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Abstract

A computational method for the solution of differential equations is proposed. With
this method an accurate approximation is built by incremental additions of optimal local
basis functions. The parallel direct search software package (PDS), that supports paral-
lel objective function evaluations, is used to efficiently solve the associated optimization
problem. The advantage of the method is that although it resembles adaptive methods
in computational mechanics, an a-priori grid is not necessary. Moreover, the traditional
matrix construction and evaluations are avoided. Computational cost is reduced while
efficiency is enhanced by the low-dimensional parallel-executed optimization and parallel
function evaluations. In addition, the method should be applicable to a broad class of
interpolation functions. Results and global convergence rates obtained for one- and two-
dimensional boundary value problems are satisfactorily compared to those obtained by the

conventional Galerkin finite element method.
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1 Introduction

It can be argued that function approximation is the foundation of all numerical approxi-
mation methods. Corresponding problems can involve linear or nonlinear, differential or
integral operators and can vary from data-fitting problems to problems governed by sys-
tems of partial differential equations. In engineering applications, the problem of function
approximation is addressed by assembling interpolation functions which adequately repro-
duce the dependent variable of interest. For example, the popular finite element method
is based on the use of simple local low-order polynomial splines which yield accurate and
computationally efficient global function approximation.

This paper addresses the problem of function approximation in the context of the solu-
tion of differential equations. It is motivated by several algorithms developed for function
approximation problems in the area of artificial intelligence (in particular neural networks)

and their close resemblance to adaptive methods for the solution of computational me-
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chanics problems. These algorithms will be reviewed in the following two subsections. In
the remainder of the paper, the proposed method will be described and demonstrated by
means of specific applications.

The main objective of this paper is to formulate the mathematical foundation for a novel
computational procedure rather than present major applications. Consequently, linear one-
and two-dimensional boundary value problems, representative of more complex problems
(e.g., steady viscous fluid flow through a duct), were solved to demonstrate the potential
of the novel algorithm. Computational mechanics problems of greater complexity will be

the focus of future work.

1.1 Function Approximation in Artificial Neural Network Applications

Any approximation algorithm that uses a combination of basis functions that can be
mapped into a graph-directed representation can be called an artificial neural network.
In this regard, function approximation in the framework of neural computations has been
primarily based on the results of Cybenko [1] and Hornik et al. [2], who showed that a
continuous d-dimensional function can be arbitrarily well approximated by a linear combi-

nation of one-dimensional functions ¢;.

urul(é) =co+ ici@(fl(&m)) (1)

where n € R, £ € R%, p; € R™, and ¢; € R represent the function argument, independent
variables, function parameters, and linear coefficients, respectively.

The appropriate linear and nonlinear network parameters in equation (1) are tradition-
ally selected by solving a non-linear optimization problem with the objective function given

by the mean square error over some domain {2
= [ (u—u®)de . (2)

In the neural network literature, the numerical minimization of equation (2) by the steepest

descent method is known as the backpropagation algorithm [3]. More sophisticated opti-
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mization methods, including the conjugate gradient and the Levenberg-Marquardt meth-
ods, have been also used for neural network training. However, it has been found that
even these advanced optimization methods are prone to poor convergence [4]. Clearly, the
training algorithms must address a multi-dimensional optimization problem with non-linear
dependence on the network parameters p;.

As an alternative, Jones [5], [6] and Barron [7] proposed the following iterative algorithm

for sequential approximation:

un(€) = anu_y (€) + cnd(n(€, Pn)) (3)

where p,,c,, and «, are optimally selected at each iteration of the algorithm. As a re-
sult, the high-dimensional optimization problem associated with neural network training is
reduced to a series of simpler low-dimensional problems. A general principle of statistics
was utilized to show that the upper bound of the error € is of the order C'/y/n, where C' is
a positive constant. Further, Orr [8] introduced a forward selection method of sequential
network training; this is essentially a method of incremental function approximation. At
each iteration of the algorithm an additional basis function, which produces the largest re-
duction of error in the previous iteration, is chosen from a given set of functions and added
to the approximation. However, the forward selection training method can be inefficient
in that it may require significant computational resources when the set of trial functions
is large. A similar principle is utilized in Platt’s resource allocating networks (RAN) [9].
Whenever an unusual pattern is presented to the network, in on- or off-line network train-
ing, a new computational “unit” is allocated. Note that these computational units respond
to local regions of the input space.

The concept of sequential approximation is one of the major features of the method

proposed in this paper for the solution of computational mechanics problems.



