINT (T1)

A2 = A - T23 * Al
Break X into two parts such that X = 2723 * X1 + X2, compute
Z = Al * X2 + A2 * X1 (mod 2723, and then

CX=2"23 %27+ A2 * X2 (mod 2746).

Ti1 = R23 * X

X1 = AINT (T1)

X2 =X - T23 * X1

Ti = A1 * X2 + A2 * X1

T2 = AINT (R23 * T1)

Z =T1 - T23 * T2

T3 = T23 * Z + A2 * X2
T4 = AINT (R46 * T3)

X =T3 - T46 * T4

Y = R46 * X

CALL timer(tend,tstart)
myComp = myComp + tend
RETURN

END
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A.2 Hough Transformation

The Hough transformation takes an input binary image of edge pixels and produces an array

of edge parameters, indexed by its angle and radial distance from the origin.

PROGRAM HoughProg
USE HPF_LIBRARY
IMPLICIT NONE
INTEGER, PARAMETER :: NN = 512
INTEGER, PARAMETER :: STDOUT = 6
INTEGER, PARAMETER :: FILEIN = 20, FILEOUT=21
REAL, PARAMETER :: PId2 = 1.5707963
C .. Define interface for subroutines ..
INTERFACE
SUBROUTINE timer(return_time, initial_time)
REAL, INTENT(IN) :: initial_time
REAL, INTENT(OUT) :: return_time
END SUBROUTINE timer
END INTERFACE
C .. Arrays and scalars ..
INTEGER, DIMENSION(NN,NN) :: Hough
INTEGER, DIMENSION(:,:), ALLOCATABLE :: Edge
INTEGER, DIMENSION(:,:), ALLOCATABLE :: XX,YY
INTEGER, DIMENSION(C:,:), ALLOCATABLE :: iRho
INTEGER, DIMENSION(:,:), ALLOCATABLE :: iRhoInd2
INTEGER, DIMENSION(:), ALLOCATABLE :: XXpacked, YYpacked
INTEGER, DIMENSION(:,:), ALLOCATABLE :: CountBase
LOGICAL, DIMENSION(:,:), ALLOCATABLE :: CountMask
INTEGER :: i,j,k
INTEGER :: EsizeX, EsizeY
INTEGER :: NedgePixels
INTEGER :: iargc
REAL, DIMENSION(NN) :: COStheta, SINtheta
REAL :: dTheta, dRho
REAL :: ti,tf
REAL :: tstart,tend
REAL :: tcomms, tcomp
CHARACTER*(32) magic
CHARACTER*(80) filename
LOGICAL, DIMENSION(:,:), ALLOCATABLE :: EdgeFilter
LOGICAL dolrite
C .. HPF dirctives to distribute the arrays ..
'HPF$ PROCESSORS :: procs(NUMBER_OF_PROCESSORS())
'HPF$ TEMPLATE,DIMENSION(NN) :: tplate
'HPF$ DISTRIBUTE (BLOCK) ONTO procs :: tplate
'HPF$ ALIGN (:) WITH tplate(:) :: COStheta,SINtheta
'HPF$ ALIGN (*,:) WITH tplate(:) :: Hough,CountBase
'HPF$ ALIGN (*,:) WITH tplate(:) :: iRho,iRhoInd2
'HPF$ ALIGN (*,:) WITH tplate(:) :: countMask
C Begin Executable
tcomp = 0.0
tcomms = 0.0
C Default values.
EsizeX = 204
EsizeY = 124
doWrite = .TRUE.
C Read in image filename.
filename = ’image.pbm’
C Read in the Edge image.
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OPEN(UNIT=FILEIN,FILE=filename,STATUS=’UNKNOWN’)

READ(UNIT=FILEIN,FMT=’(A2)’) magic

READ(UNIT=FILEIN,FMT=x%)

READ(UNIT=FILEIN ,FMT=*) EsizeX, EsizeY

ALLOCATE( Edge(EsizeX,EsizeY) )

ALLOCATE( XX(EsizeX,EsizeY) )

ALLOCATE( YY(EsizeX,EsizeY) )

ALLOCATE( EdgeFilter(EsizeX,EsizeY) )

WRITE(UNIT=STDOUT,FMT="(’> 'Reading image ’’,I4,77 x ’,14)7)
EsizeX,EsizeY

READ (UNIT=FILEIN,FMT=+) ( (Edge(i,j), i=1,EsizeX),j=1,EsizeY )

CLOSE(UNIT=FILEIN)

WRITE(UNIT=STDOUT,FMT=’(’’Starting transformation’’)’)

NedgePixels = SUM( Edge )

ALLOCATE( XXpacked(NedgePixels) )

ALLOCATE( YYpacked(NedgePixels) )

ALLOCATE( iRho(NedgePixels ,NN) )

ALLOCATE( iRhoInd2(NedgePixels,NN) )

C Start timer

C Set

CALL timer(ti, 0.0)
Hough = 0
up XX() and YY() arrays, equal to their index numbers.

C Then mask out elements where the edge pixels equal zero.

1

C Set

EdgeFilter = .FALSE.

WHERE( Edge .EQ. 1 ) EdgeFilter = .TRUE.
FORALL( i=1:EsizeX,j=1:EsizeY ) XX(i,j) = i - 1
XXpacked = PACK( ARRAY=XX,MASK=EdgeFilter )
FORALL( i=1:EsizeX,j=1:EsizeY ) YY(i,j) = j - 1
YYpacked = PACK( ARRAY=YY,MASK=EdgeFilter )
DEALLOCATE( EdgeFilter )

DEALLOCATE( YY )

DEALLOCATE( XX )

DEALLOCATE( Edge )

up COStheta and SINtheta coefficient arrays.
dTheta = PId2 / (NN - 1)

dRho = (HE - 1) /

SQRT( REAL(EsizeX*EsizeX) + REAL(EsizeY*EsizeY) )
FORALL(k=1:NN) COStheta(k) = CO0S( (k-1)*dTheta )
FORALL(k=1:NN) SINtheta(k) = SIN( (k-1)*dTheta )
up iRhoInd2 array, to be used in COUNT_SCATTER() operation.
FORALL( k=1:NN ) iRhoInd2(:,k) = k

C Parallel loop over ‘theta’ direction.

1

C Set

FORALL( k=1:HNN )
iRho(:,k) = dRho*( XXpacked(:)*COStheta(k) +
YYpacked(:)*SINtheta(k) ) + 1.5
END FORALL
up tempoarary arrays for COUNT operation.
ALLOCATE( CountMask( NedgePixels NN ) )
ALLOCATE( CountBase( NN,HN ) )
CountMask = .TRUE.
CountBase = 0

C Count up the occurences of iRho into Hough array.
C PGHPF on Cray requires ‘ARRAY=’ #*not* to be present. 04/Feb/97.

1

Hough = COUNT_SCATTER( CountMask, BASE=CountBase,
INDX1=iRho, INDX2=iRhoInd2 )

C Stop timer

CALL timer(tf, ti)

C Adjust the timer. It would appear from the profiler that no time

C was

spent on communications...
tcomms = 0.0
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tcomp = tf

IF( doWrite )THEN
WRITE(UNIT=STDOUT,FMT=’(’’Writing Transform image’’)’)
OPEN(UNIT=FILEOUT ,FILE=’hough.pgm’ ,STATUS="UNKNOWN’)
WRITE(UNIT=FILEOUT,FMT="(A)’) ’P2’
WRITE(UNIT=FILEOUT,FMT="(4)’)

1 ’# Created by Hough transformation program. WPAC.’
WRITE(UNIT=FILEOUT,FNMT="(216)’) ON,NN
WRITE(UNIT=FILEOUT,FMT=’(16)’) MAXVAL( Hough )
WRITE(UNIT=FILEOUT,FMT=+) ((Hough(i,j), i=1,NN),j=1,NN)
CLOSE(UNIT=FILEOUT)

END IF

WRITE (UNIT=% ,FMT=6004) NUMBER_OF_PROCESSORS() NN,

1 tcomms ,tcomp, (tf-tcomms—tcomp) ,tf
DEALLOCATE( CountBase )

DEALLOCATE( CountMask )

DEALLOCATE( iRhoInd2 )

DEALLOCATE( iRho )

DEALLOCATE( YYpacked )

DEALLOCATE( XXpacked )

STOP
1001 FORMAT(’Status: iTime = ’,I6,’ Error = ’ ,F9.4)
1002 FORMAT(12F9.3)
6004 FORMAT(’Number of Processors = ’,I4/

1 ’Problem size = 7,15/

2 ’Communications = ’,F9.3/

3 ’Compute = ?,F9.3/

4 ’Others =’ F9.3/

5 ’Total time = 7,F9.3)

END

A.3 Binomial Tree Stock Market Simulation

This is a binomial approximation stock market simulation model, incorporating stochastic volat-
ility with American call (exercise at any time in contract) and with European call (exercise only

at option maturity).

PROGRAM main
IMPLICIT NONE
C Define interfaces.

INTERFACE
SUBROUTINE timer(return_time, initial_time)
REAL, INTENT(IN) :: initial_time

REAL, INTENT(OUT) :: return_time

END SUBROUTINE timer

SUBROUTINE asvcorp2(sp,sk,r,t,v,psi,xmu,cor,repsl,reps,div,
1 cval,tcomp,tcomms)

REAL :: sp,sk,r,t,v,psi,xmu,cor,div,cval

REAL :: tcomp, tcomms

INTEGER reps,repsi

END SUBROUTINE asvcorp2

SUBROUTINE svcorp2(sp,sk,r,t,v,psi,xmu,cor,reps,cval,
1 tcomp, tcomms)

REAL :: sp,sk,r,t,v,psi,xmu,cor,cval

REAL :: tcomp, tcomms

INTEGER reps
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END SUBROUTINE svcorp2
END INTERFACE
real sz,k,r,t,tdiv,div,v(4),rate
real psi,xmu,rho,cbscall,camc,ceur,cams
integer repb,reps,i, j, times, repsi
REAL :: timediff,rtimes
REAL :: ti,tf
REAL :: tstart,tend
REAL :: tcomms,tcomp
C Begin Executable
C Start timer
CALL timer(ti, 0.0)

tcomp = 0.0
tcomms = 0.0
k = 100.00
sz = 110
repb = 100
reps = 17
psi=1.0

xmu = 0.0
rate = 0.15

rho = 0.234
k = 100.00
r = 4.50

t = .25
v(1l) = 0.15
v(2) = 0.15
v(3) = 0.15
v(4) = 0.15
div =1.0

tdiv = 0.125
times = 1
rtimes = float(times)
c —--- stochastic volatility European Model
print *,’stochastic volatility European Model’
print *,’-—————---— - ’
print *,’reps Value Time(sec.)’
do 1111 reps = 17, 17
CALL timer(tstart, 0.0)
do 6000 i = 1, times
call svcorp2(sz,k,rate,t,v(3),psi,xmu,rho,reps,ceur,
1 tcomp ,tcomms)
6000 continue
CALL timer(tend,tstart)
timediff = tend / rtimes
write(*,’(I3,9X,f9.4,5X,f8.4)’) reps,ceur,timediff
1111 continue
9991 print *

C --- stochastic volatility American Model
print *,’stochastic volatility American Model’
print *,’reps repsi Value Time(sec.)’
print *,’-—————--——— - ’

do 2222 reps = 17, 17
do 3333 j = 0, reps-1
tdiv = t*j/float(reps)
reps1=(INT(reps*tdiv/t)+1)
CALL timer(tstart, 0.0)
do 7000 i = 1, times
call asvcorp2(sz,k,rate,t,v(4),psi,xmu,rho,repsi,reps,

& tdiv,cams,
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& tcomp ,tcomms)
7000 continue
CALL timer(tend,tstart)
timediff = tend / rtimes
write(*,’(I3,5X,13,5X,f9.4,5X,£8.4)")
% reps, (INT (reps*tdiv/t)+1),
& cams ,timediff
3333 continue
2222 continue
C Stop timer
CALL timer(tf, ti)
WRITE (UNIT=% ,FMT=6004) NUMBER_OF_PROCESSORS() ,reps,

1 tcomms ,tcomp, (tf-tcomms—tcomp) ,tf
STOP
6004 FORMAT(’Number of Processors = ’,I4/
1 ’Problem size = 7,15/
2 ’Communications = ’,F9.3/
3 ’Compute = ’,F9.3/
4 ’Others =’ F9.3/
5 ’Total time = 7,F9.3)
END

SUBROUTINE asvcorp2(sp,sk,r,t,v,psi,xmu,cor,repsl,reps,div,cval,
1 tcomp,tcomms)
IMPLICIT NONE
REAL sp,sk,r,t,v,psi,xmu,cor,div,cval
REAL :: tcomp, tcomms
INTEGER reps,repsi
REAL ,DIMENSION (1: (2%*(reps-12)-1),1:8192) :: ssil,vvl
REAL,DIMENSION(1:2%*(reps-13),1:8192) :: cearly_big
REAL ,DIMENSION(1:8192) :: aatmpl,aatmp2,uux,ddx
REAL ,DIMENSION(1:2**repsl) :: cearly,cback
REAL u,d,dt,rl,tmpl,tmp2,rx,xreps
INTEGER i,j,n,nrepsl,start,end,repsdiv,reps2,nreps?2
REAL :: tstart,tend
'HPF$ PROCESSORS P( NUMBER_OF_PROCESSORS() )
'HPF$ DISTRIBUTE (*,BLOCK) ONTO P :: vvi,ssl,cearly_big
'HPF$ DISTRIBUTE (BLOCK) ONTO P:: uux,ddx,cearly,cback,aatmpl,aatmp2
xreps = float(reps)
dt = t/xreps
c --- SET RX (PERIODIC 1+RF) TO RISK FREE RATE + 1
rx=(r+1.0)**dt
tmpl = (xmu-0.5%psi*psi)*dt
tmp2 = cor*psi*sqrt(dt)
u = exp(tmpl+tmp2)

d = exp(tmpl-tmp2)
c --- create stock price lattice (sl)
vvi(1l,:) = 0.0
ss1(1,:) = 0.0
vwi(1l,1) = vkv
ss1(1,1) = sp
n=1
do i = 1,13

CALL timer(tstart, 0.0)
aatmpl = (r-0.5%vvi(1,:))*dt
aatmp2 = sqrt(vvi(l,:)*dt)
uux = exp(aatmpil+aatmp2)

ddx = exp(aatmpl-aatmp2)
CALL timer(tend, tstart)
tcomp = tcomp + tend
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CALL timer(tstart, 0.0)
vvli(l,:) = ukvvi(l,:) +

eoshift(d*vvi(l,:),dim = 1,shift = -n)

ss1(1,:) = uux*ss1(1,:) +
eoshift(ddx#*ss1(1,:),dim = 1,sh
CALL timer(tend, tstart)
tcomms = tcomms + tend
if (i.eq.repsl) then
CALL timer(tstart, 0.0)
cearly = ss1(1,1:2%*i) - sk
CALL timer(tend, tstart)
tcomms = tcomms + tend
CALL timer(tstart, 0.0)
s51(1,1:2%%i) = ss1(1,1:2%*i) - d
CALL timer(tend, tstart)
tcomp = tcomp + tend

endif
n = 2%n
enddo

if (reps.gt.13) then

reps2 = reps - 13

nrepsl = 2%*x(reps2+1) - 1

repsdiv = repsl - 14

start = 2%*repsdiv

end = 2*start - 1

CALL timer(tstart, 0.0)

do i = 1, nrepsi/2

aatmpl = (r-0.5%vv1(i,:))*dt

sqrt(vvi(i, ) *dt)
uux = exp(aatmpl+aatmp2)

aatmp2

ddx = exp(aatmpl-aatmp2)
vvl(2*i,:) = u*vvi(i,:)
vvl((2%i+1),:) = d*vvi(i,:)
if (i.ge.start.and.i.le.end) then
aatmpl = uux*ssi(i,:)
aatmp2 = ddx*ssi(i,:)
cearly_big(2*(i-start)+1,:)
cearly_big(2*(i-start+1),:)
ss1(2%i,:) = aatmpl - div
ss1((2%i+1),:) = aatmp2 - div
else
ss1(2%i,:) = uux*ssi(i,:)
ss1((2%i+1),:) = ddx*ss1(i,:)
endif
ss1(i,:) = 0.0
enddo
ssl = ssl - sk
where (ss1.1t.0.0) ss1 = 0.0
CALL timer(tend, tstart)
tcomp = tcomp + tend
if (repsil.le.13) then
CALL timer(tstart, 0.0)
do i=nreps1/2+1,nrepsil
ss1(1,:) = ss1(1,:) + ss1(i,:)
enddo

ift = -n)

iv

aatmpl - sk
aatmp2 - sk

ss1(1,:) = ss1(1,:)/((2*rx)**(float(reps-13)))

n=1

CALL timer(tend, tstart)
tcomp = tcomp + tend
CALL timer(tstart, 0.0)
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do i=1,13-repsl
ss1(1,:) = ss1(1,:) +
& eoshift(ss1(1,:),dim = 1,shift = n)
n = 2%n
enddo
CALL timer(tend, tstart)
tcomms = tcomms + tend
CALL timer(tstart, 0.0)
nreps2 = 2**(13-repsl)
cback = ss1(1,1:8192:nreps2)/
% ((2*rx)**float (13-repsl))
where (cearly.gt.cback) cback = cearly
CALL timer(tend, tstart)
tcomp = tcomp + tend
CALL timer(tstart, 0.0)
--- calculate call price
cval = SUM(cback,mask=cback.gt.0.0)/((2*rx)**(float(repsl)))
CALL timer(tend, tstart)
tcomms = tcomms + tend
else
nreps2 = 2¥*(reps-repsi)
cval = 0.0
do i=1,2*start
CALL timer(tstart, 0.0)
aatmpl = 0.0
n = nreps1/2 + (i-1)#*nreps2
do j=1,nreps2
aatmpl = aatmpl +
& ssi(n+j,:)
enddo
aatmpl = aatmpl/((2*rx)**(float(reps-repsi)))
where (cearly_big(i,:).gt.aatmpl)
% aatmpl = cearly_big(i,:)
CALL timer(tend, tstart)
tcomp = tcomp + tend
CALL timer(tstart, 0.0)
cval = cval + SUM(aatmpl,mask=aatmpl.gt.0.0)
CALL timer(tend, tstart)
tcomms = tcomms + tend
enddo
--- calculate call price
cval = cval/((2*rx)**(float(repsi)))
endif
else
--- calculate call price
ssl = ssl - sk
CALL timer(tstart, 0.0)
cval = SUM(ss1(1,:),mask=ss1(1,:).gt.0.0)/((2%rx)**xreps)
CALL timer(tend, tstart)
tcomms = tcomms + tend
endif
return
end

SUBROUTINE svcorp2(sp,sk,r,t,v,psi,xmu,cor,reps,cval,
1 tcomp ,tcomms)

IMPLICIT NONE

real sp,sk,r,t,v,psi,xmu,cor,cval

REAL :: tcomp,tcomms

integer reps
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real ,dimension(1: (2**(reps-12)-1),1:8192) :: ssl,vvl,uux,ddx,
& aatmpl ,aatmp2
integer,dimension(1:8192) :: index,ud
real u,d,dt,rl,tmpl,tmp2,rx,xreps
integer i,repsi,nrepsi,n2
REAL :: tstart,tend
'HPF$ PROCESSORS P( NUMBER_OF_PROCESSORS() )
'HPF$ DISTRIBUTE (*,block) onto P:: ssi,vvl,uux,ddx,aatmpl,aatmp2
'HPF$ DISTRIBUTE (block) onto P:: index,ud
CALL timer(tstart, 0.0)
xreps = float(reps)
dt = t/xreps
C..HWY. Corrected syntax from ‘index = [0:891]’.
FORALL(i=1:8192) index(i) =i - 1
[¢] --- SET RX (PERIODIC 1+RF) TO RISK FREE RATE + 1
rx=(r+1.0)**dt
tmpl = (xmu-0.5%psi*psi)*dt
tmp2 = cor*psi*sqrt(dt)
u = exp(tmpil+tmp2)
d
c --- create stock price lattice (sl)
vwi(l,:) = vkv
ss1(1,:) = sp
n2 = 4096
do i = 1,13
aatmpl(1,:) = (r-0.5%vvi(1,:))*dt
aatmp2(1,:) = sqrt(vvi(1,:)*dt)
uux(1,:) = exp(aatmpl(l,:)+aatmp2(1,:))
ddx(1,:) = exp(aatmpl(1l,:)-aatmp2(1,:))
ud = index/n2
c where (mod(ud,2) .ne. 0)
where (BTEST(ud,P0S=0))
vvi(l,:) = d*vvi(l,:)

exp (tmpl-tmp2)

ss1(1,:) = ddx(1,:)*ss1(1,:)
elsewhere
vvi(l,:) = uxvvi(l,:)
ss1(1,:) = uux(1,:)*ss1(1,:)
endwhere
n2 = n2/2
enddo