1.2 Optimization in Computational Mechanics

Most numerical methods in computational mechanics rely on the discretization of a finite
dimensional domain into a grid of nodal points. The requisite computational cost and the
efficiency are strongly affected by the type of the discretization. For example, slow conver-
gence and numerical instability, resulting from poor condition numbers of the associated
matrices, have been reported in the literature for uniform grids. Therefore, optimization in
computational mechanics has focused primarily in the selection of the optimal grid. Oliveira
[10] showed that optimal node distribution provides minimal total potential energy of the
system. In fact, it was proven that such distributed nodes lie along isoenergetic contours.

Felippa [11], [12] followed an optimal node distribution approach. The direct and com-
putationally expensive grid optimization problem is solved for a given configuration of finite
elements and the nodes are then relocated. This process is repeated iteratively until conver-
gence to an optimal grid is achieved. However, this approach is limited to linear self-adjoint
differential operators where energy variational principles are readily available. Results were
reported for extremely coarse grids, due to the computational complexity of the associated
multi-dimensional optimization problem. Diaz et al. [13] discussed an adaptive method
to improve the accuracy of the finite element analysis; grid optimization was based on the
minimization of an estimated upper bound on the potential energy of the finite element
solution. It is noted that recently developed adaptive methods of computational mechanics
substitute the principle of the system potential energy minimum with the weaker criterion
of the homogeneous distribution of the approximation error [14] - [16].

The method proposed in this paper for solving computational mechanics problems
closely resembles the previously discussed adaptive numerical methods. However, it is
not confined by grid requirements and it can be used in conjunction with a broad class of

basis functions.



2 The Proposed Method

The basic principles of the proposed computational method for solving differential equa-
tions are presented in this section. The development of this method was motivated by
the similarities between iterative optimization procedures reviewed in Sections 1.1 and 1.2.
The main features of the proposed method are a) the iterative nature of the developed algo-
rithm for sequential, or incremental, approximations and b) the solution of an optimization
problem at each stage of the algorithm.

The developed algorithm can be summarized as follows. Given a problem, the depen-
dent variable is approximated by a basis expansion; an incremental set of interpolation
functions is sequentially built to improve the expansion-based approximation. At each
stage of the algorithm the parameters of the new interpolation function are selected by
solving a nonlinear low-dimensional problem, while the associated coefficient is determined
by evaluating the orthogonality requirement. For example, assuming that the algorithm

has reached step ¢, the approximate function is given by
uf(§) = co+ D ¢;®(& pj) = ui_i (&) + ¢ @i(€, pi) (4)
i=1

where the one-dimensional function ¢ of equation (1) has been replaced with a multi-
dimensional Lagrangian basis ®. The coefficients ¢; and the interpolation functions ®;(¢, p;),
j=1,...,i—1, are held fixed while the coefficient ¢; and the interpolation function ®;(¢, p;)
are optimally computed according to an appropriate criterion (see Section 3.1 for further
discussion). Note that there are no restrictions on the distribution of the interpolation
functions over the domain of interest; any degree of overlapping is possible. As a result,
nodal points and the associated grid are not known a-priori. The sequential algorithm is
halted when the relative difference between the previous and current approximations falls

below a user-selected tolerance level.



2.1 The Parallel Direct Search (PDS) optimization algorithm

The computational efficiency of the method depends on the solution cost of the nonlinear
optimization problem. The dimensionality of the nonlinear problem is kept low by the iter-
ative nature of the algorithm. In addition to the reduction of the optimization problem size,
parallel direct search methods [17] are used to solve the optimization problem efficiently.
The selected parallel direct search optimization software package (PDS) is a collection of
Fortran routines, operating in double precision, used for solving both constrained and un-
constrained nonlinear optimization problems. PDS does not require derivative information
and offers the advantage of supporting parallel objective function evaluations by means of
the Message Passing Interface (MPI). PDS is scalable in that it fully exploits additional
processors by performing new searches and by refining existing ones. The only requirement
to guarantee convergence is that the objective function must be continuous. PDS works
best when the ratio of the number of function evaluations to the number of the optimiza-
tion variables is large. Clearly, the number of optimization variables should be kept as low
as possible. This requirement is satisfied by the proposed method for sequential function

approximation.

3 Mathematical Formulation

In this section, the proposed method for optimal sequential function approximation is
described and implemented for the solution of differential equations. Algorithm and imple-
mentation issues are addressed by means of one- and two-dimensional numerical examples.
Results are presented, compared, and discussed.