CALL timer(tend, tstart)
tcomp = tcomp + tend
if (reps.gt.13) then
CALL timer(tstart, 0.0)
repsl = reps - 13
nrepsl = 2%*x(repsi+l) - 1
do i = 1, nrepsi/2
aatmpl(i,:) = (r-0.5*%vvi(i,:))*dt
aatmp2(i,:) = sqrt(vvi(i,:)*dt)
uux(i,:) = exp(aatmpl(i,:)+aatmp2(i,:))
ddx(i,:) = exp(aatmpl(i,:)-aatmp2(i,:))
vvl(2*i,:) = u*vvi(i,:)
vvl((2%i+1),:) = d*vvi(i,:)
ss1(2%i,:) = uux(i,:)*ss1(i,:)
ss1((2%i+1),:) = ddx(i,:)#*ss1(i,:)
ss1(i,:) = 0.0
enddo
c --- calculate call price
ssl = ssl - sk
CALL timer(tend, tstart)
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tcomp = tcomp + tend
CALL timer(tstart, 0.0)
cval = SUM(ssl,mask=ssl.gt.0.0)/((2*rx)**xreps)
CALL timer(tend, tstart)
tcomms = tcomms + tend

else

[ --- calculate call price

ssl = ss1 - sk
CALL timer(tstart, 0.0)
cval = SUM(ss1(1,:),mask=ss1(1,:).gt.0.0)/((2%rx)**xreps)
CALL timer(tend, tstart)
tcomms = tcomms + tend

endif

return

end

A.4 Gaussian Elimination

This code performs factorization of a random matrix, through Gaussian elimination with partial

pivoting.

PROGRAM gauss

IMPLICIT NONE

INTEGER, PARAMETER :: Nrows = 255, Ncols = 256
C Define interface for subroutine timer.

INTERFACE
SUBROUTINE timer(return_time, initial_time)
REAL, INTENT(IN) :: initial_time

REAL, INTENT(OUT) :: return_time
END SUBROUTINE timer
END INTERFACE
C Mask, for setting which rows in which to search for next pivot.
INTEGER, DIMENSION(Nrows) :: pivotMask
DOUBLE PRECISION, DIMENSION(Nrows,Ncols) :: a,pivotColArray
DOUBLE PRECISION, DIMENSION(Nrows) :: tmpCol,x
DOUBLE PRECISION, DIMENSION(Ncols) :: pivotRow
C Matrix row, column, and pivot-stage indices.

INTEGER ::
INTEGER ::

i,j.k
ipivot

INTEGER, DIMENSION(1) :: ipivotArray
DOUBLE PRECISION :: pivot,tmp

REAL ::

ti,tf

REAL :: tstart,tend
REAL :: tcomms, tcomp
C HPF Directives
'HPF$ PROCESSORS procs(NUMBER_OF_PROCESSORS())
'HPF$ TEMPLATE temp(Ncols)
'HPF$ DISTRIBUTE temp(CYCLIC)

'HPF$ ALIGN a(x*,j) WITH temp(j)
'HPF$ ALIGN pivotColArray(*,j) WITH temp(j)
'HPF$ ALIGHN pivotRow(j) WITH temp(j)
C Executable Code.

tcomp = 0.0

tcomms = 0.0
C Generate random matrix.
CALL RANDOM_NUMBER( a )
C Calculate appropriate RHS into Ncols-th column of a(), such
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C that the solution should equal to 1.0,2.0,3.0,...Nrous.
FORALL( i=1:Nrows ) x(i) = REAL(i)
tmpCol = 0.0DO
DO i=1,Nrows
FORALL( j=1:Nrows ) tmpCol(j) = a(i,j)*x(j)
a(i,Ncols) = SUM( tmpCol )
END DO
x = 0.0D0
C Start timer
CALL timer(ti, 0.0)
pivotMask = 1
DO k=1,HNrows-1
C Use tmpCol as temporary column to find the pivot.
CALL timer(tstart,0.0)
tmpCol = ABS( a(:,k) )
CALL timer(tend,tstart)
tcomms = tcomms + tend
C Find the pivot in the k-th column, within the rows k:HNrows.
ipivotArray = MAXLOC( tmpCol,MASK=pivotMask.EQ.1 )
ipivot = ipivotArray(1)
IF( ipivot .NE. k )THEN
C Swap rows, using pivotRow as a temporary storage.
pivotRow(:) = a(ipivot,:)
a(ipivot,:) = a(k,:)
a(k,:) = pivotRow(:)
ELSE
pivotRow(:) = a(k,:)
END IF
Define the pivot, and the (rescaled) pivotColArray. This is the

Q

C pivot column replicated across all columns.
CALL timer(tstart,0.0)
pivot = a(k,k)
FORALL( i=k+1:Nrows, j=1:Ncols )
$ pivotColArray(i,j) = a(i,k)/pivot
CALL timer(tend,tstart)
tcomms = tcomms + tend

Q

Calculate upper triangular factor, by updating matrix using the
C pivot, pivotRow and pivotColarray.
FORALL( i=k+1:Nrows, j=k+1:Hcols )
$ a(i,j) = a(i,j) - pivotColArray(i,j)*pivotRow(j)
C Save pivot column for the lower triangular factor.
a(k+1:Nrows,k) = pivotColArray(k+1:HNrows,k)
pivotMask(k) = 0
END DO
C Now do backwards substitution.
DO i=Nrows,1,-1
CALL timer(tstart,0.0)
tmp = a(i,Ncols)
CALL timer(tend,tstart)
tcomms = tcomms + tend
tmpCol = 0.0DO
CALL timer(tstart,0.0)
FORALL( j=1:Nrows,j.GT.i ) tmpCol(j) = a(i,j)*x(j)
CALL timer(tend,tstart)
tcomms = tcomms + tend
tmp = tmp - SUM( tmpCol )
CALL timer(tstart,0.0)
x(i) = tmp/a(i,i)
CALL timer(tend,tstart)
tcomms = tcomms + tend
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END DO
C Stop timer
CALL timer(tf, ti)
tcomp = tf - ti - tcomms
WRITE(UNIT=+*,FMT=*) ’Solution is:’
WRITE(UNIT=* FMT=101) (x(i),i=1,Nrows)
WRITE (UNIT=% ,FMT=6004) NUMBER_OF_PROCESSORS() ,Ncols,

1 tcomms ,tcomp, (tf-tcomms—tcomp) ,tf
STOP
101 FORMAT(10F9.3)
6004 FORMAT(’Number of Processors = ’,I4/
1 ’Problem size = 7,15/
2 ’Communications = ’,F9.3/
3 ’Compute =’ F9.3/
4 ’Others =’ F9.3/
5 ’Total time = 7,F9.3)
END

A.5 Sweep Over an Unstructured Mesh

This code represents a simple edge sweep on an unstructured mesh. The additional flux at
node ‘i’ is the sum of all its neighbouring nodes. The edge array ‘ndeE()’ stores the adjacency
list. The amount of communication generated will depend on the locality of access. The cost
of the communication will be low if the nodes are ordered such that most of these accesses
are local. This reordering can be potentially achieved by use of extrinsic functions to perform
graph partitioning using the edge array.

PROGRAM sweep
USE HPF_LIBRARY
C Sweep over an unstructured mesh
INTEGER, PARAMETER :: ne=3000,nn=500,iter=100
INTEGER ndeS(ne) ,ndeE(ne)
INTEGER 1i,j
REAL flux(nn),econs
REAL weight(nn,4) ,cc(nn)
REAL data(ne)
'HPF$ PROCESSORS P(NUMBER_OF_PROCESSORS())
'HPF$ DISTRIBUTE ndeS(BLOCK) ONTO P
'HPF$ ALIGHN ndeE(:) WITH ndeS(:)
'HPF$ ALIGN flux(:) WITH weight(:,*)
'HPF$ ALIGHN cc(:) WITH weight(:,*)
'HPF$ DISTRIBUTE weight (BLOCK,*) ONTO P
C Initialization
FORALL(i=1:nn) flux(i) = 0.0

FORALL(i=1:nn) weight(i,1) = 1.0
FORALL(i=1:nn) weight(i,2) = 0.5
FORALL(i=1:nn) weight(i,3) = 0.5
FORALL(i=1:nn) weight(i,4) = 1.0

FORALL(i=1:nn) cc(i) = 1.0
econs = 1.0
FORALL(i=1:ne)
ndeS(i) = 1+MOD((i-1),nn)
ndeE(i) = 1+MOD(ne-(i-1),nn)
END FORALL
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DO j = 1,iter
C Weighted Sweep over edges
FORALL(i=1:ne)
data(i) = econs*(

% ((weight(ndeS(i),2)+weight(ndeS(i),3)+weight(ndesS(i),4))
& / weight(ndeS(i),1)
& +
% (weight(ndeE(i),2)+weight(ndeE(i),3)+weight (ndeE(i),4))
& / weight(ndeE(i),1)
% ) / 2 + cc(ndeS(i)) )
END FORALL
flux = SUM_SCATTER(data,flux,ndeS)
FORALL(i=1:ne)
data(i) = econs*(
% ((weight(ndeS(i),2)+weight(ndeS(i),3)+weight(ndeS(i),4))
% / weight(ndeS(i),1)
& +
% (weight(ndeE(i),2)+weight(ndeE(i),3)+weight(ndeE(i),4))
% / weight(ndeE(i),1)
% ) / 2 + cc(ndeE(i)) )
END FORALL
flux = SUM_SCATTER(data,flux,ndeE)
END DO
DO i=1, nn
PRINT *, flux(’,i,?) = ’,flux(i)
END DO
END

A.6 2-Dimensional Potts Model

This code sets up a 2-D Q-State Potts model, and evolves it using the classic Metropolis heat-
bath algorithm.

PROGRAM potts2d
IMPLICIT NONE

integer, parameter :: m

64 ! Lattice dimensions
integer, parameter :: n = 64
real ti,start, tf,tend,tcom
real correctl,correct?2
real tcalc
'HPF$ PROCESSORS PROCS (NUMBER_OF_PROCESSORS())
'HPF$ TEMPLATE, DIMENSION(m,n) :: rectangle
'HPF$ DISTRIBUTE (*,BLOCK) ONTO PROCS :: rectangle
interface
subroutine timer(return_time, initial_time)
real, intent(in) :: initial_time
real, intent(out) :: return_time
end subroutine timer
subroutine setup_random(iseed)
integer, intent(IN) :: iseed
end subroutine setup_random
end interface

C Number of allowable States for Degrees of Freedom
integer, parameter :: q = 4

C Coupling in kT units, -ve for ferromagnetic
real, parameter :: cup = -4.0

C The lattice of DOF’s
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integer, dimension( 1:m, 1:n ) :: latt
'HPF$ ALIGN (:,:) WITH RECTANGLE :: latt

C Trial choices for DOF’s

integer, dimension( 1:m, 1:n ) :: itmp
'HPF$ ALIGN (:,:) WITH RECTANGLE :: itmp
C TMP for RNG and Probability

real, dimension( 1:m, 1:n ) :: tmp, p

'HPF$ ALIGN (:,:) WITH RECTANGLE :: tmp
'HPF$ ALIGN (:,:) WITH RECTANGLE :: p

C mask used in ensuring detailed balance prevails
logical, dimension( 1:m, 1:n ) :: mask

C 'HPF$ ALIGN mask WITH RECTANGLE

C number of measurements
integer :: nmeasure = 20

C number of sweeps per measurement
integer :: niter = 10

integer imeasure,iter
integer 1i0,i,j,jo
C Begin Executable

tcom = 0.0

tcalc = 0.0

latt = 0

itmp = 0O

tmp = 0.0

p=20.0

mask = .FALSE.
C BEGIN TIMER

call timer(start,0.0)
call timer(ti,0.0)
call setup_random( 12345 )
C initialise between O and -1 inclusive
call random_number( tmp )
latt = int( tmp * q )
call timer(tcalc,ti)
do imeasure=1,nmeasure
C Measurements:
call timer(ti,0.0)
C Present bonds

itmp = merge( 1, 0, latt == cshift(latt

= cshift(latt

itmp = itmp + merge( 1, 0, latt
call timer(tend,ti)
tcalc=tcalc + tend
call timer(ti,0.0)
itmp = itmp + merge( 1, 0, latt cshift(latt
cshift(latt

itmp = itmp + merge( 1, 0, latt
call timer(tend,ti)
tcom= tcom + tend
write(6,%) ’# Bonds = ’, sum( itmp )
do iter=1,niter
call timer(ti,0.0)
C generate '"new' values for the Potts variables
call random_number(tmp)
c using the Coddington recipe
itmp = mod( (latt + int( tmp * q-1 ) + 1 ),
call timer(tend,ti)
tcalc=tcalc+tend

) )

’ s

) ’

» ~1,

q)

C use four-colour ordering to preserve detailed-balance

do i0=1,2
do joO=1,2
call timer(ti,0.0)
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have to get too many cos of this stupid non-function RNG
call random_number( tmp )
mask = .false.
forall(i=iO:m:2, j=jO:n:2 ) mask(i,j) = .true.
where (mask)

Present bonds

p= merge( cup, 0.0,

1 latt == cshift(latt, 1, 1 )
p = p + merge( cup, 0.0,

1 latt == cshift(latt, -1, 1 )

end where
call timer(tend,ti)
tcalc=tcalc+tend
call timer(ti,0.0)
where (mask)
p = p + merge( cup, 0.0,

1 latt == cshift(latt, 1, 2 )
p = p + merge( cup, 0.0,
1 latt == cshift(latt, -1, 2 )

end where
call timer(tend,ti)
tcom=tcomt+tend
call timer(ti,0.0)
where (mask)
future bonds
p = p - merge( cup, 0.0,
1 itmp == cshift(latt, 1, 1)
if dof is flipped
p = p - merge( cup, 0.0,
1 itmp == cshift(latt, -1, 1 )
end where
call timer(tend,ti)
tcalc=tcalc+tend
call timer(ti,0.0)
where (mask)
p = p - merge( cup, 0.0,
1 itmp == cshift(latt, 1, 2 )
p = p - merge( cup, 0.0,
1 itmp == cshift(latt, -1, 2 )
end where
call timer(tend,ti)
tcom=tcomt+tend
call timer(ti,0.0)
where (mask)
p = exp( p)
latt = merge( itmp, latt, tmp < p )

end where
call timer(tend,ti)
tcalc=tcalc+tend

end do
end do ! end of checkerboard loop
end do ! end of iter loop
end do ! end of measure loop
call timer(tf,start)
END TIMER
write(6,6001) NUMBER_OF_PROCESSORS(),
1 m,tcom,tcalc, (tf-tcom-tcalc) ,tf
6001 FORMAT(’Humber of Processors =’,I4/
1 ’Problem size =’,14/
2 ’Communications = ’,F9.3/
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3 ’Compute = ’, F9.3/
4 ’Others =’, F9.3/
5 ’Total time =’,F9.3 )
C write out picture of configuration as a PPM file
write(9,100)

100 Format(’P3’ )
write(9,101)

101 Format(’# 2d Potts Model’)
write(9,FMT="(2I6)’) m, n
write(9,FMT=>(I6)’) 255
do i=1,m

do j=1,n
if( latt(i,j) == 0 )then
write(9,”(3I4) ,ADVANCE="N0’)
1 255,0,0
else if( latt(i,j) == 1 )then
write(9,°(3I4)° ,ADVANCE="N0")
1 0,255,0
else if( latt(i,j) == 2 )then
write(9,’(3I4)° ,ADVANCE="N0")
1 0,0,255
else if( latt(i,j) == 3 )then
write(9,’(3I4) ,ADVANCE="NO0’)
1 255,255 ,0
else if( latt(i,j) == 4 )then
write(9,’(3I4)° ,ADVANCE="N0")
1 255,0,255
else if( latt(i,j) == 5 )then
write(9,’(3I4) ,ADVANCE="NO0’)
1 0,255,255
else if( latt(i,j) == 6 )then
write(9,’(3I4)° ,ADVANCE="N0")

1 255,255,255
else
write(9,’(3I4)°’,ADVANCE="N0’)
1 0,0,0
endif

C Insert line break, as required by Cray Fortran.
if( MOD( ((i-1)*n)+j,5 ) .EQ. O ) write(9,FMT=x)
enddo
enddo
end program
subroutine setup_random(iseed)

C put a new seed in the bloody awful system supplied RNG
IMPLICIT NONE
integer :: n,i,iseed
integer, dimension(:), allocatable :: seed

call random_seed(size=n)

allocate( seed(n) )

forall(i=1:n) seed(i) = mod(i*4096+150889+iseed,714025 )
call random_seed( put=seed(1:n) )

deallocate( seed )

end subroutine

subroutine timer(return_time, initial_time)

real, intent(in) :: initial_time

real, intent(out) :: return_time

integer finish,rate

CALL system_clock (COUNT=finish,COUNT_RATE=rate)
return_time = FLOAT(finish) / FLOAT(rate) - initial_time
RETURN
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END

A.7 2-D Binary Phase Quenching of Cahn Hilliard Cook Equation

This code sets up a random binary phase mixture and applies the Cahn Hilliard Cook equation

to quench the system into a cooled state.

PROGRAM chc
IMPLICIT NONE
C The mesh size

integer, parameter :: nl = 256

integer, parameter :: n2 = 256
C number of bins to measure

integer, parameter :: nb = 20

real, dimension(1:nb) :: bins

real, dimension(nil,n2) :: c, f

real ti, tf,start,tcalc,tcom,a,others
real cmax,less
'HPF$ PROCESSORS :: PROCS(NUMBER_OF_PROCESSORS())
'HPF$ TEMPLATE, DIMENSION(n2) :: TEMP
'HPF$ DISTRIBUTE (BLOCK) ONTO PROCS :: TEMP
'HPF$ ALIGH (*,:) WITH TEMP(:) :: c,f
interface
subroutine timer(return_time, initial_time)
real, intent(in) :: initial_time
real, intent(out) :: return_time
end subroutine
end interface
real t1, t2, x
real :: dt, dtby2
integer :: iter
integer :: niter
integer i,j
C Executable Code.

c=0.0
f =0.0
bins = 0.0

OPEN(UNIT=3,FILE=’in.runme’,STATUS=’0LD’)
READ(UNIT=3,FNT=%) dt
READ(UNIT=3,FMT=%) niter
dtby2 = dt / 2.0
WRITE(UNIT=6,FMT=’(’’DT = ’’,F9.3,’’ niter = ’’,112)’) dt,niter
tcalc=0.0
tcom=0.0
call timer(start,0.0)
call timer(ti,0.0)
C Use the (poor) system supplied RHNG

c=1.0
call random_number( c )
c=c-0.5

call timer(tcalc,ti)
do iter=1,niter
call timer(ti,0.0)
f = -1.0%(cshift(c,1,1) + cshift(c,-1,1))
f=3.0%xc+ c*¥x3+ f
call timer(a,ti)
tcalc=tcalc+ta
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call timer(ti,0.0)
f= f- (cshift(c,1,2) + cshift(c,-1,2))
call timer(a,ti)
tcom=tcom+a
call timer(ti,0.0)
c = c + dtby2 * ( cshift(f,1,1) + cshift(f,-1,1)-4.0%f)
call timer(a,ti)
tcalc=tcalc+ta
call timer(ti,0.0)
c = ¢ + dtby2*(cshift(f,1,2) + cshift(f,-1,2))
call timer(a,ti)
tcom=tcomt+a
call timer(ti,0.0)
C be cautious in case of leaks

cmax = maxval( abs(c) )
if( cmax > 0.0 ) ¢ = ¢ / cmax
call timer(a,ti)
tcalc=tcalc+ta

end do

call timer(tf,start)

others=tf-tcalc-tcom

write(6,6001) NUMBER_OF_PROCESSORS(),

1 nl,tcom,tcalc,others,tf

6001 FORMAT(’Humber of Processors =’,I4/

1 ’Problem size =’,14/

2 ’Communications = ’,F9.3/

3 ’Compute = ’, F9.3/

4 ’0thers =’, F9.3/

5 ’Total time =’,F9.3 )

STOP

end program

subroutine timer(return_time, initial_time)

real, intent(in) :: initial_time

real, intent(out) :: return_time

integer finish,rate

CALL system_clock( COUNT=finish,COUNT_RATE=rate)
return_time= FLOAT(finish) / FLOAT(rate) - initial_time
RETURN

end subroutine

A.8 Solution of 2-D Poisson Equation by the Alternating Direct
Implicit Method

This code illustrates the use of HPF constructs for fluid dynamics problems. The main program
relies on two subroutines, for solving a tridiagonal matrix given a right hand side, and for setting
up the right hand side itself.