3.1 Solution of Differential Equations

Consider a general boundary value problem with homogeneous boundary conditions

L(u(§)) = f(¢) in Q, with B(u(£)) =0 on 99 (5)



where L(-) is a linear, self-adjoint differential operator, B(-) is a corresponding boundary
operator and u(£) is the exact solution to the differential equation. Alternatively, the

solution to equation (5) can be determined by minimizing the following functional

E = Sl(ui(€),uf () — (uf (§), £(£))) (6)

[\)l»—

where u¢(€) is the approximate solution given by equation (4) and (-, -) denotes the bilinear
symmetric differential form associated with the operator L. Note that, for this type of

problem,

1) = (L)) (7)
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B = Sl(u(€) — ui(€), u(€) — ui(€)) - l(‘u(f)vu(f)) (8)
Also, since u(€) is the nontrivial exact solution and L is positive definite,
%Z(u(f),u({)) = constant = K >0 .

Define the error at the i-th step as e; where ¢; = u(€) — u%(€). Then, ¢; = e;_; — c;®4(

Iy
~—

and equation (8) becomes

B = Slleis — (). ey — (@) ~ K =

1 1 . _ _
Slleimn i) + Se(B(E), 94(6) — el(eiy, 0(E)) - (9
The coefficient ¢; can be determined by equating the partial derivative of £ with respect

to ¢; to zero:

o = 0= (@), 2(O) i1, .(6)) (10)

That is, the coefficient ¢; can then be calculated from

(¢i-1, 2:(€))

._—2
= 1(0), 9:(6)) (1)

and equation (9) becomes

_ L -1 () .
E = 5[(62_1,62_1) — K — - _(7 (12)



To improve the accuracy of the approximation, the magnitude of the last term must be
maximized by appropriately selecting the parameters of the interpolation function ®;(¢).
PDS is utilized to solve this nonlinear problem, while the associated coefficient is readily
determined as described above when the governing equation is linear.

Clearly, the proposed method resembles some of the conventional adaptive numerical
techniques from computational mechanics in that the new interpolation function is selected

to provide the largest projection on the error of the preceding iteration. Specifically, the

new interpolation function is positioned at the location of the largest estimated error.

3.2 Numerical Examples

The Poisson equation,
= V() = f(¢), (13)
which can be used as a low-fidelity representation of some problems in computational
mechanics, has been successfully solved by means of the proposed method for one and
two dimensions with homogeneous Dirichlet boundary conditions. For the one-dimensional
problem the domain of interest was selected as 0 = [0, 1] with ¢ = z and a forcing function of
f(z) = 2. In the two-dimensional case, Q = [—1,1] x [~1,1], £ = (=, y)T and f(z,y) = 2x.
Piecewise linear interpolation functions (B splines) were used. The interpolation func-

tion is defined by the equation

79”—(9”34;A“) if avy—Ay<z<ay
B(z) = lactdemlos g 4y <o <oy + A, (14)
0 otherwise,

where the parameters xr, Ax;, and Az, denote the location of the center of the function,
its width to the left and right, respectively. Note that the simple product of two one-

dimensional functions has been used in the two-dimensional case,

O(z,y) = @(x)0(y). (15)
The optimization design variables are given by p; = (@, Awy, AfCT)Z-T for the one-dimensional
case and by p; = (:I:M,AJ:Z,AxT,yM,Ayl,AyT)T for the two-dimensional case. The initial

7

8



values for the optimization variables required by the PDS algorithm are chosen so that
each new interpolation function is initially centered in, and covers, the problem domain.
The interpolation functions were constrained to vanish at the domain boundaries in order
to satisfy the homogeneous Dirichlet boundary conditions exactly. The algorithm was ini-
tialized with an empty set of basis functions, however, a non-empty set of basis functions
can be used to initialize the algorithm. All calculations were done in double precision to
accommodate PDS.

Two PDS-input parameters control the number of required PDS iterations and func-
tion and constraint evaluations; the number of search directions d and the user-selected
tolerance tol, which forms the convergence criterion for PDS. The PDS package guarantees
convergence for d > 2m where m is the number of design variables (m = 6). However, d
should be chosen to be larger than 2m in order to secure a detailed search. The number
of search directions should be relatively small if the objective function is convex and large
if the objective function is suspected to be nearly concave. Typically, if a small d is cho-
sen, a small tolerance should also be chosen, since the search interval is relatively course.
Similarly, if a large d is selected for the same number of design variables, a larger tolerance
should be chosen to ensure computational efficiency.