A.8.1 Main program for the ADI code

PROGRAM adi
IMPLICIT NONE
INCLUDE ’adi.inc’
C .. Define interface for subroutines ..

66



INTERFACE
SUBROUTINE tridiag_psi(alpha,beta,rhs,u,temp,l)

INTEGER,INTENT(IN) o N

REAL,INTENT(IN) :: alpha

REAL ,DIMENSION(:,:) ,INTENT(IN) :: rhs

REAL ,DIMENSION(:,:) ,INTENT(OUT) :: u,temp,beta
'HPF$ DISTRIBUTE *(*,BLOCK) :: beta,rhs,u,temp

END SUBROUTINE tridiag_psi
SUBROUTINE find_rhs_psi(alpha,h2,psi,zeta,rhs,l)

INTEGER,INTENT(IN) o N

REAL,INTENT(IN) :: alpha,h2

REAL ,DIMENSION(:,:) ,INTENT(IN) :: psi,zeta

REAL ,DIMENSION(:,:) ,INTENT(OUT) :: rhs
'HPF$ DISTRIBUTE *(*,BLOCK) :: psi,zeta,rhs

END SUBROUTINE find_rhs_psi
SUBROUTINE timer(return_time, initial_time)
REAL, INTENT(IN) :: initial_time
REAL, INTENT(OUT) :: return_time
END SUBROUTINE timer
END INTERFACE

C .. Arrays and scalars ..
INTEGER HER
INTEGER :: iTime

REAL :: ti,tf
REAL :: tstart,tend
REAL :: tcomms, tcomp
C The number of time steps to iterate for.

INTEGER :: HTime
REAL :: alpha,h2
REAL :: error

REAL ,DIMENSION(NN,NN) :: beta,psi,zeta,rhs,wspace

REAL ,DIMENSION(NN,NN) :: tarray
C .. HPF dirctives to distribute arrays
'HPF$ PROCESSORS :: procs(NUMBER_OF_PROCESSORS())
'HPF$ TEMPLATE,DIMENSION(NN) :: tplate
'HPF$ DISTRIBUTE (BLOCK) ONTO procs :: tplate
'HPF$ ALIGN beta(*,:) WITH tplate(:
'HPF$ ALIGN psi(*,:) WITH tplate(:
'HPF$ ALIGHN zeta(*,:) WITH tplate(:
'HPF$ ALIGN rhs(*,:) WITH tplate(:
'HPF$ ALIGN wspace(*,:) WITH tplate(:
'HPF$ ALIGN tarray(*,:) WITH tplate(:
C Begin Executable
C Start timer

CALL timer(ti, 0.0)

tcomp = 0.0

~ O~ e

tcomms = 0.0
C .. Initialise scalars ..
h2 = H*H
alpha = 2.0%h2/DT
NTime = 20
C .. Initialise arrays
rhs =1.0
0.0
psi =5.0
psi (2:NE-1,2:0N-1) = 2.0
C .. Reduce to Laplace equation.
zeta = 0.0
C .. Solve, over a number of time steps
DO iTime = 1,HTime

wspace
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CALL timer(tstart, 0.0)
tarray = (psi - 5.0) * (psi - 5.0)
CALL timer(tend, tstart)
tcomp = tcomp + tend
CALL timer(tstart, 0.0)
error = SUM( tarray ) / (HN*NN)
CALL timer(tend, tstart)
tcomms = tcomms + tend
WRITE(UNIT=STDOUT ,FMT=1001) iTime, error
IF( error .LE. eTol ) EXIT
C .. Solve in x-direction.
CALL timer(tstart, 0.0)
CALL tridiag_psi(alpha,beta,rhs,psi,uspace,lNN)
CALL find_rhs_psi(alpha,h2,psi,zeta,rhs,lN)
CALL timer(tend, tstart)
tcomp = tcomp + tend
C.. Transpose
CALL timer(tstart, 0.0)

psi = TRANSPOSE(psi)
zeta = TRANSPOSE(zeta)
rhs = TRANSPOSE(rhs)

CALL timer(tend, tstart)
tcomms = tcomms + tend
C .. Solve in y-direction.
CALL timer(tstart, 0.0)
CALL tridiag_psi(alpha,beta,rhs,psi,wspace,NN)
CALL find_rhs_psi(alpha,h2,psi,zeta,rhs,lN)
CALL timer(tend, tstart)
tcomp = tcomp + tend
C.. Transpose
CALL timer(tstart, 0.0)

psi = TRANSPOSE(psi)
zeta = TRANSPOSE(zeta)
rhs = TRANSPOSE(rhs)

CALL timer(tend, tstart)
tcomms = tcomms + tend
END DO ! iTime
C Stop timer
CALL timer(tf, ti)
WRITE (UNIT=STDOUT ,FMT=*) ’Final Result: for psi()’
tarray = (psi - 5.0) * (psi - 5.0)
error = SUM( tarray ) / (HN*NN)
WRITE(UNIT=STDOUT ,FMT=1001) HTime+1, error
WRITE (UNIT=+*,FMT=6004) NUMBER_OF_PROCESSORS() ,NN,

1 tcomms ,tcomp, (tf-tcomms—tcomp) ,tf
STOP

1001 FORMAT(’Status: iTime = ’,I6,’ Error = ’ ,F9.4)
1002 FORMAT(12F9.3)
6004 FORMAT(’Number of Processors = ’,I4/

1 ’Problem size = 7,15/

2 ’Communications = ’,F9.3/

3 ’Compute = ’,F9.3/

4 ’Others =’ F9.3/

5 ’Total time = 7,F9.3)

END
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A.8.2 Routine to solve a tridiagonal matrix, for the ADI code

SUBROUTINE tridiag_psi(alpha,beta,rhs,u,temp,N)
IMPLICIT NONE

C .. Arguments ..
INTEGER, INTENT (IN) B |
REAL,INTENT (IN) :: alpha
REAL,DIMENSION(:,:),INTENT(IN) :: rhs

REAL ,DIMENSION(:,:),INTENT(OUT) :: u,temp,beta
C .. HPF directives .
'HPF$ DISTRIBUTE #*(*,BLOCK) :: beta,rhs,u,temp

C .. Local variables ..
INTEGER i,k,j1,jN
REAL a,b,c

C Begin Executable
j1 =2 ! Start element to update
jb = N-1 ! End index to update

C Define matrix elements.
a=-1.0 ! Lower diagonal elements.
b = alpha + 2.0 ! Diagonal elements.
c=-1.0 ! Upper diagonal elements.

C Do LU decomposition and forward substitution.
u(ji,j1:3jm = ( rhs(j1,j1:j0) - a*u(i,ji:jN) )/b
beta(j1,j1:j0) = b
DO k=ji+1,jN
temp(k,ji:jN)
beta(k,ji:jN)
u(k,ji:jm)

END DO

temp(N, ji:jN) = c/beta(jl,ji:jM)

C Do backwards substitution.

DO k=jN,ji,-1
u(k,ji:j0) = u(k,ji:jH) - temp(k+1,ji:jH)*u(k+1,j1:jN)

END DO

RETURN

END SUBROUTINE tridiag_psi

c/beta(k-1,j1:jN)
b - a*temp(k,ji:jN)
(rhs(k,j1:jH) - a*u(k-1,jl:j0))/beta(k,ji:jl)

A.8.3 Routine to find the Right Hand Side, for the ADI code

SUBROUTINE find_rhs_psi(alpha,h2,psi,zeta,rhs,N)
IMPLICIT NONE

C .. Arguments ..
INTEGER,INTENT(IN) HE |
REAL ,INTENT (IN) :: alpha,h2
REAL ,DIMENSION(:,:) ,INTENT(IN) :: psi,zeta

REAL ,DIMENSION(:,:),INTENT(OUT) :: rhs
C .. HPF directives .
'HPF$ DISTRIBUTE #*(*,BLOCK) :: psi,zeta,rhs

C .. Local variables ..
INTEGER i,k,j1,jN
REAL b
C Begin Executable
j1 =2 ! Start element to update
jb = N-1 ! End index to update
b = alpha - 2.0 ! Diagonal elements
DO k=j1,jN
rhs(k,j1:j0) = psi(k-1,j1:j0) + b*psi(k,ji:jN) + psi(k+1,ji:jN)
$ - h2#zeta(k,ji:jl)

69



END DO
C Set boundary conditions

rhs(1,:) = psi(1,:)

rhs(W,:) = psi(N,:)

DO k=j1,jl
rhs(k,1) = psi(k,1)
rhs(k,N) = psi(k,N)

END DO

RETURN

END SUBROUTINE find_rhs_psi

A.9 Direct N-Body Solver

This code calculates the full-range interactions amongst a number of particles, with no cut-off.
The code also avoids superfluous computations by exploiting Newton’s third law to halve the
possible computations.

PROGRAM nbody
IMPLICIT NONE

C| Direct N-body simulation code.
C| Computes the forces between H-bodies after one time-step.

C| MM: mass.
C| PX, PY, PZ: position in x, y, z coordinates.
C| FX, FY, FZ: force in x, y, z coordinates.

C| HW Yau. 25th of August, 1996.
C| Northeast Parallel Architectures Center.

C| Syracuse University.

C| Edit record:
C| 06/Jun/96 Cleaned up by M. McMahon. Modified all the array

cl statements to dimension.
C| Modified by M.McMahon 6/6/96 Changed EXTRINSIC and ALIGHN
cl statements.

C|l 17/Jun/96 (MM) fixed up timer.
C| 22/Aug/1996: (HWY) Made problem smaller from NN=4096.

cl Fixed code to remove hard-wiring of ¢4096°.
C| 25/Aug/1996: Tidying up.
cl Removed superfluous ‘NP’ parameter.
cl Fortran 90 version of the same code.
C| 08/Apr/1997: (HWY) Bug fixes.
cl Rewrote initialisation of states, to be predictable.
C| 09/Apr/1997: Use of allocatable arrays.
Cl |
INTERFACE
SUBROUTINE timer(return_time, initial_time)
REAL, INTENT(IN) :: initial_time

REAL, INTENT(OUT) :: return_time
END SUBROUTINE
END INTERFACE
INTEGER, PARAMETER :: NN = 3200
INTEGER, PARAMETER :: MM=0, PX=1, PY=2, PZ=3, FX=4, FY=5, FZ=6
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REAL, PARAMETER :
REAL ,DIMENSION(:) ,ALLOCATABLE ::

1

REAL ,DIMENSION(:,:),ALLOCATABLE :

G=1.

i,j,k,npts

0

dx,dy,dz,tx,ty,tz,
sq,dist,fac
P:q

:: ti, tf,tcalc,tcom,start,a

tplate(:)

tplate(:
tplate(:
tplate(:
tplate(:
tplate(:
tplate(:
tplate(:
tplate(:
tplate(:
tplate(:

v v o e o e e

INTEGER ::

REAL
C HPF directives
'HPF$ PROCESSORS :
'HPF$ TEMPLATE,DIMENSION(O:NH-1)
'HPF$
'HPF$ ALIGH dx(:) WITH
'HPF$ ALIGN dy(:) WITH
'HPF$ ALIGH dz(:) WITH
'HPF$ ALIGH tx(:) WITH
'HPF$ ALIGN ty(:) WITH
'HPF$ ALIGH tz(:) WITH
'HPF$ ALIGN sq(:) WITH
'HPF$ ALIGH dist(:)WITH
'HPF$ ALIGH fac(:) WITH
'HPF$ ALIGN p(:,*) WITH
'HPF$ ALIGN q(:,*) WITH
C Executable Code.

npts = NN

WRITE(UNIT=* ,FMT=101) NN

READ

END IF

*, npts

IF( npts .GT. NN )THEN
WRITE(UNIT=*,FMT=102)
STOP

C Allocate arrays.

Q

ALLOCATE(
ALLOCATE(
ALLOCATE(
ALLOCATE(
ALLOCATE (
ALLOCATE (
ALLOCATE(
ALLOCATE(

call timer(ti,0.0)

dx(0:npts-1)
dy(O:npts-1)
dz(0:npts-1)
tx(0:npts-1)
ty(O:npts-1)
tz(0:npts-1)
sq(0:npts-1)

~ v e e e e

NN

dist(0:npts-1) )
ALLOCATE( fac(O:npts-1) )
ALLOCATE( p(0:npts-1,0:6) )
ALLOCATE( q(0:npts-1,0:6) )
call timer(start,0.0)

tcalc = 0.0

tcom

p=20

=0

.0
C Define inital state of particles.

FORALL( i=0:npts-1 )
p(i,MM) = 10.05 + i

p(i,PX)
p(i,PY)
p(i,PZ)

30.0
20.0
= 10.0

END FORALL

Initialize q to

* i
* i

* i

be the same as p.

procs (NUMBER_OF_PROCESSORS ()
:: tplate
DISTRIBUTE (BLOCK) ONTO procs ::

tplate

As the force between particle i and j

is calculated and added into p, q will be used to accumulate the

symmetrical opposite force from j to i.

q=P

k= ((npts - 1) / 2) -1
call timer(tcalc,ti)
doi=0, k
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call timer(ti,0.0)

q = CSHIFT(q,DIM=1,SHIFT=-1)

call timer(a,ti)

tcom = tcom + a

call timer(+i,0.0)

dx(:) = p(:,PX) - q(:,PX)

dy(:) = p(:,PY) - q(:,PY)

dz(:) = p(:,PZ) - q(:,PZ)

sq(:) = dx(:)**2 + dy(:)**2 + dz(:)**2
dist(:) = SQRT(sq(:))

fac(:) = p(:,MM) * q(:,MM) / (dist(:) * sq(:))
tx(:) = fac(:) * dx(:)
ty(:) = fac(:) * dy(:)
tz(:) = fac(:) * dz(:)
p(:,FX) = p(:,FX) - tx(:
p(:,FY) = p(:,FY) - ty(:
p(:,FZ) = p(:,FZ) - tz(:
q(:,FX) = q(:,FX) + tx(:
q(:,FY) = q(:,FY) + ty(:
q(:,FZ) = q(:,FZ) + tz(:
call timer(a,ti)

~ e O~ o~

tcalc = tcalc + a
end do
C Final one-way forces.
IF( MOD(npts,2) .EQ. O )THEN
CALL timer(ti,0.0)
q = CSHIFT(q,DIM=1,SHIFT=-1)
call timer(a,ti)
tcom = tcom + a
call timer(ti,0.0)
dx(:) = p(:,PX) - q(:,PX)
dy(:) = p(:,PY) - q(:,PY)
dz(:) = p(:,PZ) - q(:,PZ)
sq(:) = dx(:)**2 + dy(:)**2 + dz(:)**2
dist(:) = SQRT(sq(:))
fac(:) = p(:,MM) * q(:,MM) / (dist(:) * sq(:))
tx(:) = fac(:) * dx(:)
ty(:) = fac(:) * dy(:)
tz(:) = fac(:) * dz(:)
pC:,FX) = p(:,FX) - tx(:)
p(:,FY) = p(:,FY) - ty(:)
p(:,FZ) = p(:,FZ) - tz(:)
call timer(a,ti)
tcalc = tcalc + a
END IF
C Combine final forces for the final result
C CSHIFT operation to bring q() back to original indexing state.
call timer(ti,0.0)
q = CSHIFT( q,DIM=1,SHIFT=(npts/2) )
call timer(a,ti)
tcom = tcom + a
call timer(ti,0.0)
p(:,FX) = p(:,FX) + q(:,FX)
p(:,FY) = p(:,FY) + q(:,FY)
p(:,FZ) = p(:,FZ) + q(:,FZ)
call timer(a,ti)
tcalc = tcalc + a
C Stop timer
call timer(tf,start)
j = MIN(65,npts-1)
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print *, ’State After=’
print *, ’p(FX)=’,(p(i,FX),i=0,j)
print *, ’p(FY)=’,(p(i,FY),i=0,j)
print *, ’p(FZ)=’,(p(i,FZ),i=0,j)
WRITE(6,6001) NUMBER_OF_PROCESSORS() ,npts,
1 tcom,tcalc, (tf-tcom-tcalc) ,tf
101 FORMAT(’Enter the number of data points - <= ’,I8)
102 FORMAT(’The choice of npts=’,I8,’ will probably cause a crash.’)

6001 FORMAT(’Number of Processors = ’,I4/
1 ’Problem size = ’,I5/
2 ’Communications = ’ ,F9.3/
3 ’Compute = ’,F9.3/
4 ’Others = F9.3/
5 ’Total time = ?,F9.3)
STOP
END
C
SUBROUTINE timer(return_time, initial_time)
real, intent(in) :: initial_time
real, intent(out) :: return_time

integer finish,rate

CALL system_clock( COUNT=finish,COUNT_RATE=rate)
return_time = FLOAT(finish) / FLOAT(rate) - initial_time
RETURN

END

A.10 Image Template Matching

Template Matching. This code convolves an N x N image with an M x M image. The result is
stored in ‘C2D()’. A high value of ‘C2D(4, ;) will imply that the M x M subimage at ‘(1,3)’

is similar to the template.

PROGRAM Template_Matching
INTEGER, PARAMETER :: N=1000,M=5
INTEGER u,v,t1,i,j
INTEGER C2D(0:N-1,0:N-1) ,IND(0:N-1,0:N-1),T(0:M-1,0:M-1)
'HPF$ ALIGN IND(I,J) WITH €2D(I,J)
'HPF$ DISTRIBUTE C2D(BLOCK,BLOCK)
C Initialization
FORALL(i=0:N-1,j=0:N-1) €2D(i,j) = 0
FORALL(i=0:M-1,j=0:M-1) T(i,j) i+j
FORALL(i=0:N-1,j=0:N-1) IND(i,j) = i*j
C Performing the computation
DO u=0,M-1
DO v=0,M-1
t1 = T(u,v)
FORALL(i=0:N-1, j=0:N-1)
$ €2D(i,j) = C2D(i,j)+ti* IND(MOD((i+u),W),MOD((j+v) ,N))
END DO
END DO
DO i=0,N-1
DO j=0,H-1
PRINT #,°C2D(’,i,’,”,j,?) = ?,C2D(i,j)
END DO
END DO
END
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A.11 2-Dimensional Fast Fourier Transform

The codes contained here performs a two-dimensional FF'T over an example matrix —in this

case a unit constant across all the elements— in the following manner:

1. Set up the input 2-D matrix.

2. Perform FFT across the leading dimension of the matrix.

3. Transform the matrix, using an F90/HPF intrinsic function.
4. Perform FFT again, across the leading dimension.

5. Compare the expected results with that obtained.

A.11.1 Main Program for the 2-D FFT Code

PROGRAM constant
IMPLICIT NONE
INCLUDE ’fft2d.inc’
C Define interface for subroutine fft_slice.
INTERFACE
PURE SUBROUTINE fft_slice(a,N,isgn)
INTEGER,INTENT(IN) :: N,isgn
COMPLEX ,DIMENSION(N) ,INTENT(INOUT) :: a
END SUBROUTINE fft_slice
END INTERFACE
C Define interface for subroutine timer.