The solution obtained for the one-dimensional problem, with d = 100 and tol = 107*,
is compared to the exact in Fig. 1(a). Figure 1(b) compares the global convergence
rate of the proposed method to that from the Galerkin technique using linear Lagrangian
shape functions on a uniform grid. The RMS errors were calculated from 101 uniformly
distributed trial points.

The evolution of the incrementally built solution and the squared absolute error dis-
tribution for the two-dimensional problem are shown in Fig. 2(a) and 2(b), respectively
for d = 1000 and tol = 10~*. The RMS error global convergence rate, compared to the
rate from the Galerkin technique using uniformly distributed bilinear Lagrangian shape
functions, is presented in Fig. 3. The RMS errors were calculated based on 961 uniformly

distributed trial points.



The “kinks” in the global convergence curves of Fig. 1(b) and Fig. 3 come from a
combination of two sources. Firstly, PDS optimizes by direct search. As such it can only
evaluate a finite combination of parameters which results in a finite interval of uncertainty.
Secondly, the algorithm is not designed to explicitly minimize the RMS error; the algorithm
effectively minimizes equation (12). However, equation (12) acts as an upper bound on the
RMS, so though successive RMS values can increase they cannot exceed the value generated
by equation (12). This can result in a sawtooth or step-like oscillation in the convergence
curves.

Tables 1 and 2 summarize the performance characteristics of PDS, for the two-dimensional
numerical example, with both a relatively small and large number of directions. It is clear
from Table 1 that a relatively small number of directions (d = 100) will require more PDS
iterations, due to the smaller tolerance (107°), but fewer function and constraint evalua-
tions. Table 2 shows that a large number of directions (d = 1000) will require fewer PDS
iterations, due to the larger tolerance (10™*), but more function and constraint evaluations.

Note that both Tables 1 and 2 show that the number of PDS iterations and function
and constraint evaluations fluctuate but remain “bounded” and are independent from the
number of sequential algorithm steps, for both small and large values of d. Moreover, these
evaluations can always be computed faster with increasing number of available parallel
processors. The only cost linked to the increase in algorithm steps stems from the increasing
number of numerical integrations as more interpolation functions are added to the series

expansion; this cost is mitigated by performing numerical integrations in parallel.

4 Conclusions

A computational method based on sequential approximation concepts, combined with inter-
polation function optimization, has been proposed for the solution of differential equations.
The developments of this paper are motivated by observed similarities between numeri-

cal procedures developed in the areas of neural networks and computational mechanics.
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It has been shown that the proposed method can be successfully applied to one- and
two-dimensional linear differential equations and yield accurate results. The advantage of
the method is that although it resembles adaptive methods in computational mechanics,
an a-priori grid is not necessary. Moreover, the traditional matrix evaluations are avoided.
Computational cost is reduced while efficiency is enhanced by the low-dimensional parallel-
executed optimization and parallel function evaluations. In addition, the method should
be applicable to a broad class of interpolation functions.

Finally, note that from equation (12)

(f(6), @i(€)) — (L(ui_1(€)), ®i(&)) = (Ri1, ®i(€)) (16)

where the equation residual R;_; is equal to — [L(uf_l(f)) — f(f)] From a geometric
perspective, maximizing the third term in equation (12) is identical to constructing a basis
vector that is parallel to the vector R;_;. This use of the equation residual shows that it
may be possible to avoid energy variational principles in practice. Specifically, equation
(16) provides a solid foundation for the extension of the method to problems involving

various types of differential operators.
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Figure 1: One-dimensional Poisson’s equation: (a) solution comparison using 19 optimal

interpolation functions, (b) convergence rate comparison.
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Figure 2: Two-dimensional Poisson’s equation: (a) solution and (b) squared error distri-

bution after (top to bottom) 25 and 100 optimal interpolation functions, respectively.
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Table 1: PDS performance characteristics for the two-dimensional Poisson problem using

d = 100 and tol = 1078.

Algorithm | # of PDS | Total # of tfunction | Total # of constraint
step iterations evaluations evaluations
1 19 459 1812
30 39 2303 3818
60 39 1535 3588
90 39 3431 3812

Table 2: PDS performance characteristics for the two-dimensional Poisson problem using

d = 1000 and tol = 1074,

Algorithm | # of PDS | Total # of tfunction | Total # of constraint
step iterations evaluations evaluations
1 7 1066 6097
30 13 3156 11632
60 15 12718 13996
90 8 909 6574
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