INTERFACE
SUBROUTINE timer(return_time, initial_time)
REAL, INTENT(IN) :: initial_time

REAL, INTENT(OUT) :: return_time
END SUBROUTINE timer
END INTERFACE
COMPLEX ,DIMENSION(NN,NN) :: a
INTEGER :: icol,isgn
REAL :: ti,tf
REAL :: tstart,tend
REAL :: tcomms, tcomp
C Distribute array.
'HPF$ PROCESSORS procs(NUMBER_OF_PROCESSORS ())
'HPF$ TEMPLATE :: temp (NN ,NN)
'HPF$ DISTRIBUTE(*,BLOCK) ONTO procs :: temp
'HPF$ ALIGN WITH temp :: a
INTRINSIC TRANSPOSE
INTRINSIC REAL,AIMAG,CMPLX,CABS ,MAXVAL
C Begin Executable
C Start timer
CALL timer(ti, 0.0)
tcomp = 0.0
tcomms = 0.0
C Set to constant ‘image’.
a =(1.0,0.0)
C Set parameter to tell fft_slice to do FFT transform.
isgn =1
CALL timer(tstart, 0.0)
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'HPF$ INDEPENDENT
DO icol=1,NN
CALL fft_slice(a(:,icol) NN,isgn)
END DO
CALL timer(tend, tstart)
tcomp = tcomp + tend
C.. Transpose
CALL timer(tstart, 0.0)
a = TRANSPOSE(a)
CALL timer(tend, tstart)
tcomms = tcomms + tend
CALL timer(tstart, 0.0)
'HPF$ INDEPENDENT
DO icol=1,NN
CALL fft_slice(a(:,icol) NN,isgn)
END DO
CALL timer(tend, tstart)
tcomp = tcomp + tend
C Stop timer
CALL timer(tf, ti)
C Simple check the FFT has worked.
WRITE(UNIT=STMOUT ,FMT=1001) NN*NN
WRITE (UNIT=STHMOUT ,FHT=1002) REAL(a(1,1)) ,AIMAG(a(1,1))
WRITE(UNIT=STMOUT ,FMT=1003) REAL(a(NN,NN)),AIMAG(a(HE,NN))
WRITE(UNIT=# ,FNT=6004) NUMBER_OF_PROCESSORS() ,NN,
1 tcomms ,tcomp, (tf-tcomms—tcomp) ,tf
STOP
1001 FORMAT(’a(1,1) should be: ’,19)
1002 FORMAT(’a(1,1) is actually: ’,F12.6,F12.6)
1003 FORMAT(’a(NN,NN) should be zero.’/

$ ’a(NN,NN) is actually: ’,E15.6,E15.6)
6004 FORMAT(’Number of Processors = ’,I4/

1 'Problem size = ’,I5/

2 ’Communications = ’,F9.3/

3 ’Compute = ?,F9.3/

4 ’Others =’ F9.3/

5 ’Total time = 7,F9.3)

END

A.11.2 1-Dimensional FFT routine for the 2-D FFT Code

PURE SUBROUTINE fft_slice(a,N,isgn)
IMPLICIT NONE
C .. Arguments ..
INTEGER,INTENT (IN) :: W,isgn
COMPLEX ,DIMENSION(N) ,INTENT(INOUT) :: a
C .. HPF directives .

C .. Local variables ..
INTEGER :: m,1n2,nv2,nml
INTEGER :: index, jndex
INTEGER :: nrows,ncols,le,lev2
INTEGER 11 ilevel,ii,jj
COMPLEX :: tmp,u,w
REAL, PARAMETER :: pi=3.141592654

C .. Externals ..
INTERFACE

PURE INTEGER FUNCTION ilog2(n)
INTEGER,INTENT(IN) :: n
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END FUNCTION ilog2
PURE INTEGER FUNCTION ipow(i,j)
INTEGER,INTENT(IN) :: i,j

END FUNCTION ipow

END INTERFACE

C Begin executable.
nrows = N
ncols = N

nv2 = nrows/2
nmi = nrows - 1
1n2 = ilog2(W) ! Base to the 2 log of the leading dimension.

C Sort by bit-reversed ordering.
jndex =1
DO index = 1,nmi
IF( jndex .GT. index )THEN
tmp = a(jndex) ! Swap entries
a(jndex) = a(index)
a(index) = tmp
END IF
m = nv2
DO WHILE( (m .GE. 2) .AND. (jndex .GT. m) )
jndex = jndex - m

m=m/ 2
END DO
jndex = jndex + m
END DO

C Danielson-Lanczos algorithm for FFT.
DO ilevel = 1,1n2
le
lev2
u

ipow(2,ilevel)
le / 2
CMPLX(1.0,0.0)
CMPLX(cos(isgn*pi/lev2),sin(isgn*pi/lev2))
DO jj = 1,1lev2

DO ii = jj,nrows,le

W

jndex = ii + lev2
index = ii

tmp u*a(jndex)
a(jndex) = a(index) - tmp
a(index) = a(index) + tmp
END DO
tmp = u*w
u = tmp
END DO
END DO
RETURN

END SUBROUTINE fft_slice

A.12 One Dimensional Fast Fourier Transform

This code is an implementation ofa radix-2 1-D FFT. Due to the increased communications cost,
it can be shown that the scalability of this algorithm is worse than for the 2-D ‘TRANSPOSE()’
based algorithm given in appendix A.11, especially when there are a large number of image

elements distributed to each processor.

PROGRAM FFT_1DRR
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IMPLICIT NONE
Real FFT on 1 dimensional array
n is the size of the list

nAd are the number of elements (nA = n/2)

QQ QQ

n is a power of two

INTEGER, PARAMETER :: n=1024,nA=512
REAL aI(0:n-1),A(0:n-1)

INTEGER Reverse(0O:nA-1)

REAL WI(O:nA-1),WR(O:nA-1)

REAL uI(0:nA-1),uR(0:NA-1)

REAL tI(0:nA-1),tR(0:nA-1)

REAL wR1,wIl,wmI,wmR

REAL TWOPI

INTEGER lgn,mul,Ireverse

INTEGER i,s,j,k,iter ,MASK,partner
'HPF$ PROCESSORS P(NUMBER_OF_PROCESSORS())
'HPF$ ALIGH aI(:) WITH A(:)

'HPF$ ALIGH Reverse(:) WITH A(:)

'HPF$ DISTRIBUTE A(BLOCK) ONTO P

C Initialization
FORALL(i=0:n-1) aI(i) = i
¢ Calculating log2(nA)
i=1
lgn = -1

DO WHILE (nA .ge. i)
lgn = 1lgn + 1
i=i+i
END DO
TWOPI = 2 * 3.1415926535897931
C Computing Bit reverse
'HPF$ INDEPENDENT, NEW(iter)
DO i=0,nA-1
Reverse(i) = 0
iter = 1gn - 1
DO WHILE ( iter .ge. 0)
C BTEST(i,j) should be TRUE
IF( BTEST(i,lgn-1-iter) )THEN
Reverse(i) = IBSET(Reverse(i),iter)
END IF
iter = iter - 1
END DO
END DO
C Rearranging the elements
FORALL(i=0:nA-1)
A(Reverse(i)*2) = al(ix2) ! the real part
A(Reverse(i)#2+1) = aI(i*2+1) ! the imaginary part
END FORALL
C Computing wn~0, wn~1, wn~2,...,wn"(nk/2)
cos(TWOPI/nA)
wmI sin(TWOPI/nA)
wR1 =1
Wil =1
DO j=0, (nA/2) - 1
WI(j) = wll
WR(j) = WR1
wll = wIl * wml
wR1 = wR1 * wmR
END DO
iter = 1
C Computing FFT

wmR
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mul = nA
C The outer loop
DO s = 1,1gn
mul = mul / 2
partner = iter
MASK = iter - 1

C BTEST(j,s-1) should be FALSE
C The inner loop
FORALL(j=0:nA-1, BTEST(j,s-1) .eq. .FALSE.)
uR(j) = A(j*2)
ul(j) = A(j*2+1)
tR(j) = WR(IAND(MASK, j)*mul)*A((j+partner)*2)

tI(j) = WICIAND(MASK, j)*mul)*A((j+partner)*2+1)
A(j*2) = uR(j) + tR(j)
A(j*2+1) = uI(j) + tI(j)
A((j+partner)*2) = uR(j) - tR(j)
A((j+partner)*2+1) = ul(j) - tI(j)
END FORALL
iter = iter + iter
END DO
DO i=0,n-1
PRINT *,’ A(C’,i,?) = 2, A(i)
END DO
END

A.13 2-Dimensional Convolution

The convolution of two images ‘a’ and ‘b” are stored in the matrix ‘¢’, and is calculated by the

steps:

1. Perform 2-D FFT for Image ‘a’.
2. Perform 2-D FFT for Image ‘b’.
3. Perform matrix multiplication ¢ = FFT(a) * FFT(b).

4. Perform inverse 2-D FFT on ‘¢’ to obtain the convolution

where each 2-D FFT is a combination of parallel 1-D FFTs which are solved in the same manner
as code A.11.2 above.

PROGRAM convolve
IMPLICIT NONE
INCLUDE ’convolve.inc’
C Define interface for subroutine fftrow.
INTERFACE
PURE SUBROUTINE fft_slice(a,N,sign)
INTEGER,INTENT(IN) :: N,sign
COMPLEX ,DIMENSION(N) ,INTENT(INOUT) :: a
END SUBROUTINE fft_slice
END INTERFACE
C Define interface for subroutine timer.
INTERFACE
SUBROUTINE timer(return_time, initial_time)
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REAL, INTENT(IN) :: initial_time
REAL, INTENT(OUT) :: return_time
END SUBROUTINE timer
END INTERFACE
COMPLEX, DIMENSION(NN,NN) :: a,b,c
INTEGER :: icol,sign
REAL 11 norm
REAL :: ti,tf
REAL :: tstart,tend
REAL :: tcomms, tcomp
C Distribute arrays.
'HPF$ PROCESSORS procs(NUMBER_OF_PROCESSORS ())
'HPF$ TEMPLATE :: temp (NN ,NN)
'HPF$ DISTRIBUTE(* ,BLOCK) ONTO procs :: temp
'HPF$ ALIGN WITH temp :: a,b,c
INTRINSIC TRANSPOSE
INTRINSIC REAL,AIMAG
C Begin Executable
C Start timer
CALL timer(ti, 0.0)
tcomp = 0.0
tcomms = 0.0
norm = 1.0/ (NN*NN)
C Initialise the arrays.
a=(1.0,0.0)
b = (0.0,1.0)

C Set parameter to tell fft_slice to do FFT transform.

sign =1
CALL timer(tstart, 0.0)
'HPF$ INDEPENDENT
DO icol = 1,NE
CALL fft_slice(a(:,icol) NN,sign)
CALL fft_slice(b(:,icol) ,NN,sign)
END DO
CALL timer(tend, tstart)
tcomp = tcomp + tend
C.. Transpose
CALL timer(tstart, 0.0)
a = TRANSPOSE(a)
b = TRANSPOSE(b)
CALL timer(tend, tstart)
tcomms = tcomms + tend
CALL timer(tstart, 0.0)
'HPF$ INDEPENDENT
DO icol = 1,NE
CALL fft_slice(a(:,icol) NN,sign)
CALL fft_slice(b(:,icol) ,NN,sign)
END DO
c = ax*xb
C Calculate the inverse of ‘c’
sign = -1
'HPF$ INDEPENDENT
DO icol = 1,NN
CALL fft_slice(c(:,icol) NN,sign)
END DO
CALL timer(tend, tstart)
tcomp = tcomp + tend
C.. Transpose
CALL timer(tstart, 0.0)
¢ = TRANSPOSE(c)
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CALL timer(tend, tstart)
tcomms = tcomms + tend
CALL timer(tstart, 0.0)
'HPF$ INDEPENDENT
DO icol = 1,NN
CALL fft_slice(c(:,icol) NN,sign)
END DO
C Normalise.
c = c * norm
CALL timer(tend, tstart)
tcomp = tcomp + tend
C Stop timer
CALL timer(tf, ti)
C Simple check the FFT has worked.
WRITE(UNIT=STMOUT ,FMT=1001) NN*NN
WRITE (UNIT=STMOUT ,FMT=1002) REAL(c(1,1)),AIMAG(c(1,1))
WRITE(UNIT=+*,FMT=6004) NUMBER_OF_PROCESSORS() ,NN,

1 tcomms , tcomp, (tf-tcomms—tcomp) ,tf

STOP
1001 FORMAT(’c(1,1) should be: ’,19)
1002 FORMAT(’c(1,1) is actually: ’,E15.6,E15.6)
6004 FORMAT(’Number of Processors = ’,I14/

1 Problem size = ’,I5/

2 ’Communications = ’,F9.3/

3 ’Compute = ?,F9.3/

4 ’Others =’ F9.3/

5 ’Total time = 7,F9.3)

END

A.14 Hopfield Neural Network

The Hopfield neural network is a simple associative memory model with the ability to store and
later retrieve a given set of images. In the version below, the code updates the state of each
neuron (referred to as ‘sites’in the code) via a stochastic parallel update, with the probability
of update a user-tunable parameter. Much of the computation is matrix calculations, which
makes this code amenable to HPF’s data parallelism execution model.

PROGRAM main
IMPLICIT NONE

INTERFACE
SUBROUTINE timer(return_time, initial_time)
REAL,INTENT(IN) :: initial_time

REAL,INTENT(OUT) :: return_time
END SUBROUTINE timer
END INTERFACE

INTEGER ,PARAMETER :: STDOUT =6

INTEGER ,PARAMETER :: MaxIterations = 100

REAL ,PARAMETER 11 tol = 0.99

REAL ,PARAMETER :: updateFrac =1.0

REAL :: ti,tf

REAL :: tstart,tend

REAL :: tcomms, tcomp

REAL ,DIMENSION(:) ,ALLOCATABLE :: RealRandom
REAL ,DIMENSION(:) ,ALLOCATABLE :: LocalField
REAL ,DIMENSION(:) ,ALLOCATABLE :: ExternalField
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REAL ,DIMENSION(:) ,ALLOCATABLE :: overlap
REAL ,DIMENSION(:,:) ,ALLOCATABLE :: weights
INTEGER ,DIMENSION(:) ,ALLOCATABLE :: sites,sitesO
INTEGER ,DIMENSION(:,:) ,ALLOCATABLE :: patterns
REAL :: MaxOverlap
REAL :: NoiseFrac
REAL :: SelfOverlap
INTEGER :: iarg
INTEGER :: i,iter,n,Npatterns
CHARACTER*(128) :: argString
C ... HPF directives ...
'HPF$ PROCESSORS :: procs( NUMBER_OF_PROCESSORS() )
'HPF$ DISTRIBUTE(BLOCK) ONTO procs :: LocalField
'HPF$ ALIGN ExternalField(:) WITH LocalField(:)
'HPF$ ALIGHN weights(*,:) WITH LocalField(:)
'HPF$ ALIGH patterns(:,*) WITH LocalField(:)
C Begin Executable
C ... Default settings (designed to loop to MaxIterations)
tcomms = 0.0
tcomp = 0.0
iarg = 0
NoiseFrac = 0.40
n = 256
Npatterns = INT( (n * 0.14) + 0.5)
C PGI HPF does not implement IARGC().
IF( iarg .GE. 1 )THEN
CALL getarg(l,argString)
READ(UNIT=argString,FMT=+) NoiseFrac
WRITE(UNIT=STDOUT,FMT=’(’’Setting Starting Noise = ’’,F12.3)?’)
1 NoiseFrac
END IF
IF( iarg .GE. 2 )THEN
CALL getarg(2,argString)
READ(UNIT=argString ,FMT=*) n

WRITE(UNIT=STDOUT ,FMT=> (’’Setting array size = ’’,I6)’) n
Npatterns = INT( (n * 0.14) + 0.5)
END IF

IF( iarg .GE. 3 )THEN
CALL getarg(3,argString)
READ(UNIT=argString,FMT=+) Npatterns
WRITE(UNIT=STDOUT ,FMT=>(’’Setting Number of patterns = ’’,16)’)

1 Npatterns

END IF

ALLOCATE( sites(n) )

ALLOCATE( sitesO(n) )

ALLOCATE( RealRandom(n) )

ALLOCATE( LocalField(n) )

ALLOCATE( ExternalField(n) )

ALLOCATE( overlap(HNpatterns) )

ALLOCATE( weights(n,n) )

ALLOCATE( patterns(n,Npatterns) )

C Start timer
CALL timer(ti, 0.0)
CALL timer(tstart,0.0)
C ... Define patterns (-1,+1) with which the network will learn.

D0 i=1,Npatterns
CALL RANDOM_NUMBER( RealRandom )
WHERE( RealRandom .GE. 0.5 )

patterns(:,i) = 1.0

ELSEWHERE
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patterns(:,i) = -1.0
END WHERE
END DO
. Hebbian learning rule for the weights ...
weights = 0.0
DO i=1,Npatterns
sites = patterns(:,i)
weights = weights + MATMUL( RESHAPE(sites,(/n,1/)),
1 RESHAPE(sites, (/1,n/)) )
END DO
weights = weights / REAL( n )
. Define external field ...
ExternalField = 0.01
. Pick the last pattern stored as the one to retrieve.
sites = patterns(:,Npatterns)
. Add some noise.
CALL RANDOM_NUMBER( RealRandom )
WHERE( RealRandom .LE. noiseFrac )
sites = -sites
END WHERE
sitesO = sites
overlap = RESHAPE( MATMUL( RESHAPE(sites,(/1,n/)),patterns ),
1 (/HWpatterns/) )
overlap = overlap / REAL( n )
MaxOverlap = MAXVAL( overlap )
iter = 0
SelfOverlap = 0.0
WRITE(UNIT=STDOUT ,FMT=102) iter,SelfOverlap
CALL timer(tend, tstart)
tcomp = tcomp + tend
DO WHILE( (MaxOverlap .LE. tol).AND.(iter.NE.MaxIterations) )
iter = iter + 1
. Calculate the local field at each site.
CALL timer(tstart, 0.0)
LocalField = RESHAPE( MATMUL( RESHAPE(sites,(/1,n/)),weights ),
1 (/n/) ) + ExternalField
CALL timer(tend, tstart)
tcomms = tcomms + tend
CALL timer(tstart, 0.0)
. Noisy parallel update dynamics, using sign() function.
CALL RANDOM_NUMBER( RealRandom )
WHERE( (LocalField.GE.0.0).AND.(RealRandom.LE.updateFrac) )
sites = 1

END WHERE

WHERE( (LocalField.LT.0.0).AND.(RealRandom.LE.updateFrac) )
sites = -1

END WHERE

CALL timer(tend,tstart)

tcomp = tcomp + tend

CALL timer(tstart, 0.0)

overlap = RESHAPE( MATMUL( RESHAPE(sites,(/1,n/)),patterns ),
1 (/Npatterns/) )

CALL timer(tend, tstart)

tcomms = tcomms + tend

CALL timer(tstart, 0.0)

overlap = overlap / REAL( n )

MaxOverlap = MAXVAL( overlap )

SelfOverlap = DOT_PRODUCT( sites,sitesO ) / REAL(n)

sitesO = sites

CALL timer(tend, tstart)
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tcomp = tcomp + tend
WRITE(UNIT=STDOUT ,FMT=102) iter,SelfOverlap
END DO

C Stop timer

CALL timer(tf, ti)
WRITE (UNIT=STDOUT ,FMT=101) MAXLOC( overlap ), MaxOverlap
WRITE(UNIT=# ,FMT=6004) NUMBER_OF_PROCESSORS() ,n,

tcomms ,tcomp, (tf-tcomms—tcomp) ,tf

6004 FORMAT(’Number of Processors = ’,I4/
1 ’Problem size = 7,15/
2 ’Communications = ’,G9.3/
3 ’Compute = ,6G9.3/
4 ’Others = ,G9.3/
5 ’Total time = 7,G9.3)
STOP
101 FORMAT(’Pattern found is number ’,I4,’ with overlap = ’,F12.3)
102 FORMAT(’Progress’,16,’:’,F12.3)
103 FORMAT(12F9.3)
END
C
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